Yocto-motor-dc : manuel d'utilisation

Yocto-Motor-DC : Manuel d'utilisation

1. Introduction
1.1 Informations de sécurité
1.2 Conditions environnementales
2. Présentation
2.1 Les éléments communs
2.2 Les éléments spécifiques
2.3 Isolation électrique fonctionnelle
2.4 Accessoires optionnels
3. Fonctionnement du Yocto-Motor-DC
3.1 Principe
3.2 Fréquence
3.3 Fonctionnalités
3.4 Protections
4. Premiers pas
4.1 Prérequis
4.2 Test de la connectivité USB
4.3 Localisation
4.4 Test du module
4.5 Configuration
5. Montage et connectique
5.1 Chaleur
5.2 Fixation
5.3 Contraintes d'alimentation par USB
5.4 Compatibilité électromagnétique (EMI)
6. Programmation, concepts généraux
6.1 Paradigme de programmation
6.2 Le module Yocto-Motor-DC
6.3 Module
6.4 Motor
6.5 Current
6.6 Voltage
6.7 Temperature
6.8 Quelle interface: Native, DLL ou Service?
6.9 Programmation, par où commencer?
7. Utilisation du Yocto-Motor-DC en ligne de commande
7.1 Installation
7.2 Utilisation: description générale
7.3 Contrôle de la fonction Motor
7.4 Contrôle de la partie module
7.5 Limitations
8. Utilisation du Yocto-Motor-DC en Python
8.1 Fichiers sources
8.2 Librairie dynamique
8.3 Contrôle de la fonction Motor
8.4 Contrôle de la partie module
8.5 Gestion des erreurs
9. Utilisation du Yocto-Motor-DC en C++
9.1 Contrôle de la fonction Motor
9.2 Contrôle de la partie module
9.3 Gestion des erreurs
9.4 Intégration de la librairie Yoctopuce en C++
10. Utilisation du Yocto-Motor-DC en C#
10.1 Installation
10.2 Utilisation l'API yoctopuce dans un projet Visual C#
10.3 Contrôle de la fonction Motor
10.4 Contrôle de la partie module
10.5 Gestion des erreurs
11. Utilisation du Yocto-Motor-DC avec LabVIEW
11.1 Architecture
11.2 Compatibilité
11.3 Installation
11.4 Présentation des VIs Yoctopuce
11.5 Fonctionnement et utilisation des VIs
11.6 Utilisation des objets Proxy
11.7 Gestion du datalogger
11.8 Énumération de fonctions
11.9 Un mot sur les performances
11.10 Un exemple complet de programme LabVIEW
11.11 Différences avec les autres API Yoctopuce
12. Utilisation du Yocto-Motor-DC en Java
12.1 Préparation
12.2 Contrôle de la fonction Motor
12.3 Contrôle de la partie module
12.4 Gestion des erreurs
13. Utilisation du Yocto-Motor-DC avec Android
13.1 Accès Natif et Virtual Hub.
13.2 Préparation
13.3 Compatibilité
13.4 Activer le port USB sous Android
13.5 Contrôle de la fonction Motor
13.6 Contrôle de la partie module
13.7 Gestion des erreurs
14. Utilisation du Yocto-Motor-DC en TypeScript
14.1 Utiliser la librairie Yoctopuce pour TypeScript
14.2 Petit rappel sur les fonctions asynchrones en JavaScript
14.3 Contrôle de la fonction Motor
14.4 Contrôle de la partie module
14.5 Gestion des erreurs
15. Utilisation du Yocto-Motor-DC en JavaScript / EcmaScript
15.1 Fonctions bloquantes et fonctions asynchrones en JavaScript
15.2 Utiliser la librairie Yoctopuce pour JavaScript / EcmaScript 2017
15.3 Contrôle de la fonction Motor
15.4 Contrôle de la partie module
15.5 Gestion des erreurs
16. Utilisation du Yocto-Motor-DC en PHP
16.1 Préparation
16.2 Contrôle de la fonction Motor
16.3 Contrôle de la partie module
16.4 API par callback HTTP et filtres NAT
16.5 Gestion des erreurs
17. Utilisation du Yocto-Motor-DC en VisualBasic .NET
17.1 Installation
17.2 Utilisation l'API yoctopuce dans un projet Visual Basic
17.3 Contrôle de la fonction Motor
17.4 Contrôle de la partie module
17.5 Gestion des erreurs
18. Utilisation du Yocto-Motor-DC en Delphi
18.1 Préparation
18.2 Contrôle de la fonction Motor
18.3 Contrôle de la partie module
18.4 Gestion des erreurs
19. Utilisation du Yocto-Motor-DC avec Universal Windows Platform
19.1 Fonctions bloquantes et fonctions asynchrones
19.2 Installation
19.3 Utilisation l'API Yoctopuce dans un projet Visual Studio
19.4 Contrôle de la fonction Motor
19.5 Un exemple concret
19.6 Contrôle de la partie module
19.7 Gestion des erreurs
20. Utilisation du Yocto-Motor-DC en Objective-C
20.1 Contrôle de la fonction Motor
20.2 Contrôle de la partie module
20.3 Gestion des erreurs
21. Utilisation avec des langages non supportés
21.1 Utilisation en ligne de commande
21.2 Assembly .NET
21.3 Virtual Hub et HTTP GET
21.4 Utilisation des librairies dynamiques
21.5 Port de la librairie haut niveau
22. Programmation avancée
22.1 Programmation par événements
23. Mise à jour du firmware
23.1 Le VirtualHub ou le YoctoHub
23.2 La librairie ligne de commandes
23.3 L'application Android Yocto-Firmware
23.4 La librairie de programmation
23.5 Le mode "mise à jour"
24. Référence de l'API de haut niveau
24.1 La classe YAPI
24.2 La classe YModule
24.3 La classe YMotor
24.4 La classe YVoltage
24.5 La classe YCurrent
24.6 La classe YTemperature
25. Problèmes courants
25.1 Par où commencer ?
25.2 Linux et USB
25.3 Plateformes ARM: HF et EL
25.4 Les exemples de programmation n'ont pas l'air de marcher
25.5 Module alimenté mais invisible pour l'OS
25.6 Another process named xxx is already using yAPI
25.7 Déconnexions, comportement erratique
25.8 RegisterHub d'un VirtualHub déconnecte le précédent
25.9 Commandes ignorées
25.10 Module endommagé
26. Caractéristiques
27. Index

1. Introduction

Le Yocto-Motor-DC est un module électronique de 58x50mm qui est essentiellement destiné à contrôler un moteur à balais, de 3 à 18V et jusqu'à 20 ampères en continue (30A en pointe). Mais il peut aussi être utilisé pour piloter l'intensité d'un éclairage à basse tension, ou de tout autre appareil supportant d'être alimenté avec du courant haché. C'est un module isolé: la partie USB est électriquement isolé de la partie puissance.


Le module Yocto-Motor-DC

Le Yocto-Motor-DC n'est pas en lui-même un produit complet. C'est un composant destiné à être intégré dans une solution d'automatisation en laboratoire, ou pour le contrôle de procédés industriels, ou pour des applications similaires en milieu résidentiel ou commercial. Pour pouvoir l'utiliser, il faut au minimum l'installer à l'intérieur d'un boîtier de protection et le raccorder à un ordinateur de contrôle.

Yoctopuce vous remercie d'avoir fait l'acquisition de ce Yocto-Motor-DC et espère sincèrement qu'il vous donnera entière satisfaction. Les ingénieurs Yoctopuce se sont donné beaucoup de mal pour que votre Yocto-Motor-DC soit facile à installer n'importe où et soit facile à piloter depuis un maximum de langages de programmation. Néanmoins, si ce module venait à vous décevoir, ou si vous avez besoin d'informations supplémentaires, n'hésitez pas à contacter Yoctopuce:

Adresse e-mail:support@yoctopuce.com
Site Internet:www.yoctopuce.com
Adresse postale:Chemin des Journaliers, 1
Localité:1236 Cartigny
Pays:Suisse

1.1. Informations de sécurité

Le Yocto-Motor-DC est conçu pour respecter la norme de sécurité IEC 61010-1:2010. Il ne causera pas de danger majeur pour l'opérateur et la zone environnante, même en condition de premier défaut, pour autant qu'il soit intégré et utilisé conformément aux instructions contenues dans cette documentation, et en particulier dans cette section.

Boîtier de protection

Le Yocto-Motor-DC ne doit pas être utilisé sans boîtier de protection, en raison des composants électriques à nu. Pour une sécurité optimale, il devrait être mis dans un boîtier non métallique, non-inflammable, résistant à un choc de 5 J, par exemple en polycarbonate (LEXAN ou autre) d'indice de protection IK08 et classifié V-1 ou mieux selon la norme IEC 60695-11-10. L'utilisation d'un boîtier de qualité inférieure peut nécessiter des avertissements spécifiques pour l'utilisateur et/ou compromettre la conformité avec la norme de sécurité.

Entretien

Si un dégat est constaté sur le circuit électronique ou sur le boîtier, il doit être remplacé afin de ne pas compromettre la sécurité d'utilisation et d'éviter d'endommager d'autres parties du système par les surcharges éventuelles que pourrait causer un court-circuit.

Identification

Pour faciliter l'entretien du circuit et l'identification des risques lors de la maintenance, vous devriez coller l'étiquette autocollante synthétique identifiant le Yocto-Motor-DC, fournie avec le circuit électronique, à proximité immédiate du module. Si le module est dans un boîtier dédié, l'étiquette devrait être collée sur la surface extérieur du boîtier. L'étiquette est résistante à l'humidité et au frottement usuel qui peut survenir durant un entretien normal.


L'étiquette d'identification est intégrée à l'étiquette de l'emballage.

Applications

La norme de sécurité vérifiée correspond aux instruments de laboratoire, pour le contrôle de procédés industriels, ou pour des applications similaires en milieu résidentiel ou commercial. Si vous comptez l'utiliser le Yocto-Motor-DC pour un autre type d'applications, vous devrez vérifier les critères de conformité en fonction de la norme applicable à votre application.

En particulier, le Yocto-Motor-DC n'est pas certifié pour utilisation dans un environnement médical, ni pour les applications critiques à la santé, ni pour toute autre application menaçant la vie humaine.

Environnement

Le Yocto-Motor-DC n'est pas certifié pour utilisation dans les zones dangereuses, ni pour les environnements explosifs. Les conditions environnementales assignées sont décrites ci-dessous.

Risque de brûlure et de feu

Lorsque de forts courants traversent le module, le circuit imprimé ainsi que certains composants peuvent chauffer à plus de 60°C. Un contact direct avec la peau produirait une brûlure, et une utilisation dans un boîtier inadéquat créerait un risque de feu non négligeable. Lors d'une exposition continue à de forts courants, pensez donc à prévenir tant les risques de brûlure que les risques d'incendie. Un système de ventilation aide à réduire la température, mais pour que le système reste sans danger même en cas de panne du ventilateur, il est essentiel d'utiliser un boîtier classé V-1 ou V-0 selon la norme IEC 60695-11-10. Assurez-vous que les aérations du boîtier soient orientés latéralement ou vers le haut, mais pas vers le bas.

Si vous utilisez de forts courants, utilisez du câble électrique spécifié pour supporter les hautes températures, car la chaleur se propagera à travers le bornier sur le câble électrique lui-même.

Classe de protection III (IEC 61140)

Le module Yocto-Motor-DC a été conçu pour travailler uniquement avec des très basses tension de sécurité. Ne dépassez pas les tensions indiquées dans ce manuel, et ne raccordez en aucun cas sur le bornier du Yocto-Motor-DC un fil susceptible d'être connecté au réseau secteur.

1.2. Conditions environnementales

Les produits Yoctopuce sont conçus pour une utilisation intérieure dans un environnement usuel de bureau ou de laboratoire (degré de pollution 2 selon IEC 60664): la pollution de l'air doit être faible et essentiellement non conductrice. L'humidité relative prévue est de 10% à 90% RH, sans condensation. L'utilisation dans un environnement avec une pollution solide ou conductrice significative exige de protéger le module contre cette pollution par un boîtier certifié IP67 ou IP68. Les produits sont conçus pour une utilisation jusqu'à une altitude de 2000m.

Le fonctionnement de tous les modules Yoctopuce est garanti conforme à la documentation et aux spécifications de précision pour des conditions de température ambiante normales selon IEC61010-1, soit 5°C à 40°C. De plus, la plupart des modules peuvent aussi être utilisés sur une plage de température étendue, à laquelle quelques limitations peuvent s'appliquer selon les cas.

La plage de température de fonctionnement étendue du Yocto-Motor-DC est -30...70°C. Cette plage de température a été déterminée en fonction des recommandations officielles des fabricants des composants utilisés dans le Yocto-Motor-DC, et par des tests de durée limitée (1h) dans les conditions extrêmes, en environnement controllé. Si vous envisagez d'utiliser le Yocto-Motor-DC dans des conditions de température extrêmes pour une période prolongée, il est recommandé de faire des tests extensifs avant la mise en production.

2. Présentation


1:Prise USB micro-B5:Alimentation de la partie puissance (+)
2:Yocto-bouton 6:Alimentation de la partie puissance (-)
3:Yocto-Led 7:Sortie Moteur (+)
4:Led d'erreur 8:Sortie Moteur (-)

2.1. Les éléments communs

Tous les Yocto-modules ont un certain nombre de fonctionnalités en commun.

Le connecteur USB

Les modules de Yoctopuce sont tous équipés d'une connectique USB 2.0 au format micro-B. Attention, le connecteur USB est simplement soudé en surface et peut être arraché si la prise USB venait à faire levier. Si les pistes sont restées en place, le connecteur peut être ressoudé à l'aide d'un bon fer et de flux. Alternativement, vous pouvez souder un fil USB directement dans les trous espacés de 1.27mm prévus à cet effet, prêt du connecteur.

Si vous utilisez une source de tension autre qu'un port USB hôte standard pour alimenter le module par le connecteur USB, vous devez respecter les caractéristiques assignées par le standard USB 2.0:

En cas de tension supérieure, le module risque fort d'être détruit. En cas de tension inférieure, le comportement n'est pas déterminé, mais il peut conduire à une corruption du firmware.

Le Yocto-bouton

Le Yocto-bouton a deux fonctions. Premièrement, il permet d'activer la Yocto-balise (voir la Yocto-led ci-dessous). Deuxièmement, si vous branchez un Yocto-module en maintenant ce bouton appuyé, il vous sera possible de reprogrammer son firmware avec une nouvelle version. Notez qu'il existe une méthode plus simple pour mettre à jour le firmware depuis l'interface utilisateur, mais cette méthode-là peut fonctionner même lorsque le firmware chargé sur le module est incomplet ou corrompu.

La Yocto-Led

En temps normal la Yocto-Led sert à indiquer le bon fonctionnement du module: elle émet alors une faible lumière bleue qui varie lentement mimant ainsi une respiration. La Yocto-Led cesse de respirer lorsque le module ne communique plus, par exemple si il est alimenté par un hub sans connexion avec un ordinateur allumé.

Lorsque vous appuyez sur le Yocto-bouton, la Led passe en mode Yocto-balise: elle se met alors à flasher plus vite et beaucoup plus fort, dans le but de permettre une localisation facile d'un module lorsqu'on en a plusieurs identiques. Il est en effet possible de déclencher la Yocto-balise par logiciel, tout comme il est possible de détecter par logiciel une Yocto-balise allumée.

La Yocto-Led a une troisième fonctionnalité moins plaisante: lorsque ce logiciel interne qui contrôle le module rencontre une erreur fatale, elle se met à flasher SOS en morse1. Si cela arrivait débranchez puis rebranchez le module. Si le problème venait à se reproduire vérifiez que le module contient bien la dernière version du firmware, et dans l'affirmative contactez le support Yoctopuce2.

La sonde de courant

Chaque Yocto-module est capable de mesurer sa propre consommation de courant sur le bus USB. La distribution du courant sur un bus USB étant relativement critique, cette fonctionnalité peut être d'un grand secours. La consommation de courant du module est consultable par logiciel uniquement.

Le numéro de série

Chaque Yocto-module a un numéro de série unique attribué en usine, pour les modules Yocto-Motor-DC ce numéro commence par MOTORCTL. Le module peut être piloté par logiciel en utilisant ce numéro de série. Ce numéro de série ne peut pas être changé.

Le nom logique

Le nom logique est similaire au numéro de série, c'est une chaine de caractère sensée être unique qui permet référencer le module par logiciel. Cependant, contrairement au numéro de série, le nom logique peut être modifié à volonté. L'intérêt est de pouvoir fabriquer plusieurs exemplaires du même projet sans avoir à modifier le logiciel de pilotage. Il suffit de programmer les même noms logiques dans chaque exemplaire. Attention le comportement d'un projet devient imprévisible s'il contient plusieurs modules avec le même nom logique et que le logiciel de pilotage essaye d'accéder à l'un de ces module à l'aide de son nom logique. A leur sortie d'usine, les modules n'ont pas de nom logique assigné, c'est à vous de le définir.

2.2. Les éléments spécifiques

Connecteurs

Les connexions sont très simples: il suffit de brancher la source d'alimentation et le moteur sur les connecteurs adéquats.

Attention: Il est primordial de respecter la polarité de l'alimentation, car le module n'est pas protégé contre les inversions. Brancher l'alimentation à l'envers détruirait instantanément le module. Brancher l'alimentation sur la sortie moteur détruirait aussi instantanément le module.

Si votre application utilise des fort courants, veillez à utiliser des câbles aussi courts que possible, en particulier entre la source de courant et le Yocto-Motor-DC.


Branchement de la partie puissance: attention aux inversions de polarité et de prises!

Si le Yocto-Motor-DC est utilisé dans une application où la polarité a son importance, tel qu'un éclairage à LED, il est aussi primordial de respecter la polarité en sortie de module.

Attention, l'entrée et la sortie du Yocto-Motor-DC ne sont pas en masse commune. Les quatre fils doivent impérativement être câblés séparément, sous peine de créer un court-circuit qui détruirait le module.

Radiateurs de dissipation

Lorsque le courant fournit est élevé, le Yocto-Motor-DC doit dissiper une quantité importante d'énergie en chaleur.

Selon le courant consommé, les radiateurs du Yocto-Motor-DC peuvent atteindre (voire dépasser) les 80°C. Évitez donc de les toucher en fonctionnement, et veillez à installer le module de façon à ce que la chaleur puisse s'évacuer si nécessaire. Pour plus de détail, référez-vous au chapitre montage et connectique.

Utilisé à basse puissance (jusqu'à 2-3 ampères), vous pouvez utiliser un boîtier Yoctopuce de type YoctoBox-Watt-Transp pour protéger votre module.

2.3. Isolation électrique fonctionnelle

Le Yocto-Motor-DC est conçu sous forme de deux circuits électriques bien distincts, séparés par une barrière d'isolation fonctionnelle. Cette isolation ne joue aucun rôle pour la sécurité, puisque les deux circuits du Yocto-Motor-DC travaillent en très basses tensions de sécurité (TBTS) et sont accessibles sans risque pour l'utilisateur à tout moment. L'isolation est simplement destinée à améliorer la fiabilité et le confort d'utilisation du Yocto-Motor-DC, permettant aux deux circuits de travailler avec des références de terre différentes.

Bien qu'elle ne joue pas de rôle pour la sécurité, la barrière d'isolation a été conçue selon les règles qui s'appliqueraient pour une isolation supplémentaire sur un circuit secondaire. Ses caractéristiques sont les suivantes 3:

2.4. Accessoires optionnels

Les accessoires ci-dessous ne sont pas nécessaires à l'utilisation du module Yocto-Motor-DC, mais pourraient vous être utiles selon l'utilisation que vous en faites. Il s'agit en général de produits courants que vous pouvez vous procurer chez vos fournisseurs habituels de matériel de bricolage. Pour vous éviter des recherches, ces produits sont en général aussi disponibles sur le shop de Yoctopuce.

Vis et entretoises

Pour fixer le module Yocto-Motor-DC à un support, vous pouvez placer des petites vis de 3mm avec une tête de 8mm au maximum dans les trous prévus ad-hoc. Il est conseillé de les visser dans des entretoises filetées, que vous pourrez fixer sur le support. Vous trouverez plus de détail à ce sujet dans le chapitre concernant le montage et la connectique.

Micro-hub USB

Si vous désirez placer plusieurs modules Yoctopuce dans un espace très restreint, vous pouvez les connecter ensemble à l'aide d'un micro-hub USB. Yoctopuce fabrique des hubs particulièrement petits précisément destinés à cet usage, dont la taille peut être réduite à 20mm par 36mm, et qui se montent en soudant directement les modules au hub via des connecteurs droits ou des câbles nappe. Pour plus de détails, consulter la fiche produit du micro-hub USB.

YoctoHub-Ethernet, YoctoHub-Wireless and YoctoHub-GSM

Vous pouvez ajouter une connectivité réseau à votre Yocto-Motor-DC grâce aux hubs YoctoHub-Ethernet, YoctoHub-Wireless et YoctoHub-GSM qui offrent respectivement une connectivité Ethernet, Wifi et GSM. Chacun de ces hubs peut piloter jusqu'à trois modules Yoctopuce et se comporte exactement comme un ordinateur normal qui ferait tourner un VirtualHub.

Connecteurs 1.27mm (ou 1.25mm)

Si vous désirez raccorder le module Yocto-Motor-DC à un Micro-hub USB ou a un YoctoHub en évitant l'encombrement d'un vrai cable USB, vous pouvez utiliser les 4 pads au pas 1.27mm juste derrière le connecteur USB. Vous avez alors deux possibilités.

Vous pouvez monter directement le module sur le hub à l'aide d'un jeu de vis et entretoises, et les connecter à l'aide de connecteurs board-to-board au pas 1.27mm. Pour éviter les court-circuits, soudez de préférence le connecteur femelle sur le hub et le connecteur mâle sur le Yocto-Motor-DC.

Vous pouvez aussi utiliser un petit câble à 4 fils doté de connecteurs au pas 1.27mm (ou 1.25mm, la différence est négligeable pour 4 pins), ce qui vous permet de déporter le module d'une dizaine de centimètres. N'allongez pas trop la distance si vous utilisez ce genre de câble, car il n'est pas blindé et risque donc de provoquer des émissions électromagnétiques indésirables.

Boîtier

Votre Yocto-Motor-DC a été conçu pour pouvoir être installé tel quel dans votre projet. Néanmoins Yoctopuce commercialise des boîtiers spécialement conçus pour les modules Yoctopuce. Vous trouverez plus d'informations à propos de ces boîtiers sur le site de Yoctopuce5. Le boîtier recommandé pour votre Yocto-Motor-DC est le modèle $SPECBOX$


Vous pouvez installer votre Yocto-Motor-DC dans un boîtier optionnel.

3. Fonctionnement du Yocto-Motor-DC

3.1. Principe

Le Yocto-Motor-DC fonctionne en hachant la tension qu'il trouve sur son entrée Power. Le courant est envoyé au moteur sous la forme de plusieurs milliers d'impulsions par seconde. L'amplitude des impulsion est fixe: elle correspond directement à la tension d'alimentation. La puissance est contrôlée en faisant varier le rapport durée des impulsions / période. C'est une méthode classique pour contrôler les moteurs à balais qui se contentent parfaitement d'un tel traitement. Mais elle est aussi utilisable pour contrôler l'intensité de certains éclairages, en particulier ceux à LED.


Le moteur est alimenté par des impulsions dont la longueur est proportionnelle à la puissance désirée.

3.2. Fréquence

La fréquence de fonctionnement est configurable de 250Hz à 32KHz, ce qui permet d'optimiser le fonctionnement du Yocto-Motor-DC en fonction de l'application choisie.

Dans le cas d'un moteur, une fréquence faible donne de meilleurs résultats au prix d'un sifflement audible assez caractéristique. Ce bruit peut être éliminé en réglant la fréquence à une valeur supérieure à 20KHz, mais le Yocto-Motor-DC chauffera alors plus et certains moteurs pourraient avoir de la peine à démarrer.

Pour faciliter le démarrage, le Yocto-Motor-DC peut appliquer une courte impulsion continue de quelques millisecondes lors de la mise sous tension du moteur, indépendamment de la fréquence choisie. La durée de ce starter est configurable.

3.3. Fonctionnalités

Contrôle de puissance

Le Yocto-Motor-DC est capable de faire tourner un moteur dans les deux sens. La puissance est donnée sous la forme d'un nombre entre -100 et 100%. Pour faire tourner le moteur à l'envers, le Yocto-Motor-DC inverse la polarité de la sortie. Il vous faudra donc être très prudent si vous utilisez le Yocto-Motor-DC pour piloter un dispositif qui ne supporte pas les inversions de polarité.

Freinage

Le Yocto-Motor-DC est capable de freiner le moteur qu'il contrôle en court-circuitant les pôles du moteur. Il s'agit d'un freinage électro-magnétique avec les limitations que cela comporte: il n'est réellement efficace qu'à grande vitesse.

Contrôle de tension

Le Yocto-Motor-DC mesure en permanence la tension présente sur son alimentation, et fournit cette mesure à travers l'API Yoctopuce. Si la tension passe en dessous de 3V, même pour un bref instant, le Yocto-Motor-DC s'arrêtera automatiquement. Cette séurité est liée au fait que la partie puissance ne fonctionne pas en dessous de 3V.

Il est possible de configurer une limite arbitraire supérieure à 3V: dans ce cas, si la tension d'alimentation passe en dessous de cette limite pendant plus d'une seconde, le Yocto-Motor-DC s'arrêtera. Cette limite permet de se protéger d'une sur-décharge dans le cas d'une alimentation sur batterie.

Attention: même à l'arrêt, le Yocto-Motor-DC peut laisser consommer environ 1mA sur l'alimentation. Par conséquent, si une batterie reste branchée sur le Yocto-Motor-DC, elle finira tôt ou tard par être complètement déchargée.

Le Yocto-Motor-DC n'est pas protégé contre les surtensions. Si vous appliquez une tension supérieure à 18V sur l'entrée, vous risquez d'endommager irrémédiablement le module.

A l'arrêt, lorsque rien n'est branché sur l'alimentation, le Yocto-Motor-DC peut détecter quelque volts sur l'entrée, c'est un phénomène normal. Cela ne l'empêchera pas de détecter l'absence d'alimentation à la première tentative de mise en marche.

Contrôle de courant

Le Yocto-Motor-DC mesure en permanence le courant moyen qui le traverse, et fournit cette mesure à travers l'API Yoctopuce. Si le courant qui traverse le Yocto-Motor-DC passe, même brièvement, au dessus de 32A, le Yocto-Motor-DC s'arrêtera automatiquement.

Il est possible de configurer une limite de courant inférieure arbitraire: dans ce cas, si le courant qui traverse passe au dessus de cette limite pendant plus d'une seconde, le Yocto-Motor-DC s'arrêtera. Cette limite permet de protéger l'équipement contrôlé par le Yocto-Motor-DC contre des courants excessifs.

Contrôle de température

Le Yocto-Motor-DC mesure en permanence sa température, et fournit cette mesure à travers l'API Yoctopuce. Si la température du Yocto-Motor-DC dépasse les 80°C, le Yocto-Motor-DC s'arrêtera automatiquement pour éviter d'endommager le matériel.

Fail-safe

Il est possible de configurer le Yocto-Motor-DC pour qu'il s'arrête automatiquement s'il se rend compte qu'il n'a pas été contacté par le processus de contrôle depuis un temps donné. Cela permet d'éviter de voir un robot échapper à tout contrôle parce que l'application censée le piloter aura crashé.

3.4. Protections

Les protections décrites précédemment sont destinées à garantir le fonctionnement en toute sécurité du Yocto-Motor-DC. Si une de ces protections est déclenchée, le Yocto-Motor-DC s'arrêtera et la LED rouge présente sur le module s'allumera. L'état du Yocto-Motor-DC devra alors être réinitialisé explicitement à l'aide de la fonction idoine de l'API.

4. Premiers pas

Par design, tous les modules Yoctopuce se pilotent de la même façon, c'est pourquoi les documentations des modules de la gamme sont très semblables. Si vous avez déjà épluché la documentation d'un autre module Yoctopuce, vous pouvez directement sauter à la description de sa configuration.

4.1. Prérequis

Pour pouvoir profiter pleinement de votre module Yocto-Motor-DC, vous devriez disposer des éléments suivants.

Un ordinateur

Les modules de Yoctopuce sont destinés à être pilotés par un ordinateur (ou éventuellement un microprocesseur embarqué). Vous écrirez vous-même le programme qui pilotera le module selon vos besoin, à l'aide des informations fournies dans ce manuel.

Yoctopuce fourni les librairies logicielles permettant de piloter ses modules pour les systèmes d'exploitation suivants: Windows, macOS, Linux et Android. Les modules Yoctopuce ne nécessitent pas l'installation de driver (ou pilote) spécifiques, car ils utilisent le driver HID6 fourni en standard dans tous les systèmes d'exploitation.

Les versions de Windows actuellement supportées sont Windows XP, Windows 2003, Windows Vista, Windows 7, Windows 8 et Windows 10. Les versions 32 bit et 64 bit sont supportées. La librairie de programmation est aussi disponible pour la Plateforme Windows Universelle (UWP) supportées par toutes les versions Windows 10, y compris Windows 10 IoT. Yoctopuce teste régulièrement le bon fonctionnement des modules sur Windows 7 et Windows 10.

Les versions de macOS actuellement supportées sont Mac OS X 10.9 (Maverick), 10.10 (Yosemite), 10.11 (El Capitan), macOS 10.12 (Sierra), macOS 10.13 (High Sierra) and macOS 10.14 (Mojave). Yoctopuce teste régulièrement le bon fonctionnement des modules sur macOS 10.14.

Les versions de Linux supportées sont les kernels 2.6, 3.x et 4.x. D'autre versions du kernel et même d'autres variantes d'Unix sont très susceptibles d'être utilisées sans problème, puisque le support de Linux est fait via l'API standard de la libusb, disponible aussi pour FreeBSD par exemple. Yoctopuce teste régulièrement le bon fonctionnement des modules sur un kernel Linux 4.15 (Ubuntu 18.04 LTS).

Les versions de Android actuellement supportées sont 3.1 et suivantes. De plus, il est nécessaire que la tablette ou le téléphone supporte le mode USB Host. Yoctopuce teste régulièrement le bon fonctionnement des modules avec Android 7.x sur un Samsung Galaxy A6 avec la librairie Java pour Android.

Un cable USB 2.0 de type A-micro B

Il existe trois tailles de connecteurs USB 2.0, la taille "normale" que vous utilisez probablement pour brancher votre imprimante. La taille mini encore très courante et enfin la taille micro, souvent utilisée pour raccorder les téléphones portables, pour autant qu'ils n'arborent pas une pomme. Les modules de Yoctopuce sont tous équipés d'une connectique au format micro-USB.


Les connecteurs USB 2.0 les plus courants: A, B, Mini B, Micro A, Micro B. 7

Pour connecter votre module Yocto-Motor-DC à un ordinateur, vous avez besoin d'un cable USB 2.0 de type A-micro B. Vous trouverez ce cable en vente à des prix très variables selon les sources, sous la dénomination USB A to micro B Data cable. Prenez garde à ne pas acheter par mégarde un simple câble de charge, qui ne fournirait que le courant mais sans les fils de données. Le bon câble est disponible sur le shop de Yoctopuce.


Vous devez raccorder votre module Yocto-Motor-DC à l'aide d'un cable USB 2.0 de type A - micro B

Si vous branchez un hub USB entre l'ordinateur et le module Yocto-Motor-DC, prenez garde à ne pas dépasser les limites de courant imposées par USB, sous peine de faire face des comportements instables non prévisibles. Vous trouverez plus de détail à ce sujet dans le chapitre concernant le montage et la connectique.

4.2. Test de la connectivité USB

Arrivé à ce point, votre Yocto-Motor-DC devrait être branché à votre ordinateur, qui devrait l'avoir reconnu. Il est temps de le faire fonctionner.

Rendez-vous sur le site de Yoctopuce et téléchargez le programme Virtual Hub8, Il est disponible pour Windows, Linux et Mac OS X. En temps normal le programme Virtual Hub sert de couche d'abstraction pour les langages qui ne peuvent pas accéder aux couches matérielles de votre ordinateur. Mais il offre aussi une interface sommaire pour configurer vos modules et tester les fonctions de base, on accède à cette interface à l'aide d'un simple browser web 9. Lancez le Virtual Hub en ligne de commande, ouvrez votre browser préféré et tapez l'adresse http://127.0.0.1:4444. Vous devriez voir apparaître la liste des modules Yoctopuce raccordés à votre ordinateur.


Liste des modules telle qu'elle apparaît dans votre browser.

4.3. Localisation

Il est alors possible de localiser physiquement chacun des modules affichés en cliquant sur le bouton beacon, cela a pour effet de mettre la Yocto-Led du module correspondant en mode "balise", elle se met alors à clignoter ce qui permet de la localiser facilement. Cela a aussi pour effet d'afficher une petite pastille bleue à l'écran. Vous obtiendrez le même comportement en appuyant sur le Yocto-bouton d'un module.

4.4. Test du module

La première chose à vérifier est le bon fonctionnement de votre module: cliquez sur le numéro de série correspondant à votre module, et une fenêtre résumant les propriétés de votre Yocto-Motor-DC.


Propriétés du module Yocto-Motor-DC.

Cette fenêtre vous permet entre autres de jouer avec votre module, en déplaçant les curseurs vous pouvez modifier la puissance ou le freinage appliqué à la sortie. La tension de l'alimentation, le courant qui traverse le module, et la température sont affichés en direct.

4.5. Configuration

Si, dans la liste de modules, vous cliquez sur le bouton configure correspondant à votre module, la fenêtre de configuration apparaît.


Configuration du module Yocto-Motor-DC.

Firmware

Le firmware du module peut être facilement mis à jour à l'aide de l'interface. Les firmwares destinés aux modules Yoctopuce se présentent sous la forme de fichiers .byn et peuvent être téléchargés depuis le site web de Yoctopuce.

Pour mettre à jour un firmware, cliquez simplement sur le bouton upgrade de la fenêtre de configuration et suivez les instructions. Si pour une raison ou une autre, la mise à jour venait à échouer, débranchez puis rebranchez le module. Recommencer la procédure devrait résoudre alors le problème. Si le module a été débranché alors qu'il était en cours de reprogrammation, il ne fonctionnera probablement plus et ne sera plus listé dans l'interface. Mais il sera toujours possible de le reprogrammer correctement en utilisant le programme Virtual Hub10 en ligne de commande 11.

Nom logique du module

Le nom logique est un nom choisi par vous, qui vous permettra d'accéder à votre module, de la même manière qu'un nom de fichier vous permet d'accéder à son contenu. Un nom logique doit faire au maximum 19 caractères, les caractères autorisés sont les caractères A..Z a..z 0..9 _ et -. Si vous donnez le même nom logique à deux modules raccordés au même ordinateur, et que vous tentez d'accéder à l'un des modules à l'aide de ce nom logique, le comportement est indéterminé: vous n'avez aucun moyen de savoir lequel des deux va répondre.

Luminosité

Ce paramètre vous permet d'agir sur l'intensité maximale des leds présentes sur le module. Ce qui vous permet, si nécessaire, de le rendre un peu plus discret tout en limitant sa consommation. Notez que ce paramètre agit sur toutes les leds de signalisation du module, y compris la Yocto-Led. Si vous branchez un module et que rien ne s'allume, cela veut peut être dire que sa luminosité a été réglée à zéro.

Nom logique des fonctions

Chaque module Yoctopuce a un numéro de série, et un nom logique. De manière analogue, chaque fonction présente sur chaque module Yoctopuce a un nom matériel et un nom logique, ce dernier pouvant être librement choisi par l'utilisateur. Utiliser des noms logiques pour les fonctions permet une plus grande flexibilité au niveau de la programmation des modules

Les fonctions fournies par le module Yocto-Motor-DC sont les suivantes:

Motor

La fonction motor permet de contrôler le moteur proprement dit: marche avant, arrière, freinage. Elle permet aussi de gérer les diverses condition d'erreurs qui peut être générée par les protections du Yocto-Motor-DC.

Voltage

La fonction voltage décrit en permanence la tension présente l'entrée du Yocto-Motor-DC.

Current

La fonction current décrit en permanence le courant moyen qui traverse le Yocto-Motor-DC.

Temperature

La fonction temperature décrit en permanence la température du Yocto-Motor-DC, mesuré, au niveau de la partie puissance, sous le radiateur supérieur.

Les fonctions Voltage, Current et Temperature sont exactement les mêmes que les celles que l'on trouve sur d'autres capteurs Yoctopuce tels que le Yocto-Volt, le Yocto-Amp ou encore le Yocto-Temperature. Elles se gèrent de la même façon. Cependant, le $PRODANME$ ne disposant pas d'enregistreur de données, il n'est pas possible de demander au $PRODANME$ d'enregistrer automatiquement les valeurs mesurées par ses différents capteurs.

5. Montage et connectique

Ce chapitre fournit des explications importantes pour utiliser votre module Yocto-Motor-DC en situation réelle. Prenez soin de le lire avant d'aller trop loin dans votre projet si vous voulez éviter les mauvaises surprises.

5.1. Chaleur

Suivant l'utilisation qui en est faite, la partie puissance du Yocto-Motor-DC peut dépasser les 80°C. A cette température, le Yocto-Motor-DC se met en protection et coupe l'alimentation du moteur. C'est pourquoi il ne faut pas compter utiliser le Yocto-Motor-DC à plus de 20A pendant une période prolongée. Si vous devez utiliser le Yocto-Motor-DC à forte puissance, veillez à ce qu'il soit refroidi efficacement.

L'échauffement causé par la circulation du courant dans les pistes du circuit se calcule par rapport à la température ambiante. Jusqu'à 10 ampères, le circuit est conçu pour ne pas produire un échauffement de plus de 10 à 15°C. Il suffit donc de placer le module de sorte à ce que la température ambiante ne s'élève pas (en laissant la chaleur s'évacuer), et la température se stabilisera par simple convection thermique. La position verticale est la meilleure pour la circulation naturelle par convection.

À 15 ampères, l'électricité produit un échauffement de 20°C par rapport à la température ambiante. À 20 ampères, l'échauffement monte à 30°C. À 25 ampères, l'échauffement des pistes atteint 60°C par rapport à la température ambiante ! Il est donc essentiel de garantir une évacuation rapide de l'air chaud autour du radiateur, sans quoi la température ambiante monte et par conséquent la température du circuit atteint les 80°C, limite de fonctionnement du module.

La manière la plus simple de garantir l'évacuation de l'air chaud du radiateur consiste à faire circuler l'air à l'aide d'un petit ventilateur, soufflant dans l'axe des ailettes des radiateurs. On trouve facilement ce genre de petits ventilateurs carrés de 40mm, fonctionnant directement en 5V ou 12V.


Quand vous poussez la puissance à fond, la partie puissance du module devient rapidement très chaude.

Pour conclure, n'oubliez pas de tenir compte du fait que la régulation de puissance est faite en hachant le courant. Par exemple, si le contrôleur mesure 12,5A de moyenne à 50% de puissance, cela signifie que vous faites en réalité circuler des pointes de 25A durant 50% du temps. Dans ce cas, il faut donc compter avec un échauffement de 30°C (50% de 60°C). En règle générale, il vaut donc mieux adapter la charge (le moteur) aux besoins plutôt que d'utiliser un moteur sur-dimensionné en sous-régime.

5.2. Fixation

Pendant la mise au point de votre projet vous pouvez vous contenter de laisser le module se promener au bout de son câble. Veillez simplement à ce qu'il ne soit pas en contact avec quoi que soit de conducteur (comme vos outils), ou sensible à la chaleur. Une fois votre projet pratiquement terminé il faudra penser à faire en sorte que votre module soit solidement arrimé pour éviter tout accident.


Exemples de montage sur un support.

Le module Yocto-Motor-DC dispose de trous de montage 3mm. Vous pouvez utiliser ces trous pour y passer des vis. Le diamètre de la tête de ces vis ne devra pas dépasser 8mm, sous peine d'endommager les circuits du module. Veillez à ce que la surface inférieure du module ne soit pas en contact avec le support. La méthode recommandée consiste à utiliser des entretoises, mais il en existe d'autres: vous pouvez utiliser de la colle, pour autant qu'elle résiste à la chaleur.

Si vous comptez visser votre module directement contre une paroi conductrice, un chassis métallique par exemple, intercalez une couche isolante entre les deux. Sinon vous aller à coup sûr provoquer un court-circuit: il y a des pads à nu sous votre module. Du simple ruban adhésif isolant devrait faire l'affaire.

5.3. Contraintes d'alimentation par USB

Bien que USB signifie Universal Serial BUS, les périphériques USB ne sont pas organisés physiquement en bus mais en arbre, avec des connections point-à-point. Cela a des conséquences en termes de distribution électrique: en simplifiant, chaque port USB doit alimenter électriquement tous les périphériques qui lui sont directement ou indirectement connectés. Et USB impose des limites.

En théorie, un port USB fournit 100mA, et peut lui fournir (à sa guise) jusqu'à 500mA si le périphérique les réclame explicitement. Dans le cas d'un hub non-alimenté, il a droit à 100mA pour lui-même et doit permettre à chacun de ses 4 ports d'utiliser 100mA au maximum. C'est tout, et c'est pas beaucoup. Cela veut dire en particulier qu'en théorie, brancher deux hub USB non-alimentés en cascade ne marche pas. Pour cascader des hubs USB, il faut utiliser des hubs USB alimentés, qui offriront 500mA sur chaque port.

En pratique, USB n'aurait pas eu le succès qu'il a si il était si contraignant. Il se trouve que par économie, les fabricants de hubs omettent presque toujours d'implémenter la limitation de courant sur les ports: ils se contentent de connecter l'alimentation de tous les ports directement à l'ordinateur, tout en se déclarant comme hub alimenté même lorsqu'ils ne le sont pas (afin de désactiver tous les contrôles de consommation dans le système d'exploitation). C'est assez malpropre, mais dans la mesure où les ports des ordinateurs sont eux en général protégés par une limitation de courant matérielle vers 2000mA, ça ne marche pas trop mal, et cela fait rarement des dégâts.

Ce que vous devez en retenir: si vous branchez des modules Yoctopuce via un ou des hubs non alimentés, vous n'aurez aucun garde-fou et dépendrez entièrement du soin qu'aura mis le fabricant de votre ordinateur pour fournir un maximum de courant sur les ports USB et signaler les excès avant qu'ils ne conduisent à des pannes ou des dégâts matériels. Si les modules sont sous-alimentés, ils pourraient avoir un comportement bizarre et produire des pannes ou des bugs peu reproductibles. Si vous voulez éviter tout risque, ne cascadez pas les hubs non-alimentés, et ne branchez pas de périphérique consommant plus de 100mA derrière un hub non-alimenté.

Pour vous faciliter le contrôle et la planification de la consommation totale de votre projet, tous les modules Yoctopuce sont équipés d'une sonde de courant qui indique (à 5mA près) la consommation du module sur le bus USB.

Notez enfin que le câble USB lui-même peut aussi représenter une cause de problème d'alimentation, en particulier si les fils sont trop fins ou si le câble est trop long 12. Les bons câbles utilisent en général des fils AWG 26 ou AWG 28 pour les fils de données et des fils AWG 24 pour les fils d'alimentation.

5.4. Compatibilité électromagnétique (EMI)

Les choix de connectique pour intégrer le Yocto-Motor-DC ont naturellement une incidence sur les émissions électromagnétiques du système, et donc sur la conformité avec les normes concernées.

Les mesures de référence que nous effectuons pour valider la conformité avec la norme IEC CISPR 11 sont faites sans aucun boîtier, mais en raccordant les modules par un câble USB blindé, conforme à la spécification USB 2.0: le blindage du câble est relié au blindage des deux connecteurs, et la résistance totale entre le blindage des deux connecteurs est inférieure 0.6Ω. Le câble utilisé fait 3m, de sorte à exposer un segment d'un mètre horizontal, un segment d'un mètre vertical et de garder le dernier mètre le plus proche de l'ordinateur hôte à l'intérieur d'un bloc de ferrite.

Si vous utilisez un câble non blindé ou incorrectement blindé, votre système fonctionnera sans problème mais vous risquez de n'être pas conforme à la norme. Dans le cadre de systèmes composés de plusieurs modules raccordés par des câbles au pas 1.27mm, ou de capteurs déportés, vous pourrez en général récupérer la conformité avec la norme d'émission en utilisant un boîtier métallique offrant une enveloppe de blindage externe.

Toujours par rapport aux normes de compatibilité électromagnétique, la longueur maximale supportée du câble USB est de 3m. En plus de pouvoir causer des problèmes de chute de tension, l'utilisation de câbles plus long aurait des incidences sur les test d'immunité électromagnétiques à effectuer pour respecter les normes.

6. Programmation, concepts généraux

L'API Yoctopuce a été pensée pour être à la fois simple à utiliser, et suffisamment générique pour que les concepts utilisés soient valables pour tous les modules de la gamme Yoctopuce et ce dans tous les langages de programmation disponibles. Ainsi, une fois que vous aurez compris comment piloter votre Yocto-Motor-DC dans votre langage de programmation favori, il est très probable qu'apprendre à utiliser un autre module, même dans un autre langage, ne vous prendra qu'un minimum de temps.

6.1. Paradigme de programmation

L'API Yoctopuce est une API orientée objet. Mais dans un souci de simplicité, seules les bases de la programmation objet ont été utilisées. Même si la programmation objet ne vous est pas familière, il est peu probable que cela vous soit un obstacle à l'utilisation des produits Yoctopuce. Notez que vous n'aurez jamais à allouer ou désallouer un objet lié à l'API Yoctopuce: cela est géré automatiquement.

Il existe une classe par type de fonctionnalité Yoctopuce. Le nom de ces classes commence toujours par un Y suivi du nom de la fonctionnalité, par exemple YTemperature, YRelay, YPressure, etc.. Il existe aussi une classe YModule, dédiée à la gestion des modules en temps que tels, et enfin il existe la classe statique YAPI, qui supervise le fonctionnement global de l'API et gère les communications à bas niveau.


Structure de l'API Yoctopuce.

La classe YSensor

A chaque fonctionnalité d'un module Yoctopuce, correspond une classe: YTemperature pour mesurer la température, YVoltage pour mesurer une tension, YRelay pour contrôler un relais, etc. Il existe cependant une classe spéciale qui peut faire plus: YSensor.

Cette classe YSensor est la classe parente de tous les senseurs Yoctopuce, elle permet de contrôler n'importe quel senseur, quel que soit son type, en donnant accès au fonctions communes à tous les senseurs. Cette classe permet de simplifier la programmation d'applications qui utilisent beaucoup de senseurs différents. Mieux encore, si vous programmez une application basée sur la classe YSensor elle sera compatible avec tous les senseurs Yoctopuce, y compris ceux qui n'existent pas encore.

Programmation

Dans l'API Yoctopuce, la priorité a été mise sur la facilité d'accès aux fonctionnalités des modules en offrant la possibilité de faire abstraction des modules qui les implémentent. Ainsi, il est parfaitement possible de travailler avec un ensemble de fonctionnalités sans jamais savoir exactement quel module les héberge au niveau matériel. Cela permet de considérablement simplifier la programmation de projets comprenant un nombre important de modules.

Du point de vue programmation, votre Yocto-Motor-DC se présente sous la forme d'un module hébergeant un certain nombre de fonctionnalités. Dans l'API , ces fonctionnalités se présentent sous la forme d'objets qui peuvent être retrouvés de manière indépendante, et ce de plusieurs manières.

Accès aux fonctionnalités d'un module

Accès par nom logique

Chacune des fonctionnalités peut se voir assigner un nom logique arbitraire et persistant: il restera stocké dans la mémoire flash du module, même si ce dernier est débranché. Un objet correspondant à une fonctionnalité Xxx munie d'un nom logique pourra ensuite être retrouvée directement à l'aide de ce nom logique et de la méthode YXxx.FindXxx. Notez cependant qu'un nom logique doit être unique parmi tous les modules connectés.

Accès par énumération

Vous pouvez énumérer toutes les fonctionnalités d'un même type sur l'ensemble des modules connectés à l'aide des fonctions classiques d'énumération FirstXxx et nextXxxx disponibles dans chacune des classes YXxx.

Accès par nom hardware

Chaque fonctionnalité d'un module dispose d'un nom hardware, assigné en usine qui ne peut être modifié. Les fonctionnalités d'un module peuvent aussi être retrouvées directement à l'aide de ce nom hardware et de la fonction YXxx.FindXxx de la classe correspondante.

Différence entre Find et First

Les méthodes YXxx.FindXxxx et YXxx.FirstXxxx ne fonctionnent pas exactement de la même manière. Si aucun module n'est disponible YXxx.FirstXxxx renvoie une valeur nulle. En revanche, même si aucun module ne correspond, YXxx.FindXxxx renverra objet valide, qui ne sera pas "online" mais qui pourra le devenir, si le module correspondant est connecté plus tard.

Manipulation des fonctionnalités

Une fois l'objet correspondant à une fonctionnalité retrouvé, ses méthodes sont disponibles de manière tout à fait classique. Notez que la plupart de ces sous-fonctions nécessitent que le module hébergeant la fonctionnalité soit branché pour pouvoir être manipulées. Ce qui n'est en général jamais garanti, puisqu'un module USB peut être débranché après le démarrage du programme de contrôle. La méthode isOnline(), disponible dans chaque classe, vous sera alors d'un grand secours.

Accès aux modules

Bien qu'il soit parfaitement possible de construire un projet en faisant abstraction de la répartition des fonctionnalités sur les différents modules, ces derniers peuvent être facilement retrouvés à l'aide de l'API. En fait, ils se manipulent d'une manière assez semblable aux fonctionnalités. Ils disposent d'un numéro de série affecté en usine qui permet de retrouver l'objet correspondant à l'aide de YModule.Find(). Les modules peuvent aussi se voir affecter un nom logique arbitraire qui permettra de les retrouver ensuite plus facilement. Et enfin la classe YModule comprend les méthodes d'énumération YModule.FirstModule() et nextModule() qui permettent de dresser la liste des modules connectés.

Interaction Function / Module

Du point de vue de l'API, les modules et leurs fonctionnalités sont donc fortement décorrélés à dessein. Mais l'API offre néanmoins la possibilité de passer de l'un à l'autre. Ainsi la méthode get_module(), disponible dans chaque classe de fonctionnalité, permet de retrouver l'objet correspondant au module hébergeant cette fonctionnalité. Inversement, la classe YModule dispose d'un certain nombre de méthodes permettant d'énumérer les fonctionnalités disponibles sur un module.

6.2. Le module Yocto-Motor-DC

Le module Yocto-Motor-DC offre une instance de la fonction Motor, qui permet de piloter un moteur à courant continu (variateur), ainsi qu'une fonction Voltage pour surveiller la tension de l'alimentation, une fonction Current pour contrôler la consommation instantanée du moteur et une fonction tempéreture pour surveiller la température du module lui-même.

module : Module

attributtypemodifiable ?
productName  Texte  lecture seule
serialNumber  Texte  lecture seule
logicalName  Texte  modifiable
productId  Entier (hexadécimal)  lecture seule
productRelease  Entier (hexadécimal)  lecture seule
firmwareRelease  Texte  lecture seule
persistentSettings  Type énuméré  modifiable
luminosity  0..100%  modifiable
beacon  On/Off  modifiable
upTime  Temps  lecture seule
usbCurrent  Courant consommé (en mA)  lecture seule
rebootCountdown  Nombre entier  modifiable
userVar  Nombre entier  modifiable

motor : Motor
attributtypemodifiable ?
logicalName  Texte  modifiable
advertisedValue  Texte  modifiable
motorStatus  Type énuméré  modifiable
drivingForce  Nombre (virgule fixe)  modifiable
brakingForce  Nombre (virgule fixe)  modifiable
cutOffVoltage  Nombre (virgule fixe)  modifiable
overCurrentLimit  Nombre entier  modifiable
frequency  Nombre (virgule fixe)  modifiable
starterTime  Nombre entier  modifiable
failSafeTimeout  Nombre entier  modifiable
command  Texte  modifiable

voltage : Voltage
attributtypemodifiable ?
logicalName  Texte  modifiable
advertisedValue  Texte  modifiable
unit  Texte  lecture seule
currentValue  Nombre (virgule fixe)  lecture seule
lowestValue  Nombre (virgule fixe)  modifiable
highestValue  Nombre (virgule fixe)  modifiable
currentRawValue  Nombre (virgule fixe)  lecture seule
logFrequency  Fréquence  modifiable
reportFrequency  Fréquence  modifiable
advMode  Type énuméré  modifiable
calibrationParam  Paramètrs de calibration  modifiable
resolution  Nombre (virgule fixe)  modifiable
sensorState  Nombre entier  lecture seule
enabled  Booléen  modifiable

current : Current
attributtypemodifiable ?
logicalName  Texte  modifiable
advertisedValue  Texte  modifiable
unit  Texte  lecture seule
currentValue  Nombre (virgule fixe)  lecture seule
lowestValue  Nombre (virgule fixe)  modifiable
highestValue  Nombre (virgule fixe)  modifiable
currentRawValue  Nombre (virgule fixe)  lecture seule
logFrequency  Fréquence  modifiable
reportFrequency  Fréquence  modifiable
advMode  Type énuméré  modifiable
calibrationParam  Paramètrs de calibration  modifiable
resolution  Nombre (virgule fixe)  modifiable
sensorState  Nombre entier  lecture seule
enabled  Booléen  modifiable

temperature : Temperature
attributtypemodifiable ?
logicalName  Texte  modifiable
advertisedValue  Texte  modifiable
unit  Texte  modifiable
currentValue  Nombre (virgule fixe)  lecture seule
lowestValue  Nombre (virgule fixe)  modifiable
highestValue  Nombre (virgule fixe)  modifiable
currentRawValue  Nombre (virgule fixe)  lecture seule
logFrequency  Fréquence  modifiable
reportFrequency  Fréquence  modifiable
advMode  Type énuméré  modifiable
calibrationParam  Paramètrs de calibration  modifiable
resolution  Nombre (virgule fixe)  modifiable
sensorState  Nombre entier  lecture seule
sensorType  Type énuméré  modifiable
signalValue  Nombre (virgule fixe)  lecture seule
signalUnit  Texte  lecture seule
command  Texte  modifiable

6.3. Module

Interface de contrôle des paramètres généraux des modules Yoctopuce

La classe YModule est utilisable avec tous les modules USB de Yoctopuce. Elle permet de contrôler les paramètres généraux du module, et d'énumérer les fonctions fournies par chaque module.

productName

Chaîne de caractères contenant le nom commercial du module, préprogrammé en usine.

serialNumber

Chaine de caractères contenant le numéro de série, unique et préprogrammé en usine. Pour un module Yocto-Motor-DC, ce numéro de série commence toujours par MOTORCTL. Il peut servir comme point de départ pour accéder par programmation à un module particulier.

logicalName

Chaine de caractères contenant le nom logique du module, initialement vide. Cet attribut peut être changé au bon vouloir de l'utilisateur. Une fois initialisé à une valeur non vide, il peut servir de point de départ pour accéder à un module particulier. Si deux modules avec le même nom logique se trouvent sur le même montage, il n'y a pas moyen de déterminer lequel va répondre si l'on tente un accès par ce nom logique. Le nom logique du module est limité à 19 caractères parmi A..Z,a..z,0..9,_ et -.

productId

Identifiant USB du module, préprogrammé à la valeur 22 en usine.

productRelease

Numéro de révision du module hardware, préprogrammé en usine. La révision originale du retourne la valeur 1, la révision B retourne la valeur 2, etc.

firmwareRelease

Version du logiciel embarqué du module, elle change à chaque fois que le logiciel embarqué est mis à jour.

persistentSettings

Etat des réglages persistants du module: chargés depuis la mémoire non-volatile, modifiés par l'utilisateur ou sauvegardés dans la mémoire non volatile.

luminosity

Intensité lumineuse maximale des leds informatives (comme la Yocto-Led) présentes sur le module. C'est une valeur entière variant entre 0 (leds éteintes) et 100 (leds à l'intensité maximum). La valeur par défaut est 50. Pour changer l'intensité maximale des leds de signalisation du module, ou les éteindre complètement, il suffit donc de modifier cette valeur.

beacon

Etat de la balise de localisation du module.

upTime

Temps écoulé depuis la dernière mise sous tension du module.

usbCurrent

Courant consommé par le module sur le bus USB, en milli-ampères.

rebootCountdown

Compte à rebours pour déclencher un redémarrage spontané du module.

userVar

Attribut de type entier 32 bits à disposition de l'utilisateur.

6.4. Motor

Interface pour intéragir avec les moteurs, disponibles par exemple dans le Yocto-Motor-DC

La classe YMotor permet de piloter un moteur DC. Elle permet de configurer la puissance envoyée au moteur pour le faire tourner aussi bien dans un sens que dans l'autre, mais aussi de piloter des accélérations linéaires: le moteur accélére alors tout seul sans que vous vous ayez à vous en occuper. La librairie permet aussi de freiner le moteur: cela est réalisé en court-circuitant les pôles du moteur, ce qui le transforme en frein électro-magnétique.

logicalName

Chaîne de caractères contenant le nom logique du moteur, initialement vide. Cet attribut peut être changé au bon vouloir de l'utilisateur. Un fois initialisé à une valeur non vide, il peut servir de point de départ pour accéder à directement au moteur. Si deux moteurs portent le même nom logique dans un projet, il n'y a pas moyen de déterminer lequel va répondre si l'on tente un accès par ce nom logique. Le nom logique du module est limité à 19 caractères parmi A..Z,a..z,0..9,_ et -.

advertisedValue

Courte chaîne de caractères résumant l'état actuel du moteur, et qui sera publiée automatiquement jusqu'au hub parent. Pour un moteur, la valeur publiée est son status (IDLE, BRAKE, FORWD, BACKWD, LOVOLT, HICURR, HIHEAT, FAILSF).

motorStatus

Etat du contrôleur du moteur, permettant de savoir si le moteur est à l'arrêt, en marche ou en condition d'erreur.

drivingForce

Puissance actuelle envoyée au moteur, sous forme de nombre réel entre -100% et +100%.

brakingForce

Force de freinage actuelle, en pourcents. La valeur 0 correspond à ne pas freiner (moteur en roue libre).

cutOffVoltage

Valeur limite de l'alimentation en dessous de laquelle le contrôleur va automatiquement se mettre en erreur et couper la consommation. Ce réglage permet d'éviter d'endommager un accumulateur un continuant à l'utiliser une fois "vide".

overCurrentLimit

Valeur limite du courant (en mA) au dessus de laquelle le contrôleur va automatiquement se mettre en erreur.

frequency

Fréquence du signal PWM utilisée pour contrôler le moteur. Une fréquence basse est généralement plus efficace (les composant chauffent moins et le moteur démarre plus facilement), mais un bruit audible peut être généré. Une fréquence élevée peut réduire le bruit, mais il y a plus d'énergie perdue en chaleur.

starterTime

Durée (en ms) pendant laquelle le moteur est piloté à basse fréquence pour faciliter son démarrage.

failSafeTimeout

Temps en millisecondes pendant lequel le variateur pourra fonctionner sans instruction du processus de contrôle. Passé ce delai, le contrôleur arrêtera le moteur et passera en mode erreur FAILSAFE. La sécurité failsafe est désactivée quand la valeur est à zéro (comportement par défaut).

command

Attribut magique permettant d'envoyer des commandes particulières au contrôleur. Si une commande n'est pas interprétée comme attendu, consultez les logs du module.

6.5. Current

Interface pour intéragir avec les capteurs de courant, disponibles par exemple dans le Yocto-Amp, le Yocto-Motor-DC et le Yocto-Watt

La classe YCurrent permet de lire et de configurer les capteurs de courant Yoctopuce. Elle hérite de la classe YSensor toutes les fonctions de base des capteurs Yoctopuce: lecture de mesures, callbacks, enregistreur de données.

logicalName

Chaîne de caractères contenant le nom logique du capteur de courant, initialement vide. Cet attribut peut être changé au bon vouloir de l'utilisateur. Un fois initialisé à une valeur non vide, il peut servir de point de départ pour accéder à directement au capteur de courant. Si deux capteurs de courant portent le même nom logique dans un projet, il n'y a pas moyen de déterminer lequel va répondre si l'on tente un accès par ce nom logique. Le nom logique du module est limité à 19 caractères parmi A..Z,a..z,0..9,_ et -.

advertisedValue

Courte chaîne de caractères résumant l'état actuel du capteur de courant, et qui sera publiée automatiquement jusqu'au hub parent. Pour un capteur de courant, la valeur publiée est la valeur courante du courant.

unit

Courte chaîne de catactères représentant l'unité dans laquelle le courant est exprimée.

currentValue

Valeur actuelle du courant, en mA, sous forme de nombre à virgule.

lowestValue

Valeur minimale du courant, en mA, sous forme de nombre à virgule.

highestValue

Valeur maximale du courant, en mA, sous forme de nombre à virgule.

currentRawValue

Valeur brute mesurée par le capteur (sans arrondi ni calibration), sous forme de nombre à virgule.

logFrequency

Fréquence d'enregistrement des mesures dans le datalogger, ou "OFF" si les mesures ne doivent pas être stockées dans la mémoire de l'enregistreur de données.

reportFrequency

Fréquence de notification périodique des valeurs mesurées, ou "OFF" si les notifications périodiques de valeurs sont désactivées.

advMode

Mode de calcul de la valeur publiée jusqu'au hub parent (advertisedValue).

calibrationParam

Paramètres de calibration supplémentaires (par exemple pour compenser l'effet d'un boîtier), sous forme de tableau d'entiers 16 bit.

resolution

Résolution de la mesure (précision de la représentation, mais pas forcément de la mesure elle-même).

sensorState

Etat du capteur (zero lorsque qu'une mesure actuelle est disponible).

enabled

Activation/désactivation de la mesure.

6.6. Voltage

Interface pour intéragir avec les capteurs de tension, disponibles par exemple dans le Yocto-Motor-DC, le Yocto-Volt et le Yocto-Watt

La classe YVoltage permet de lire et de configurer les capteurs de tension Yoctopuce. Elle hérite de la classe YSensor toutes les fonctions de base des capteurs Yoctopuce: lecture de mesures, callbacks, enregistreur de données.

logicalName

Chaîne de caractères contenant le nom logique du capteur de tension, initialement vide. Cet attribut peut être changé au bon vouloir de l'utilisateur. Un fois initialisé à une valeur non vide, il peut servir de point de départ pour accéder à directement au capteur de tension. Si deux capteurs de tension portent le même nom logique dans un projet, il n'y a pas moyen de déterminer lequel va répondre si l'on tente un accès par ce nom logique. Le nom logique du module est limité à 19 caractères parmi A..Z,a..z,0..9,_ et -.

advertisedValue

Courte chaîne de caractères résumant l'état actuel du capteur de tension, et qui sera publiée automatiquement jusqu'au hub parent. Pour un capteur de tension, la valeur publiée est la valeur courante de la tension.

unit

Courte chaîne de catactères représentant l'unité dans laquelle la tension est exprimée.

currentValue

Valeur actuelle de la tension, en Volt, sous forme de nombre à virgule.

lowestValue

Valeur minimale de la tension, en Volt, sous forme de nombre à virgule.

highestValue

Valeur maximale de la tension, en Volt, sous forme de nombre à virgule.

currentRawValue

Valeur brute mesurée par le capteur (sans arrondi ni calibration), sous forme de nombre à virgule.

logFrequency

Fréquence d'enregistrement des mesures dans le datalogger, ou "OFF" si les mesures ne doivent pas être stockées dans la mémoire de l'enregistreur de données.

reportFrequency

Fréquence de notification périodique des valeurs mesurées, ou "OFF" si les notifications périodiques de valeurs sont désactivées.

advMode

Mode de calcul de la valeur publiée jusqu'au hub parent (advertisedValue).

calibrationParam

Paramètres de calibration supplémentaires (par exemple pour compenser l'effet d'un boîtier), sous forme de tableau d'entiers 16 bit.

resolution

Résolution de la mesure (précision de la représentation, mais pas forcément de la mesure elle-même).

sensorState

Etat du capteur (zero lorsque qu'une mesure actuelle est disponible).

enabled

Activation/désactivation de la mesure.

6.7. Temperature

Interface pour intéragir avec les capteurs de température, disponibles par exemple dans le Yocto-Meteo-V2, le Yocto-PT100, le Yocto-Temperature et le Yocto-Thermocouple

La classe YTemperature permet de lire et de configurer les capteurs de température Yoctopuce. Elle hérite de la classe YSensor toutes les fonctions de base des capteurs Yoctopuce: lecture de mesures, callbacks, enregistreur de données. De plus, elle permet de configurer les paramètres spécifiques de certains types de capteur (type de connection, table d'étalonnage).

logicalName

Chaîne de caractères contenant le nom logique du capteur de température, initialement vide. Cet attribut peut être changé au bon vouloir de l'utilisateur. Un fois initialisé à une valeur non vide, il peut servir de point de départ pour accéder à directement au capteur de température. Si deux capteurs de température portent le même nom logique dans un projet, il n'y a pas moyen de déterminer lequel va répondre si l'on tente un accès par ce nom logique. Le nom logique du module est limité à 19 caractères parmi A..Z,a..z,0..9,_ et -.

advertisedValue

Courte chaîne de caractères résumant l'état actuel du capteur de température, et qui sera publiée automatiquement jusqu'au hub parent. Pour un capteur de température, la valeur publiée est la valeur courante de la température.

unit

Courte chaîne de catactères représentant l'unité dans laquelle la température est exprimée.

currentValue

Valeur actuelle de la température, en degrés Celsius, sous forme de nombre à virgule.

lowestValue

Valeur minimale de la température, en degrés Celsius, sous forme de nombre à virgule.

highestValue

Valeur maximale de la température, en degrés Celsius, sous forme de nombre à virgule.

currentRawValue

Valeur brute mesurée par le capteur (sans arrondi ni calibration), sous forme de nombre à virgule.

logFrequency

Fréquence d'enregistrement des mesures dans le datalogger, ou "OFF" si les mesures ne doivent pas être stockées dans la mémoire de l'enregistreur de données.

reportFrequency

Fréquence de notification périodique des valeurs mesurées, ou "OFF" si les notifications périodiques de valeurs sont désactivées.

advMode

Mode de calcul de la valeur publiée jusqu'au hub parent (advertisedValue).

calibrationParam

Paramètres de calibration supplémentaires (par exemple pour compenser l'effet d'un boîtier), sous forme de tableau d'entiers 16 bit.

resolution

Résolution de la mesure (précision de la représentation, mais pas forcément de la mesure elle-même).

sensorState

Etat du capteur (zero lorsque qu'une mesure actuelle est disponible).

sensorType

Type de senseur utilisé pour réaliser la mesure de température. Le senseur peut être digital, un type de thermocouple, un type de PT100, un thermistor ou encore un capteur infrarouge

signalValue

Valeur actuelle du signal électrique mesuré par le capteur (sauf pour les senseurs digitaux) sous forme de nombre à virgule.

signalUnit

Courte chaîne de catactères représentant l'unité du signal électrique utilisé par le capteur.

command

Attribut magique permettant de configurer les paramètres physiques du capteur de température.

6.8. Quelle interface: Native, DLL ou Service?

Il y existe plusieurs méthodes pour contrôler un module USB Yoctopuce depuis un programme.

Contrôle natif

Dans ce cas de figure le programme pilotant votre projet est directement compilé avec une librairie qui offre le contrôle des modules. C'est objectivement la solution la plus simple et la plus élégante pour l'utilisateur final. Il lui suffira de brancher le câble USB et de lancer votre programme pour que tout fonctionne. Malheureusement, cette technique n'est pas toujours disponible ou même possible.


L'application utilise la librairie native pour contrôler le module connecté en local

Contrôle natif par DLL

Ici l'essentiel du code permettant de contrôler les modules se trouve dans une DLL, et le programme est compilé avec une petite librairie permettant de contrôler cette DLL. C'est la manière la plus rapide pour coder le support des modules dans un language particulier. En effet la partie "utile" du code de contrôle se trouve dans la DLL qui est la même pour tous les langages, offrir le support pour un nouveau langage se limite à coder la petite librairie qui contrôle la DLL. Du point de de l'utilisateur final, il y a peu de différence: il faut simplement être sur que la DLL sera installée sur son ordinateur en même temps que le programme principal.


L'application utilise la DLL pour contrôler nativement le module connecté en local

Contrôle par un service

Certain langages ne permettent tout simplement pas d'accéder facilement au niveau matériel de la machine. C'est le cas de Javascript par exemple. Pour gérer ce cas Yoctopuce offre la solution sous la forme d'un petit service, appelé VirtualHub qui lui est capable d'accéder aux modules, et votre application n'a plus qu'à utiliser une librairie qui offrira toutes les fonctions nécessaires au contrôle des modules en passant par l'intermédiaire de ce VirtualHub. L'utilisateur final se verra obligé de lancer le VirtualHub avant de lancer le programme de contrôle du projet proprement dit, à moins qu'il ne décide d'installer le VirtualHub sous la forme d'un service/démon, auquel cas le VirtualHub se lancera automatiquement au démarrage de la machine..


L'application se connecte au service VirtualHub pour connecter le module.

En revanche la méthode de contrôle par un service offre un avantage non négligeable: l'application n'est pas n'obligé de tourner sur la machine où se trouvent les modules: elle peut parfaitement se trouver sur un autre machine qui se connectera au service pour piloter les module. De plus les librairie natives et DLL évoquées plus haut sont aussi capables de se connecter à distance à un ou plusieurs VirtualHub.


Lorsqu'on utilise un VirtualHub, l'application de contrôle n'a plus besoin d'être sur la même machine que le module.

Quel que soit langage de programmation choisi et le paradigme de contrôle utilisé; la programmation reste strictement identique. D'un langage à l'autre les fonctions ont exactement le même nom, prennent les mêmes paramètres. Les seules différences sont liées aux contraintes des langages eux-mêmes.

Language Natif  Natif avec .DLL/.so  VirtualHub 
Ligne de commande -
Python -
C++
C# .Net -
C# UWP -
LabVIEW -
Java -
Java pour Android -
TypeScript - -
JavaScript / ECMAScript - -
PHP - -
VisualBasic .Net -
Delphi -
Objective-C -

Méthode de support pour les différents langages.

Limitation des librairies Yoctopuce

Les librairies Natives et DLL ont une limitation technique. Sur une même machine, vous ne pouvez pas faire tourner en même temps plusieurs applications qui accèdent nativement aux modules Yoctopuce. Si vous désirez contrôler plusieurs projets depuis la même machine, codez vos applications pour qu'elle accèdent aux modules via un VirtualHub plutôt que nativement. Le changement de mode de fonctionnement est trivial: il suffit de changer un paramètre dans l'appel à yRegisterHub().

6.9. Programmation, par où commencer?

Arrivé à ce point du manuel, vous devriez connaître l'essentiel de la théorie à propos de votre Yocto-Motor-DC. Il est temps de passer à la pratique. Il vous faut télécharger la librairie Yoctopuce pour votre language de programmation favori depuis le site web de Yoctopuce13. Puis sautez directement au chapitre correspondant au langage de programmation que vous avez choisi.

Tous les exemples décrits dans ce manuel sont présents dans les librairies de programmation. Dans certains langages, les librairies comprennent aussi quelques applications graphiques complètes avec leur code source.

Une fois que vous maîtriserez la programmation de base de votre module, vous pourrez vous intéresser au chapitre concernant la programmation avancée qui décrit certaines techniques qui vous permettront d'exploiter au mieux votre Yocto-Motor-DC.

7. Utilisation du Yocto-Motor-DC en ligne de commande

Lorsque vous désirez effectuer une opération ponctuelle sur votre Yocto-Motor-DC, comme la lecture d'une valeur, le changement d'un nom logique, etc.. vous pouvez bien sur utiliser le Virtual Hub, mais il existe une méthode encore plus simple, rapide et efficace: l'API en ligne de commande.

L'API en ligne de commande se présente sous la forme d'un ensemble d'exécutables, un par type de fonctionnalité offerte par l'ensemble des produits Yoctopuce. Ces exécutables sont fournis pré-compilés pour toutes les plateformes/OS officiellement supportés par Yoctopuce. Bien entendu, les sources de ces exécutables sont aussi fournies14.

7.1. Installation

Téléchargez l'API en ligne de commande15. Il n'y a pas de programme d'installation à lancer, copiez simplement les exécutables correspondant à votre plateforme/OS dans le répertoire de votre choix. Ajoutez éventuellement ce répertoire à votre variable environnement PATH pour avoir accès aux exécutables depuis n'importe où. C'est tout, il ne vous reste plus qu'à brancher votre Yocto-Motor-DC, ouvrir un shell et commencer à travailler en tapant par exemple:

C:\>YTemperature any get_currentValue

Sous Linux, pour utiliser l'API en ligne de commande, vous devez soit être root, soit définir une règle udev pour votre système. Vous trouverez plus de détails au chapitre Problèmes courants.

7.2. Utilisation: description générale

Tous les exécutables de l'API en ligne de commande fonctionnent sur le même principe: ils doivent être appelés de la manière suivante:


C:\>Executable [options] [cible] commande [paramètres]

Les [options] gèrent le fonctionnement global des commandes , elles permettent par exemple de piloter des modules à distance à travers le réseau, ou encore elles peuvent forcer les modules à sauver leur configuration après l'exécution de la commande.

La [cible] est le nom du module ou de la fonction auquel la commande va s'appliquer. Certaines commandes très génériques n'ont pas besoin de cible. Vous pouvez aussi utiliser les alias "any" ou "all", ou encore une liste de noms, séparés par des virgules, sans espace.

La commande est la commande que l'on souhaite exécuter. La quasi-totalité des fonctions disponibles dans les API de programmation classiques sont disponibles sous forme de commandes. Vous n'êtes pas obligé des respecter les minuscules/majuscules et les caractères soulignés dans le nom de la commande.

Les [paramètres] sont, assez logiquement, les paramètres dont la commande a besoin.

A tout moment les exécutables de l'API en ligne de commande sont capables de fournir une aide assez détaillée: Utilisez par exemple


C:\>executable /help

pour connaître la liste de commandes disponibles pour un exécutable particulier de l'API en ligne de commande, ou encore:


C:\>executable commande /help

Pour obtenir une description détaillée des paramètres d'une commande.

7.3. Contrôle de la fonction Motor

Pour contrôler la fonction Motor de votre Yocto-Motor-DC, vous avez besoin de l'exécutable YMotor.

Vous pouvez par exemple lancer:

C:\>YTemperature any get_currentValue

Cet exemple utilise la cible "any" pour signifier que l'on désire travailler sur la première fonction Motor trouvée parmi toutes celles disponibles sur les modules Yoctopuce accessibles au moment de l'exécution. Cela vous évite d'avoir à connaître le nom exact de votre fonction et celui de votre module.

Mais vous pouvez tout aussi bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Motor-DC avec le numéros de série MOTORCTL-123456 que vous auriez appelé "MonModule" et dont vous auriez nommé la fonction motor "MaFonction", les cinq appels suivants seront strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté).


C:\>YMotor MOTORCTL-123456.motor describe

C:\>YMotor MOTORCTL-123456.MaFonction describe

C:\>YMotor MonModule.motor describe

C:\>YMotor MonModule.MaFonction describe

C:\>YMotor MaFonction describe

Pour travailler sur toutes les fonctions Motor à la fois, utilisez la cible "all".


C:\>YMotor all describe

Pour plus de détails sur les possibilités de l'exécutableYMotor, utilisez:


C:\>YMotor /help

7.4. Contrôle de la partie module

Chaque module peut être contrôlé d'une manière similaire à l'aide de l'exécutable YModule. Par exemple, pour obtenir la liste de tous les modules connectés, utilisez:


C:\>YModule inventory

Vous pouvez aussi utiliser la commande suivante pour obtenir une liste encore plus détaillée des modules connectés:


C:\>YModule all describe

Chaque propriété xxx du module peut être obtenue grâce à une commande du type get_xxxx(), et les propriétés qui ne sont pas en lecture seule peuvent être modifiées à l'aide de la commande set_xxx(). Par exemple:


C:\>YModule MOTORCTL-12346 set_logicalName MonPremierModule

C:\>YModule MOTORCTL-12346 get_logicalName

Modifications des réglages du module

Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'utiliser la commande set_xxx correspondante, cependant cette modification n'a lieu que dans la mémoire vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la commande saveToFlash. Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la méthode revertFromFlash. Par exemple:


C:\>YModule MOTORCTL-12346 set_logicalName MonPremierModule
C:\>YModule MOTORCTL-12346 saveToFlash

Notez que vous pouvez faire la même chose en seule fois à l'aide de l'option -s


C:\>YModule -s  MOTORCTL-12346 set_logicalName MonPremierModule

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite, liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000 cycles. Pour résumer vous ne pouvez employer la commande saveToFlash que 100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette commande depuis l'intérieur d'une boucle.

7.5. Limitations

L'API en ligne de commande est sujette à la même limitation que les autres API: il ne peut y avoir q'une seule application à la fois qui accède aux modules de manière native. Par défaut l'API en ligne de commande fonctionne en natif.

Cette limitation peut aisément être contournée en utilisant un Virtual Hub: il suffit de faire tourner le VirtualHub16 sur la machine concernée et d'utiliser les executables de l'API en ligne de commande avec l'option -r par exemple, si vous utilisez:


C:\>YModule  inventory

Vous obtenez un inventaire des modules connectés par USB, en utilisant un accès natif. Si il y a déjà une autre commande en cours qui accède aux modules en natif, cela ne fonctionnera pas. Mais si vous lancez un virtual hub et que vous lancez votre commande sous la forme:


C:\>YModule -r 127.0.0.1 inventory

cela marchera parce que la commande ne sera plus exécutée nativement, mais à travers le Virtual Hub. Notez que le Virtual Hub compte comme une application native.

8. Utilisation du Yocto-Motor-DC en Python

Python est un langage interprété orienté objet développé par Guido van Rossum. Il offre l'avantage d'être gratuit et d'être disponible pour la plupart de plate-formes tant Windows qu'Unix. C'est un language idéal pour écrire des petits scripts sur un coin de table. La librairie Yoctopuce est compatible avec Python 2.6+ et 3+. Elle fonctionne sous Windows, Max OS X et Linux tant Intel qu'ARM. La librairie a été testée avec Python 2.6 et Python 3.2. Les interpréteurs Python sont disponibles sur le site de Python 17.

8.1. Fichiers sources

Les classes de la librairie Yoctopuce18 pour Python que vous utiliserez vous sont fournies au format source. Copiez tout le contenu du répertoire Sources dans le répertoire de votre choix et ajoutez ce répertoire à la variable d'environnement PYTHONPATH. Si vous utilisez un IDE pour programmer en Python, référez-vous à sa documentation afin le configurer de manière à ce qu'il retrouve automatiquement les fichiers sources de l'API.

8.2. Librairie dynamique

Une partie de la librairie de bas-niveau est écrite en C, mais vous n'aurez a priori pas besoin d'interagir directement avec elle: cette partie est fournie sous forme de DLL sous Windows, de fichier .so sous Unix et de fichier .dylib sous Mac OS X. Tout a été fait pour que l'interaction avec cette librairie se fasse aussi simplement que possible depuis Python: les différentes versions de la librairie dynamique correspondant aux différents systèmes d'exploitation et architectures sont stockées dans le répertoire cdll. L'API va charger automatiquement le bon fichier lors de son initialisation. Vous n'aurez donc pas à vous en soucier.

Si un jour vous deviez vouloir recompiler la librairie dynamique, vous trouverez tout son code source dans la librairie Yoctopuce pour le C++.

Afin de les garder simples, tous les exemples fournis dans cette documentation sont des applications consoles. Il va de soit que que le fonctionnement des librairies est strictement identiques si vous les intégrez dans une application dotée d'une interface graphique.

8.3. Contrôle de la fonction Motor

Il suffit de quelques lignes de code pour piloter un Yocto-Motor-DC. Voici le squelette d'un fragment de code Python qui utilise la fonction Motor.


[...]
# On active la détection des modules sur USB
errmsg=YRefParam()
YAPI.RegisterHub("usb",errmsg)
[...]

# On récupère l'objet permettant d'intéragir avec le module
motor = YMotor.FindMotor("MOTORCTL-123456.motor")

# Pour gérer le hot-plug, on vérifie que le module est là
if motor.isOnline():
    # use motor.set_drivingForce()
    [...]
   
[...]  

Voyons maintenant en détail ce que font ces quelques lignes.

YAPI.RegisterHub

La fonction YAPI.RegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent être recherchés. Utilisée avec le paramètre "usb", elle permet de travailler avec les modules connectés localement à la machine. Si l'initialisation se passe mal, cette fonction renverra une valeur différente de YAPI.SUCCESS, et retournera via l'objet errmsg une explication du problème.

YMotor.FindMotor

La fonction YMotor.FindMotor permet de retrouver un moteur en fonction du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Motor-DC avec le numéros de série MOTORCTL-123456 que vous auriez appelé "MonModule" et dont vous auriez nommé la fonction motor "MaFonction", les cinq appels suivants seront strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):


motor = YMotor.FindMotor("MOTORCTL-123456.motor")
motor = YMotor.FindMotor("MOTORCTL-123456.MaFonction")
motor = YMotor.FindMotor("MonModule.motor")
motor = YMotor.FindMotor("MonModule.MaFonction")
motor = YMotor.FindMotor("MaFonction")

YMotor.FindMotor renvoie un objet que vous pouvez ensuite utiliser à loisir pour contrôler le moteur.

isOnline

La méthode isOnline() de l'objet renvoyé par YMotor.FindMotor permet de savoir si le module correspondant est présent et en état de marche.

set_drivingForce

La méthode set_drivingForce() de l'objet renvoyé par YMotor.FindMotor permet de régler la puissance, de -100 à +100% envoyée au moteur.

Un exemple réel

Lancez votre interpréteur Python et ouvrez le script correspondant, fourni dans le répertoire Examples/Doc-GettingStarted-Yocto-Motor-DC de la librairie Yoctopuce.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

#!/usr/bin/python
# -*- coding: utf-8 -*-
import os, sys

from yocto_api import *
from yocto_motor import *
from yocto_current import *
from yocto_voltage import *
from yocto_temperature import *


def usage():
    scriptname = os.path.basename(sys.argv[0])
    print("Usage:")
    print(scriptname + ' <serial_number> power')
    print(scriptname + ' <logical_name>power')
    print(scriptname + ' any <channel> power')
    print('power is an integer between -100 and 100%')
    print('Example:')
    print(scriptname + ' any 75')
    sys.exit()


def die(msg):
    sys.exit(msg + ' (check USB cable)')


# parse the command line


if len(sys.argv) < 3:
    usage()
target = sys.argv[1].upper()
power = int(sys.argv[2])

# Setup the API to use local USB devices
errmsg = YRefParam()
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
    sys.exit("init error" + errmsg.value)

if target == 'ANY':
    # find any motor then retreive its serial #
    motor = YMotor.FirstMotor()
    if motor is None:
        die('No module connected')
    m = motor.get_module()
    target = m.get_serialNumber()
    print('using ' + target)

motor = YMotor.FindMotor(target + '.motor')
current = YCurrent.FindCurrent(target + '.current')
voltage = YVoltage.FindVoltage(target + '.voltage')
temperature = YTemperature.FindTemperature(target + '.temperature')

if motor.isOnline():
    # if the motor is in error state, reset it.
    if motor.get_motorStatus() >= YMotor.MOTORSTATUS_LOVOLT:  motor.resetStatus()
    motor.drivingForceMove(power, 2000)  # ramp up to power in 2 seconds
    while motor.isOnline():
        print("Status :  " + motor.get_advertisedValue() +
              " Current : " + "%2.1f" % (current.get_currentValue() / 1000) + "A  " + \
              "Voltage : " + "%2.1f" % (voltage.get_currentValue()) + "V  " + \
              "Temperature : " + "%2.1f" % (temperature.get_currentValue()) + "deg C")
        YAPI.Sleep(1000, errmsg)
else:
    die('device not connected')
YAPI.FreeAPI()
 

8.4. Contrôle de la partie module

Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci-dessous un simple programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la balise de localisation.

#!/usr/bin/python
# -*- coding: utf-8 -*-
import os, sys

from yocto_api import *


def usage():
    sys.exit("usage: demo <serial or logical name> [ON/OFF]")


errmsg = YRefParam()
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
    sys.exit("RegisterHub error: " + str(errmsg))

if len(sys.argv) < 2:
    usage()

m = YModule.FindModule(sys.argv[1])  # # use serial or logical name

if m.isOnline():
    if len(sys.argv) > 2:
        if sys.argv[2].upper() == "ON":
            m.set_beacon(YModule.BEACON_ON)
        if sys.argv[2].upper() == "OFF":
            m.set_beacon(YModule.BEACON_OFF)

    print("serial:       " + m.get_serialNumber())
    print("logical name: " + m.get_logicalName())
    print("luminosity:   " + str(m.get_luminosity()))
    if m.get_beacon() == YModule.BEACON_ON:
        print("beacon:       ON")
    else:
        print("beacon:       OFF")
    print("upTime:       " + str(m.get_upTime() / 1000) + " sec")
    print("USB current:  " + str(m.get_usbCurrent()) + " mA")
    print("logs:\n" + m.get_lastLogs())
else:
    print(sys.argv[1] + " not connected (check identification and USB cable)")
YAPI.FreeAPI()
 

Chaque propriété xxx du module peut être lue grâce à une méthode du type YModule.get_xxxx(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode YModule.set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module

Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction YModule.set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode YModule.saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la méthode YModule.revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique d'un module.

#!/usr/bin/python
# -*- coding: utf-8 -*-
import os, sys

from yocto_api import *


def usage():
    sys.exit("usage: demo <serial or logical name> <new logical name>")


if len(sys.argv) != 3:
    usage()

errmsg = YRefParam()
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
    sys.exit("RegisterHub error: " + str(errmsg))

m = YModule.FindModule(sys.argv[1])  # use serial or logical name
if m.isOnline():
    newname = sys.argv[2]
    if not YAPI.CheckLogicalName(newname):
        sys.exit("Invalid name (" + newname + ")")
    m.set_logicalName(newname)
    m.saveToFlash()  # do not forget this
    print("Module: serial= " + m.get_serialNumber() + " / name= " + m.get_logicalName())
else:
    sys.exit("not connected (check identification and USB cable")
YAPI.FreeAPI()

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite, liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000 cycles. Pour résumer vous ne pouvez employer la fonction YModule.saveToFlash() que 100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une boucle.

Enumeration des modules

Obtenir la liste des modules connectés se fait à l'aide de la fonction YModule.yFirstModule() qui renvoie le premier module trouvé, il suffit ensuite d'appeler la mehode nextModule() de cet objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un null. Ci-dessous un petit exemple listant les module connectés

#!/usr/bin/python
# -*- coding: utf-8 -*-
import os, sys


from yocto_api import *

errmsg = YRefParam()

# Setup the API to use local USB devices
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
    sys.exit("init error" + str(errmsg))

print('Device list')

module = YModule.FirstModule()
while module is not None:
    print(module.get_serialNumber() + ' (' + module.get_productName() + ')')
    module = module.nextModule()
YAPI.FreeAPI()

8.5. Gestion des erreurs

Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération. La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer une exception. Dans ce cas, de trois choses l'une:

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il suit toujours la même logique: une méthode get_state() retournera une valeur NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire, si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée. Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des méthodes errType() et errMessage(). Ce sont les même informations qui auraient été associées à l'exception si elles avaient été actives.

9. Utilisation du Yocto-Motor-DC en C++

Le C++ n'est pas le langage le plus simple à maîtriser. Pourtant, si on prend soin à se limiter aux fonctionnalités essentielles, c'est un langage tout à fait utilisable pour des petits programmes vite faits, et qui a l'avantage d'être très portable d'un système d'exploitation à l'autre. Sous Windows, tous les exemples et les modèles de projet sont testés avec Microsoft Visual Studio 2010 Express, disponible gratuitement sur le site de Microsoft 19. Sous Mac OS X, tous les exemples et les modèles de projet sont testés avec XCode 4, disponible sur l'App Store. Par ailleurs, aussi bien sous Mac OS X que sous Linux, vous pouvez compiler les exemples en ligne de commande avec GCC en utilisant le GNUmakefile fourni. De même, sous Windows, un Makefile pour permet de compiler les exemples en ligne de commande, et en pleine connaissance des arguments de compilation et link.

Les librairies Yoctopuce20 pour C++ vous sont fournies au format source dans leur intégralité. Une partie de la librairie de bas-niveau est écrite en C pur sucre, mais vous n'aurez à priori pas besoin d'interagir directement avec elle: tout a été fait pour que l'interaction soit le plus simple possible depuis le C++. La librairie vous est fournie bien entendu aussi sous forme binaire, de sorte à pouvoir la linker directement si vous le préférez.

Vous allez rapidement vous rendre compte que l'API C++ defini beaucoup de fonctions qui retournent des objets. Vous ne devez jamais désallouer ces objets vous-même. Ils seront désalloués automatiquement par l'API à la fin de l'application.

Afin des les garder simples, tous les exemples fournis dans cette documentation sont des applications consoles. Il va de soit que que les fonctionnement des librairies est strictement identiques si vous les intégrez dans une application dotée d'une interface graphique. Vous trouverez dans la dernière section de ce chapitre toutes les informations nécessaires à la création d'un projet à neuf linké avec les librairies Yoctopuce.

9.1. Contrôle de la fonction Motor

Il suffit de quelques lignes de code pour piloter un Yocto-Motor-DC. Voici le squelette d'un fragment de code C++ qui utilise la fonction Motor.


#include "yocto_api.h"
#include "yocto_motor.h"

[...]
// On active la détection des modules sur USB
String errmsg;
YAPI::RegisterHub("usb", errmsg);
[...]

// On récupère l'objet permettant d'intéragir avec le module
YMotor *motor;
motor = YMotor::FindMotor("MOTORCTL-123456.motor");

// Pour gérer le hot-plug, on vérifie que le module est là
if(motor->isOnline())
{
    // Utiliser motor->set_drivingForce()
    [...]
}

Voyons maintenant en détail ce que font ces quelques lignes.

yocto_api.h et yocto_motor.h

Ces deux fichiers inclus permettent d'avoir accès aux fonctions permettant de gérer les modules Yoctopuce. yocto_api.h doit toujours être utilisé, yocto_motor.h est nécessaire pour gérer les modules contenant un moteur, comme le Yocto-Motor-DC.

YAPI::RegisterHub

La fonction YAPI::RegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent être recherchés. Utilisée avec le paramètre "usb", elle permet de travailler avec les modules connectés localement à la machine. Si l'initialisation se passe mal, cette fonction renverra une valeur différente de YAPI_SUCCESS, et retournera via le paramètre errmsg un explication du problème.

YMotor::FindMotor

La fonction YMotor::FindMotor permet de retrouver un moteur en fonction du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Motor-DC avec le numéros de série MOTORCTL-123456 que vous auriez appelé "MonModule" et dont vous auriez nommé la fonction motor "MaFonction", les cinq appels suivants seront strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):


YMotor *motor = YMotor::FindMotor("MOTORCTL-123456.motor");
YMotor *motor = YMotor::FindMotor("MOTORCTL-123456.MaFonction");
YMotor *motor = YMotor::FindMotor("MonModule.motor");
YMotor *motor = YMotor::FindMotor("MonModule.MaFonction");
YMotor *motor = YMotor::FindMotor("MaFonction");

YMotor::FindMotor renvoie un objet que vous pouvez ensuite utiliser à loisir pour contrôler le moteur.

isOnline

La méthode isOnline() de l'objet renvoyé par YMotor::FindMotor permet de savoir si le module correspondant est présent et en état de marche.

set_drivingForce

La méthode set_drivingForce() de l'objet renvoyé par yFindMotor permet de régler la puissance, de -100 à +100% envoyée au moteur.

Un exemple réel

Lancez votre environnement C++ et ouvrez le projet exemple correspondant, fourni dans le répertoire Examples/Doc-GettingStarted-Yocto-Motor-DC de la librairie Yoctopuce. Si vous préférez travailler avec votre éditeur de texte préféré, ouvrez le fichier main.cpp, vous taperez simplement make dans le répertoire de l'exemple pour le compiler.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

#include "yocto_api.h"
#include "yocto_motor.h"
#include "yocto_temperature.h"
#include "yocto_current.h"
#include "yocto_voltage.h"
#include <iostream>
#include <ctype.h>
#include <stdlib.h>

using namespace std;

static void usage(void)
{
  cout << "usage: demo <serial_number> power" << endl;
  cout << "       demo <logical_name>  power" << endl;
  cout << "       demo any power       (use any discovered device)" << endl;
  cout << "       power is a integer between -100 and 100%%" << endl;
  cout << "Example:" << endl;
  cout << "       demo any 75" << endl;

  u64 now = YAPI::GetTickCount();
  while (YAPI::GetTickCount() - now < 3000) {
    // wait 3 sec to show the message
  }
  exit(1);
}

int main(int argc, const char * argv[])
{
  string  target, errmsg;
  int power;
  YMotor *motor;
  YCurrent *current;
  YVoltage *voltage;
  YTemperature *temperature;

  // parse command line
  if (argc < 3) {
    usage();
  }
  target = (string) argv[1];
  power = atoi(argv[2]);

  // Setup the API to use local USB devices
  if (YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
    cerr << "RegisterHub error: " << errmsg << endl;
    return 1;
  }

  if (target == "any") {
    // find the serial# of the first available motor
    motor =  YMotor::FirstMotor();
    if (motor == NULL) {
      cout << "No module connected (check USB cable)" << endl;
      return 1;
    }
    target = motor->get_module()->get_serialNumber();
  }

  // retreive motor, current, voltage and temperature features from the device
  motor       = YMotor::FindMotor(target + ".motor");
  current     = YCurrent::FindCurrent(target + ".current");
  voltage     = YVoltage::FindVoltage(target + ".voltage");
  temperature = YTemperature::FindTemperature(target + ".temperature");

  // lets start the motor
  if (motor->isOnline()) {
    // if motor is in error state, reset it.
    if (motor->get_motorStatus() >= YMotor::MOTORSTATUS_LOVOLT) {
      motor->resetStatus();
    }
    motor->drivingForceMove(power, 2000); // ramp up to power in 2 seconds
    while (motor->isOnline()) {
      // display motor status
      cout << "Status=" << motor->get_advertisedValue() << "  "
           << "Voltage=" << voltage->get_currentValue() << "V  "
           << "Current=" << current->get_currentValue() / 1000 << "A  "
           << "Temp=" << temperature->get_currentValue() << "deg C" << endl;
      YAPI::Sleep(1000, errmsg); // wait for one second
    }
  } else {
    cout << "Module not connected (check identification and USB cable)" << endl;
  }
  YAPI::FreeAPI();
  return 0;
}
 

9.2. Contrôle de la partie module

Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci dessous un simple programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la balise de localisation.

#include <iostream>
#include <stdlib.h>

#include "yocto_api.h"

using namespace std;

static void usage(const char *exe)
{
  cout << "usage: " << exe << " <serial or logical name> [ON/OFF]" << endl;
  exit(1);
}


int main(int argc, const char * argv[])
{
  string      errmsg;

  // Setup the API to use local USB devices
  if(YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
    cerr << "RegisterHub error: " << errmsg << endl;
    return 1;
  }

  if(argc < 2)
    usage(argv[0]);

  YModule *module = YModule::FindModule(argv[1]);  // use serial or logical name

  if (module->isOnline()) {
    if (argc > 2) {
      if (string(argv[2]) == "ON")
        module->set_beacon(Y_BEACON_ON);
      else
        module->set_beacon(Y_BEACON_OFF);
    }
    cout << "serial:       " << module->get_serialNumber() << endl;
    cout << "logical name: " << module->get_logicalName() << endl;
    cout << "luminosity:   " << module->get_luminosity() << endl;
    cout << "beacon:       ";
    if (module->get_beacon() == Y_BEACON_ON)
      cout << "ON" << endl;
    else
      cout << "OFF" << endl;
    cout << "upTime:       " << module->get_upTime() / 1000 << " sec" << endl;
    cout << "USB current:  " << module->get_usbCurrent() << " mA" << endl;
    cout << "Logs:" << endl << module->get_lastLogs() << endl;
  } else {
    cout << argv[1] << " not connected (check identification and USB cable)"
         << endl;
  }
  YAPI::FreeAPI();
  return 0;
}
 

Chaque propriété xxx du module peut être lue grâce à une méthode du type get_xxxx(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module

Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la méthode revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique d'un module.

#include <iostream>
#include <stdlib.h>

#include "yocto_api.h"

using namespace std;

static void usage(const char *exe)
{
  cerr << "usage: " << exe << " <serial> <newLogicalName>" << endl;
  exit(1);
}

int main(int argc, const char * argv[])
{
  string      errmsg;

  // Setup the API to use local USB devices
  if(YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
    cerr << "RegisterHub error: " << errmsg << endl;
    return 1;
  }

  if(argc < 2)
    usage(argv[0]);

  YModule *module = YModule::FindModule(argv[1]);  // use serial or logical name

  if (module->isOnline()) {
    if (argc >= 3) {
      string newname =  argv[2];
      if (!yCheckLogicalName(newname)) {
        cerr << "Invalid name (" << newname << ")" << endl;
        usage(argv[0]);
      }
      module->set_logicalName(newname);
      module->saveToFlash();
    }
    cout << "Current name: " << module->get_logicalName() << endl;
  } else {
    cout << argv[1] << " not connected (check identification and USB cable)"
         << endl;
  }
  YAPI::FreeAPI();
  return 0;
}
 

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite, liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000 cycles. Pour résumer vous ne pouvez employer la fonction saveToFlash() que 100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une boucle.

Enumeration des modules

Obtenir la liste des modules connectés se fait à l'aide de la fonction yFirstModule() qui renvoie le premier module trouvé, il suffit ensuite d'appeler la fonction nextModule() de cet objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un NULL. Ci-dessous un petit exemple listant les module connectés

#include <iostream>

#include "yocto_api.h"

using namespace std;

int main(int argc, const char * argv[])
{
  string      errmsg;

  // Setup the API to use local USB devices
  if(YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
    cerr << "RegisterHub error: " << errmsg << endl;
    return 1;
  }

  cout << "Device list: " << endl;

  YModule *module = YModule::FirstModule();
  while (module != NULL) {
    cout << module->get_serialNumber() << " ";
    cout << module->get_productName()  << endl;
    module = module->nextModule();
  }
  YAPI::FreeAPI();
  return 0;
}
 

9.3. Gestion des erreurs

Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération. La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer une exception. Dans ce cas, de trois choses l'une:

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il suit toujours la même logique: une méthode get_state() retournera une valeur NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire, si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée. Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des méthodes errType() et errMessage(). Ce sont les même informations qui auraient été associées à l'exception si elles avaient été actives.

9.4. Intégration de la librairie Yoctopuce en C++

Selon vos besoins et vos préférences, vous pouvez être mené à intégrer de différentes manières la librairie à vos projets. Cette section explique comment implémenter les différentes options.

Intégration au format source (recommandé)

L'intégration de toutes les sources de la librairie dans vos projets a plusieurs avantages:

Pour intégrer le code source, le plus simple est d'inclure simplement le répertoire Sources de la librairie Yoctopuce à votre IncludePath, et d'ajouter tous les fichiers de ce répertoire (y compris le sous-répertoire yapi) à votre projet.

Pour que votre projet se construise ensuite correctement, il faudra linker avec votre projet les librairies systèmes requises, à savoir:

Intégration en librairie statique

L'intégration de de la librairie Yoctopuce sous forme de librairie statique permet une compilation rapide du programme en une seule commande. Elle ne requiert pas non plus l'installation d'une librairie dynamique spécifique à Yoctopuce sur le système final, tout est dans l'exécutable.

Pour utiliser la librairie statique, il faut la compiler à l'aide du shell script build.sh sous UNIX, ou build.bat sous Windows. Ce script qui se situe à la racine de la librairie, détecte l'OS et recompile toutes les librairies ainsi que les exemples correspondants.

Ensuite, pour intégrer la librairie statique Yoctopuce à votre projet, vous devez inclure le répertoire Sources de la librairie Yoctopuce à votre IncludePath, et ajouter le sous-répertoire de Binaries/... correspondant à votre système d'exploitation à votre LibPath.

Finalement, pour que votre projet se construise ensuite correctement, il faudra linker avec votre projet la librairie Yoctopuce et les librairies systèmes requises:

Attention, sous Linux, si vous voulez compiler en ligne de commande avec GCC, il est en général souhaitable de linker les librairies systèmes en dynamique et non en statique. Pour mélanger sur la même ligne de commande des librairies statiques et dynamiques, il faut passer les arguments suivants:

gcc (...) -Wl,-Bstatic -lyocto-static -Wl,-Bdynamic -lm -lpthread -lusb-1.0 -lstdc++

Intégration en librairie dynamique

L'intégration de la librairie Yoctopuce sous forme de librairie dynamique permet de produire un exécutable plus petit que les deux méthodes précédentes, et de mettre éventuellement à jour cette librairie si un correctif s'avérait nécessaire sans devoir recompiler le code source de l'application. Par contre, c'est un mode d'intégration qui exigera systématiquement de copier la librairie dynamique sur la machine cible ou l'application devra être lancée (yocto.dll sous Windows, libyocto.so.1.0.1 sous Mac OS X et Linux).

Pour utiliser la librairie dynamique, il faut la compiler à l'aide du shell script build.sh sous UNIX, ou build.bat sous Windows. Ce script qui se situe à la racine de la librairie, détecte l'OS et recompile toutes les librairies ainsi que les exemples correspondant.

Ensuite, pour intégrer la librairie dynamique Yoctopuce à votre projet, vous devez inclure le répertoire Sources de la librairie Yoctopuce à votre IncludePath, et ajouter le sous-répertoire de Binaries/... correspondant à votre système d'exploitation à votre LibPath.

Finalement, pour que votre projet se construise ensuite correctement, il faudra linker avec votre projet la librairie dynamique Yoctopuce et les librairies systèmes requises:

Avec GCC, la ligne de commande de compilation est simplement:

gcc (...) -lyocto -lm -lpthread -lusb-1.0 -lstdc++

10. Utilisation du Yocto-Motor-DC en C#

C# (prononcez C-Sharp) est un langage orienté objet promu par Microsoft qui n'est pas sans rappeller Java. Tout comme Visual Basic et Delphi, il permet de créer des applications Windows relativement facilement. Tous les exemples et les modèles de projet sont testés avec Microsoft C# 2010 Express, disponible gratuitement sur le site de Microsoft 21.

Notre librairie est aussi compatible avec Mono, la version open source de C# qui fonctionne sous Linux et MacOS. Vous trouverez sur notre site web différents articles qui décrivent comment indiquer à Mono comment accéder à notre librairie.

10.1. Installation

Téléchargez la librairie Yoctopuce pour Visual C# depuis le site web de Yoctopuce22. Il n'y a pas de programme d'installation, copiez simplement de contenu du fichier zip dans le répertoire de votre choix. Vous avez besoin essentiellement du contenu du répertoire Sources. Les autres répertoires contiennent la documentation et quelques programmes d'exemple. Les projets d'exemple sont des projets Visual C# 2010, si vous utilisez une version antérieure, il est possible que vous ayez à reconstruire la structure de ces projets.

10.2. Utilisation l'API yoctopuce dans un projet Visual C#

La librairie Yoctopuce pour Visual C# .NET se présente sous la forme d'une DLL et de fichiers sources en Visual C#. La DLL n'est pas une DLL .NET mais une DLL classique, écrite en C, qui gère les communications à bas niveau avec les modules23. Les fichiers sources en Visual C# gèrent la partie haut niveau de l'API. Vous avez donc besoin de cette DLL et des fichiers .cs du répertoire Sources pour créer un projet gérant des modules Yoctopuce.

Configuration d'un projet Visual C#

Les indications ci-dessous sont fournies pour Visual Studio express 2010, mais la procédure est semblable pour les autres versions.

Commencez par créer votre projet, puis depuis le panneau Explorateur de solutions effectuez un clic droit sur votre projet, et choisissez Ajouter puis Elément existant.

Une fenêtre de sélection de fichiers apparaît: sélectionnez le fichier yocto_api.cs et les fichiers correspondant aux fonctions des modules Yoctopuce que votre projet va gérer. Dans le doute, vous pouvez aussi sélectionner tous les fichiers.

Vous avez alors le choix entre simplement ajouter ces fichiers à votre projet, ou les ajouter en tant que lien (le bouton Ajouter est en fait un menu déroulant). Dans le premier cas, Visual Studio va copier les fichiers choisis dans votre projet, dans le second Visual Studio va simplement garder un lien sur les fichiers originaux. Il est recommandé d'utiliser des liens, une éventuelle mise à jour de la librairie sera ainsi beaucoup plus facile.

Ensuite, ajoutez de la même manière la dll yapi.dll, qui se trouve dans le répertoire Sources/dll24. Puis depuis la fenêtre Explorateur de solutions, effectuez un clic droit sur la DLL, choisissez Propriété et dans le panneau Propriétés, mettez l'option Copier dans le répertoire de sortie à toujours copier. Vous êtes maintenant prêt à utiliser vos modules Yoctopuce depuis votre environnement Visual Studio.

Afin de les garder simples, tous les exemples fournis dans cette documentation sont des applications consoles. Il va de soit que que les fonctionnement des librairies est strictement identiques si vous les intégrez dans une application dotée d'une interface graphique.

10.3. Contrôle de la fonction Motor

Il suffit de quelques lignes de code pour piloter un Yocto-Motor-DC. Voici le squelette d'un fragment de code C# qui utilise la fonction Motor.


[...]
// On active la détection des modules sur USB
string errmsg = "";
YAPI.RegisterHub("usb", errmsg);
[...]

// On récupère l'objet permettant d'intéragir avec le module
YMotor motor = YMotor.FindMotor("MOTORCTL-123456.motor");

// Pour gérer le hot-plug, on vérifie que le module est là
if (motor.isOnline())
{
    // Utiliser motor.set_drivingForce()
    [...]
}

Voyons maintenant en détail ce que font ces quelques lignes.

YAPI.RegisterHub

La fonction YAPI.RegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent être recherchés. Utilisée avec le paramètre "usb", elle permet de travailler avec les modules connectés localement à la machine. Si l'initialisation se passe mal, cette fonction renverra une valeur différente de YAPI.SUCCESS, et retournera via le paramètre errmsg une explication du problème.

YMotor.FindMotor

La fonction YMotor.FindMotor permet de retrouver un moteur en fonction du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Motor-DC avec le numéros de série MOTORCTL-123456 que vous auriez appelé "MonModule" et dont vous auriez nommé la fonction motor "MaFonction", les cinq appels suivants seront strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):


motor = YMotor.FindMotor("MOTORCTL-123456.motor");
motor = YMotor.FindMotor("MOTORCTL-123456.MaFonction");
motor = YMotor.FindMotor("MonModule.motor");
motor = YMotor.FindMotor("MonModule.MaFonction");
motor = YMotor.FindMotor("MaFonction");

YMotor.FindMotor renvoie un objet que vous pouvez ensuite utiliser à loisir pour contrôler le moteur.

isOnline

La méthode isOnline() de l'objet renvoyé par YMotor.FindMotor permet de savoir si le module correspondant est présent et en état de marche.

set_drivingForce

La méthode set_drivingForce() de l'objet renvoyé par YMotor.FindMotor permet de régler la puissance, de -100 à +100% envoyée au moteur.

Un exemple réel

Lancez Visual C# et ouvrez le projet exemple correspondant, fourni dans le répertoire Examples/Doc-GettingStarted-Yocto-Motor-DC de la librairie Yoctopuce.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
  class Program
  {
    static void usage()
    {
      string execname = System.AppDomain.CurrentDomain.FriendlyName;
      Console.WriteLine("Usage:");
      Console.WriteLine(execname + "  <serial_number>  power");
      Console.WriteLine(execname + "  <logical_name>  power");
      Console.WriteLine(execname + "  any power");
      Console.WriteLine("  power is a integer between -100 and 100%");
      Console.WriteLine("Example:");
      Console.WriteLine(execname + "  any 75");
      System.Threading.Thread.Sleep(2500);
      Environment.Exit(0);
    }

    static void Main(string[] args)
    {
      string errmsg = "";
      string target;
      int power;
      YMotor motor;
      YCurrent current;
      YVoltage voltage;
      YTemperature temperature;

      // parse the  command line
      if (args.Length < 2) usage();
      target = args[0].ToUpper();
      power = Convert.ToInt32(args[1]);

      if (YAPI.RegisterHub("usb", ref errmsg) != YAPI.SUCCESS) {
        Console.WriteLine("RegisterHub error: " + errmsg);
        Environment.Exit(0);
      }
      if (target == "ANY") {
        // find the serial# of the first available motor
        motor = YMotor.FirstMotor();
        if (motor == null) {
          Console.WriteLine("No module connected (check USB cable) ");
          Environment.Exit(0);
        }
        target = motor.get_module().get_serialNumber();
      }

      motor = YMotor.FindMotor(target + ".motor");
      current = YCurrent.FindCurrent(target + ".current");
      voltage = YVoltage.FindVoltage(target + ".voltage");
      temperature = YTemperature.FindTemperature(target + ".temperature");

      // lets start the motor
      if (motor.isOnline()) {
        // if motor is in error state, reset it.
        if (motor.get_motorStatus() >= YMotor.MOTORSTATUS_LOVOLT) {
          motor.resetStatus();
        }
        motor.drivingForceMove(power, 2000);  // ramp up to power in 2 seconds
        while (motor.isOnline()) {
          // display motor status
          Console.WriteLine("Status=" + motor.get_advertisedValue() + "  " +
                            "Voltage=" + voltage.get_currentValue() + "V  " +
                            "Current=" + current.get_currentValue() / 1000 + "A  " +
                            "Temp=" + temperature.get_currentValue() + "deg C");
          YAPI.Sleep(1000, ref errmsg); // wait for one second
        }
      }
      YAPI.FreeAPI();
    }
  }
}
 

10.4. Contrôle de la partie module

Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci-dessous un simple programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la balise de localisation.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;


namespace ConsoleApplication1
{
  class Program
  {
    static void usage()
    {
      string execname = System.AppDomain.CurrentDomain.FriendlyName;
      Console.WriteLine("Usage:");
      Console.WriteLine(execname + " <serial or logical name> [ON/OFF]");
      System.Threading.Thread.Sleep(2500);
      Environment.Exit(0);
    }

    static void Main(string[] args)
    {
      YModule m;
      string errmsg = "";

      if (YAPI.RegisterHub("usb", ref errmsg) !=  YAPI.SUCCESS) {
        Console.WriteLine("RegisterHub error: " + errmsg);
        Environment.Exit(0);
      }


      if (args.Length < 1)  usage();

      m = YModule.FindModule(args[0]); // use serial or logical name

      if (m.isOnline()) {
        if (args.Length >= 2) {
          if (args[1].ToUpper() == "ON") {
            m.set_beacon(YModule.BEACON_ON);
          }
          if (args[1].ToUpper() == "OFF") {
            m.set_beacon(YModule.BEACON_OFF);
          }
        }

        Console.WriteLine("serial:       " + m.get_serialNumber());
        Console.WriteLine("logical name: " + m.get_logicalName());
        Console.WriteLine("luminosity:   " + m.get_luminosity().ToString());
        Console.Write("beacon:       ");
        if (m.get_beacon() == YModule.BEACON_ON)
          Console.WriteLine("ON");
        else
          Console.WriteLine("OFF");
        Console.WriteLine("upTime:       " + (m.get_upTime() / 1000 ).ToString() + " sec");
        Console.WriteLine("USB current:  " + m.get_usbCurrent().ToString() + " mA");
        Console.WriteLine("Logs:\r\n" + m.get_lastLogs());

      } else {
        Console.WriteLine(args[0] + " not connected (check identification and USB cable)");
      }
      YAPI.FreeAPI();
    }
  }
}
 

Chaque propriété xxx du module peut être lue grâce à une méthode du type YModule.get_xxxx(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode YModule.set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module

Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction YModule.set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode YModule.saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la méthode YModule.revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique d'un module.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
  class Program
  {
    static void usage()
    {
      string execname = System.AppDomain.CurrentDomain.FriendlyName;
      Console.WriteLine("Usage:");
      Console.WriteLine("usage: demo <serial or logical name> <new logical name>");
      System.Threading.Thread.Sleep(2500);
      Environment.Exit(0);
    }

    static void Main(string[] args)
    {
      YModule m;
      string errmsg = "";
      string newname;

      if (args.Length != 2) usage();

      if (YAPI.RegisterHub("usb", ref errmsg) !=  YAPI.SUCCESS) {
        Console.WriteLine("RegisterHub error: " + errmsg);
        Environment.Exit(0);
      }

      m = YModule.FindModule(args[0]); // use serial or logical name

      if (m.isOnline()) {
        newname = args[1];
        if (!YAPI.CheckLogicalName(newname)) {
          Console.WriteLine("Invalid name (" + newname + ")");
          Environment.Exit(0);
        }

        m.set_logicalName(newname);
        m.saveToFlash(); // do not forget this

        Console.Write("Module: serial= " + m.get_serialNumber());
        Console.WriteLine(" / name= " + m.get_logicalName());
      } else {
        Console.Write("not connected (check identification and USB cable");
      }
      YAPI.FreeAPI();
    }
  }
}
 

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite, liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000 cycles. Pour résumer vous ne pouvez employer la fonction YModule.saveToFlash() que 100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une boucle.

Enumeration des modules

Obtenir la liste des modules connectés se fait à l'aide de la fonction YModule.yFirstModule() qui renvoie le premier module trouvé, il suffit ensuite d'appeler la méthode nextModule() de cet objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un null. Ci-dessous un petit exemple listant les module connectés

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
  class Program
  {
    static void Main(string[] args)
    {
      YModule m;
      string errmsg = "";

      if (YAPI.RegisterHub("usb", ref errmsg) !=  YAPI.SUCCESS) {
        Console.WriteLine("RegisterHub error: " + errmsg);
        Environment.Exit(0);
      }

      Console.WriteLine("Device list");
      m = YModule.FirstModule();
      while (m != null) {
        Console.WriteLine(m.get_serialNumber() + " (" + m.get_productName() + ")");
        m = m.nextModule();
      }
      YAPI.FreeAPI();
    }
  }
}
 

10.5. Gestion des erreurs

Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération. La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer une exception. Dans ce cas, de trois choses l'une:

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il suit toujours la même logique: une méthode get_state() retournera une valeur NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire, si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée. Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des méthodes errType() et errMessage(). Ce sont les même informations qui auraient été associées à l'exception si elles avaient été actives.

11. Utilisation du Yocto-Motor-DC avec LabVIEW

LabVIEW est édité par National Instruments depuis 1986. C'est un environnement de développement graphique: plutôt que d'écrire des lignes de code, l'utilisateur dessine son programme, un peu comme un organigramme. LabVIEW est surtout pensé pour interfacer des instruments de mesures d'où le nom Virtual Instruments (VI) des programmes LabVIEW. Avec la programmation visuelle, dessiner des algorithmes complexes devient très vite fastidieux, c'est pourquoi la librairie Yoctopuce pour LabVIEW a été pensée pour être aussi simple de possible à utiliser. Autrement dit, LabVIEW étant un environnement extrêmement différent des autres langages supportés par l'API Yoctopuce, vous rencontrerez des différences majeures entre l'API LabVIEW et les autres API.

11.1. Architecture

La librairie LabVIEW est basée sur la librairie Yoctopuce DotNetProxy contenue dans la DLL DotNetProxyLibrary.dll. C'est en fait cette librairie DotNetProxy qui se charge du gros du travail en s'appuyant sur la librairie Yoctopuce C# qui, elle, utilise l'API bas niveau codée dans yapi.dll (32bits) et amd64\yapi.dll (64bits).


Architecture de l'API Yoctopuce pour LabVIEW

Vos applications LabVIEW utilisant l'API Yoctopuce devront donc impérativement être distribuées avec les DLL DotNetProxyLibrary.dll, yapi.dll et amd64\yapi.dll

Si besoin est, vous trouverez les sources de l'API bas niveau dans la librairie C# et les sources de DotNetProxyLibrary.dll dans la librairie DotNetProxy.

11.2. Compatibilité

Firmwares

Pour que la librairie Yoctopuce pour LabVIEW fonctionne convenablement avec vos modules Yoctopuce, ces derniers doivent avoir au moins le firmware 37120

LabVIEW pour Linux et MacOS

Au moment de l'écriture de ce manuel, l'API Yoctopuce pour LabVIEW n'a été testée que sous Windows. Il y a donc de fortes chances pour qu'elle ne fonctionne tout simplement pas avec les versions Linux et MacOS de LabVIEW.

LabVIEW NXG

La librairie Yoctopuce pour LabVIEW faisant appel à de nombreuses techniques qui ne sont pas encore disponibles dans la nouvelle génération de LabVIEW, elle n'est absolument pas compatible avec LabVIEW NXG.

A propos de DotNetProxyLibrary.dll

Afin d'être compatible avec un maximum de version de Windows, y compris Windows XP, la librairie DotNetProxyLibrary.dll est compilée en .NET 3.5, qui est disponible par défaut sur toutes les versions de Windows depuis XP.

11.3. Installation

Téléchargez la librairie pour LabVIEW depuis le site web de Yoctopuce25. Il s'agit d'un fichier ZIP dans lequel vous trouverez un répertoire par version de LabVIEW. Chacun de ses répertoires contient deux sous-répertoires. Le premier contient des exemples de programmation pour chaque produit Yoctopuce; le second, nommé VIs, contient tous les VI de l'API et les DLL nécessaires.

Suivant la configuration de Windows et la méthode utilisée pour la copier, la DLL DotNetProxyLibrary.dll peut se faire bloquer par Windows parce que ce dernier aura détecté qu'elle provient d'une autre machine. Un cas typique est la décompression de l'archive de la librairie avec l'explorateur de fichier de Windows. Si la DLL est bloquée, LabVIEW ne pourra pas la charger, ce qui entrainera une erreur 1386 lors de l'exécution de n'importe quel VI de la librairie Yoctopuce.

Il y a deux manières de corriger le problème. La plus simple consiste à utiliser l'explorateur de fichier de Windows pour afficher les propriétés de la DLL et la débloquer. Mais cette manipulation devra être répété à chaque fois qu'une nouvelle version de la DLL sera copiée sur votre système.


Débloquer la DLL DotNetProxyLibrary.dll.

La seconde méthode consiste à créer dans le même répertoire que l'exécutable labview.exe un fichier XML nommé labview.exe.config et contenant le code suivant :


<?xml version ="1.0"?>
<configuration>
 <runtime>
 <loadFromRemoteSources enabled="true" />
 </runtime>
</configuration>

Veillez à choisir le bon répertoire en fonction de la version de LabVIEW que vous utilisez (32 bits vs 64 bits). Vous trouverez plus d'information à propos de ce fichier sur le site web de National Instrument26.

Pour installer l'API Yoctopuce pour LabVIEW vous avez plusieurs méthodes à votre disposition.

Méthode 1 : Installation "à l'emporter"

La manière la plus simple pour installer la librairie Yoctopuce consiste à copier le contenu du répertoire VIs où bon vous semble, et à utiliser les VIs dans LabVIEW avec une simple opération de Drag and Drop.

Pour pouvoir utiliser les exemples fournis avec l'API, vous aurez avantage à ajouter le répertoire des VIs Yoctopuce dans la liste des répertoires où LabVIEW doit chercher les VIs qu'il n'a pas trouvé. Cette liste est accessible via le menu Tools > Options > Paths > VI Search Path.


Configuration du "VI Search Path"

Méthode 2 : Installeur fourni avec la librairie

Dans chaque répertoire LabVIEW200xx de la librairie, vous trouverez un VI appelé "Install.vi". Ouvrez simplement celui qui correspond à votre version de LabVIEW.


L'installeur fourni avec la librairie

Cet installeur offre trois options d'installation:

Install: Keep VI and documentation files where they are.

Avec cette option, les VI sont conservés à l'endroit où la librairie à été décompressée. Vous aurez donc à faire en sorte qu'ils ne soit pas effacés tant que vous en aurez besoin. Voici ce que fait exactement l'installeur quand cette option est choisie:

Install: Copy VI and documentation files into LabVIEW's vi.lib folder

Dans ce cas, tous les fichiers nécessaires au bon fonctionnement de la librairie sont copiés dans le répertoire d'installation de LabVIEW. Vous pourrez donc effacer les fichiers originaux une fois l'installation terminée. Notez cependant que les exemples de programmation ne sont pas copiés. Voici ce que fait l'installeur exactement:

Uninstall Yoctopuce Library

Cette option supprime la Librairie Yoctopuce de votre installation LabVIEW:

Dans tous les cas, si le fichier labview.ini a besoin d'être modifié, une copie de backup est automatiquement réalisée avant.

L'installeur reconnait les répertoires contenant la librairie Yoctopuce en testant l'existence du fichier YRegisterHub.vi.

Une fois l'installation terminée, vous trouverez une palette Yoctopuce dans le menu Fonction/Suppléments.

Méthode 3 Installation manuelle dans la palette LabVIEW

Les étapes pour installer manuellement les VIs directement dans la Palette LabView sont un peu plus complexes, vous trouverez la procédure complète sur le site de National Instruments27, mais voici un résumé:

  1. Créez un répertoire Yoctopuce\API dans le répertoire C:\Program Files\National Instruments\LabVIEW xxxx\vi.lib, et copiez tous les VIs et les DLL du répertoire VIs dedans.
  2. Créez un répertoire Yoctopuce dans le répertoire C:\Program Files\National Instruments\LabVIEW xxxx\menus\Categories
  3. Lancez LabVIEW, et choisissez l'option Tools>Advanced>Edit Palette Set

    Trois fenêtres vont apparaître:

    • "Edit Controls and Functions Palette Set"
    • "Functions"
    • "Controls"
    .

    Dans la fenêtre Function, vous trouverez une icône Yoctopuce. Double-cliquez dessus, ce qui fera apparaitre une fenêtre "Yoctopuce" vide.

  4. Dans la fenêtre Yoctopuce, faites un Clic Droit>Insert>Vi(s)..

    ce qui fera apparaître un sélecteur de fichier. Placer le sélecteur dans le répertoire vi.lib\Yoctopuce\API que vous avez créé au point 1 et cliquez sur Current Folder

    Tous les VIs Yoctopuce vont apparaitre dans la fenêtre Yoctopuce. Par défaut, ils sont triés dans l'ordre alphabétique, mais vous pouvez les arranger comme bon vous semble en les glissant avec la souris. Pour que la palette soit bien utilisable, nous vous suggérons de réorganiser les icônes sur 8 colonnes.
  5. Dans la fenêtre "Edit Controls and Functions Palette Set", cliquez sur le bouton "Save Changes", la fenêtre va vous indiquer qu'elle a créé un fichier dir.mnu dans votre répertoire Documents.

    Copiez ce fichier dans le répertoire "menus\Categories\Yoctopuce" que vous avez créé au point 2.
  6. Redémarrez LabVIEW, la palette de LabVIEW contient maintenant une sous-palette Yoctopuce et avec tous les VIs de l'API

11.4. Présentation des VIs Yoctopuce

La librairie Yoctopuce pour LabVIEW comprend un VI par classe de l'API Yoctopuce, plus quelques VI spéciaux. Tous les VIs disposent des connecteurs traditionnels Error IN et Error Out.

YRegisterHub

Le VI YRegisterHub permet d'initialiser l'API. Ce VI doit impérativement être appelé une fois avant de faire quoi que ce soit qui soit en relation avec des modules Yoctopuce


Le VI YRegisterHub

Le VI YRegisterHub prend un paramètre url qui peut être soit:

Dans le cas d'une adresse IP, le VI YRegisterHub va essayer de contacter cette adresse et génèrera une erreur s'il n'y arrive pas, à moins que le paramètre async ne soit mis à TRUE. Si async est mis à TRUE, aucune erreur ne sera générée, et les modules Yoctopuce correspondant à cette adresse IP seront automatiquement mis à disposition dès que la machine concernée sera joignable.

Si tout s'est bien passé, la sortie successful contiendra la valeur TRUE. Dans le cas contraire elle contiendra la valeur FALSE et la sortie error msg contiendra une chaîne de caractères contenant une description de l'erreur

Vous pouvez utiliser plusieurs VI YRegisterHub avec des urls différentes si vous le souhaitez. En revanche, sur la même machine, il ne peut y avoir qu'un seul processus qui accède aux modules Yoctopuce locaux directement par USB (url mis à "usb"). Cette limitation peut facilement être contournée en faisant tourner le logiciel VirtualHub sur la machine locale et en utilisant l'url "127.0.0.1".

YFreeAPI

Le VI YFreeAPI permet de libérer les ressources allouée par l'API Yoctopuce.


Le VI YFreeAPI

Le VI YFreeAPI doit être appelé une fois que votre code en a fini avec l'API Yoctopuce, faute de quoi l'accès direct par USB (url mis à "usb") pourrait rester bloqué une fois l'exécution de votre VI terminé, et ce tant que LabVIEW n'aura pas été complètement fermé.

Structure des VI correspondant à une classe

Les autres VIs correspondent à une fonction/classe de l'API Yoctopuce, ils ont tous la même structure:


Structure de la plupart des VIs de l'API.

Vous trouverez la liste des fonctions disponibles sur votre Yocto-Motor-DC au chapitre Programmation, concepts généraux.

Si la fonction recherchée (paramètre name) n'est pas accessible, cela ne génèrera pas d'erreur mais la sortie is online contiendra FALSE et toutes les sorties contiendront les valeurs "N/A" quand c'est possible. Si la fonction recherchée devient disponible plus tard dans la vie de votre programme, is online passera à TRUE.

Si le paramètre name contient une chaîne vide, le VI ciblera la première fonction disponible du même type qu'il trouvera. Si aucune fonction n'est disponible, is online contiendra FALSE.

Le VI YModule

Le module YModule permet d'interfacer la partie "module" de chaque module Yoctopuce. Il permet de piloter la balise du module et de connaître le numéro de série d'un module.


Le VI YModule

L'entrée name fonctionne de manière légèrement différente des autres VIs. S'il est appelé avec le paramètre name correspondant à un nom de fonction, le VI YModule trouvera la fonction Module du module hébergeant la fonction. Il est donc possible de trouver facilement le numéro de série du module d'une fonction quelconque. Cela permet de construire le nom d'autres fonctions qui se trouveraient sur le même module. L'exemple ci dessous trouve la première fonction YHumidity disponible et construit le nom de la fonction YTemperature qui se trouve sur le même module. Les exemples fournis avec l'API Yoctopuce font un usage extensif de cette technique.


Utilisation du VI YModule pour retrouver les fonctions hébergés sur le même module

Les VI senseurs

Tous les VI correspondant à des senseurs Yoctopuce ont exactement la même géométrie. Les deux sorties permettent de récupérer la valeur mesurée par le capteur correspondant ainsi que l'unité utilisée.


Les VI senseurs ont tous exactement la même géométrie

Le paramètre d'entrée update freq est une chaîne de caractères qui permet de configurer la façon dont la valeur de sortie est mis à jour:

La fréquence de mise à jour du VI est un paramètre géré par le module Yoctopuce physique. Si plusieurs VI essayent de changer la fréquence d'un même capteur, la configuration retenue sera celle du dernier appel. Par contre, il est tout à fait possible de configurer des fréquences différentes pour des capteurs du même module Yoctopuce.


Changement de la fréquence de mise à jour du même module

La fréquence de mise à jour du VI est complètement indépendante de la fréquence d'échantillonnage du capteur qui n'est généralement pas modifiable. Il est inutile et contre-productif de définir une fréquence de mise à jour supérieure à la fréquence d'échantillonnage du capteur.

11.5. Fonctionnement et utilisation des VIs

Voici un exemple parmi les plus simples de VI utilisant l'API Yoctopuce.


Exemple minimal d'utilisation de l'API Yoctopuce pour LabVIEW

Cet exemple s'appuie sur le VI YSensor qui est un VI générique qui permet d'interfacer n'importe quelle fonction senseur d'un module Yoctopuce. Vous pouvez remplacer ce VI par n'importe quel autre de l'API Yoctopuce, ils ont tous la même géométrie et fonctionnent tous de la même manière. Cet exemple se contente de faire trois choses:

  1. Il initialise l'API en mode natif ("usb") avec le VI YRegisterHub
  2. Il affiche la valeur du premier capteur Yoctopuce qu'il trouve à l'aide du VI YSensor
  3. Il libère l'API grâce au VI YFreeAPI

Cet exemple cherche automatiquement un senseur disponible, si un tel senseur est trouvé on pourra connaitre son nom via la sortie hardware name et la sortie isOnline sera à TRUE. Si aucun senseur n'est disponible, le VI ne génèrera pas d'erreur mais émulera un senseur fantôme qui sera "offline". Par contre si plus tard, dans la vie de l'application, un senseur devient disponible parce qu'il à été branché, isOnline passera à TRUE et le hardware name contiendra le nom du capteur. On peut donc facilement ajouter quelques indicateurs à l'exemple précédent pour savoir comment se passe l'exécution.


Utilisation des sorties hardware name et isOnline

Les VIs de l'API Yoctopuce ne sont qu'une porte d'entrée sur la mécanique interne de la librairie Yoctopuce. Cette mécanique fonctionne indépendamment des VIs Yoctopuce. En effet, la plupart des communications avec les modules électroniques sont gérées automatiquement en arrière plan. C'est pourquoi vous n'avez pas forcément besoin de prendre de précaution particulière pour utiliser les VI Yoctopuce, vous pouvez par exemple les utiliser dans une boucle non temporisée sans que cela pose de problème particulier à l'API.


Les VIs Yoctopuce peuvent être utilisés dans une boucle non temporisée

Notez que le VI YRegisterHub n'est pas dans la boucle. Le VI YRegisterHub sert à l'initialiser l'API, donc à moins que vous n'ayez plusieurs url à enregistrer, il n'est pas souhaitable de l'appeler plusieurs fois.

Lorsque que le paramètre name est initialisé à une chaîne vide, les VI Yoctopuce recherchent automatiquement la fonction avec laquelle ils peuvent travailler, ce qui est très pratique lorsqu'on sait qu'il n'y a qu'une seule fonction du même type disponible que qu'on ne souhaite pas se soucier de gérer som nom. Si le paramètre name contient un nom matériel ou un nom logique, le VI cherchera la fonction correspondante, si il ne la trouve pas il émulera une fonction qui sera offline en attendant que la vraie fonction devienne disponible.


Utilisation de noms pour identifier les fonctions à utiliser

Gestion des erreurs

L'API Yoctopuce pour LabVIEW est codée pour gérer les erreurs d'une manière aussi gracieuse que possible: par exemple si vous utilisez un VI pour accéder à une fonction qui n'existe pas, sa sortie isOnline sera à FALSE, les autres sorties seront affecté à NaN et les entrées n'auront pas d'effet. Les erreurs fatales sont propagée à travers le canal traditionnel error in, error out.

Cependant, le VI YRegisterHub gère les erreurs de connexion de manière un peu différente. Afin de les rendre plus faciles à gérer, les erreurs de connexions sont signalées à l'aide de sorties Success et error msg. Si un problème apparait lors de l'appel au VI YRegisterHub, success contiendra FALSE et error msg contiendra une description de l'erreur.


Gestion des erreurs

Le message d'erreur le plus courant est "Another process is already using yAPI". Il signifie qu'une autre application, LabVIEW ou autre, utilise déjà l'API en module USB natif. En effet, pour des raison techniques, l'API USB native ne peut être utilisée que par une seule application à la fois sur la même machine. Cette limitation peut être facilement contourné en utilisant le mode réseau.

11.6. Utilisation des objets Proxy

L'API Yoctopuce contient des centaines de méthodes, fonctions et propriétés. Il n'était ni possible, ni souhaitable de créer un VI pour chacune d'entre elles. C'est pourquoi il y a un VI par classe qui expose les deux propriétés que Yoctopuce a jugé les plus utiles, mais cela ne veut pas dire que les autres ne sont pas accessibles.

Chaque VI correspondant à une classe dispose de deux connecteurs create ref et optional ref qui permettent d'obtenir une référence sur l'objet Proxy de l'API .NET Proxy sur laquelle est construite la librairie LabVIEW.


Les connecteurs pour obtenir une référence sur l'objet Proxy correspondant au VI

Pour obtenir cette référence, il suffit de mettre optional ref à TRUE. Attention, il est impératif de fermer toute référence créée de cette manière, sous peine de saturer rapidement la mémoire de l'ordinateur.

Voici un exemple qui utilise cette technique pour modifier la luminosité des LEDs d'un module Yoctopuce



Contrôle de la luminosité des LEDs d'un module

Notez que chaque référence permet d'obtenir aussi bien des propriétés (noeud property) que des méthodes (noeud invoke). Par convention, les propriétés sont optimisées pour générer un minimum de communication avec les modules, c'est pourquoi il est recommandé de les utiliser plutôt les méthodes get_xxx et set_xxx correspondantes qui pourraient sembler équivalentes mais qui ne sont pas optimisées. Les propriétés permettent aussi récupérer les différentes constantes de l'API, qui sont préfixées avec le caractère "_". Pour des raisons techniques, les méthodes get_xxx et set_xxx ne sont pas toutes disponibles sous forme de propriétés.



Noeuds Property et Invoke: Utilisation de propriétés, méthodes et constantes

Vous trouverez la description de toutes les propriétés, fonctions et méthodes disponibles dans la documentation de l'API .NET Proxy.

Utilisation en réseau

Sur une même machine, il ne peut y avoir qu'un seul processus qui accède aux modules Yoctopuce locaux directement par USB (url mis à "usb"). Par contre, plusieurs processus peuvent se connecter en parallèle à des YoctoHubs31 ou à une machine sur laquelle tourne le logiciel VirtualHub32, y compris la machine locale. Si vous utilisez l'adresse réseau locale de votre machine (127.0.0.1) et qu'un VirtualHub tourne dessus, vous pourrez ainsi contourner la limitation qui empêche l'utilisation en parallèle de l'API native USB.


Utilisation en mode réseau

Il n'y a pas non plus de limitation sur le nombre d'interfaces réseau auxquels l'API peut se connecter en parallèle. Autrement dit, il est tout à fait possible de faire des appels multiples au VI YRegisterHub. C'est le seul cas où il y a un intérêt à appeler le VI YRegisterHub plusieurs fois au cours de la vie de l'application.


Les connexions réseau multiples sont possibles

Par défaut, le VI YRegisterHub essaye se connecter sur l'adresse donnée en paramètre et génère une erreur (success=FALSE) s'il n'y arrive pas parce que personne ne répond. Mais si le paramètre async est initialisé à TRUE, aucune erreur ne sera générée en cas d'erreur de connexion, mais si la connexion devient possible plus tard dans la vie de l'application, les modules correspondants seront automatiquement accessibles.


Connexion asynchrone

11.7. Gestion du datalogger

Quasiment tous les senseurs Yoctopuce disposent d'un enregistreur de données qui permet de stocker les mesures des senseurs dans la mémoire non volatile du module. La configuration de l'enregistreur de données peut être réalisée avec le VirtualHub, mais aussi à l'aide d'un peu de code LabVIEW

Enregistrement

Pour ce faire, il faut configurer la fréquence d'enregistrement en utilisant la propriété "LogFrequency" que l'on atteint avec une référence sur l'objet Proxy du senseur utilisé, puis il faut mettre en marche l'enregistreur grâce au VI YDataLogger. Noter qu'à la manière du VI YModule, le VI YDataLogger correspondant à un module peut être obtenu avec son propre nom, mais aussi avec le nom de n'importe laquelle des fonctions présentes sur le même module.


Enclenchement de l'enregistrement de données dans le datalogger

Lecture

La récupération des données de l'enregistreur se fait l'aide du VI YDataLoggerContents.


Le VI YDataLoggerContents

Extraire les données de l'enregistreur d'un module Yoctopuce est un processus lent qui peut prendre plusieurs dizaines de secondes. C'est pourquoi le VI qui permet cette opération a été conçu pour fonctionner de manière itérative.

Dans un premier temps le VI doit être appelé avec un nom de senseur, une date de début et une date de fin (timestamp UNIX en UTC). Le couple (0,0) permet d'obtenir la totalité du contenu de l'enregistreur. Ce premier appel permet d'obtenir un résumé du contenu du datalogger et un contexte.

Dans un deuxième temps, il faut rappeler le VI YDataLoggerContents en boucle avec le paramètre contexte, jusqu'à ce que la sortie progress atteigne la valeur 100. A ce moment la sortie data représente le contenu de l'enregistreur


Récupération du contenu de l'engistreur de données

Les résultats et le résumé sont rendus sous la forme d'un tableau de structures qui contiennent les champs suivants:

Notez que si la fréquence d'enregistrement est supérieure à 1 Hz, l'enregistreur ne mémorise que des valeurs instantanées, dans ce cas averageValue, minValue, et maxValue auront la même valeur.

11.8. Énumération de fonctions

Chaque VI correspondant à un objet de l'API .NET Proxy permet de faire une énumération de toutes les fonctions de la même classe via la méthode getSimilarfunctions() de l'objet Proxy correspondant. Ainsi il est ainsi aisé de faire un inventaire de tous les modules connectés, de tous les capteurs connectés, de tous les relais connectés, etc....


Récupération de la liste de tous les modules connectés

11.9. Un mot sur les performances

L'API Yoctopuce pour LabVIEW été optimisée de manière à ce que les tous les VIs et les propriétés de objets Proxy génèrent un minimum de communication avec les modules Yoctopuce. Ainsi vous pouvez les utiliser dans des boucles sans prendre de précaution particulière: vous n'êtes pas obligés de ralentir les boucles avec un timer.


Ces deux boucles génèrent peu de communications USB et n'ont pas besoin d'être ralenties

En revanche, presque toutes les méthodes des objets Proxy disponibles vont générer une communication avec les modules Yoctopuce à chaque fois qu'elles seront appelées, il conviendra donc d'éviter de les appeler trop souvent inutilement.


Cette boucle, qui utilise une méthode, doit être ralentie

11.10. Un exemple complet de programme LabVIEW

UNABLE TO INCLUDE
C:\yoctopuce\yoctoprod/projects/yoctomotorcontroler/public/doc-labview-example-FR.html

Si vous lisez cette documentation sur un écran, vous pouvez zoomer sur l'image ci-dessus. Vous pourrez aussi retrouver cet exemple dans la librairie Yoctopuce pour LabVIEW

11.11. Différences avec les autres API Yoctopuce

Yoctopuce fait tout son possible pour maintenir une forte cohérence entre les différentes librairies de programmation. Cependant, LabVIEW étant un environnement clairement à part, il en résulte des différences importantes avec les autres librairies.

Ces différences ont aussi été introduites pour rendre l'utilisation des modules aussi facile et intuitive que possible en nécessitant un minimum de code LabVIEW.

YFreeAPI

Contrairement aux autres langages, il est indispensable de libérer l'API native en appelant le VI YFreeApi lorsque votre code n'a plus besoin d'utiliser l'API. Si cet appel est omis, l'API native risque de rester bloquée pour les autres applications tant que LabVIEW ne sera pas complètement fermé.

Propriétés

Contrairement aux classes des autres API, les classes disponibles dans LabVIEW implémentent des propriétés. Par convention, ces propriétés sont optimisées pour générer un minimum de communication avec les modules tout en se rafraichissant automatiquement. En revanche, les méthodes de type get_xxx et set_xxx génèrent systématiquement des communications avec les modules Yoctopuce et doivent être appelées à bon escient.

Callback vs Propriétés

Il n'y a pas de callbacks dans l'API Yoctopuce pour LabVIEW, les VIs se rafraichissenti automatiquement: ils sont basés sur les propriétés des objets de l'API .NET Proxy.

12. Utilisation du Yocto-Motor-DC en Java

Java est un langage orienté objet développé par Sun Microsystem. Son principal avantage est la portabilité, mais cette portabilité a un coût. Java fait une telle abstraction des couches matérielles qu'il est très difficile d'interagir directement avec elles. C'est pourquoi l'API java standard de Yoctopuce ne fonctionne pas en natif: elle doit passer par l'intermédiaire d'un VirtualHub pour pouvoir communiquer avec les modules Yoctopuce.

12.1. Préparation

Connectez vous sur le site de Yoctopuce et téléchargez les éléments suivants:

La librairie est disponible en fichier sources, mais elle aussi disponible sous la forme d'un fichier jar. Branchez vos modules, Décompressez les fichiers de la librairie dans un répertoire de votre choix. Lancez le programme VirtualHub, et vous pouvez commencer vos premiers test. Vous n'avez pas besoin d'installer de driver.

Afin de les garder simples, tous les exemples fournis dans cette documentation sont des applications consoles. Il va de soit que que le fonctionnement des librairies est strictement identiques si vous les intégrez dans une application dotée d'une interface graphique.

12.2. Contrôle de la fonction Motor

Il suffit de quelques lignes de code pour piloter un Yocto-Motor-DC. Voici le squelette d'un fragment de code Java qui utilise la fonction Motor.


[...]
// On active l'accès aux modules locaux à travers le VirtualHub
YAPI.RegisterHub("127.0.0.1");
[...]

// On récupère l'objet permettant d'intéragir avec le module
motor = YMotor.FindMotor("MOTORCTL-123456.motor");

// Pour gérer le hot-plug, on vérifie que le module est là
if (motor.isOnline())
{
    // Utiliser motor.set_drivingForce()
    [...]
}
   
[...]

Voyons maintenant en détail ce que font ces quelques lignes.

YAPI.RegisterHub

La fonction YAPI.RegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent être recherchés. Le paramètre est l'adresse du virtual hub capable de voir les modules. Si l'initialisation se passe mal, une exception sera générée.

YMotor.FindMotor

La fonction YMotor.FindMotor permet de retrouver un moteur en fonction du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Motor-DC avec le numéros de série MOTORCTL-123456 que vous auriez appelé "MonModule" et dont vous auriez nommé la fonction motor "MaFonction", les cinq appels suivants seront strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):


motor = YMotor.FindMotor("MOTORCTL-123456.motor")
motor = YMotor.FindMotor("MOTORCTL-123456.MaFonction")
motor = YMotor.FindMotor("MonModule.motor")
motor = YMotor.FindMotor("MonModule.MaFonction")
motor = YMotor.FindMotor("MaFonction")

YMotor.FindMotor renvoie un objet que vous pouvez ensuite utiliser à loisir pour contrôler le moteur.

isOnline

La méthode isOnline() de l'objet renvoyé par YMotor.FindMotor permet de savoir si le module correspondant est présent et en état de marche.

set_drivingForce

La méthode set_drivingForce() de l'objet renvoyé par YMotor.FindMotor permet de régler la puissance, de -100 à +100% envoyée au moteur.

Un exemple réel

Lancez votre environnement java et ouvrez le projet correspondant, fourni dans le répertoire Examples/Doc-GettingStarted-Yocto-Motor-DC de la librairie Yoctopuce.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

import com.yoctopuce.YoctoAPI.*;

public class Demo {

    public static void main(String[] args)   {
        try {
            // setup the API to use local VirtualHub
            YAPI.RegisterHub("127.0.0.1");
        } catch (YAPI_Exception ex) {
            System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" + ex.getLocalizedMessage() + ")");
            System.out.println("Ensure that the VirtualHub application is running");
            System.exit(1);
        }

        String serial = "";
        if (args.length > 0 && !args[0].equalsIgnoreCase("any")) {
            serial = args[0];
        } else {
            YMotor tmp = YMotor.FirstMotor();
            if (tmp == null) {
                System.out.println("No module connected (check USB cable)");
                System.exit(1);
            }
            try {
                serial = tmp.module().get_serialNumber();
            } catch (YAPI_Exception ex) {
                System.out.println("No module connected (check USB cable)");
                System.exit(1);
            }
        }
        int power = 100;
        if (args.length>1) {
            power = Integer.valueOf(args[1]);
        }

        YMotor motor = YMotor.FindMotor(serial + ".motor");
        YCurrent current = YCurrent.FindCurrent(serial + ".current");
        YVoltage voltage = YVoltage.FindVoltage(serial + ".voltage");
        YTemperature temperature = YTemperature.FindTemperature(serial + ".temperature");

        // lets start the motor
        if (motor.isOnline()) {
            // if motor is in error state, reset it.
            try {
                if (motor.get_motorStatus() >= YMotor.MOTORSTATUS_LOVOLT)
                    motor.resetStatus();
                motor.drivingForceMove(power, 2000);  // ramp up to power in 2 seconds
                for (int i = 0 ; i < 60; i++) {
                    // display motor status
                    System.out.println("Status=" + motor.get_advertisedValue() +
                            "  Voltage=" + voltage.get_currentValue() + voltage.get_unit() +
                            "  Current=" + current.get_currentValue()  + current.get_unit()+
                            "  Temp=" + temperature.get_currentValue() + temperature.get_unit());
                    YAPI.Sleep(1000); // wait for one second
                }
            } catch (YAPI_Exception e) {
                e.printStackTrace();
            }
        }

        YAPI.FreeAPI();
    }

    private static void usage()
    {
        System.err.println("Usage:");
        System.err.println("  demo <serial_number> power");
        System.err.println("  demo <logical_name> power");
        System.err.println("  demo any power");
        System.err.println("     power is a integer between -100 and 100%");
        System.err.println("Example:");
        System.err.println("  demo any 75");
        System.exit(0);
    }
}
 

12.3. Contrôle de la partie module

Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci-dessous un simple programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la balise de localisation.


import com.yoctopuce.YoctoAPI.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class Demo {

    public static void main(String[] args)
    {
        try {
            // setup the API to use local VirtualHub
            YAPI.RegisterHub("127.0.0.1");
        } catch (YAPI_Exception ex) {
            System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" + ex.getLocalizedMessage() + ")");
            System.out.println("Ensure that the VirtualHub application is running");
            System.exit(1);
        }
        System.out.println("usage: demo [serial or logical name] [ON/OFF]");

        YModule module;
        if (args.length == 0) {
            module = YModule.FirstModule();
            if (module == null) {
                System.out.println("No module connected (check USB cable)");
                System.exit(1);
            }
        } else {
            module = YModule.FindModule(args[0]);  // use serial or logical name
        }

        try {
            if (args.length > 1) {
                if (args[1].equalsIgnoreCase("ON")) {
                    module.setBeacon(YModule.BEACON_ON);
                } else {
                    module.setBeacon(YModule.BEACON_OFF);
                }
            }
            System.out.println("serial:       " + module.get_serialNumber());
            System.out.println("logical name: " + module.get_logicalName());
            System.out.println("luminosity:   " + module.get_luminosity());
            if (module.get_beacon() == YModule.BEACON_ON) {
                System.out.println("beacon:       ON");
            } else {
                System.out.println("beacon:       OFF");
            }
            System.out.println("upTime:       " + module.get_upTime() / 1000 + " sec");
            System.out.println("USB current:  " + module.get_usbCurrent() + " mA");
            System.out.println("logs:\n" + module.get_lastLogs());
        } catch (YAPI_Exception ex) {
            System.out.println(args[1] + " not connected (check identification and USB cable)");
        }
        YAPI.FreeAPI();
    }
}
 

Chaque propriété xxx du module peut être lue grâce à une méthode du type YModule.get_xxxx(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode YModule.set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module

Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction YModule.set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode YModule.saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la méthode YModule.revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique d'un module.

import com.yoctopuce.YoctoAPI.*;

public class Demo {

    public static void main(String[] args)
    {
        try {
            // setup the API to use local VirtualHub
            YAPI.RegisterHub("127.0.0.1");
        } catch (YAPI_Exception ex) {
            System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" + ex.getLocalizedMessage() + ")");
            System.out.println("Ensure that the VirtualHub application is running");
            System.exit(1);
        }

        if (args.length != 2) {
            System.out.println("usage: demo <serial or logical name> <new logical name>");
            System.exit(1);
        }

        YModule m;
        String newname;

        m = YModule.FindModule(args[0]); // use serial or logical name

        try {
            newname = args[1];
            if (!YAPI.CheckLogicalName(newname))
                {
                    System.out.println("Invalid name (" + newname + ")");
                    System.exit(1);
                }

            m.set_logicalName(newname);
            m.saveToFlash(); // do not forget this

            System.out.println("Module: serial= " + m.get_serialNumber());
            System.out.println(" / name= " + m.get_logicalName());
        } catch (YAPI_Exception ex) {
            System.out.println("Module " + args[0] + "not connected (check identification and USB cable)");
            System.out.println(ex.getMessage());
            System.exit(1);
        }

        YAPI.FreeAPI();
    }
}
 

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite, liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000 cycles. Pour résumer vous ne pouvez employer la fonction YModule.saveToFlash() que 100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une boucle.

Enumeration des modules

Obtenir la liste des modules connectés se fait à l'aide de la fonction YModule.yFirstModule() qui renvoie le premier module trouvé, il suffit ensuite d'appeler la mehode nextModule() de cet objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un null. Ci-dessous un petit exemple listant les module connectés

import com.yoctopuce.YoctoAPI.*;

public class Demo {

    public static void main(String[] args)
    {
        try {
            // setup the API to use local VirtualHub
            YAPI.RegisterHub("127.0.0.1");
        } catch (YAPI_Exception ex) {
            System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" + ex.getLocalizedMessage() + ")");
            System.out.println("Ensure that the VirtualHub application is running");
            System.exit(1);
        }

        System.out.println("Device list");
        YModule module = YModule.FirstModule();
        while (module != null) {
            try {
                System.out.println(module.get_serialNumber() + " (" + module.get_productName() + ")");
            } catch (YAPI_Exception ex) {
                break;
            }
            module = module.nextModule();
        }
        YAPI.FreeAPI();
    }
}
 

12.4. Gestion des erreurs

Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération. La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une erreur se produisant après le isOnline(), qui pourrait faire planter le programme.

Dans l'API java, le traitement d'erreur est implémenté au moyen d'exceptions. Vous devrez donc intercepter et traiter correctement ces exceptions si vous souhaitez avoir un projet fiable qui ne crashera pas des que vous débrancherez un module.

13. Utilisation du Yocto-Motor-DC avec Android

A vrai dire, Android n'est pas un langage de programmation, c'est un système d'exploitation développé par Google pour les appareils portables tels que smart phones et tablettes. Mais il se trouve que sous Android tout est programmé avec le même langage de programmation: Java. En revanche les paradigmes de programmation et les possibilités d'accès au hardware sont légèrement différentes par rapport au Java classique, ce qui justifie un chapitre à part sur la programmation Android.

13.1. Accès Natif et Virtual Hub.

Contrairement à l'API Java classique, l'API Java pour Android accède aux modules USB de manière native. En revanche, comme il n'existe pas de VirtualHub tournant sous Android, il n'est pas possible de prendre le contrôle à distance de modules Yoctopuce pilotés par une machine sous Android. Bien sûr, l'API Java pour Android reste parfaitement capable de se connecter à un VirtualHub tournant sur un autre OS.

13.2. Préparation

Connectez-vous sur le site de Yoctopuce et téléchargez la librairie de programmation pour Java pour Android35. La librairie est disponible en fichiers sources, mais elle aussi disponible sous la forme d'un fichier jar. Branchez vos modules, décompressez les fichiers de la librairie dans le répertoire de votre choix. Et configurez votre environnement de programmation Android pour qu'il puisse les trouver.

Afin de les garder simples, tous les exemples fournis dans cette documentation sont des fragments d'application Android. Vous devrez les intégrer dans vos propres applications Android pour les faire fonctionner. En revanche vous pourrez trouver des applications complètes dans les exemples fournis avec la librairie Java pour Android.

13.3. Compatibilité

Dans un monde idéal, il suffirait d'avoir un téléphone sous Android pour pouvoir faire fonctionner des modules Yoctopuce. Malheureusement, la réalité est légèrement différente, un appareil tournant sous Android doit répondre à un certain nombre d'exigences pour pouvoir faire fonctionner des modules USB Yoctopuce en natif.

Android 4.x

Android 4.0 (api 14) et suivants sont officiellement supportés. Théoriquement le support USB host fonctionne depuis Android 3.1. Mais sachez que Yoctopuce ne teste régulièrement l'API Java pour Android qu'à partir de Android 4.

Support USB host

Il faut bien sûr que votre machine dispose non seulement d'un port USB, mais il faut aussi que ce port soit capable de tourner en mode host. En mode host, la machine prend littéralement le contrôle des périphériques qui lui sont raccordés. Les ports USB d'un ordinateur bureau, par exemple, fonctionnent mode host. Le pendant du mode host est le mode device. Les clefs USB par exemple fonctionnent en mode device: elles ne peuvent qu'être contrôlées par un host. Certains ports USB sont capables de fonctionner dans les deux modes, ils s'agit de ports OTG (On The Go). Il se trouve que beaucoup d'appareils portables ne fonctionnent qu'en mode "device": ils sont conçus pour être branchés à chargeur ou un ordinateur de bureau, rien de plus. Il est donc fortement recommandé de lire attentivement les spécifications techniques d'un produit fonctionnant sous Android avant d'espérer le voir fonctionner avec des modules Yoctopuce.

Disposer d'une version correcte d'Android et de ports USB fonctionnant en mode host ne suffit malheureusement pas pour garantir un bon fonctionnement avec des modules Yoctopuce sous Android. En effet certains constructeurs configurent leur image Android afin que les périphériques autres que clavier et mass storage soit ignorés, et cette configuration est difficilement détectable. En l'état actuel des choses, le meilleur moyen de savoir avec certitude si un matériel Android spécifique fonctionne avec les modules Yoctopuce consiste à essayer.

Matériel supporté

La librairie est testée et validée sur les machines suivantes:

Si votre machine Android n'est pas capable de faire fonctionner nativement des modules Yoctopuce, il vous reste tout de même la possibilité de contrôler à distance des modules pilotés par un VirtualHub sur un autre OS ou un YoctoHub36.

13.4. Activer le port USB sous Android

Par défaut Android n’autorise pas une application à accéder aux périphériques connectés au port USB. Pour que votre application puisse interagir avec un module Yoctopuce branché directement sur votre tablette sur un port USB quelques étapes supplémentaires sont nécessaires. Si vous comptez uniquement interagir avec des modules connectés sur une autre machine par IP, vous pouvez ignorer cette section.

Il faut déclarer dans son AndroidManifest.xml l'utilisation de la fonctionnalité "USB Host" en ajoutant le tag <uses-feature android:name="android.hardware.usb.host" /> dans la section manifest.


<manifest ...>
    ...
    <uses-feature android:name="android.hardware.usb.host" />;
    ...
</manifest>

Lors du premier accès à un module Yoctopuce, Android va ouvrir une fenêtre pour informer l'utilisateur que l'application va accéder module connecté. L'utilisateur peut refuser ou autoriser l’accès au périphérique. Si l'utilisateur accepte, l'application pourra accéder au périphérique connecté jusqu'à la prochaine déconnexion du périphérique. Pour que la librairie Yoctopuce puisse gérer correctement ces autorisations, il faut lui fournir un pointeur sur le contexte de l'application en appelant la méthode EnableUSBHost de la classe YAPI avant le premier accès USB. Cette fonction prend en argument un objet de la classe android.content.Context (ou d'une sous-classe). Comme la classe Activity est une sous-classe de Context, le plus simple est de d'appeler YAPI.EnableUSBHost(this); dans la méthode onCreate de votre application. Si l'objet passé en paramètre n'est pas du bon type, une exception YAPI_Exception sera générée.


...
@Override
public void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    try {
                // Pass the application Context to the Yoctopuce Library
        YAPI.EnableUSBHost(this);
        } catch (YAPI_Exception e) {
                Log.e("Yocto",e.getLocalizedMessage());
        }
}
...

Lancement automatique

Il est possible d'enregistrer son application comme application par défaut pour un module USB, dans ce cas des qu'un module sera connecté au système, l'application sera lancée automatiquement. Il faut ajouter <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"/> dans la section <intent-filter> de l'activité principale. La section <activity> doit contenir un pointeur sur un fichier xml qui contient la liste des modules USB qui peuvent lancer l'application.


<manifest xmlns:android="http://schemas.android.com/apk/res/android"
    ...
    <uses-feature android:name="android.hardware.usb.host" />
    ...
    <application ... >
        <activity
            android:name=".MainActivity" >
            <intent-filter>
                <action android:name="android.intent.action.MAIN" />
                <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED" />
                <category android:name="android.intent.category.LAUNCHER" />
            </intent-filter>

            <meta-data
                android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"
                android:resource="@xml/device_filter" />
        </activity>
    </application>

</manifest>

Le fichier XML qui contient la liste des modules qui peuvent lancer l'application doit être sauvé dans le répertoire res/xml. Ce fichier contient une liste de vendorId et deviceID USB en décimal. L'exemple suivant lance l'application dès qu'un Yocto-Relay ou un Yocto-PowerRelay est connecté. Vous pouvez trouver le vendorId et deviceId des modules Yoctopuce dans la section caractéristiques de la documentation.


<?xml version="1.0" encoding="utf-8"?>

<resources>
    <usb-device vendor-id="9440" product-id="12" />
    <usb-device vendor-id="9440" product-id="13" />
</resources>

13.5. Contrôle de la fonction Motor

Il suffit de quelques lignes de code pour piloter un Yocto-Motor-DC. Voici le squelette d'un fragment de code Java qui utilise la fonction Motor.


[...]
// On active la détection des modules sur USB
YAPI.EnableUSBHost(this);
YAPI.RegisterHub("usb");
[...]
// On récupère l'objet permettant de communiquer avec le module
motor = YMotor.FindMotor("MOTORCTL-123456.motor");

// Pour gérer le hot-plug, on vérifie que le module est là
if (motor.isOnline())
{
    // Utilisez motor.set_drivingForce()
    [...]
}

[...]

Voyons maintenant en détail ce que font ces quelques lignes.

YAPI.EnableUSBHost

La fonction YAPI.EnableUSBHost initialise l'API avec le Context de l'application courante. Cette fonction prend en argument un objet de la classe android.content.Context (ou d'une sous-classe). Si vous comptez uniquement vous connecter à d'autres machines par IP vous cette fonction est factultative.

YAPI.RegisterHub

La fonction YAPI.RegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent être recherchés. Le paramètre est l'adresse du virtual hub capable de voir les modules. Si l'on passe la chaine de caractère "usb", l'API va travailler avec les modules connectés localement à la machine. Si l'initialisation se passe mal, une exception sera générée.

YMotor.FindMotor

La fonction YMotor.FindMotor permet de retrouver un moteur en fonction du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Motor-DC avec le numéros de série MOTORCTL-123456 que vous auriez appelé "MonModule" et dont vous auriez nommé la fonction motor "MaFonction", les cinq appels suivants seront strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):


motor = YMotor.FindMotor("MOTORCTL-123456.motor")
motor = YMotor.FindMotor("MOTORCTL-123456.MaFonction")
motor = YMotor.FindMotor("MonModule.motor")
motor = YMotor.FindMotor("MonModule.MaFonction")
motor = YMotor.FindMotor("MaFonction")

YMotor.FindMotor renvoie un objet que vous pouvez ensuite utiliser à loisir pour contrôler le moteur.

isOnline

La méthode isOnline() de l'objet renvoyé par YMotor.FindMotor permet de savoir si le module correspondant est présent et en état de marche.

set_drivingForce

La méthode set_drivingForce() de l'objet renvoyé par YMotor.FindMotor permet de régler la puissance, de -100 à +100% envoyée au moteur.

Un exemple réel

Lancez votre environnement java et ouvrez le projet correspondant, fourni dans le répertoire Examples/Doc-Examples de la librairie Yoctopuce.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;
import android.widget.EditText;
import android.widget.Spinner;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YCurrent;
import com.yoctopuce.YoctoAPI.YMotor;
import com.yoctopuce.YoctoAPI.YTemperature;
import com.yoctopuce.YoctoAPI.YVoltage;

public class GettingStarted_Yocto_Motor_DC extends Activity implements OnItemSelectedListener
{

    private ArrayAdapter<String> aa;
    private Handler handler;
    private YMotor motor;
    private YCurrent current;
    private YTemperature temperature;
    private YVoltage voltage;

    @Override
    public void onCreate(Bundle savedInstanceState)
    {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.gettingstarted_yocto_motor_dc);
        Spinner my_spin = (Spinner) findViewById(R.id.spinner1);
        my_spin.setOnItemSelectedListener(this);
        aa = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item);
        aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
        my_spin.setAdapter(aa);
        handler = new Handler();
    }

    public void updateMotor(View view)
    {
        if (motor!=null) {
            EditText control = (EditText)findViewById(R.id.controlfield);
            Integer power = Integer.valueOf(String.valueOf(control.getText()));
            try {
                // if motor is in error state, reset it.
                if (motor.get_motorStatus()>=YMotor.MOTORSTATUS_LOVOLT) {
                    motor.resetStatus();
                }
                motor.drivingForceMove(power, 2000);  // ramp up to power in 2 seconds
            } catch (YAPI_Exception e) {
                e.printStackTrace();
            }
        }
    }


    @Override
    protected void onStart()
    {
        super.onStart();

        try {
            aa.clear();
            YAPI.EnableUSBHost(this);
            YAPI.RegisterHub("usb");
            YMotor m = YMotor.FirstMotor();
            while (m != null) {
                String serial = m.get_module().get_serialNumber();
                aa.add(serial);
                m = m.nextMotor();
            }
        } catch (YAPI_Exception e) {
            e.printStackTrace();
        }
        // refresh Spinner with detected relay
        aa.notifyDataSetChanged();
        handler.postDelayed(r, 500);
    }

    @Override
    protected void onStop()
    {
        super.onStop();
        YAPI.FreeAPI();
    }

    @Override
    public void onItemSelected(AdapterView<?> parent, View view, int pos, long id)
    {
        String serial = parent.getItemAtPosition(pos).toString();
        motor       = YMotor.FindMotor(serial + ".motor");
        current     = YCurrent.FindCurrent(serial + ".current");
        voltage     = YVoltage.FindVoltage(serial + ".voltage");
        temperature = YTemperature.FindTemperature(serial + ".temperature");

    }

    @Override
    public void onNothingSelected(AdapterView<?> arg0)
    {
    }

    final Runnable r = new Runnable()
    {
        public void run()
        {
            if (motor != null && motor.isOnline()) {
                try {
                    TextView view = (TextView) findViewById(R.id.statefield);
                    view.setText(motor.get_advertisedValue());
                } catch (YAPI_Exception e) {
                    e.printStackTrace();

                }
            }
            if (current != null && current.isOnline()) {
                try {
                    TextView view = (TextView) findViewById(R.id.currentfield);
                    view.setText(String.format("%.1f %s", current.getCurrentValue(), current.getUnit()));
                } catch (YAPI_Exception e) {
                    e.printStackTrace();

                }
            }
            if (voltage != null && voltage.isOnline()) {
                try {
                    TextView view = (TextView) findViewById(R.id.votltagefield);
                    view.setText(String.format("%.1f %s", voltage.getCurrentValue(), voltage.getUnit()));
                } catch (YAPI_Exception e) {
                    e.printStackTrace();

                }
            }
            if (temperature != null && temperature.isOnline()) {
                try {
                    TextView view = (TextView) findViewById(R.id.tempfield);
                    view.setText(String.format("%.1f %s", temperature.getCurrentValue(), temperature.getUnit()));
                } catch (YAPI_Exception e) {
                    e.printStackTrace();
                }
            }
            handler.postDelayed(this, 1000);
        }
    };


}
 

13.6. Contrôle de la partie module

Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci-dessous un simple programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la balise de localisation.

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;
import android.widget.Spinner;
import android.widget.Switch;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class ModuleControl extends Activity implements OnItemSelectedListener
{

    private ArrayAdapter<String> aa;
    private YModule module = null;

    @Override
    public void onCreate(Bundle savedInstanceState)
    {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.modulecontrol);
        Spinner my_spin = (Spinner) findViewById(R.id.spinner1);
        my_spin.setOnItemSelectedListener(this);
        aa = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item);
        aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
        my_spin.setAdapter(aa);
    }

    @Override
    protected void onStart()
    {
        super.onStart();

        try {
            aa.clear();
            YAPI.EnableUSBHost(this);
            YAPI.RegisterHub("usb");
            YModule r = YModule.FirstModule();
            while (r != null) {
                String hwid = r.get_hardwareId();
                aa.add(hwid);
                r = r.nextModule();
            }
        } catch (YAPI_Exception e) {
            e.printStackTrace();
        }
        // refresh Spinner with detected relay
        aa.notifyDataSetChanged();
    }

    @Override
    protected void onStop()
    {
        super.onStop();
        YAPI.FreeAPI();
    }

    private void DisplayModuleInfo()
    {
        TextView field;
        if (module == null)
            return;
        try {
            field = (TextView) findViewById(R.id.serialfield);
            field.setText(module.getSerialNumber());
            field = (TextView) findViewById(R.id.logicalnamefield);
            field.setText(module.getLogicalName());
            field = (TextView) findViewById(R.id.luminosityfield);
            field.setText(String.format("%d%%", module.getLuminosity()));
            field = (TextView) findViewById(R.id.uptimefield);
            field.setText(module.getUpTime() / 1000 + " sec");
            field = (TextView) findViewById(R.id.usbcurrentfield);
            field.setText(module.getUsbCurrent() + " mA");
            Switch sw = (Switch) findViewById(R.id.beaconswitch);
            sw.setChecked(module.getBeacon() == YModule.BEACON_ON);
            field = (TextView) findViewById(R.id.logs);
            field.setText(module.get_lastLogs());

        } catch (YAPI_Exception e) {
            e.printStackTrace();
        }
    }

    @Override
    public void onItemSelected(AdapterView<?> parent, View view, int pos, long id)
    {
        String hwid = parent.getItemAtPosition(pos).toString();
        module = YModule.FindModule(hwid);
        DisplayModuleInfo();
    }

    @Override
    public void onNothingSelected(AdapterView<?> arg0)
    {
    }

    public void refreshInfo(View view)
    {
        DisplayModuleInfo();
    }

    public void toggleBeacon(View view)
    {
        if (module == null)
            return;
        boolean on = ((Switch) view).isChecked();

        try {
            if (on) {
                module.setBeacon(YModule.BEACON_ON);
            } else {
                module.setBeacon(YModule.BEACON_OFF);
            }
        } catch (YAPI_Exception e) {
            e.printStackTrace();
        }
    }
}
 

Chaque propriété xxx du module peut être lue grâce à une méthode du type YModule.get_xxxx(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode YModule.set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module

Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction YModule.set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode YModule.saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la méthode YModule.revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique d'un module.

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;
import android.widget.EditText;
import android.widget.Spinner;
import android.widget.TextView;
import android.widget.Toast;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class SaveSettings extends Activity implements OnItemSelectedListener
{

    private ArrayAdapter<String> aa;
    private YModule module = null;

    @Override
    public void onCreate(Bundle savedInstanceState)
    {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.savesettings);
        Spinner my_spin = (Spinner) findViewById(R.id.spinner1);
        my_spin.setOnItemSelectedListener(this);
        aa = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item);
        aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
        my_spin.setAdapter(aa);
    }

    @Override
    protected void onStart()
    {
        super.onStart();

        try {
            aa.clear();
            YAPI.EnableUSBHost(this);
            YAPI.RegisterHub("usb");
            YModule r = YModule.FirstModule();
            while (r != null) {
                String hwid = r.get_hardwareId();
                aa.add(hwid);
                r = r.nextModule();
            }
        } catch (YAPI_Exception e) {
            e.printStackTrace();
        }
        // refresh Spinner with detected relay
        aa.notifyDataSetChanged();
    }

    @Override
    protected void onStop()
    {
        super.onStop();
        YAPI.FreeAPI();
    }

    private void DisplayModuleInfo()
    {
        TextView field;
        if (module == null)
            return;
        try {
            YAPI.UpdateDeviceList();// fixme
            field = (TextView) findViewById(R.id.logicalnamefield);
            field.setText(module.getLogicalName());
        } catch (YAPI_Exception e) {
            e.printStackTrace();
        }
    }

    @Override
    public void onItemSelected(AdapterView<?> parent, View view, int pos, long id)
    {
        String hwid = parent.getItemAtPosition(pos).toString();
        module = YModule.FindModule(hwid);
        DisplayModuleInfo();
    }

    @Override
    public void onNothingSelected(AdapterView<?> arg0)
    {
    }

    public void saveName(View view)
    {
        if (module == null)
            return;

        EditText edit = (EditText) findViewById(R.id.newname);
        String newname = edit.getText().toString();
        try {
            if (!YAPI.CheckLogicalName(newname)) {
                Toast.makeText(getApplicationContext(), "Invalid name (" + newname + ")", Toast.LENGTH_LONG).show();
                return;
            }
            module.set_logicalName(newname);
            module.saveToFlash(); // do not forget this
            edit.setText("");
        } catch (YAPI_Exception ex) {
            ex.printStackTrace();
        }
        DisplayModuleInfo();
    }

}
 

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite, liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000 cycles. Pour résumer vous ne pouvez employer la fonction YModule.saveToFlash() que 100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une boucle.

Enumeration des modules

Obtenir la liste des modules connectés se fait à l'aide de la fonction YModule.yFirstModule() qui renvoie le premier module trouvé, il suffit ensuite d'appeler la mehode nextModule() de cet objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un null. Ci-dessous un petit exemple listant les module connectés

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.util.TypedValue;
import android.view.View;
import android.widget.LinearLayout;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class Inventory extends Activity
{

    @Override
    public void onCreate(Bundle savedInstanceState)
    {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.inventory);
    }

    public void refreshInventory(View view)
    {
        LinearLayout layout = (LinearLayout) findViewById(R.id.inventoryList);
        layout.removeAllViews();

        try {
            YAPI.UpdateDeviceList();
            YModule module = YModule.FirstModule();
            while (module != null) {
                String line = module.get_serialNumber() + " (" + module.get_productName() + ")";
                TextView tx = new TextView(this);
                tx.setText(line);
                tx.setTextSize(TypedValue.COMPLEX_UNIT_SP, 20);
                layout.addView(tx);
                module = module.nextModule();
            }
        } catch (YAPI_Exception e) {
            e.printStackTrace();
        }
    }

    @Override
    protected void onStart()
    {
        super.onStart();
        try {
            YAPI.EnableUSBHost(this);
            YAPI.RegisterHub("usb");
        } catch (YAPI_Exception e) {
            e.printStackTrace();
        }
        refreshInventory(null);
    }

    @Override
    protected void onStop()
    {
        super.onStop();
        YAPI.FreeAPI();
    }

}
 

13.7. Gestion des erreurs

Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération. La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une erreur se produisant après le isOnline(), qui pourrait faire planter le programme.

Dans l'API java pour Android, le traitement d'erreur est implémenté au moyen d'exceptions. Vous devrez donc intercepter et traiter correctement ces exceptions si vous souhaitez avoir un projet fiable qui ne crashera pas des que vous débrancherez un module.

14. Utilisation du Yocto-Motor-DC en TypeScript

TypeScript est une version améliorée du langage de programmation JavaScript. Il s'agit d'un sur-ensemble syntaxique avec typage fort, permettant d'améliorer la fiabilité du code, mais qui est transcompilé en JavaScript avant l'exécution, pour être ensuite interprêté par n'importe quel navigateur Web ou par Node.js.

Cette librairie de programmation Yoctopuce permet donc de coder des applications JavaScript tout en bénéficiant d'un typage fort. Comme notre librairie EcmaScript, elle utilise les fonctionnalités asynchrones introduites dans la version ECMAScript 2017 et qui sont maintenant disponibles nativement dans tous les environnements JavaScript modernes. Néanmoins, à ce jour, le code TypeScript n'est pas utilisable directement dans un navigateur Web ou Node.js, donc il est nécessaire de le compiler en JavaScript avant l'exécution.

La librairie peut travailler aussi bien dans un navigateur internet que dans un environnement Node.js. Pour satisfaire aux exigences de résolution statique des dépendances, et pour éviter les ambiguïtés qui surgiraient lors de l'utilisation d'environnements hybrides tels qu'Electron, la sélection de l'environnement doit être faite explicitement à l'import de la librairie, en important dans le projet soit yocto_api_nodejs.js, soit yocto_api_html.js.

La librairie peut être intégrée à vos projets de plusieurs manières, selon ce qui convient le mieux à votre projet:

14.1. Utiliser la librairie Yoctopuce pour TypeScript

1. Commencez par installer TypeScript sur votre machine si cela n'est pas déjà fait. Pour cela:

2. Connectez-vous ensuite sur le site Web de Yoctopuce et téléchargez les éléments suivants:

3. Décompressez les fichiers de la librairie dans un répertoire de votre choix, et ouvrez une fenêtre de commande dans le répertoire où vous l'avez installée. Lancez la commande suivante pour installer les quelques dépendances qui sont nécessaires au lancement des exemples:


npm install

Une fois cette commande terminée sans erreur, vous êtes prêt pour l'exploration des exemples. Ceux-ci sont fournis dans deux exemples différents, selon l'environnement d'exécution choisi: example_html pour l'exécution de la librairie Yoctopuce dans un navigateur Web, ou example_nodejs si vous provoyez d'utiliser la librairie dans un environnement Node.js.

La manière de lancer les exemples dépend de l'environnement choisi. Vous trouverez les instructions détaillées un peu plus loin.

14.2. Petit rappel sur les fonctions asynchrones en JavaScript

JavaScript a été conçu pour éviter toute situation de concurrence durant l'exécution. Il n'y a jamais qu'un seul thread en JavaScript. Pour gérer les attentes dans les entrées/sorties, JavaScript utilise les opérations asynchrones: lorsqu'une fonction potentiellement bloquante doit être appelée, l'opération est déclenchée mais le flot d'exécution est immédiatement suspendu. Le moteur JavaScript est alors libre pour exécuter d'autres tâches, comme la gestion de l'interface utilisateur par exemple. Lorsque l'opération bloquante se termine finalement, le système relance le code en appelant une fonction de callback, en passant en paramètre le résultat de l'opération, pour permettre de continuer la tâche originale.

L'utilisation d'opérations asynchrones avec des fonctions de callback a la fâcheuse tendance de rentre le code illisible puisqu'elle découpe systématiquement le flot du code en petites fonctions de callback déconnectées les unes des autres. Heureusement, le standard ECMAScript 2015 a apporté les objets Promise et la syntaxe async / await pour la gestion des appels asynchrones:

En clair, async et await permettent d'écrire du code TypeScript avec tous les avantages des entrées/sorties asynchrones, mais sans interrompre le flot d'écriture du code. Cela revient quasiment à une exécution multi-tâche, mais en garantissant que le passage de contrôle d'une tâche à l'autre ne se produira que là où le mot-clé await apparaît.

Cette librairie TypeScript utilise donc les objets Promise et des méthodes async, pour vous permettre d'utiliser la notation await si pratique. Et pour ne pas devoir vous poser la question pour chaque méthode de savoir si elle est asynchrone ou pas, la convention est la suivante: en principe toutes les méthodes publiques de la librairie TypeScript sont async, c'est-à-dire qu'elles retournent un objet Promise, sauf:

Dans la plupart des cas, le typage fort de TypeScript sera là pour vous rappeler d'utiliser await lors de l'appel d'une méthode asynchrone.

14.3. Contrôle de la fonction Motor

Il suffit de quelques lignes de code pour piloter un Yocto-Motor-DC. Voici le squelette d'un fragment de code TypeScript qui utilise la fonction Motor.


// En Node.js, on référence la librairie via son package NPM
// En HTML, on utiliserait plutôt un path relatif (selon l'environnement)
import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';
import { YMotor } from 'yoctolib-cjs/yocto_motor.js';

[...]
// On active l'accès aux modules locaux à travers le VirtualHub
await YAPI.RegisterHub('127.0.0.1');
[...]

// On récupère l'objet permettant d'intéragir avec le module
let motor: YMotor = YMotor.FindMotor("MOTORCTL-123456.motor");

// Pour gérer le hot-plug, on vérifie que le module est là
if(await motor.isOnline())
{
    // Utiliser motor.set_drivingForce()
    [...]
}

Voyons maintenant en détail ce que font ces quelques lignes.

Import de yocto_api et yocto_motor

Ces deux imports permettent d'avoir accès aux fonctions permettant de gérer les modules Yoctopuce. yocto_api doit toujours être inclus, et yocto_motor est nécessaire pour gérer les modules contenant un moteur, comme le Yocto-Motor-DC. D'autres classes peuvent être utiles dans d'autres cas, comme YModule qui vous permet de faire une énumération de n'importe quel type de module Yoctopuce.

Pour que yocto_api soit correctement lié aux librairies réseau à utiliser pour établir la connexion (soit celles de Node.js, soit celles du navigateur dans le cas d'une application HTML), il faut que vous référenciez au moins une fois dans votre projet soit la variante yocto_api_nodejs.js, soit yocto_api_html.js.

Notez que cet exemple importe la librairie au format CommonJS, le plus utilisé avec Node.JS à ce jour, mais si votre projet est construit pour utiliser les modules natifs EcmaScript, il suffit de remplace dans l'import le préfix yoctolib-cjs par yoctolib-esm.

YAPI.RegisterHub

La méthode RegisterHub permet d'indiquer sur quelle machine se trouvent les modules Yoctopuce, ou plus exactement la machine sur laquelle tourne le programme VirtualHub. Dans notre cas l'adresse 127.0.0.1:4444 indique la machine locale, en utilisant le port 4444 (le port standard utilisé par Yoctopuce). Vous pouvez parfaitement changer cette adresse, et mettre l'adresse d'une autre machine sur laquelle tournerait un autre VirtualHub, ou d'un YoctoHub. Si l'hôte n'est pas joignable, la fonction déclanche une exception.

Comme expliqué précédemment, il n'est pas possible d'utiliser directement RegisterHub("usb") en TypeScript, car la machine virtuelle JavaScript n'a pas accès directement aux périphériques USB. Elle doit nécessairement passer par le programme VirtualHub via une connection par l'adresse 127.0.0.1.

YMotor.FindMotor

La méthode FindMotor permet de retrouver un moteur en fonction du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Motor-DC avec le numéros de série MOTORCTL-123456 que vous auriez appelé "MonModule" et dont vous auriez nommé la fonction motor "MaFonction", les cinq appels suivants seront strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):


motor = YMotor.FindMotor("MOTORCTL-123456.motor")
motor = YMotor.FindMotor("MOTORCTL-123456.MaFonction")
motor = YMotor.FindMotor("MonModule.motor")
motor = YMotor.FindMotor("MonModule.MaFonction")
motor = YMotor.FindMotor("MaFonction")

YMotor.FindMotor renvoie un objet que vous pouvez ensuite utiliser à loisir pour contrôler le moteur.

isOnline

La méthode isOnline() de l'objet renvoyé par FindMotor permet de savoir si le module correspondant est présent et en état de marche.

set_drivingForce

La méthode set_drivingForce() de l'objet renvoyé par YMotor.FindMotor permet de régler la puissance, de -100 à +100% envoyée au moteur.

Un exemple concret, en Node.js

Ouvrez une fenêtre de commande (un terminal, un shell...) et allez dans le répertoire example_nodejs/Doc-GettingStarted-Yocto-Motor-DC de la librairie Yoctopuce pour TypeScript. Vous y trouverez un fichier nommé demo.ts avec le code d'exemple ci-dessous, qui reprend les fonctions expliquées précédemment, mais cette fois utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

Si le Yocto-Motor-DC n'est pas branché sur la machine où fonctionne le navigateur internet, remplacez dans l'exemple l'adresse 127.0.0.1 par l'adresse IP de la machine où est branché le Yocto-Motor-DC et où vous avez lancé le VirtualHub.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';
import { YMotor } from 'yoctolib-cjs/yocto_motor.js'
import { YCurrent } from 'yoctolib-cjs/yocto_current.js'
import { YVoltage } from 'yoctolib-cjs/yocto_voltage.js'
import { YTemperature } from 'yoctolib-cjs/yocto_temperature.js'

let motor: YMotor;
let current: YCurrent;
let voltage: YVoltage;
let temperature: YTemperature;

async function startDemo(): Promise<void>
{
    await YAPI.LogUnhandledPromiseRejections();

    // Setup the API to use the VirtualHub on local machine
    let errmsg: YErrorMsg = new YErrorMsg();
    if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
        console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
        return;
    }

    // Select specified device, or use first available one
    let serial: string = process.argv[process.argv.length-1];
    if (serial[8] != '-') {
        // by default use any connected module suitable for the demo
        let anysensor = YMotor.FirstMotor();
        if (anysensor) {
            let module: YModule = await anysensor.get_module();
            serial = await module.get_serialNumber();
        } else {
            console.log('No matching Yocto-Motor-DC connected, check cable !');
            await YAPI.FreeAPI();
            return;
        }
    }
    console.log('Using device ' + serial);

    motor = YMotor.FindMotor(serial + ".motor");
    current = YCurrent.FindCurrent(serial + ".current");
    voltage = YVoltage.FindVoltage(serial + ".voltage");
    temperature = YTemperature.FindTemperature(serial + ".temperature");
    //power is a integer between -100 and 100%
    let power: number = 50;

    // if motor is in error state, reset it.
    if (await motor.get_motorStatus() >= YMotor.MOTORSTATUS_LOVOLT) {
        await motor.resetStatus();
    }
    await motor.drivingForceMove(power, 2000);  // ramp up to power in 2 seconds
    refresh();
}

async function refresh(): Promise<void>
{
    if (await motor.isOnline()) {
        // display motor status
        console.log("Status=" + await motor.get_advertisedValue() + "  " +
            "Voltage=" + await voltage.get_currentValue() + "V  " +
            "Current=" + await current.get_currentValue() / 1000 + "A  " +
            "Temp=" + await temperature.get_currentValue() + "deg C");
    } else {
        console.log('Module not connected');
    }
    setTimeout(refresh, 500);
}

startDemo();
 

Comme décrit au début de ce chapitre, vous devez avoir installé le complateur TypeScript sur votre machine pour essayer ces exemples, et installé les dépendances de la librairie TypeScript. Si vous l'avez fait, vous pouvez maintenant taper la commande suivantes dans le répertoire de l'exemple lui-même, pour finaliser la résolution de ses dépendances:


npm install
Vous êtes maintenant prêt pour lancer le code d'exemple dans Node.js. La manière la plus simple de le faire est d'utiliser la commande suivante, en remplaçant les [...] par les arguments que vous voulez passer au programme:

npm run demo [...]

Cette commande, définie dans le fichier package.json, a pour effet de compiler le code source TypeScript à l'aide de la simple commande tsc, puis de lancer le code compilé dans Node.js.

La compilation utilise les paramètres spécifiés dans le fichier tsconfig.json, et produit

Notez que le fichier package.json de nos exemples référence directement la version locale de la librairie par un path relatif, pour éviter de dupliquer la librairie dans chaque exemple. Bien sur, pour votre application de production, vous pourrez utiliser le package directement depuis le repository npm en l'ajoutant à votre projet à l'aide de la commande:


npm install yoctolib-cjs

Le même exemple, mais dans un navigateur

Si vous voulez voir comment utiliser la librairie dans un navigateur plutôt que dans Node.js, changez de répertoire et allez dans example_html/Doc-GettingStarted-Yocto-Motor-DC. Vous y trouverez un fichier html app.html, et un fichier TypeScript app.ts similaire au code ci-dessus, mais avec quelques variantes pour permettre une interaction à travers la page HTML plutôt que sur la console JavaScript.

Aucune installation n'est nécessaire pout utiliser cet exemple HTML, puisqu'il référence la librairie TypeScript via un chemin relatif. Par contre, pour que le navigateur puisse exécuter le code, il faut que la page HTML soit publié par un serveur Web. Nous fournissons un petit serveur de test pour cet usage, que vous pouvez lancer avec la commande:


npm run app-server

Cette commande va compiler le code d'exemple TypeScript, le mettre à disposition via un serveur HTTP sur le port 3000 et ouvrir un navigateur sur cet exemple. Si vous modifiez le code d'exemple, il sera automatiquement recompilé et il vous suffira de recharger la page sur le navigateur pour retester.

Comme pour l'exemple Node.js, la compilation produit un fichier .js.map qui permet de debugger dans le navigateur directement sur le fichier source TypeScript. Notez qu'au moment où cette documentation est rédigée, le debug en format source dans le navigateur fonctionne pour les browsers basés sur Chromium, mais pas encore dans Firefox.

14.4. Contrôle de la partie module

Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci dessous un simple programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la balise de localisation.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';

async function startDemo(args: string[]): Promise<void>
{
    await YAPI.LogUnhandledPromiseRejections();

    // Setup the API to use the VirtualHub on local machine
    let errmsg: YErrorMsg = new YErrorMsg();
    if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
        console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
        return;
    }

    // Select the device to use
    let module: YModule = YModule.FindModule(args[0]);
    if(await module.isOnline()) {
        if(args.length > 1) {
            if(args[1] == 'ON') {
                await module.set_beacon(YModule.BEACON_ON);
            } else {
                await module.set_beacon(YModule.BEACON_OFF);
            }
        }
        console.log('serial:       '+await module.get_serialNumber());
        console.log('logical name: '+await module.get_logicalName());
        console.log('luminosity:   '+await module.get_luminosity()+'%');
        console.log('beacon:       '+
            (await module.get_beacon() == YModule.BEACON_ON ? 'ON' : 'OFF'));
        console.log('upTime:       '+
            ((await module.get_upTime()/1000)>>0) +' sec');
        console.log('USB current:  '+await module.get_usbCurrent()+' mA');
        console.log('logs:');
        console.log(await module.get_lastLogs());
    } else {
        console.log("Module not connected (check identification and USB cable)\n");
    }
    await YAPI.FreeAPI();
}

if(process.argv.length < 3) {
    console.log("usage: npm run demo <serial or logicalname> [ ON | OFF ]");
} else {
    startDemo(process.argv.slice(2));
}
 

Chaque propriété xxx du module peut être lue grâce à une méthode du type get_xxxx(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode set_xxx() Pour plus de détails concernant ces méthodes utilisées, reportez-vous aux chapitre API

Modifications des réglages du module

Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la méthode set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la méthode revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique d'un module.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';

async function startDemo(args: string[]): Promise<void>
{
    await YAPI.LogUnhandledPromiseRejections();

    // Setup the API to use the VirtualHub on local machine
    let errmsg: YErrorMsg = new YErrorMsg();
    if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
        console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
        return;
    }

    // Select the device to use
    let module: YModule = YModule.FindModule(args[0]);
    if(await module.isOnline()) {
        if(args.length > 1) {
            let newname: string = args[1];
            if (!await YAPI.CheckLogicalName(newname)) {
                console.log("Invalid name (" + newname + ")");
                process.exit(1);
            }
            await module.set_logicalName(newname);
            await module.saveToFlash();
        }
        console.log('Current name: '+await module.get_logicalName());
    } else {
        console.log("Module not connected (check identification and USB cable)\n");
    }
    await YAPI.FreeAPI();
}

if(process.argv.length < 3) {
    console.log("usage: npm run demo <serial> [newLogicalName]");
} else {
    startDemo(process.argv.slice(2));
}
 

Attention, le nombre de cycle d'écriture de la mémoire non volatile du module est limité. Passé cette limite plus rien ne garantit de que la sauvegarde des réglages se passera correctement. Cette limite, liée à la technologie employé par le micro-processeur du module se situe aux alentour de 100000 cycles. Pour résumer vous ne pouvez employer la méthode saveToFlash() que 100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette méthode depuis l'intérieur d'une boucle.

Énumération des modules

Obtenir la liste des modules connectés se fait à l'aide de la méthode YModule.FirstModule() qui renvoie le premier module trouvé, il suffit ensuite d'appeler la méthode nextModule() de cet objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un null. Ci-dessous un petit exemple listant les module connectés

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';

async function startDemo(): Promise<void>
{
    await YAPI.LogUnhandledPromiseRejections();

    // Setup the API to use the VirtualHub on local machine
    let errmsg = new YErrorMsg();
    if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
        console.log('Cannot contact VirtualHub on 127.0.0.1');
        return;
    }
    refresh();
}

async function refresh(): Promise<void>
{
    try {
        let errmsg: YErrorMsg = new YErrorMsg();
        await YAPI.UpdateDeviceList(errmsg);

        let module = YModule.FirstModule();
        while(module) {
            let line: string = await module.get_serialNumber();
            line += '(' + (await module.get_productName()) + ')';
            console.log(line);
            module = module.nextModule();
        }
        setTimeout(refresh, 500);
    } catch(e) {
        console.log(e);
    }
}

startDemo();
 

14.5. Gestion des erreurs

Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération. La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer une exception. Dans ce cas, de trois choses l'une:

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il suit toujours la même logique: une méthode get_state() retournera une valeur NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire, si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée. Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des méthodes errType() et errMessage(). Ce sont les même informations qui auraient été associées à l'exception si elles avaient été actives.

15. Utilisation du Yocto-Motor-DC en JavaScript / EcmaScript

EcmaScript est le nom officiel de la version standardisée du langage de programmation communément appelé JavaScript. Cette librairie de programmation Yoctopuce utilise les nouvelles fonctionnalités introduites dans la version EcmaScript 2017. La librairie porte ainsi le nom Librairie pour JavaScript / EcmaScript 2017, afin de la différentier de la précédente Librairie pour JavaScript qu'elle remplace.

Cette librairie permet d'accéder aux modules Yoctopuce depuis tous les environnements JavaScript modernes. Elle fonctionne aussi bien depuis un navigateur internet que dans un environnement Node.js. La librairie détecte automatiquement à l'initialisation si le contexte d'utilisation est un browser ou une machine virtuelle Node.js, et utilise les librairies systèmes les plus appropriées en conséquence.

Les communications asynchrones avec les modules sont gérées dans toute la librairie à l'aide d'objets Promise, en utilisant la nouvelle syntaxe EcmaScript 2017 async / await non bloquante pour la gestion des entrées/sorties asynchrones (voir ci-dessous). Cette syntaxe est désormais disponible sans autres dans la plupart des moteurs JavaScript: il n'est plus nécessaire de transpiler le code avec Babel ou jspm. Voici la version minimum requise de vos moteurs JavaScript préférés, tous disponibles au téléchargement:

Si vous avez besoin de la compatibilité avec des anciennes versions, vous pouvez toujours utiliser Babel pour transpiler votre code et la libriairie vers un standard antérieur de JavaScript, comme décrit un peu plus bas.

Nous ne recommendons plus l'utilisation de jspm dès lors que async / await sont standardisés.

15.1. Fonctions bloquantes et fonctions asynchrones en JavaScript

JavaScript a été conçu pour éviter toute situation de concurrence durant l'exécution. Il n'y a jamais qu'un seul thread en JavaScript. Cela signifie que si un programme effectue une attente active durant une communication réseau, par exemple pour lire un capteur, le programme entier se trouve bloqué. Dans un navigateur, cela peut se traduire par un blocage complet de l'interface utilisateur. C'est pourquoi l'utilisation de fonctions d'entrée/sortie bloquantes en JavaScript est sévèrement découragée de nos jours, et les API bloquantes se font toutes déclarer deprecated.

Plutôt que d'utiliser des threads parallèles, JavaScript utilise les opérations asynchrones pour gérer les attentes dans les entrées/sorties: lorsqu'une fonction potentiellement bloquante doit être appelée, l'opération est uniquement déclenchée mais le flot d'exécution est immédiatement terminé. La moteur JavaScript est alors libre pour exécuter d'autres tâches, comme la gestion de l'interface utilisateur par exemple. Lorsque l'opération bloquante se termine finalement, le système relance le code en appelant une fonction de callback, en passant en paramètre le résultat de l'opération, pour permettre de continuer la tâche originale.

Lorsqu'on les utilises avec des simples fonctions de callback, comme c'est fait quasi systématiquement dans les librairies Node.js, les opérations asynchrones ont la fâcheuse tendance de rentre le code illisible puisqu'elles découpent systématiquement le flot du code en petites fonctions de callback déconnectées les unes des autres. Heureusement, de nouvelles idées sont apparues récemment pour améliorer la situation. En particulier, l'utilisation d'objets Promise pour travailler avec les opérations asynchrones aide beaucoup. N'importe quelle fonction qui effectue une opération potentiellement longue peut retourner une promesse de se terminer, et cet objet Promise peut être utilisé par l'appelant pour chaîner d'autres opérations en un flot d'exécution. La classe Promise fait partie du standard EcmaScript 2015.

Les objets Promise sont utiles, mais ce qui les rend vraiment pratique est la nouvelle syntaxe async / await pour la gestion des appels asynchrones:

En clair, async et await permettent d'écrire du code EcmaScript avec tous les avantages des entrées/sorties asynchrones, mais sans interrompre le flot d'écriture du code. Cela revient quasiment à une exécution multi-tâche, mais en garantissant que le passage de contrôle d'une tâche à l'autre ne se produira que là où le mot-clé await apparaît.

Nous avons donc décidé d'écrire cette nouvelle librairie EcmaScript en utilisant les objets Promise et des fonctions async, pour vous permettre d'utiliser la notation await si pratique. Et pour ne pas devoir vous poser la question pour chaque méthode de savoir si elle est asynchrone ou pas, la convention est la suivante: toutes les méthodes publiques de la librairie EcmaScript sont async, c'est-à-dire qu'elles retournent un objet Promise, sauf:

15.2. Utiliser la librairie Yoctopuce pour JavaScript / EcmaScript 2017

JavaScript fait partie de ces langages qui ne vous permettront pas d'accéder directement aux couches matérielles de votre ordinateur. C'est pourquoi si vous désirez travailler avec des modules USB branchés par USB, vous devrez faire tourner la passerelle de Yoctopuce appelée VirtualHub sur la machine à laquelle sont branchés les modules.

Connectez vous sur le site de Yoctopuce et téléchargez les éléments suivants:

Décompressez les fichiers de la librairie dans un répertoire de votre choix, branchez vos modules et lancez le programme VirtualHub. Vous n'avez pas besoin d'installer de driver.

Utiliser la librairie Yoctopuce officielle pour node.js

Commencez par installer sur votre machine de développement la version actuelle de Node.js (7.6 ou plus récente), C'est très simple. Vous pouvez l'obtenir sur le site officiel: http://nodejs.org. Assurez vous de l'installer entièrement, y compris npm, et de l'ajouter à votre system path.

Vous pouvez ensuite prendre l'exemple de votre choix dans le répertoire example_nodejs (par exemple example_nodejs/Doc-Inventory). Allez dans ce répertoire. Vous y trouverez un fichier décrivant l'application (package.json) et le code source de l'application (demo.js). Pour charger automatiquement et configurer les librairies nécessaires à l'exemple, tapez simplement:


npm install

Une fois que c'est fait, vous pouvez directement lancer le code de l'application:


node demo.js

Utiliser une copie locale de la librairie Yoctopuce avec node.js

Si pour une raison ou une autre vous devez faire des modifications au code de la librairie, vous pouvez facilement configurer votre projet pour utiliser le code source de la librairie qui se trouve dans le répertoire lib/ plutôt que le package npm officiel. Pour cela, lancez simplement la commande suivante dans le répertoire de votre projet:


npm link ../../lib

Utiliser la librairie Yoctopuce dans un navigateur (HTML)

Pour les exemples HTML, c'est encore plus simple: il n'y a rien à installer. Chaque exemple est un simple fichier HTML que vous pouvez ouvrir directement avec un navigateur pour l'essayer. L'inclusion de la librairie Yoctopuce ne demande rien de plus qu'un simple tag HTML <script>.

Utiliser la librairie Yoctopuce avec des anciennes version de JavaScript

Si vous avez besoin d'utiliser cette librairie avec des moteurs JavaScript plus anciens, vous pouvez utiliser Babel41 pour transpiler votre code et la librairie dans une version antérieure du langage. Pour installer Babel avec les réglages usuels, tapez:


npm instal -g babel-cli
npm instal babel-preset-env

Normalement vous demanderez à Babel de poser les fichiers transpilés dans un autre répertoire, nommé comopat par exemple. Pour ce faire, utilisez par exemple les commandes suivantes:


babel --presets env demo.js --out-dir compat/
babel --presets env ../../lib --out-dir compat/

Bien que ces outils de transpilation soient basés sur node.js, ils fonctionnent en réalité pour traduire n'importe quel type de fichier JavaScript, y compris du code destiné à fonctionner dans un navigateur. La seule chose qui ne peut pas être faite aussi facilement est la transpilation de sciptes codés en dure à l'intérieur même d'une page HTML. Il vous faudra donc sortir ce code dans un fichier .js externe si il utiliser la syntaxe EcmaScript 2017, afin de le transpiler séparément avec Babel.

Babel dipose de nombreuses fonctionnalités intéressantes, comme un mode de surveillance qui traduite automatiquement au vol vos fichiers dès qu'il détecte qu'un fichier source a changé. Consultez les détails dans la documentation de Babel.

Compatibilité avec l'ancienne librairie JavaScript

Cette nouvelle librairie n'est pas compatible avec l'ancienne librairie JavaScript, car il n'existe pas de possibilité d'implémenter l'ancienne API bloquante sur la base d'une API asynchrone. Toutefois, les noms des méthodes sont les mêmes, et l'ancien code source synchrone peut facilement être rendu asynchrone simplement en ajoutant le mot-clé await devant les appels de méthode. Remplacez par exemple:


beaconState = module.get_beacon();

par


beaconState = await module.get_beacon();

Mis à part quelques exceptions, la plupart des méthodes redondantes XXX_async ont été supprimées, car elles auraient introduit de la confusion sur la manière correcte de gérer les appels asynchrones. Si toutefois vous avez besoin d'appeler un callback explicitement, il est très facile de faire appeler une fonction de callback à la résolution d'une méthode async, en utilisant l'objet Promise retourné. Par exemple, vous pouvez réécrire:


module.get_beacon_async(callback, myContext);

par


module.get_beacon().then(function(res) { callback(myContext, module, res); });

Si vous portez une application vers la nouvelle librairie, vous pourriez être amené à désirer des méthodes synchrones similaires à l'ancienne librairie (sans objet Promise), quitte à ce qu'elles retournent la dernière valeur reçue du capteur telle que stockée en cache, puisqu'il n'est pas possible de faire des communications bloquantes. Pour cela, la nouvelle librairie introduit un nouveau type de classes appelés proxys synchrones. Un proxy synchrone est un objet qui reflète la dernière value connue d'un objet d'interface, mais peut être accédé à l'aide de fonctions synchrones habituelles. Par exemple, plutôt que d'utiliser:


async function logInfo(module)
{
    console.log('Name: '+await module.get_logicalName());
    console.log('Beacon: '+await module.get_beacon());
}

...
logInfo(myModule);
...

on peut utiliser:


function logInfoProxy(moduleSyncProxy)
{
    console.log('Name: '+moduleProxy.get_logicalName());
    console.log('Beacon: '+moduleProxy.get_beacon());
}

logInfoSync(await myModule.get_syncProxy());

Ce dernier appel asynchrone peut aussi être formulé comme:


myModule.get_syncProxy().then(logInfoProxy);

15.3. Contrôle de la fonction Motor

Il suffit de quelques lignes de code pour piloter un Yocto-Motor-DC. Voici le squelette d'un fragment de code JavaScript qui utilise la fonction Motor.


// En Node.js, on utilise la fonction require()
// En HTML, on utiliserait &lt;script src="..."&gt;
require('yoctolib-es2017/yocto_api.js');
require('yoctolib-es2017/yocto_motor.js');

[...]
// On active l'accès aux modules locaux à travers le VirtualHub
await YAPI.RegisterHub('127.0.0.1');
[...]

// On récupère l'objet permettant d'intéragir avec le module
let motor = YMotor.FindMotor("MOTORCTL-123456.motor");

// Pour gérer le hot-plug, on vérifie que le module est là
if(await motor.isOnline())
{
    // Utiliser motor.set_drivingForce()
    [...]
}

Voyons maintenant en détail ce que font ces quelques lignes.

Require de yocto_api et yocto_motor

Ces deux imports permettent d'avoir accès aux fonctions permettant de gérer les modules Yoctopuce. yocto_api doit toujours être inclus, yocto_motor est nécessaire pour gérer les modules contenant un moteur, comme le Yocto-Motor-DC. D'autres classes peuvent être utiles dans d'autres cas, comme YModule qui vous permet de faire une énumération de n'importe quel type de module Yoctopuce.

YAPI.RegisterHub

La méthode RegisterHub permet d'indiquer sur quelle machine se trouvent les modules Yoctopuce, ou plus exactement la machine sur laquelle tourne le programme VirtualHub. Dans notre cas l'adresse 127.0.0.1:4444 indique la machine locale, en utilisant le port 4444 (le port standard utilisé par Yoctopuce). Vous pouvez parfaitement changer cette adresse, et mettre l'adresse d'une autre machine sur laquelle tournerait un autre VirtualHub, ou d'un YoctoHub. Si l'hôte n'est pas joignable, la fonction déclanche une exception.

YMotor.FindMotor

La méthode FindMotor permet de retrouver un moteur en fonction du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Motor-DC avec le numéros de série MOTORCTL-123456 que vous auriez appelé "MonModule" et dont vous auriez nommé la fonction motor "MaFonction", les cinq appels suivants seront strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):


motor = YMotor.FindMotor("MOTORCTL-123456.motor")
motor = YMotor.FindMotor("MOTORCTL-123456.MaFonction")
motor = YMotor.FindMotor("MonModule.motor")
motor = YMotor.FindMotor("MonModule.MaFonction")
motor = YMotor.FindMotor("MaFonction")

YMotor.FindMotor renvoie un objet que vous pouvez ensuite utiliser à loisir pour contrôler le moteur.

isOnline

La méthode isOnline() de l'objet renvoyé par FindMotor permet de savoir si le module correspondant est présent et en état de marche.

set_drivingForce

La méthode set_drivingForce() de l'objet renvoyé par YMotor.FindMotor permet de régler la puissance, de -100 à +100% envoyée au moteur.

Un exemple concret, en Node.js

Ouvrez une fenêtre de commande (un terminal, un shell...) et allez dans le répertoire example_nodejs/Doc-GettingStarted-Yocto-Motor-DC de la librairie Yoctopuce pour JavaScript / EcmaScript 2017. Vous y trouverez un fichier nommé demo.js avec le code d'exemple ci-dessous, qui reprend les fonctions expliquées précédemment, mais cette fois utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

Si le Yocto-Motor-DC n'est pas branché sur la machine où fonctionne le navigateur internet, remplacez dans l'exemple l'adresse 127.0.0.1 par l'adresse IP de la machine où est branché le Yocto-Motor-DC et où vous avez lancé le VirtualHub.

"use strict";

require('yoctolib-es2017/yocto_api.js');
require('yoctolib-es2017/yocto_motor.js');
require('yoctolib-es2017/yocto_current.js');
require('yoctolib-es2017/yocto_voltage.js');
require('yoctolib-es2017/yocto_temperature.js');

let motor, current, voltage, temperature;

async function startDemo() {
    await YAPI.LogUnhandledPromiseRejections();
    await YAPI.DisableExceptions();

    // Setup the API to use the VirtualHub on local machine
    let errmsg = new YErrorMsg();
    if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
        console.log('Cannot contact VirtualHub on 127.0.0.1: ' + errmsg.msg);
        return;
    }

    // Select specified device, or use first available one
    let serial = process.argv[process.argv.length - 1];
    if (serial[8] != '-') {
        // by default use any connected module suitable for the demo
        let anysensor = YMotor.FirstMotor();
        if (anysensor) {
            let module = await anysensor.module();
            serial = await module.get_serialNumber();
        } else {
            console.log('No matching Yocto-Motor-DC connected, check cable !');
            return;
        }
    }
    console.log('Using device ' + serial);

    motor = YMotor.FindMotor(serial + ".motor");
    current = YCurrent.FindCurrent(serial + ".current");
    voltage = YVoltage.FindVoltage(serial + ".voltage");
    temperature = YTemperature.FindTemperature(serial + ".temperature");
    //power is a integer between -100 and 100%
    let power = 50;

    // if motor is in error state, reset it.
    if (await motor.get_motorStatus() >= YMotor.MOTORSTATUS_LOVOLT) {
        await motor.resetStatus();
    }
    await motor.drivingForceMove(power, 2000);  // ramp up to power in 2 seconds
    refresh();
}

async function refresh() {
    if (await motor.isOnline()) {
        // display motor status
        console.log("Status=" + await motor.get_advertisedValue() + "  " +
            "Voltage=" + await voltage.get_currentValue() + "V  " +
            "Current=" + await current.get_currentValue() / 1000 + "A  " +
            "Temp=" + await temperature.get_currentValue() + "deg C");
    } else {
        console.log('Module not connected');
    }
    setTimeout(refresh, 500);
}

startDemo();
 

Comme décrit au début de ce chapitre, vous devez avoir installé Node.js v7.6 ou suivant pour essayer ces exemples. Si vous l'avez fait, vous pouvez maintenant taper les deux commandes suivantes pour télécharger automatiquement les librairies dont cet exemple dépend:


npm install
Une fois terminé, vous pouvez lancer votre code d'exemple dans Node.js avec la commande suivante, en remplaçant les [...] par les arguments que vous voulez passer au programme:

node demo.js [...]

Le même exemple, mais dans un navigateur

Si vous voulez voir comment utiliser la librairie dans un navigateur plutôt que dans Node.js, changez de répertoire et allez dans example_html/Doc-GettingStarted-Yocto-Motor-DC. Vous y trouverez un fichier html, avec une section JavaScript similaire au code précédent, mais avec quelques variantes pour permettre une interaction à travers la page HTML plutôt que sur la console JavaScript

<!DOCTYPE html>
<html>
<head>
  <meta charset="UTF-8">
  <title>Hello World</title>
  <script src="../../lib/yocto_api.js"></script>
  <script src="../../lib/yocto_motor.js"></script>
  <script src="../../lib/yocto_current.js"></script>
  <script src="../../lib/yocto_voltage.js"></script>
  <script src="../../lib/yocto_temperature.js"></script>
  <script>
    let motor, current, voltage, temperature;

    async function startDemo() {
      await YAPI.LogUnhandledPromiseRejections();
      await YAPI.DisableExceptions();

      // Setup the API to use the VirtualHub on local machine
      let errmsg = new YErrorMsg();
      if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
        alert('Cannot contact VirtualHub on 127.0.0.1: ' + errmsg.msg);
        return;
      }
      refresh();
    }

    async function refresh() {
      // Select specified device, or use first available one
      let serial = document.getElementById('serial').value;
      if(serial == '') {
        // by default use any connected module suitable for the demo
        let anyMotor = YMotor.FirstMotor();
        if (anyMotor) {
          let module = await anyMotor.module();
          serial = await module.get_serialNumber();
          document.getElementById('serial').value = serial;
        }
      }

      motor = YMotor.FindMotor(serial + ".motor");
      current = YCurrent.FindCurrent(serial + ".current");
      voltage = YVoltage.FindVoltage(serial + ".voltage");
      temperature = YTemperature.FindTemperature(serial + ".temperature");
      //power is a integer between -100 and 100%

      // if motor is in error state, reset it.
      if (await motor.get_motorStatus() >= YMotor.MOTORSTATUS_LOVOLT) {
        await motor.resetStatus();
      }


      if (await motor.isOnline()) {
        // display motor status
        document.getElementById('msg').value = '';
        document.getElementById("status").value = await motor.get_advertisedValue();
        document.getElementById("current").value = await current.get_currentValue();
        document.getElementById("voltage").value = await voltage.get_currentValue();
        document.getElementById("temperature").value = await temperature.get_currentValue();
      } else {
        document.getElementById('msg').value = 'Module not connected';
      }
      setTimeout(refresh, 500);
    }

    window.SetPower = function(power)
    {
      motor.drivingForceMove(power, 2000);  // ramp up to power in 2 seconds
    };


    startDemo();
  </script>
</head>
<body>
 Module to use: <input id='serial'>
 <input id='msg' style='color:red;border:none;' readonly><br>
 Status: <input id='status' style='border:none;'readonly><br>
 Current: <input id='current' style='border:none;'readonly><br>
 Voltage: <input id='voltage' style='border:none;'readonly><br>
 Temperature: <input id='temperature' style='border:none;'readonly><br>
 SetPower To :
 <a href='javascript:SetPower(0);'>0 %</a>&nbsp;
 <a href='javascript:SetPower(25);'>25 %</a>&nbsp;
 <a href='javascript:SetPower(50);'>50 %</a>&nbsp;
 <a href='javascript:SetPower(75);'>75 %</a>&nbsp;
 <a href='javascript:SetPower(100);'>100 %</a>&nbsp;
</body>
</html>
 

Aucune installation n'est nécessaire pout utiliser cet exemple, il suffit d'ouvrir la page HTML avec un navigateur web.

15.4. Contrôle de la partie module

Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci dessous un simple programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la balise de localisation.

"use strict";

require('yoctolib-es2017/yocto_api.js');

async function startDemo(args)
{
    await YAPI.LogUnhandledPromiseRejections();

    // Setup the API to use the VirtualHub on local machine
    let errmsg = new YErrorMsg();
    if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
        console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
        return;
    }

    // Select the relay to use
    let module = YModule.FindModule(args[0]);
    if(await module.isOnline()) {
        if(args.length > 1) {
            if(args[1] == 'ON') {
                await module.set_beacon(YModule.BEACON_ON);
            } else {
                await module.set_beacon(YModule.BEACON_OFF);
            }
        }
        console.log('serial:       '+await module.get_serialNumber());
        console.log('logical name: '+await module.get_logicalName());
        console.log('luminosity:   '+await module.get_luminosity()+'%');
        console.log('beacon:       '+(await module.get_beacon()==YModule.BEACON_ON?'ON':'OFF'));
        console.log('upTime:       '+parseInt(await module.get_upTime()/1000)+' sec');
        console.log('USB current:  '+await module.get_usbCurrent()+' mA');
        console.log('logs:');
        console.log(await module.get_lastLogs());
    } else {
        console.log("Module not connected (check identification and USB cable)\n");
    }
    await YAPI.FreeAPI();
}

if(process.argv.length < 2) {
    console.log("usage: node demo.js <serial or logicalname> [ ON | OFF ]");
} else {
    startDemo(process.argv.slice(2));
}
 

Chaque propriété xxx du module peut être lue grâce à une méthode du type get_xxxx(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module

Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la méthode revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique d'un module.

"use strict";

require('yoctolib-es2017/yocto_api.js');

async function startDemo(args)
{
    await YAPI.LogUnhandledPromiseRejections();

    // Setup the API to use the VirtualHub on local machine
    let errmsg = new YErrorMsg();
    if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
        console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
        return;
    }
   
    // Select the relay to use
    let module = YModule.FindModule(args[0]);
    if(await module.isOnline()) {
        if(args.length > 1) {
            let newname = args[1];
            if (!await YAPI.CheckLogicalName(newname)) {
                console.log("Invalid name (" + newname + ")");
                process.exit(1);
            }
            await module.set_logicalName(newname);
            await module.saveToFlash();
        }
        console.log('Current name: '+await module.get_logicalName());
    } else {
        console.log("Module not connected (check identification and USB cable)\n");
    }
    await YAPI.FreeAPI();
}

if(process.argv.length < 2) {
    console.log("usage: node demo.js <serial> [newLogicalName]");
} else {
    startDemo(process.argv.slice(2));
}
 

Attention, le nombre de cycle d'écriture de la mémoire non volatile du module est limité. Passé cette limite plus rien ne garantit de que la sauvegarde des réglages se passera correctement. Cette limite, liée à la technologie employé par le micro-processeur du module se situe aux alentour de 100000 cycles. Pour résumer vous ne pouvez employer la fonction saveToFlash() que 100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une boucle.

Énumération des modules

Obtenir la liste des modules connectés se fait à l'aide de la fonction YModule.FirstModule() qui renvoie le premier module trouvé, il suffit ensuite d'appeler la fonction nextModule() de cet objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un null. Ci-dessous un petit exemple listant les module connectés

"use strict";

require('yoctolib-es2017/yocto_api.js');

async function startDemo()
{
    await YAPI.LogUnhandledPromiseRejections();
    await YAPI.DisableExceptions();

    // Setup the API to use the VirtualHub on local machine
    let errmsg = new YErrorMsg();
    if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
        console.log('Cannot contact VirtualHub on 127.0.0.1');
        return;
    }
    refresh();
}

async function refresh()
{
    try {
        let errmsg = new YErrorMsg();
        await YAPI.UpdateDeviceList(errmsg);

        let module = YModule.FirstModule();
        while(module) {
            let line = await module.get_serialNumber();
            line += '(' + (await module.get_productName()) + ')';
            console.log(line);
            module = module.nextModule();
        }
        setTimeout(refresh, 500);
    } catch(e) {
        console.log(e);
    }
}

try {
    startDemo();
} catch(e) {
    console.log(e);
}
 

15.5. Gestion des erreurs

Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération. La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer une exception. Dans ce cas, de trois choses l'une:

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il suit toujours la même logique: une méthode get_state() retournera une valeur NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire, si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée. Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des méthodes errType() et errMessage(). Ce sont les même informations qui auraient été associées à l'exception si elles avaient été actives.

16. Utilisation du Yocto-Motor-DC en PHP

PHP est, tout comme Javascript, un langage assez atypique lorsqu'il s'agit de discuter avec du hardware. Néanmoins, utiliser PHP avec des modules Yoctopuce offre l'opportunité de construire très facilement des sites web capables d'interagir avec leur environnement physique, ce qui n'est pas donné à tous les serveurs web. Cette technique trouve une application directe dans la domotique: quelques modules Yoctopuce, un serveur PHP et vous pourrez interagir avec votre maison depuis n'importe ou dans le monde. Pour autant que vous ayez une connexion internet.

PHP fait lui aussi partie de ces langages qui ne vous permettront pas d'accéder directement aux couches matérielles de votre ordinateur. C'est pourquoi vous devrez faire tourner un hub virtuel sur la machine à laquelle sont branchés les modules

Pour démarrer vos essais en PHP, vous allez avoir besoin d'un serveur PHP 5.3 ou plus 42 de préférence en local sur votre machine. Si vous souhaiter utiliser celui qui se trouve chez votre provider internet, c'est possible, mais vous devrez probablement configurer votre routeur ADSL pour qu'il accepte et forwarde les requêtes TCP sur le port 4444.

16.1. Préparation

Connectez vous sur le site de Yoctopuce et téléchargez les éléments suivants:

Décompressez les fichiers de la librairie dans un répertoire de votre choix accessible à votre serveur web, branchez vos modules, lancez le programme VirtualHub, et vous pouvez commencer vos premiers test. Vous n'avez pas besoin d'installer de driver.

16.2. Contrôle de la fonction Motor

Il suffit de quelques lignes de code pour piloter un Yocto-Motor-DC. Voici le squelette d'un fragment de code PHP qui utilise la fonction Motor.


include('yocto_api.php');
include('yocto_motor.php');

[...]
// On active l'accès aux modules locaux à travers le VirtualHub
YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg);
[...]

// On récupère l'objet permettant d'intéragir avec le module
$motor = YMotor::FindMotor("MOTORCTL-123456.motor");

// Pour gérer le hot-plug, on vérifie que le module est là
if($motor->isOnline())
{
    // Utiliser motor->set_drivingForce()
    [...]
}

Voyons maintenant en détail ce que font ces quelques lignes.

yocto_api.php et yocto_motor.php

Ces deux includes PHP permettent d'avoir accès aux fonctions permettant de gérer les modules Yoctopuce. yocto_api.php doit toujours être inclus, yocto_motor.php est nécessaire pour gérer les modules contenant un moteur, comme le Yocto-Motor-DC.

YAPI::RegisterHub

La fonction YAPI::RegisterHub permet d'indiquer sur quelle machine se trouve les modules Yoctopuce, ou plus exactemenent sur quelle machine tourne le programme VirtualHub. Dans notre cas l'adresse 127.0.0.1:4444 indique la machine locale, en utilisant le port 4444 (le port standard utilisé par Yoctopuce). Vous pouvez parfaitement changer cette adresse, et mettre l'adresse d'une autre machine sur laquelle tournerait un autre VirtualHub.

YMotor::FindMotor

La fonction YMotor::FindMotor permet de retrouver un moteur en fonction du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Motor-DC avec le numéros de série MOTORCTL-123456 que vous auriez appelé "MonModule" et dont vous auriez nommé la fonction motor "MaFonction", les cinq appels suivants seront strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):


$motor = YMotor::FindMotor("MOTORCTL-123456.motor");
$motor = YMotor::FindMotor("MOTORCTL-123456.MaFonction");
$motor = YMotor::FindMotor("MonModule.motor");
$motor = YMotor::FindMotor("MonModule.MaFonction");
$motor = YMotor::FindMotor("MaFonction");

YMotor::FindMotor renvoie un objet que vous pouvez ensuite utiliser à loisir pour contrôler le moteur.

isOnline

La méthode isOnline() de l'objet renvoyé par YMotor::FindMotor permet de savoir si le module correspondant est présent et en état de marche.

set_drivingForce

La méthode set_drivingForce() de l'objet renvoyé par yFindMotor permet de régler la puissance, de -100 à +100% envoyée au moteur.

Un exemple réel

Ouvrez votre éditeur de texte préféré45, recopiez le code ci dessous, sauvez-le dans un répertoire accessible par votre serveur web/PHP avec les fichiers de la librairie, et ouvrez-la page avec votre browser favori. Vous trouverez aussi ce code dans le répertoire Examples/Doc-GettingStarted-Yocto-Motor-DC de la librairie Yoctopuce.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

<HTML>
<HEAD>
 <TITLE>Hello World</TITLE>
</HEAD>
<BODY>
<FORM method='get'>
<?php

  include('yocto_api.php');
  include('yocto_motor.php');
  include('yocto_current.php');
  include('yocto_voltage.php');
  include('yocto_temperature.php');

  // Use explicit error handling rather than exceptions
  YAPI::DisableExceptions();

  // Setup the API to use the VirtualHub on local machine
  if(YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg) != YAPI::SUCCESS) {
      die("Cannot contact VirtualHub on 127.0.0.1");
  }
  @$power = $_GET['power'];
  @$serial = $_GET['serial'];
  if ($serial == '') {
    $motor = YMotor::FirstMotor();
    if(is_null($motor)) {
      die("No module connected (check USB cable)");
    }
    $serial = $motor->get_module()->get_serialNumber();
  }

  $motor    = YMotor::FindMotor($serial.".motor");
  $current  = YCurrent::FindCurrent($serial.".current");
  $voltage  = YVoltage::FindVoltage($serial.".voltage");
  $temperature = YTemperature::FindTemperature($serial.".temperature");
  Print("Serial:<input name='serial' value='$serial'><br>");
  // lets start the motor
  if ($motor->isOnline()) {
    // if the motor is in error state, reset it.
    if ($motor->get_motorStatus()>=YMotor::MOTORSTATUS_LOVOLT)
      $motor->resetStatus();
    $motor->drivingForceMove($power,2000);  // ramp up to power in 2 seconds
    Printf("status=".$motor->get_advertisedValue().'<br>');
    Printf("current=".($current->get_currentValue()/1000).'A<br>');
    Printf("voltage=".$voltage->get_currentValue().'V<br>');
    Printf("temperature=".$temperature->get_currentValue().'&deg;C<br>');
    Print("Power:<input name='power' value='$power'><br>");
  } else {
    Printf("Module is not connected, check cable.<br>");
  }
  YAPI::FreeAPI();

?>

<input type='submit'>
</FORM>
</BODY>
</HTML>
 

16.3. Contrôle de la partie module

Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci dessous un simple programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la balise de localisation.

<HTML>
<HEAD>
 <TITLE>Module Control</TITLE>
</HEAD>
<BODY>
<FORM method='get'>
<?php
  include('yocto_api.php');

  // Use explicit error handling rather than exceptions
  YAPI::DisableExceptions();

  // Setup the API to use the VirtualHub on local machine
  if(YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg) != YAPI::SUCCESS) {
      die("Cannot contact VirtualHub on 127.0.0.1 : ".$errmsg);
  }

  @$serial = $_GET['serial'];
  if ($serial != '') {
      // Check if a specified module is available online
      $module = YModule::FindModule("$serial");
      if (!$module->isOnline()) {
          die("Module not connected (check serial and USB cable)");
      }
  } else {
      // or use any connected module suitable for the demo
      $module = YModule::FirstModule();
      if($module) { // skip VirtualHub
          $module = $module->nextModule();
      }
      if(is_null($module)) {
          die("No module connected (check USB cable)");
      } else {
          $serial = $module->get_serialnumber();
      }
  }
  Print("Module to use: <input name='serial' value='$serial'><br>");

  if (isset($_GET['beacon'])) {
      if ($_GET['beacon']=='ON')
          $module->set_beacon(Y_BEACON_ON);
      else
          $module->set_beacon(Y_BEACON_OFF);
  }
  printf('serial: %s<br>',$module->get_serialNumber());
  printf('logical name: %s<br>',$module->get_logicalName());
  printf('luminosity: %s<br>',$module->get_luminosity());
  print('beacon: ');
  if($module->get_beacon() == Y_BEACON_ON) {
      printf("<input type='radio' name='beacon' value='ON' checked>ON ");
      printf("<input type='radio' name='beacon' value='OFF'>OFF<br>");
  } else {
      printf("<input type='radio' name='beacon' value='ON'>ON ");
      printf("<input type='radio' name='beacon' value='OFF' checked>OFF<br>");
  }
  printf('upTime: %s sec<br>',intVal($module->get_upTime()/1000));
  printf('USB current: %smA<br>',$module->get_usbCurrent());
  printf('logs:<br><pre>%s</pre>',$module->get_lastLogs());
  YAPI::FreeAPI();
?>
<input type='submit' value='refresh'>
</FORM>
</BODY>
</HTML>
 

Chaque propriété xxx du module peut être lue grâce à une méthode du type get_xxxx(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module

Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la méthode revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique d'un module.

<HTML>
<HEAD>
 <TITLE>save settings</TITLE>
<BODY>
<FORM method='get'>
<?php
  include('yocto_api.php');

  // Use explicit error handling rather than exceptions
  YAPI::DisableExceptions();

  // Setup the API to use the VirtualHub on local machine
  if(YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg) != YAPI::SUCCESS) {
      die("Cannot contact VirtualHub on 127.0.0.1");
  }

  @$serial = $_GET['serial'];
  if ($serial != '') {
      // Check if a specified module is available online
      $module = YModule::FindModule("$serial");
      if (!$module->isOnline()) {
          die("Module not connected (check serial and USB cable)");
      }
  } else {
      // or use any connected module suitable for the demo
      $module = YModule::FirstModule();
      if($module) { // skip VirtualHub
          $module = $module->nextModule();
      }
      if(is_null($module)) {
          die("No module connected (check USB cable)");
      } else {
          $serial = $module->get_serialnumber();
      }
  }
  Print("Module to use: <input name='serial' value='$serial'><br>");

  if (isset($_GET['newname'])){
      $newname = $_GET['newname'];
      if (!yCheckLogicalName($newname))
          die('Invalid name');
      $module->set_logicalName($newname);
      $module->saveToFlash();
  }
  printf("Current name: %s<br>", $module->get_logicalName());
  print("New name: <input name='newname' value='' maxlength=19><br>");
  YAPI::FreeAPI();
?>
<input type='submit'>
</FORM>
</BODY>
</HTML>
 

Attention, le nombre de cycle d'écriture de la mémoire non volatile du module est limité. Passé cette limite plus rien ne garantit de que la sauvegarde des réglages se passera correctement. Cette limite, lié à la technologie employé par le micro-processeur du module se situe aux alentour de 100000 cycles. Pour résumer vous ne pouvez employer la fonction saveToFlash() que 100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une boucle.

Enumération des modules

Obtenir la liste des modules connectés se fait à l'aide de la fonction yFirstModule() qui renvoie le premier module trouvé, il suffit ensuite d'appeler la fonction nextModule() de cet objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un NULL. Ci-dessous un petit exemple listant les module connectés

<HTML>
<HEAD>
 <TITLE>inventory</TITLE>
</HEAD>
<BODY>
<H1>Device list</H1>
<TT>
<?php
    include('yocto_api.php');
    YAPI::RegisterHub("http://127.0.0.1:4444/");
    $module   = YModule::FirstModule();
    while (!is_null($module)) {
        printf("%s (%s)<br>", $module->get_serialNumber(),
               $module->get_productName());
        $module=$module->nextModule();
    }
    YAPI::FreeAPI();
?>
</TT>
</BODY>
</HTML>
 

16.4. API par callback HTTP et filtres NAT

La librairie PHP est capable de fonctionner dans un mode spécial appelé Yocto-API par callback HTTP. Ce mode permet de contrôler des modules Yoctopuce installés derrière un filtre NAT tel qu'un routeur DSL par exemple, et ce sans avoir à un ouvrir un port. L'application typique est le contrôle de modules Yoctopuce situés sur réseau privé depuis un site Web publique.

Le filtre NAT, avantages et inconvénients

Un routeur DSL qui effectue de la traduction d'adresse réseau (NAT) fonctionne un peu comme un petit central téléphonique privé: les postes internes peuvent s'appeler l'un l'autre ainsi que faire des appels vers l'extérieur, mais vu de l'extérieur, il n'existe qu'un numéro de téléphone officiel, attribué au central téléphonique lui-même. Les postes internes ne sont pas atteignables depuis l'extérieur.


Configuration DSL typique, les machines du LAN sont isolées de l'extérieur par le router DSL

Ce qui, transposé en terme de réseau, donne : les appareils connectés sur un réseau domestique peuvent communiquer entre eux en utilisant une adresse IP locale (du genre 192.168.xxx.yyy), et contacter des serveurs sur Internet par leur adresse publique, mais vu de l'extérieur, il n'y a qu'une seule adresse IP officielle, attribuée au routeur DSL exclusivement. Les différents appareils réseau ne sont pas directement atteignables depuis l'extérieur. C'est assez contraignant, mais c'est une protection relativement efficace contre les intrusions.


Les réponses aux requêtes venant des machines du LAN sont routées.


Mais les requêtes venant de l'extérieur sont bloquées.

Voir Internet sans être vu représente un avantage de sécurité énorme. Cependant, cela signifie qu'a priori, on ne peut pas simplement monter son propre serveur Web publique chez soi pour une installation domotique et offrir un accès depuis l'extérieur. Une solution à ce problème, préconisée par de nombreux vendeurs de domotique, consiste à donner une visibilité externe au serveur de domotique lui-même, en ouvrant un port et en ajoutant une règle de routage dans la configuration NAT du routeur DSL. Le problème de cette solution est qu'il expose le serveur de domotique aux attaques externes.

L'API par callback HTTP résoud ce problème sans qu'il soit nécessaire de modifier la configuration du routeur DSL. Le script de contrôle des modules est placé sur un site externe, et c'est le Virtual Hub qui est chargé de l'appeler à intervalle régulier.


L'API par callback HTTP utilise le VirtualHub, et c'est lui qui initie les requêtes.

Configuration

L'API callback se sert donc du Virtual Hub comme passerelle. Toutes les communications sont initiées par le Virtual Hub, ce sont donc des communication sortantes, et par conséquent parfaitement autorisée par le routeur DSL.

Il faut configurer le VirtualHub pour qu'il appelle le script PHP régulièrement. Pour cela il faut:

  1. Lancer un VirtualHub
  2. Accéder à son interface, généralement 127.0.0.1:4444
  3. Cliquer sur le bouton configure de la ligne correspondant au VirtualHub lui-même
  4. Cliquer sur le bouton edit de la section Outgoing callbacks


Cliquer sur le bouton "configure" de la première ligne


Cliquer sur le bouton "edit" de la section Outgoing callbacks.


Et choisir "Yocto-API callback".

Il suffit alors de définir l'URL du script PHP et, si nécessaire, le nom d'utilisateur et le mot de passe pour accéder à cette URL. Les méthodes d'authentification supportées sont basic et digest. La seconde est plus sûre que la première car elle permet de ne pas transférer le mot de passe sur le réseau.

Utilisation

Du point de vue du programmeur, la seule différence se trouve au niveau de l'appel à la fonction yRegisterHub; au lieu d'utiliser une adresse IP, il faut utiliser la chaîne callback (ou http://callback, qui est équivalent).


include("yocto_api.php");
yRegisterHub("callback");

La suite du code reste strictement identique. Sur l'interface du VirtualHub, il y a en bas de la fenêtre de configuration de l'API par callback HTTP un bouton qui permet de tester l'appel au script PHP.

Il est à noter que le script PHP qui contrôle les modules à distance via l'API par callback HTTP ne peut être appelé que par le VirtualHub. En effet, il a besoin des informations postées par le VirtualHub pour fonctionner. Pour coder un site Web qui contrôle des modules Yoctopuce de manière interactive, il faudra créer une interface utilisateur qui stockera dans un fichier ou une base de données les actions à effectuer sur les modules Yoctopuce. Ces actions seront ensuite lues puis exécutés par le script de contrôle.

Problèmes courants

Pour que l'API par callback HTTP fonctionne, l'option de PHP allow_url_fopen doit être activée. Certains hébergeurs de site web ne l'activent pas par défaut. Le problème se manifeste alors avec l'erreur suivante:

error: URL file-access is disabled in the server configuration

Pour activer cette option, il suffit de créer dans le même répertoire que le script PHP de contrôle un fichier .htaccess contenant la ligne suivante:
php_flag "allow_url_fopen" "On"
Selon la politique de sécurité de l'hébergeur, il n'est parfois pas possible d'autoriser cette option à la racine du site web, où même d'installer des scripts PHP recevant des données par un POST HTTP. Dans ce cas il suffit de placer le script PHP dans un sous-répertoire.

Limitations

Cette méthode de fonctionnement qui permet de passer les filtres NAT à moindre frais a malgré tout un prix. Les communications étant initiées par le Virtual Hub à intervalle plus ou moins régulier, le temps de réaction à un événement est nettement plus grand que si les modules Yoctopuce étaient pilotés en direct. Vous pouvez configurer le temps de réaction dans la fenêtre ad-hoc du Virtual Hub, mais il sera nécessairement de quelques secondes dans le meilleur des cas.

Le mode Yocto-API par callback HTTP n'est pour l'instant disponible qu'en PHP, EcmaScript (Node.JS) et Java.

16.5. Gestion des erreurs

Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération. La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer une exception. Dans ce cas, de trois choses l'une:

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il suit toujours la même logique: une méthode get_state() retournera une valeur NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire, si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée. Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des méthodes errType() et errMessage(). Ce sont les même informations qui auraient été associées à l'exception si elles avaient été actives.

17. Utilisation du Yocto-Motor-DC en VisualBasic .NET

VisualBasic a longtemps été la porte d'entrée privilégiée vers le monde Microsoft. Nous nous devions donc d'offrir notre interface pour ce langage, même si la nouvelle tendance est le C#. Tous les exemples et les modèles de projet sont testés avec Microsoft Visual Basic 2010 Express, disponible gratuitement sur le site de Microsoft 46.

17.1. Installation

Téléchargez la librairie Yoctopuce pour Visual Basic depuis le site web de Yoctopuce47. Il n'y a pas de programme d'installation, copiez simplement de contenu du fichier zip dans le répertoire de votre choix. Vous avez besoin essentiellement du contenu du répertoire Sources. Les autres répertoires contiennent la documentation et quelques programmes d'exemple. Les projets d'exemple sont des projets Visual Basic 2010, si vous utilisez une version antérieure, il est possible que vous ayez à reconstruire la structure de ces projets.

17.2. Utilisation l'API yoctopuce dans un projet Visual Basic

La librairie Yoctopuce pour Visual Basic .NET se présente sous la forme d'une DLL et de fichiers sources en Visual Basic. La DLL n'est pas une DLL .NET mais une DLL classique, écrite en C, qui gère les communications à bas niveau avec les modules48. Les fichiers sources en Visual Basic gèrent la partie haut niveau de l'API. Vous avez donc besoin de cette DLL et des fichiers .vb du répertoire Sources pour créer un projet gérant des modules Yoctopuce.

Configuration d'un projet Visual Basic

Les indications ci-dessous sont fournies pour Visual Studio express 2010, mais la procédure est semblable pour les autres versions.

Commencez par créer votre projet, puis depuis le panneau Explorateur de solutions effectuez un clic droit sur votre projet, et choisissez Ajouter puis Elément existant.

Une fenêtre de sélection de fichiers apparaît: sélectionnez le fichier yocto_api.vb et les fichiers correspondant aux fonctions des modules Yoctopuce que votre projet va gérer. Dans le doute, vous pouvez aussi sélectionner tous les fichiers.

Vous avez alors le choix entre simplement ajouter ces fichiers à votre projet, ou les ajouter en tant que lien (le bouton Ajouter est en fait un menu déroulant). Dans le premier cas, Visual Studio va copier les fichiers choisis dans votre projet, dans le second Visual Studio va simplement garder un lien sur les fichiers originaux. Il est recommandé d'utiliser des liens, une éventuelle mise à jour de la librairie sera ainsi beaucoup plus facile.

Ensuite, ajoutez de la même manière la dll yapi.dll, qui se trouve dans le répertoire Sources/dll49. Puis depuis la fenêtre Explorateur de solutions, effectuez un clic droit sur la DLL, choisissez Propriété et dans le panneau Propriétés, mettez l'option Copier dans le répertoire de sortie à toujours copier. Vous êtes maintenant prêt à utiliser vos modules Yoctopuce depuis votre environnement Visual Studio.

Afin de les garder simples, tous les exemples fournis dans cette documentation sont des applications consoles. Il va de soit que que les fonctionnement des librairies est strictement identiques si vous les intégrez dans une application dotée d'une interface graphique.

17.3. Contrôle de la fonction Motor

Il suffit de quelques lignes de code pour piloter un Yocto-Motor-DC. Voici le squelette d'un fragment de code VisualBasic .NET qui utilise la fonction Motor.


[...]
' On active la détection des modules sur USB
Dim errmsg As String
YAPI.RegisterHub("usb", errmsg)
[...]

' On récupère l'objet permettant d'intéragir avec le module
Dim motor As YMotor
motor = YMotor.FindMotor("MOTORCTL-123456.motor")

' Pour gérer le hot-plug, on vérifie que le module est là
If (motor.isOnline()) Then
    ' Utiliser motor.set_drivingForce()
    [...]
End If

[...]

Voyons maintenant en détail ce que font ces quelques lignes.

YAPI.RegisterHub

La fonction YAPI.RegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent être recherchés. Utilisée avec le paramètre "usb", elle permet de travailler avec les modules connectés localement à la machine. Si l'initialisation se passe mal, cette fonction renverra une valeur différente de YAPI_SUCCESS, et retournera via le paramètre errmsg un explication du problème.

YMotor.FindMotor

La fonction YMotor.FindMotor permet de retrouver un moteur en fonction du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Motor-DC avec le numéros de série MOTORCTL-123456 que vous auriez appelé "MonModule" et dont vous auriez nommé la fonction motor "MaFonction", les cinq appels suivants seront strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):


motor = YMotor.FindMotor("MOTORCTL-123456.motor")
motor = YMotor.FindMotor("MOTORCTL-123456.MaFonction")
motor = YMotor.FindMotor("MonModule.motor")
motor = YMotor.FindMotor("MonModule.MaFonction")
motor = YMotor.FindMotor("MaFonction")

YMotor.FindMotor renvoie un objet que vous pouvez ensuite utiliser à loisir pour contrôler le moteur.

isOnline

La méthode isOnline() de l'objet renvoyé par YMotor.FindMotor permet de savoir si le module correspondant est présent et en état de marche.

set_drivingForce

La méthode set_drivingForce() de l'objet renvoyé par yFindMotor permet de régler la puissance, de -100 à +100% envoyée au moteur.

Un exemple réel

Lancez Microsoft VisualBasic et ouvrez le projet exemple correspondant, fourni dans le répertoire Examples/Doc-GettingStarted-Yocto-Motor-DC de la librairie Yoctopuce.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

Module Module1

  Private Sub Usage()
    Dim execname = System.AppDomain.CurrentDomain.FriendlyName
    Console.WriteLine("Usage:")
    Console.WriteLine(execname + "  <serial_number>  power")
    Console.WriteLine(execname + "  <logical_name>  power")
    Console.WriteLine(execname + "  any power")
    Console.WriteLine("  power is a integer between -100 and 100%")
    Console.WriteLine("Example:")
    Console.WriteLine(execname + "  any 75")
    System.Threading.Thread.Sleep(2500)
    End
  End Sub

  Sub Main()
    Dim argv() As String = System.Environment.GetCommandLineArgs()
    Dim errmsg As String = ""
    Dim target As String
    Dim power As Integer
    Dim motor As YMotor
    Dim current As YCurrent
    Dim voltage As YVoltage
    Dim temperature As YTemperature

    If argv.Length < 2 Then Usage()

    target = argv(1)
    power = Convert.ToInt32(argv(2))

    REM Setup the API to use local USB devices
    If (YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS) Then
      Console.WriteLine("RegisterHub error: " + errmsg)
      End
    End If

    If target = "any" Then
      motor = YMotor.FirstMotor()
      If motor Is Nothing Then
        Console.WriteLine("No module connected (check USB cable) ")
        End
      End If
      target = motor.get_module().get_serialNumber()
    End If

    motor = YMotor.FindMotor(target + ".motor")
    current = YCurrent.FindCurrent(target + ".current")
    voltage = YVoltage.FindVoltage(target + ".voltage")
    temperature = YTemperature.FindTemperature(target + ".temperature")

    If (motor.isOnline()) Then
      If (motor.get_motorStatus() >= Y_MOTORSTATUS_LOVOLT) Then motor.resetStatus()
      motor.drivingForceMove(power, 2000) REM ramp up to power in 2 seconds
      While (motor.isOnline())
        REM display motor status
        Console.WriteLine("Status=" + motor.get_advertisedValue() + "  " +
                 "Voltage=" + Str(voltage.get_currentValue()) + "V  " +
                 "Current=" + Str(current.get_currentValue() / 1000) + "A  " +
                 "Temp=" + Str(temperature.get_currentValue()) + "deg C")
        YAPI.Sleep(1000, errmsg) REM wait for one second
      End While

    Else
      Console.WriteLine("Module not connected (check USB cable) ")
    End If
    YAPI.FreeAPI()
  End Sub

End Module
 

17.4. Contrôle de la partie module

Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci dessous un simple programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la balise de localisation.


Imports System.IO
Imports System.Environment

Module Module1

  Sub usage()
    Console.WriteLine("usage: demo <serial or logical name> [ON/OFF]")
    End
  End Sub

  Sub Main()
    Dim argv() As String = System.Environment.GetCommandLineArgs()
    Dim errmsg As String = ""
    Dim m As ymodule

    If (YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS) Then
      Console.WriteLine("RegisterHub error:" + errmsg)
      End
    End If

    If argv.Length < 2 Then usage()

    m = YModule.FindModule(argv(1)) REM use serial or logical name
    If (m.isOnline()) Then
      If argv.Length > 2 Then
        If argv(2) = "ON" Then m.set_beacon(Y_BEACON_ON)
        If argv(2) = "OFF" Then m.set_beacon(Y_BEACON_OFF)
      End If
      Console.WriteLine("serial:       " + m.get_serialNumber())
      Console.WriteLine("logical name: " + m.get_logicalName())
      Console.WriteLine("luminosity:   " + Str(m.get_luminosity()))
      Console.Write("beacon:       ")
      If (m.get_beacon() = Y_BEACON_ON) Then
        Console.WriteLine("ON")
      Else
        Console.WriteLine("OFF")
      End If
      Console.WriteLine("upTime:       " + Str(m.get_upTime() / 1000) + " sec")
      Console.WriteLine("USB current:  " + Str(m.get_usbCurrent()) + " mA")
      Console.WriteLine("Logs:")
      Console.WriteLine(m.get_lastLogs())
    Else
      Console.WriteLine(argv(1) + " not connected (check identification and USB cable)")
    End If
    YAPI.FreeAPI()
  End Sub

End Module
 

Chaque propriété xxx du module peut être lue grâce à une méthode du type get_xxxx(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module

Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la méthode revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique d'un module.

Module Module1


  Sub usage()

    Console.WriteLine("usage: demo <serial or logical name> <new logical name>")
    End
  End Sub

  Sub Main()
    Dim argv() As String = System.Environment.GetCommandLineArgs()
    Dim errmsg As String = ""
    Dim newname As String
    Dim m As YModule

    If (argv.Length <> 3) Then usage()

    REM Setup the API to use local USB devices
    If YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS Then
      Console.WriteLine("RegisterHub error: " + errmsg)
      End
    End If

    m = YModule.FindModule(argv(1)) REM use serial or logical name
    If m.isOnline() Then
      newname = argv(2)
      If (Not YAPI.CheckLogicalName(newname)) Then
        Console.WriteLine("Invalid name (" + newname + ")")
        End
      End If
      m.set_logicalName(newname)
      m.saveToFlash() REM do not forget this
      Console.Write("Module: serial= " + m.get_serialNumber)
      Console.Write(" / name= " + m.get_logicalName())
    Else
      Console.Write("not connected (check identification and USB cable")
    End If
    YAPI.FreeAPI()

  End Sub

End Module
 

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite, liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000 cycles. Pour résumer vous ne pouvez employer la fonction saveToFlash() que 100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une boucle.

Enumeration des modules

Obtenir la liste des modules connectés se fait à l'aide de la fonction yFirstModule() qui renvoie le premier module trouvé, il suffit ensuite d'appeler la fonction nextModule() de cet objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un Nothing. Ci-dessous un petit exemple listant les module connectés

Module Module1

  Sub Main()
    Dim M As ymodule
    Dim errmsg As String = ""

    REM Setup the API to use local USB devices
    If YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS Then
      Console.WriteLine("RegisterHub error: " + errmsg)
      End
    End If

    Console.WriteLine("Device list")
    M = YModule.FirstModule()
    While M IsNot Nothing
      Console.WriteLine(M.get_serialNumber() + " (" + M.get_productName() + ")")
      M = M.nextModule()
    End While
    YAPI.FreeAPI()
  End Sub

End Module
 

17.5. Gestion des erreurs

Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération. La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer une exception. Dans ce cas, de trois choses l'une:

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il suit toujours la même logique: une méthode get_state() retournera une valeur NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire, si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée. Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des méthodes errType() et errMessage(). Ce sont les même informations qui auraient été associées à l'exception si elles avaient été actives.

18. Utilisation du Yocto-Motor-DC en Delphi

Delphi est l'héritier de Turbo-Pascal. A l'origine, Delphi était produit par Borland, mais c'est maintenant Embarcadero qui l'édite. Sa force réside dans sa facilité d'utilisation, il permet à quiconque ayant des notions de Pascal de programmer une application Windows en deux temps trois mouvements. Son seul défaut est d'être payant50.

Les librairies pour Delphi sont fournies non pas sous forme de composants VCL, mais directement sous forme de fichiers source. Ces fichiers sont compatibles avec la plupart des version de Delphi 51.

Afin des les garder simples, tous les exemples fournis dans cette documentation sont des applications consoles. Il va de soit que le fonctionnement des librairies est strictement identique avec des applications VCL.

Vous allez rapidement vous rendre compte que l'API Delphi défini beaucoup de fonctions qui retournent des objets. Vous ne devez jamais désallouer ces objets vous-même. Ils seront désalloués automatiquement par l'API à la fin de l'application.

18.1. Préparation

Connectez-vous sur le site de Yoctopuce et téléchargez la la librairie Yoctopuce pour Delphi52. Décompressez le tout dans le répertoire de votre choix, et ajoutez le sous-répertoire sources de l'archive dans la liste des répertoires des librairies de Delphi53.

Par défaut la librairie Yoctopuce pour Delphi utilise une DLL yapi.dll, toutes les applications que vous créerez avec Delphi devront avoir accès à cette DLL. Le plus simple est de faire en sorte qu'elle soit présente dans le même répertoire que l'exécutable de votre application.

18.2. Contrôle de la fonction Motor

Il suffit de quelques lignes de code pour piloter un Yocto-Motor-DC. Voici le squelette d'un fragment de code Delphi qui utilise la fonction Motor.


uses yocto_api, yocto_motor;

var errmsg: string;
    motor: TYMotor;

[...]
// On active la détection des modules sur USB
yRegisterHub('usb',errmsg)
[...]

// On récupère l'objet permettant d'intéragir avec le module
motor = yFindMotor("MOTORCTL-123456.motor")

// Pour gérer le hot-plug, on vérifie que le module est là
if motor.isOnline() then
    begin
        // use motor.set_drivingForce()
        [...]
    end;
[...]

Voyons maintenant en détail ce que font ces quelques lignes.

yocto_api et yocto_motor

Ces deux unités permettent d'avoir accès aux fonctions permettant de gérer les modules Yoctopuce. yocto_api doit toujours être utilisé, yocto_motor est nécessaire pour gérer les modules contenant un moteur, comme le Yocto-Motor-DC.

yRegisterHub

La fonction yRegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent être recherchés. Utilisée avec le paramètre 'usb', elle permet de travailler avec les modules connectés localement à la machine. Si l'initialisation se passe mal, cette fonction renverra une valeur différente de YAPI_SUCCESS, et retournera via le paramètre errmsg un explication du problème.

yFindMotor

La fonction yFindMotor permet de retrouver un moteur en fonction du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Motor-DC avec le numéros de série MOTORCTL-123456 que vous auriez appelé "MonModule" et dont vous auriez nommé la fonction motor "MaFonction", les cinq appels suivants seront strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):


motor := yFindMotor("MOTORCTL-123456.motor");
motor := yFindMotor("MOTORCTL-123456.MaFonction");
motor := yFindMotor("MonModule.motor");
motor := yFindMotor("MonModule.MaFonction");
motor := yFindMotor("MaFonction");

yFindMotor renvoie un objet que vous pouvez ensuite utiliser à loisir pour contrôler le moteur.

isOnline

La méthode isOnline() de l'objet renvoyé par yFindMotor permet de savoir si le module correspondant est présent et en état de marche.

set_drivingForce

La méthode set_drivingForce() de l'objet renvoyé par yFindMotor permet de régler la puissance, de -100 à +100% envoyée au moteur.

Un exemple réel

Lancez votre environnement Delphi, copiez la DLL yapi.dll dans un répertoire et créez une nouvelle application console dans ce même répertoire, et copiez-coller le code ci dessous.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

program helloworld;
{$APPTYPE CONSOLE}
uses
  SysUtils,
  Windows,
  yocto_api,
  yocto_motor,yocto_current,yocto_voltage,yocto_temperature;

procedure usage();
  var
    execname:string;
  begin
    execname := ExtractFileName(paramstr(0));
    WriteLn('Usage:');
    WriteLn(execname + ' <serial_number> power ');
    WriteLn(execname + ' <logical_name> power');
    WriteLn(execname + ' any <channel> power');
    WriteLn('power is a integer between -100 and 100%');
    WriteLn('Example:');
    WriteLn(execname + ' any 75');
    sleep(2500);
    halt;
  end;

var
 errmsg,target:string;
 power:integer;
 motor:TYMotor;
 temperature:TYTemperature;
 current:TYCurrent;
 voltage:TYVoltage;

 m : TYModule;

begin
  if (paramcount<2) then usage();

  // parse command line
  target  :=  UpperCase(paramstr(1));
  power   :=  strtoint(paramstr(2));
  writeln(power);

  // Setup the API to use local USB devices
  if (YRegisterHub('usb', errmsg) <> YAPI_SUCCESS)  then
    begin
      writeln('RegisterHub error: ' + errmsg);
      halt;
    end;

  if (target='ANY') then
    begin
      // find the serial# of the first available motor
      motor :=  YFirstMotor();
      if (motor =nil) then
       begin
         writeln('No module connected (check USB cable)');
         halt;
       end;
      // retreive the hosting device serial
      m :=  motor.get_module();
      target := m.get_serialNumber();
     end;

  Writeln('using ' + target);

  // retreive motor, current, voltage and temperature features from the device
  motor       := YFindMotor(target + '.motor');
  current     := YFindCurrent(target + '.current');
  temperature := YFindTemperature(target + '.temperature');
  voltage     := YFindVoltage(target + '.voltage');

  // lets start the motor
  if (motor.isOnline()) then
    begin
       // if motor is in error state, reset it.
       if ( motor.get_motorStatus>=Y_MOTORSTATUS_LOVOLT) then motor.resetStatus();
       motor.drivingForceMove(power,2000);  // ramp up to power in 2 seconds
       while motor.isOnline() do
        begin
          // display motor status
          Write('Status=',motor.get_advertisedValue(),'  ');
          Write('Voltage=',FloatToStrF(voltage.get_currentValue(),ffFixed,3,1),'V  ' );
          Write('Current=',FloatToStrF(current.get_currentValue()/1000,ffFixed,3,1),'A  ');
          Writeln('Temp=',FloatToStrF(temperature.get_currentValue(),ffFixed,3,1),'deg C');
          Ysleep(1000,errmsg); // wait for one second
        end;
  end else writeln('Module not connected (check identification and USB cable)');
  yFreeAPI();

end.
 

18.3. Contrôle de la partie module

Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci dessous un simple programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la balise de localisation.

program modulecontrol;
{$APPTYPE CONSOLE}
uses
  SysUtils,
  yocto_api;

const
  serial = 'MOTORCTL-123456'; // use serial number or logical name

procedure refresh(module:Tymodule) ;
  begin
    if (module.isOnline())  then
     begin
       Writeln('');
       Writeln('Serial       : ' + module.get_serialNumber());
       Writeln('Logical name : ' + module.get_logicalName());
       Writeln('Luminosity   : ' + intToStr(module.get_luminosity()));
       Write('Beacon    :');
       if  (module.get_beacon()=Y_BEACON_ON) then Writeln('on')
                                             else Writeln('off');
       Writeln('uptime       : ' + intToStr(module.get_upTime() div 1000)+'s');
       Writeln('USB current  : ' + intToStr(module.get_usbCurrent())+'mA');
       Writeln('Logs         : ');
       Writeln(module.get_lastlogs());
       Writeln('');
       Writeln('r : refresh / b:beacon ON / space : beacon off');
     end
    else Writeln('Module not connected (check identification and USB cable)');
  end;


procedure beacon(module:Tymodule;state:integer);
  begin
    module.set_beacon(state);
    refresh(module);
  end;

var
  module : TYModule;
  c      : char;
  errmsg : string;

begin
  // Setup the API to use local USB devices
  if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
  begin
    Write('RegisterHub error: '+errmsg);
    exit;
  end;

  module := yFindModule(serial);
  refresh(module);

  repeat
    read(c);
    case c of
     'r': refresh(module);
     'b': beacon(module,Y_BEACON_ON);
     ' ': beacon(module,Y_BEACON_OFF);
    end;
  until  c = 'x';
  yFreeAPI();
end.

Chaque propriété xxx du module peut être lue grâce à une méthode du type get_xxxx(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module

Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la méthode revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique d'un module.

program savesettings;
{$APPTYPE CONSOLE}
uses
  SysUtils,
  yocto_api;

const
  serial = 'MOTORCTL-123456'; // use serial number or logical name

var
  module  : TYModule;
  errmsg  : string;
  newname : string;

begin
  // Setup the API to use local USB devices
  if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
  begin
    Write('RegisterHub error: '+errmsg);
    exit;
  end;

  module := yFindModule(serial);
  if (not(module.isOnline)) then
   begin
     writeln('Module not connected (check identification and USB cable)');
     exit;
   end;

  Writeln('Current logical name : '+module.get_logicalName());
  Write('Enter new name : ');
  Readln(newname);
  if (not(yCheckLogicalName(newname))) then
   begin
     Writeln('invalid logical name');
     exit;
   end;
  module.set_logicalName(newname);
  module.saveToFlash();
  yFreeAPI();
  Writeln('logical name is now : '+module.get_logicalName());
end.
 

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite, liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000 cycles. Pour résumer vous ne pouvez employer la fonction saveToFlash() que 100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une boucle.

Énumération des modules

Obtenir la liste des modules connectés se fait à l'aide de la fonction yFirstModule() qui renvoie le premier module trouvé, il suffit ensuite d'appeler la fonction nextModule() de cet objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un nil. Ci-dessous un petit exemple listant les module connectés

program inventory;
{$APPTYPE CONSOLE}
uses
  SysUtils,
  yocto_api;

var
  module : TYModule;
  errmsg : string;

begin
  // Setup the API to use local USB devices
  if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
  begin
    Write('RegisterHub error: '+errmsg);
    exit;
  end;

  Writeln('Device list');

  module := yFirstModule();
  while module<>nil  do
   begin
     Writeln( module.get_serialNumber()+' ('+module.get_productName()+')');
     module := module.nextModule();
   end;
  yFreeAPI();

end.

18.4. Gestion des erreurs

Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération. La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer une exception. Dans ce cas, de trois choses l'une:

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il suit toujours la même logique: une méthode get_state() retournera une valeur NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire, si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée. Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des méthodes errType() et errMessage(). Ce sont les même informations qui auraient été associées à l'exception si elles avaient été actives.

19. Utilisation du Yocto-Motor-DC avec Universal Windows Platform

Universal Windows Platform, abrégé UWP, est n'est pas un langage à proprememt parler mais une plate-forme logicielle créée par Micorosft. Cette platform permet d'executer un nouveau type d'applications : les application universelle Windows. Ces applicaiton peuvent fonctionner sur toutes les machines qui fonctione sous Windows 10. Cela comprend les PCs, les tablettes, les smartphones, la XBox One, mais aussi Windows IoT Core.

La librairie Yoctopuce UWP permet d'utiliser les modules Yoctopuce dans une application universelle Winodws et est entièrement écrite C#. Elle peut être ajoutée a un projet Visual Studio 201754.

19.1. Fonctions bloquantes et fonctions asynchrones

La librairie Universal Windows Platform n'utilise pas l'API win32 mais uniquement l'API Windows Runtime qui est disponible sur toutes les versions de Windows 10 et pour n'importe quelle architecture. Grâce à cela la librairie UWP peut être utilisé sur toutes les versions de Windows 10, y compris Windows 10 IoT Core.

Cependant, l'utilisation des nouvelles API UWP n'est pas sans conséquence: l'API Windows Runtime pour accéder aux ports USB est asynchrone, et par conséquent la librairie Yoctopuce doit aussi être asynchrone. Concrètement les méthodes asynchrones ne retournent pas directement le résultat mais un objet Task ou Task<> et le résultat peut être obtenu plus tard. Fort heureusement, le langage C# version 6 supporte les mots-clefs async et await qui simplifie beaucoup l'utilisation de ces fonctions. Il est ainsi possible d'utiliser les fonctions asynchrones de la même manière que les fonctions traditionnelles pour autant que les deux règles suivantes soient respectées:

Exemple:

async Task<int> MyFunction(int  val)
{
    // do some long computation
    ...

    return result;
}

int res = await MyFunction(1234);

Notre librairie suit ces deux règles et peut donc d’utiliser la notation await.

Pour ne pas devoir vous poser la question pour chaque méthode de savoir si elle est asynchrone ou pas, la convention est la suivante: toutes les méthodes publiques de la librairie UWP sont asyncrones, c'est-à-dire qui faut les appeler en ajoutant le mot clef await, sauf:

19.2. Installation

Téléchargez la librairie Yoctopuce pour Universal Windows Platform depuis le site web de Yoctopuce 55. Il n'y a pas de programme d'installation, copiez simplement de contenu du fichier zip dans le répertoire de votre choix. Vous avez besoin essentiellement du contenu du répertoire Sources. Les autres répertoires contiennent la documentation et quelques programmes d'exemple. Les projets d'exemple sont des projets Visual Studio 2017 qui est disponible sur le site de Microsoft 56.

19.3. Utilisation l'API Yoctopuce dans un projet Visual Studio

Commencez par créer votre projet , puis depuis le panneau Explorateur de solutions effectuez un clic droit sur votre projet, et choisissez Ajouter puis Élément existant .

Une fenêtre de sélection de fichiers apparaît: sélectionnez tous les fichiers du répertoire Sources de la librairie.

Vous avez alors le choix entre simplement ajouter ces fichiers à votre projet, ou les ajouter en tant que lien (le bouton Ajouter est en fait un menu déroulant). Dans le premier cas, Visual Studio va copier les fichiers choisis dans votre projet, dans le second Visual Studio va simplement garder un lien sur les fichiers originaux. Il est recommandé d'utiliser des liens, une éventuelle mise à jour de la librairie sera ainsi beaucoup plus facile.

Le fichier Package.appxmanifest

Par défaut, une application Universal Windows n'a pas le droit d’accéder aux ports USB. Si l'on désire accéder à un périphérique USB, il faut impérativement le déclarer dans le fichier Package.appxmanifest.

Malheureusement, la fenêtre d'édition de ce fichier ne permet pas cette opération et il faut modifier le fichier Package.appxmanifest à la main. Dans le panneau "Solutions Explorer", faites un clic droit sur le fichier Package.appxmanifest et sélectionner "View Code".

Dans ce fichier XML, il faut rajouter un nœud DeviceCapability dans le nœud Capabilities. Ce nœud doit avoir un attribut "Name" qui vaut "humaninterfacedevice".

A l’intérieur de ce nœud, il faut déclarer tous les modules qui peuvent être utilisés. Concrètement, pour chaque module, il faut ajouter un nœud "Device" avec un attribut "Id" dont la valeur est une chaîne de caractères "vidpid:USB_VENDORID USB_DEVICE_ID". Le USB_VENDORID de Yoctopuce est 24e0 et le USB_DEVICE_ID de chaque module Yoctopuce peut être trouvé dans la documentation dans la section "Caractéristiques". Pour finir, le nœud "Device" doit contenir un nœud "Function" avec l'attribut "Type" dont la valeur est "usage:ff00 0001".

Pour le Yocto-Motor-DC voici ce qu'il faut ajouter dans le nœud "Capabilities":


  <DeviceCapability Name="humaninterfacedevice">
      <!-- Yocto-Motor-DC -->
      <Device Id="vidpid:24e0 0016">
        <Function Type="usage:ff00 0001" />
      </Device>
    </DeviceCapability>

Malheureusement, il n'est pas possible d'écrire un règle qui autorise tous les modules Yoctopuce, par conséquent il faut impérativement ajouter chaque module que l'on désire utiliser.

19.4. Contrôle de la fonction Motor

Il suffit de quelques lignes de code pour piloter un Yocto-Motor-DC. Voici le squelette d'un fragment de code c# qui utilise la fonction Motor.


[...]
// On active la détection des modules sur USB
await YAPI.RegisterHub("usb");
[...]

// On récupère l'objet permettant d'intéragir avec le module
YMotor motor = YMotor.FindMotor("MOTORCTL-123456.motor");

// Pour gérer le hot-plug, on vérifie que le module est là
if (await motor.isOnline())
{
        // Use motor.set_drivingForce()
    ...
}

[...]

Voyons maintenant en détail ce que font ces quelques lignes.

YAPI.RegisterHub

La fonction YAPI.RegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent être recherchés. Le paramètre est l'adresse du virtual hub capable de voir les modules. Si l'on passe la chaîne de caractère "usb", l'API va travailler avec les modules connectés localement à la machine. Si l'initialisation se passe mal, une exception sera générée.

YMotor.FindMotor

La fonction YMotor.FindMotor permet de retrouver un moteur en fonction du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Motor-DC avec le numéros de série MOTORCTL-123456 que vous auriez appelé "MonModule" et dont vous auriez nommé la fonction motor "MaFonction", les cinq appels suivants seront strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):


motor = YMotor.FindMotor("MOTORCTL-123456.motor");
motor = YMotor.FindMotor("MOTORCTL-123456.MaFonction");
motor = YMotor.FindMotor("MonModule.motor");
motor = YMotor.FindMotor("MonModule.MaFonction");
motor = YMotor.FindMotor("MaFonction");

YMotor.FindMotor renvoie un objet que vous pouvez ensuite utiliser à loisir pour contrôler le moteur.

isOnline

La méthode isOnline() de l'objet renvoyé par YMotor.FindMotor permet de savoir si le module correspondant est présent et en état de marche.

set_drivingForce

La méthode set_drivingForce() de l'objet renvoyé par YMotor.FindMotor permet de régler la puissance, de -100 à +100% envoyée au moteur.

19.5. Un exemple concret

Lancez Visual Studio et ouvrez le projet correspondant, fourni dans le répertoire Examples/Doc-GettingStarted-Yocto-Motor-DC de la librairie Yoctopuce.

Le projets Visual Studio contient de nombreux fichiers dont la plupart ne sont pas liés à l'utilisation de la librairie Yoctopuce. Pour simplifier la lecture du code nous avons regroupé tout le code qui utilise la librairie dans la classe Demo qui se trouve dans le fichier demo.cs. Les propriétés de cette classe correspondent aux différentes champs qui sont affichés à l'écran, et la méthode Run() contient le code qui est exécuté quand le bouton "Start" est pressé.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
  public class Demo : DemoBase
  {
    public string HubURL { get; set; }
    public string Target { get; set; }
    public string Power { get; set; }

    public override async Task<int> Run()
    {
      try {
        await YAPI.RegisterHub(HubURL);
        YMotor motor;
        YCurrent current;
        YVoltage voltage;
        YTemperature temperature;

        if (Target.ToLower() == "any") {
          // find the serial# of the first available motor
          motor = YMotor.FirstMotor();
          if (motor == null) {
            WriteLine("No module connected (check USB cable) ");
            return -1;
          }

          Target = await (await motor.get_module()).get_serialNumber();
        }

        int power = Convert.ToInt32(Power);
        motor = YMotor.FindMotor(Target + ".motor");
        current = YCurrent.FindCurrent(Target + ".current");
        voltage = YVoltage.FindVoltage(Target + ".voltage");
        temperature = YTemperature.FindTemperature(Target + ".temperature");

        // lets start the motor
        if (await motor.isOnline()) {
          // if motor is in error state, reset it.
          if (await motor.get_motorStatus() >= YMotor.MOTORSTATUS_LOVOLT) {
            await motor.resetStatus();
          }

          await motor.drivingForceMove(power, 2000); // ramp up to power in 2 seconds
          while (await motor.isOnline()) {
            // display motor status
            WriteLine("Status=" + await motor.get_advertisedValue() + "  "
                      + "Voltage=" + await voltage.get_currentValue() + "V  "
                      + "Current=" + await current.get_currentValue() / 1000 + "A  "
                      + "Temp=" + await temperature.get_currentValue() + "deg C");
            await YAPI.Sleep(1000); // wait for one second
          }
        }
      } catch (YAPI_Exception ex) {
        WriteLine("error: " + ex.Message);
      }

      YAPI.FreeAPI();
      return 0;
    }
  }
}

19.6. Contrôle de la partie module

Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci-dessous un simple programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la balise de localisation.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
  public class Demo : DemoBase
  {

    public string HubURL { get; set; }
    public string Target { get; set; }
    public bool Beacon { get; set; }

    public override async Task<int> Run()
    {
      YModule m;
      string errmsg = "";

      if (await YAPI.RegisterHub(HubURL) != YAPI.SUCCESS) {
        WriteLine("RegisterHub error: " + errmsg);
        return -1;
      }
      m = YModule.FindModule(Target + ".module"); // use serial or logical name
      if (await m.isOnline()) {
        if (Beacon) {
          await m.set_beacon(YModule.BEACON_ON);
        } else {
          await m.set_beacon(YModule.BEACON_OFF);
        }

        WriteLine("serial: " + await m.get_serialNumber());
        WriteLine("logical name: " + await m.get_logicalName());
        WriteLine("luminosity: " + await m.get_luminosity());
        Write("beacon: ");
        if (await m.get_beacon() == YModule.BEACON_ON)
          WriteLine("ON");
        else
          WriteLine("OFF");
        WriteLine("upTime: " + (await m.get_upTime() / 1000) + " sec");
        WriteLine("USB current: " + await m.get_usbCurrent() + " mA");
        WriteLine("Logs:\r\n" + await m.get_lastLogs());
      } else {
        WriteLine(Target + " not connected  on" + HubURL +
                  "(check identification and USB cable)");
      }
      YAPI.FreeAPI();
      return 0;
    }
  }
}

Chaque propriété xxx du module peut être lue grâce à une méthode du type YModule.get_xxxx(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode YModule.set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module

Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction YModule.set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode YModule.saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la méthode YModule.revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique d'un module.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
  public class Demo : DemoBase
  {

    public string HubURL { get; set; }
    public string Target { get; set; }
    public string LogicalName { get; set; }

    public override async Task<int> Run()
    {
      try {
        YModule m;

        await YAPI.RegisterHub(HubURL);

        m = YModule.FindModule(Target); // use serial or logical name
        if (await m.isOnline()) {
          if (!YAPI.CheckLogicalName(LogicalName)) {
            WriteLine("Invalid name (" + LogicalName + ")");
            return -1;
          }

          await m.set_logicalName(LogicalName);
          await m.saveToFlash(); // do not forget this
          Write("Module: serial= " + await m.get_serialNumber());
          WriteLine(" / name= " + await m.get_logicalName());
        } else {
          Write("not connected (check identification and USB cable");
        }
      } catch (YAPI_Exception ex) {
        WriteLine("RegisterHub error: " + ex.Message);
      }
      YAPI.FreeAPI();
      return 0;
    }
  }
}

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite, liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000 cycles. Pour résumer vous ne pouvez employer la fonction YModule.saveToFlash() que 100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une boucle.

Enumeration des modules

Obtenir la liste des modules connectés se fait à l'aide de la fonction YModule.yFirstModule() qui renvoie le premier module trouvé, il suffit ensuite d'appeler la méthode nextModule() de cet objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un null. Ci-dessous un petit exemple listant les module connectés

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
  public class Demo : DemoBase
  {
    public string HubURL { get; set; }

    public override async Task<int> Run()
    {
      YModule m;
      try {
        await YAPI.RegisterHub(HubURL);

        WriteLine("Device list");
        m = YModule.FirstModule();
        while (m != null) {
          WriteLine(await m.get_serialNumber()
                    + " (" + await m.get_productName() + ")");
          m = m.nextModule();
        }
      } catch (YAPI_Exception ex) {
        WriteLine("Error:" + ex.Message);
      }
      YAPI.FreeAPI();
      return 0;
    }
  }
}

19.7. Gestion des erreurs

Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération. La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une erreur se produisant après le isOnline(), qui pourrait faire planter le programme.

Dans la librairie Universal Windows Platform, le traitement d'erreur est implémenté au moyen d'exceptions. Vous devrez donc intercepter et traiter correctement ces exceptions si vous souhaitez avoir un projet fiable qui ne crashera pas des que vous débrancherez un module.

Les exceptions lancées de la librairie sont toujours de type YAPI_Exception, ce qui permet facilement de les séparer des autres exceptions dans un bloc try{...} catch{...}.

Exemple:


try {
        ....
} catch (YAPI_Exception ex) {
        Debug.WriteLine("Exception from Yoctopuce lib:" + ex.Message);
} catch (Exception ex) {
        Debug.WriteLine("Other exceptions :" + ex.Message);
}

20. Utilisation du Yocto-Motor-DC en Objective-C

Objective-C est le langage de prédilection pour programmer sous Mac OS X, en raison de son intégration avec le générateur d'interfaces Cocoa. Pour pouvoir utiliser la libraire Objective-C vous aurez impérativement besoin de XCode 4.2, qui est disponible gratuitement sous Lion. Si vous êtes encore sous Snow Leopard il vous faudra être enregistré comme développeur auprès d'Apple pour pourvoir télécharger XCode 4.2. La librairie Yoctopuce est compatible ARC. Il vous sera donc possible de coder vos projet soit en utilisant la traditionnelle méthode de retain / release, soit en activant l'Automatic Reference Counting.

Les librairies Yoctopuce57 pour Objective-C vous sont fournies au format source dans leur intégralité. Une partie de la librairie de bas-niveau est écrite en C pur sucre, mais vous n'aurez à priori pas besoin d'interagir directement avec elle: tout a été fait pour que l'interaction soit le plus simple possible depuis Objective-C.

Vous allez rapidement vous rendre compte que l'API Objective-C définit beaucoup de fonctions qui retournent des objets. Vous ne devez jamais désallouer ces objets vous-même. Ils seront désalloués automatiquement par l'API à la fin de l'application.

Afin des les garder simples, tous les exemples fournis dans cette documentation sont des applications consoles. Il va de soit que que les fonctionnement des librairies est strictement identiques si vous les intégrez dans une application dotée d'une interface graphique. Vous trouverez sur le blog de Yoctopuce un exemple détaillé58 avec des séquences vidéo montrant comment intégrer les fichiers de la librairie à vos projets.

20.1. Contrôle de la fonction Motor

Il suffit de quelques lignes de code pour piloter un Yocto-Motor-DC. Voici le squelette d'un fragment de code Objective-C qui utilise la fonction Motor.


#import "yocto_api.h"
#import "yocto_motor.h"

...
NSError *error;
[YAPI RegisterHub:@"usb": &error]
...
// On récupère l'objet représentant le module (ici connecté en local sur USB)
motor = [YMotor FindMotor:@"MOTORCTL-123456.motor"];

// Pour gérer le hot-plug, on vérifie que le module est là
if([motor isOnline])
{
    // Utiliser [motor set_drivingForce]
    ...
}

Voyons maintenant en détail ce que font ces quelques lignes.

yocto_api.h et yocto_motor.h

Ces deux fichiers importés permettent d'avoir accès aux fonctions permettant de gérer les modules Yoctopuce. yocto_api.h doit toujours être utilisé, yocto_motor.h est nécessaire pour gérer les modules contenant un moteur, comme le Yocto-Motor-DC.

[YAPI RegisterHub]

La fonction [YAPI RegisterHub] initialise l'API de Yoctopuce en indiquant où les modules doivent être recherchés. Utilisée avec le paramètre @"usb", elle permet de travailler avec les modules connectés localement à la machine. Si l'initialisation se passe mal, cette fonction renverra une valeur différente de YAPI_SUCCESS, et retournera via le paramètre errmsg un explication du problème.

[Motor FindMotor]

La fonction [Motor FindMotor], permet de retrouver un moteur en fonction du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Motor-DC avec le numéros de série MOTORCTL-123456 que vous auriez appelé "MonModule" et dont vous auriez nommé la fonction motor "MaFonction", les cinq appels suivants seront strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):


YMotor *motor = [YMotor FindMotor:@"MOTORCTL-123456.motor"];
YMotor *motor = [YMotor FindMotor:@"MOTORCTL-123456.MaFonction"];
YMotor *motor = [YMotor FindMotor:@"MonModule.motor"];
YMotor *motor = [YMotor FindMotor:@"MonModule.MaFonction"];
YMotor *motor = [YMotor FindMotor:@"MaFonction"];

[YMotor FindMotor] renvoie un objet que vous pouvez ensuite utiliser à loisir pour contrôler le moteur.

isOnline

La méthode isOnline de l'objet renvoyé par [YMotor FindMotor] permet de savoir si le module correspondant est présent et en état de marche.

set_drivingForce

La méthode set_drivingForce() de l'objet renvoyé par YMotor.FindMotor permet de régler la puissance, de -100 à +100% envoyée au moteur.

Un exemple réel

Lancez Xcode 4.2 et ouvrez le projet exemple correspondant, fourni dans le répertoire Examples/Doc-GettingStarted-Yocto-Motor-DC de la librairie Yoctopuce.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

#import <Foundation/Foundation.h>
#import "yocto_api.h"
#import "yocto_motor.h"
#import "yocto_current.h"
#import "yocto_voltage.h"
#import "yocto_temperature.h"

static void usage(void)
{
  NSLog(@"usage: demo <serial_number> power");
  NSLog(@"       demo <logical_name>  power");
  NSLog(@"       demo any power       (use any discovered device)");
  NSLog(@"       power is a integer between -100 and 100%%");
  NSLog(@"Example:");
  NSLog(@"       demo any 75");
  exit(1);
}

int main(int argc, const char * argv[])
{
  NSError *error;
  YMotor  *motor;

  if (argc < 3) {
    usage();
  }

  @autoreleasepool {
    // Setup the API to use local USB devices
    if([YAPI RegisterHub:@"usb": &error] != YAPI_SUCCESS) {
      NSLog(@"RegisterHub error: %@", [error localizedDescription]);
      return 1;
    }
    NSString *target = [NSString stringWithUTF8String:argv[1]];
    int power  = atoi(argv[2]);

    if ([target isEqualToString:@"any"]) {
      // find the serial# of the first available motor
      motor = [YMotor FirstMotor];
      if (motor == nil) {
        NSLog(@"No module connected (check USB cable)");
        return 1;
      }
      target = [[motor get_module] get_serialNumber];
    }

    // retreive motor, current, voltage and temperature features from the device
    YMotor *motor = [YMotor FindMotor:[target stringByAppendingString:@".motor"]];
    YCurrent *current = [YCurrent FindCurrent:[target stringByAppendingString:@".current"]];
    YVoltage *voltage = [YVoltage FindVoltage:[target stringByAppendingString:@".voltage"]];
    YTemperature *temperature = [YTemperature
                                 FindTemperature:[target stringByAppendingString:@".temperature"]];

    // we need to retreive both DC and AC current from the device.
    if ([motor isOnline])  {
      // if motor is in error state, reset it.
      if ([motor get_motorStatus] >= Y_MOTORSTATUS_LOVOLT) {
        [motor resetStatus];
      }
      [motor drivingForceMove:power :2000];  // ramp up to power in 2 seconds
      while ([motor isOnline]) {
        // display motor status
        NSLog(@"Status=%@  Voltage=%fV  Current=%f  Temp=%f",
              [motor get_advertisedValue], [voltage get_currentValue],
              [current get_currentValue] / 1000, [temperature get_currentValue]);
        [YAPI Sleep:1000 :NULL]; // wait for one second
      }
    } else {
      NSLog(@"No module connected (check USB cable)");
      return 1;
    }
    [YAPI FreeAPI];
  }
  return 0;
}
 

20.2. Contrôle de la partie module

Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci dessous un simple programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la balise de localisation.

#import <Foundation/Foundation.h>
#import "yocto_api.h"

static void usage(const char *exe)
{
  NSLog(@"usage: %s <serial or logical name> [ON/OFF]\n", exe);
  exit(1);
}


int main (int argc, const char * argv[])
{
  NSError *error;

  @autoreleasepool {
    // Setup the API to use local USB devices
    if([YAPI RegisterHub:@"usb": &error] != YAPI_SUCCESS) {
      NSLog(@"RegisterHub error: %@", [error localizedDescription]);
      return 1;
    }
    if(argc < 2)
      usage(argv[0]);
    NSString *serial_or_name = [NSString stringWithUTF8String:argv[1]];
    // use serial or logical name
    YModule *module = [YModule FindModule:serial_or_name];
    if ([module isOnline]) {
      if (argc > 2) {
        if (strcmp(argv[2], "ON") == 0)
          [module setBeacon:Y_BEACON_ON];
        else
          [module setBeacon:Y_BEACON_OFF];
      }
      NSLog(@"serial:       %@\n", [module serialNumber]);
      NSLog(@"logical name: %@\n", [module logicalName]);
      NSLog(@"luminosity:   %d\n", [module luminosity]);
      NSLog(@"beacon:       ");
      if ([module beacon] == Y_BEACON_ON)
        NSLog(@"ON\n");
      else
        NSLog(@"OFF\n");
      NSLog(@"upTime:       %ld sec\n", [module upTime] / 1000);
      NSLog(@"USB current:  %d mA\n",  [module usbCurrent]);
      NSLog(@"logs:  %@\n",  [module get_lastLogs]);
    } else {
      NSLog(@"%@ not connected (check identification and USB cable)\n",
            serial_or_name);
    }
    [YAPI FreeAPI];
  }
  return 0;
}
 

Chaque propriété xxx du module peut être lue grâce à une méthode du type get_xxxx, et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode set_xxx: Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module

Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction set_xxx: correspondante, cependant cette modification n'a lieu que dans la mémoire vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode saveToFlash. Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la méthode revertFromFlash. Ce petit exemple ci-dessous vous permet changer le nom logique d'un module.

#import <Foundation/Foundation.h>
#import "yocto_api.h"

static void usage(const char *exe)
{
  NSLog(@"usage: %s <serial> <newLogicalName>\n", exe);
  exit(1);
}


int main (int argc, const char * argv[])
{
  NSError *error;

  @autoreleasepool {
    // Setup the API to use local USB devices
    if([YAPI RegisterHub:@"usb" :&error] != YAPI_SUCCESS) {
      NSLog(@"RegisterHub error: %@", [error localizedDescription]);
      return 1;
    }

    if(argc < 2)
      usage(argv[0]);

    NSString *serial_or_name = [NSString stringWithUTF8String:argv[1]];
    // use serial or logical name
    YModule *module = [YModule FindModule:serial_or_name];

    if (module.isOnline) {
      if (argc >= 3) {
        NSString *newname =  [NSString stringWithUTF8String:argv[2]];
        if (![YAPI CheckLogicalName:newname]) {
          NSLog(@"Invalid name (%@)\n", newname);
          usage(argv[0]);
        }
        module.logicalName = newname;
        [module saveToFlash];
      }
      NSLog(@"Current name: %@\n", module.logicalName);
    } else {
      NSLog(@"%@ not connected (check identification and USB cable)\n",
            serial_or_name);
    }
    [YAPI FreeAPI];
  }
  return 0;
}
 

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite, liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000 cycles. Pour résumer vous ne pouvez employer la fonction saveToFlash que 100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une boucle.

Enumeration des modules

Obtenir la liste des modules connectés se fait à l'aide de la fonction yFirstModule() qui renvoie le premier module trouvé, il suffit ensuite d'appeler la fonction nextModule() de cet objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un NULL. Ci-dessous un petit exemple listant les module connectés

#import <Foundation/Foundation.h>
#import "yocto_api.h"

int main (int argc, const char * argv[])
{
  NSError *error;

  @autoreleasepool {
    // Setup the API to use local USB devices
    if([YAPI RegisterHub:@"usb" :&error] != YAPI_SUCCESS) {
      NSLog(@"RegisterHub error: %@\n", [error localizedDescription]);
      return 1;
    }

    NSLog(@"Device list:\n");

    YModule *module = [YModule FirstModule];
    while (module != nil) {
      NSLog(@"%@ %@", module.serialNumber, module.productName);
      module = [module nextModule];
    }
    [YAPI FreeAPI];
  }
  return 0;
}
 

20.3. Gestion des erreurs

Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération. La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer une exception. Dans ce cas, de trois choses l'une:

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il suit toujours la même logique: une méthode get_state() retournera une valeur NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire, si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée. Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des méthodes errType() et errMessage(). Ce sont les même informations qui auraient été associées à l'exception si elles avaient été actives.

21. Utilisation avec des langages non supportés

Les modules Yoctopuce peuvent être contrôlés depuis la plupart des langages de programmation courants. De nouveaux langages sont ajoutés régulièrement en fonction de l'intérêt exprimé par les utilisateurs de produits Yoctopuce. Cependant, certains langages ne sont pas et ne seront jamais supportés par Yoctopuce, les raisons peuvent être diverses: compilateurs plus disponibles, environnements inadaptés, etc...

Il existe cependant des méthodes alternatives pour accéder à des modules Yoctopuce depuis un langage de programmation non supporté.

21.1. Utilisation en ligne de commande

Le moyen le plus simple pour contrôler des modules Yoctopuce depuis un langage non supporté consiste à utiliser l'API en ligne de commande à travers des appels système. L'API en ligne de commande se présente en effet sous la forme d'un ensemble de petits exécutables qu'il est facile d'appeler et dont la sortie est facile à analyser. La plupart des langages de programmation permettant d'effectuer des appels système, cela permet de résoudre le problème en quelques lignes.

Cependant, si l'API en ligne de commande est la solution la plus facile, ce n'est pas la plus rapide ni la plus efficace. A chaque appel, l'exécutable devra initialiser sa propre API et faire l'inventaire des modules USB connectés. Il faut compter environ une seconde par appel.

21.2. Assembly .NET

Un Assembly .NET permet de partager un ensemble de classes précompilées pour offrir un service, en annonçant des points d'entrées qui peuvent être utilisés par des applications tierces. Dans notre cas, c'est toute la librairie Yoctopuce qui est disponible dans l'Assembly .NET, de sorte à pouvoir être utilisée dans n'importe quel environnement qui supporte le chargement dynamique d'Assembly .NET.

La librairie Yoctopuce sous forme d'Assembly .NET ne contient pas uniquement la librairie Yoctopuce standard pour C#, car cela n'aurait pas permis une utilisation optimale dans tous les environnements. En effet, on ne peut pas attendre forcément des applications hôtes d'offrir un système de threads ou de callbacks, pourtant très utiles pour la gestion du plug-and-play et des capteurs à taux de rafraîchissements élevé. De même, on ne peut pas attendre des applications externes un comportement transparent dans le cas où un appel de fonction dans l'Assembly cause un délai en raison de communication réseau.

Nous y avons donc ajouté une surcouche, appelée librairie .NET Proxy. Cette surcouche offre une interface très similaire à la librairie standard mais un peu simplifiée, car elle gère en interne tous les mécanismes de callbacks. A la place, cette librairie offre des objets miroirs, appelés Proxys, qui publient par le biais de Propriétés les principaux attributs des fonctions Yoctopuce tels que la mesure courante, les paramètres de configuration, l'état, etc.


Architecture de l'Assembly .NET

Les propriétés des objets Proxys sont automatiquement mises à jour en tâche de fond par le mécanisme de callbacks, sans que l'application hôte n'ait à s'en soucier. Celle-ci peut donc à tout moment et sans aucun risque de latence afficher la valeur de toutes les propriétés des objets Proxys Yoctopuce.

Notez bien que la librairie de communication de bas niveau yapi.dll n'est pas inclue dans l'Assembly .NET. Il faut donc bien penser à la garder toujours avec DotNetProxyLibrary.dll. La version 32 bits doit être dans le même répertoire que DotNetProxyLibrary.dll, tandis que la version 64 bits doit être dans un sous-répertoire nommé amd64.

Exemple d'utilisation avec MATLAB

Voici comment charger notre Assembly .NET Proxy dans MATLAB et lire la valeur du premier capteur branché par USB trouvé sur la machine :


NET.addAssembly("C:/Yoctopuce/DotNetProxyLibrary.dll");
import YoctoProxyAPI.*

errmsg = YAPIProxy.RegisterHub("usb");
sensor = YSensorProxy.FindSensor("");
measure = sprintf('%.3f %s', sensor.CurrentValue, sensor.Unit);

Exemple d'utilisation en PowerShell

Les commandes en PowerShell sont un peu plus étranges, mais on reconnaît le même schéma :


Add-Type -Path "C:/Yoctopuce/DotNetProxyLibrary.dll"

$errmsg = [YoctoProxyAPI.YAPIProxy]::RegisterHub("usb")
$sensor = [YoctoProxyAPI.YSensorProxy]::FindSensor("")
$measure = "{0:n3} {1}" -f $sensor.CurrentValue, $sensor.Unit

Particularités de la librairie .NET Proxy

Par rapport aux librairies Yoctopuce classiques, on notera en particulier les différences suivantes.

Pas de méthode FirstModule/nextModule

Pour obtenir un objet se référant au premier module trouvé, on appelle un YModuleProxy.FindModule(""). Si aucun module n'est connecté, cette méthode retournera un objet avec la propriété module.IsOnline à False. Dès le branchement d'un module, la propriété passera à True et l'identifiant matériel du module sera mis à jour.

Pour énumérer les modules, on peut appeler la méthode module.GetSimilarFunctions() qui retourne un tableau de chaînes de caractères contenant les identifiants de tous les module trouvés.

Pas de fonctions de callback

Les fonctions de callback sont implémentées en interne et mettent à jour les propriétés des objets. Vous pouvez donc simplement faire du polling sur les propriétés, sans pénalité significative de performance. Prenez garde au fait que si vous utilisez l'une des méthodes qui désactive les callbacks, le rafraichissement automatique des propriétés des objets en sera altéré.

Une nouvelle méthode YAPIProxy.GetLog permet de récupérer les logs de diagnostiques de bas niveau sans recourir à l'utilisation de callbacks.

Types énumérés

Pour maximiser la compatibilité avec les applications hôte, la librairie .NET Proxy n'utilise pas de véritables types énumérés .NET, mais des simples entiers. Pour chaque type énuméré, la librairie publie des constantes entières nommées correspondant aux valeurs possibles. Contrairement aux librairies Yoctopuce classiques, les valeurs utiles commencent toujours à 1, la valeur 0 étant réservée pour signifier une valeur invalide, par exemple lorsque le module est débranché.

Valeurs numériques invalides

Pour toutes les grandeurs numériques, plutôt qu'une constante arbitraire, la valeur invalide retournée en cas d'erreur est NaN. Il faut donc utiliser la fonction isNaN() pour détecter cette valeur.

Utilisation de l'Assembly .NET sans la librairie Proxy

Si pour une raison ou une autre vous ne désirez pas utiliser la librairie Proxy, et que votre environnement le permet, vous pouvez utiliser l'API C# standard puisqu'elle se trouve dans l'Assembly, sous le namespace YoctoLib. Attention toutefois à ne pas mélanger les deux utilisations: soit vous passez par la librairie Proxy, soit vous utilisez directement la version YoctoLib, mais pas les deux !

Compatibilité

Pour que la librairie .NET Proxy fonctionne correctement avec vos modules Yoctopuce, ces derniers doivent avoir au moins le firmware 37120.

Afin d'être compatible avec un maximum de version de Windows, y compris Windows XP, la librairie DotNetProxyLibrary.dll est compilée en .NET 3.5, qui est disponible par défaut sur toutes les versions de Windows depuis XP. A ce jour nous n'avons pas trouvé d'environnement hormis Windows qui supporte le chargement d'Assemblys, donc seules les dll de bas niveau pour Windows sont distribuées avec l'Assembly.

21.3. Virtual Hub et HTTP GET

Le Virtual Hub est disponible pour presque toutes les plateformes actuelles, il sert généralement de passerelle pour permettre l'accès aux modules Yoctopuce depuis des langages qui interdisent l'accès direct aux couches matérielles d'un ordinateur (Javascript, PHP, Java...).

Il se trouve que le Virtual Hub est en fait un petit serveur Web qui est capable de router des requêtes HTTP vers les modules Yoctopuce. Ce qui signifie que si vous pouvez faire une requête HTTP depuis votre langage de programmation, vous pouvez contrôler des modules Yoctopuce, même si ce langage n'est pas officiellement supporté.

Interface REST

A bas niveau, les modules sont pilotés à l'aide d'une API REST. Ainsi pour contrôler un module, il suffit de faire les requêtes HTTP appropriées sur le Virtual Hub. Par défaut le port HTTP du Virtual Hub est 4444.

Un des gros avantages de cette technique est que les tests préliminaires sont très faciles à mettre en œuvre, il suffit d'un Virtual Hub et d'un simple browser Web. Ainsi, si vous copiez l'URL suivante dans votre browser favori, alors que le Virtual Hub est en train de tourner, vous obtiendrez la liste des modules présents.


http://127.0.0.1:4444/api/services/whitePages.txt

Remarquez que le résultat est présenté sous forme texte, mais en demandant whitePages.xml vous auriez obtenu le résultat en XML. De même, whitePages.json aurait permis d'obtenir le résultat en JSON. L'extension html vous permet même d'afficher une interface sommaire vous permettant de changer les valeurs en direct. Toute l'API REST est disponible dans ces différents formats.

Contrôle d'un module par l'interface REST

Chaque module Yoctopuce a sa propre interface REST disponible sous différentes formes. Imaginons un Yocto-Motor-DC avec le numéro de de série MOTORCTL-12345 et le nom logique monModule. l'URL suivante permettra de connaître l'état du module.


http://127.0.0.1:4444/bySerial/MOTORCTL-12345/api/module.txt

Il est bien entendu possible d'utiliser le nom logique des modules plutôt que leur numéro de série.


http://127.0.0.1:4444/byName/monModule/api/module.txt

Vous pouvez retrouver la valeur d'une des propriétés d'un module, il suffit d'ajouter le nom de la propriété en dessous de module. Par exemple, si vous souhaitez connaître la luminosité des LEDs de signalisation, il vous suffit de faire la requête suivante:


http://127.0.0.1:4444/bySerial/MOTORCTL-12345/api/module/luminosity

Pour modifier la valeur d'une propriété, il vous suffit de modifier l'attribut correspondant. Ainsi, pour modifier la luminosité il vous suffit de faire la requête suivante:


http://127.0.0.1:4444/bySerial/MOTORCTL-12345/api/module?luminosity=100

Contrôle des différentes fonctions du module par l'interface REST

Les fonctionnalités des modules se manipulent de la même manière. Pour connaître l'état de la fonction motor, il suffit de construire l'URL suivante.


http://127.0.0.1:4444/bySerial/MOTORCTL-12345/api/motor.txt

En revanche, si vous pouvez utiliser le nom logique du module en lieu et place de son numéro de série, vous ne pouvez pas utiliser les noms logiques des fonctions, seuls les noms hardware sont autorisés pour les fonctions.

Vous pouvez retrouver un attribut d'une fonction d'un module d'une manière assez similaire à celle utilisée avec les modules, par exemple:


http://127.0.0.1:4444/bySerial/MOTORCTL-12345/api/motor/logicalName

Assez logiquement, les attributs peuvent être modifiés de la même manière.


http://127.0.0.1:4444/bySerial/MOTORCTL-12345/api/motor?logicalName=maFonction

Vous trouverez la liste des attributs disponibles pour votre Yocto-Motor-DC au début du chapitre Programmation, concepts généraux.

Accès aux données enregistrées sur le datalogger par l'interface REST

Cette section s'applique uniquement aux modules dotés d'un enregistreur de donnée.

La version résumée des données enregistrées dans le datalogger peut être obtenue au format JSON à l'aide de l'URL suivante:


http://127.0.0.1:4444/bySerial/MOTORCTL-12345/dataLogger.json

Le détail de chaque mesure pour un chaque tranche d'enregistrement peut être obtenu en ajoutant à l'URL l'identifiant de la fonction désirée et l'heure de départ de la tranche:


http://127.0.0.1:4444/bySerial/MOTORCTL-12345/dataLogger.json?id=motor&utc=1389801080

21.4. Utilisation des librairies dynamiques

L'API Yoctopuce bas niveau est disponible sous différents formats de librairie dynamiques écrites en C, dont les sources sont disponibles avec l'API C++. Utiliser une de ces librairies bas niveau vous permettra de vous passer du Virtual Hub.

FilenamePlateforme
libyapi.dylibMax OS X
libyapi-amd64.soLinux Intel (64 bits)
libyapi-armel.soLinux ARM EL (32 bits)
libyapi-armhf.soLinux ARM HL (32 bits)
libyapi-aarch64.soLinux ARM (64 bits)
libyapi-i386.soLinux Intel (32 bits)
yapi64.dllWindows (64 bits)
yapi.dllWindows (32 bits)

Ces librairies dynamiques contiennent toutes les fonctionnalités nécessaires pour reconstruire entièrement toute l'API haut niveau dans n'importe quel langage capable d'intégrer ces librairies. Ce chapitre se limite cependant à décrire une utilisation de base des modules.

Contrôle d'un module

Les trois fonctions essentielles de l'API bas niveau sont les suivantes:


int yapiInitAPI(int connection_type, char *errmsg);
int yapiUpdateDeviceList(int forceupdate, char *errmsg);
int yapiHTTPRequest(char *device, char *request, char* buffer,int buffsize,int *fullsize, char *errmsg);

La fonction yapiInitAPI permet d'initialiser l'API et doit être appelée une fois en début du programme. Pour une connection de type USB, le paramètre connection_type doit prendre la valeur 1. errmsg est un pointeur sur un buffer de 255 caractères destiné à récupérer un éventuel message d'erreur. Ce pointeur peut être aussi mis à NULL. La fonction retourne un entier négatif en cas d'erreur, ou zéro dans le cas contraire.

La fonction yapiUpdateDeviceList gère l'inventaire des modules Yoctopuce connectés, elle doit être appelée au moins une fois. Pour pouvoir gérer le hot plug, et détecter d'éventuels nouveaux modules connectés, cette fonction devra être apellée à intervalles réguliers. Le paramètre forceupdate devra être à la valeur 1 pour forcer un scan matériel. Le paramètre errmsg devra pointer sur un buffer de 255 caractères pour récupérer un éventuel message d'erreur. Ce pointeur peut aussi être à null.Cette fonction retourne un entier négatif en cas d'erreur, ou zéro dans le cas contraire.

Enfin, la fonction yapiHTTPRequest permet d'envoyer des requêtes HTTP à l'API REST du module. Le paramètre device devra contenir le numéro de série ou le nom logique du module que vous cherchez à atteindre. Le paramètre request doit contenir la requête HTTP complète (y compris les sauts de ligne terminaux). buffer doit pointer sur un buffer de caractères suffisamment grand pour contenir la réponse. buffsize doit contenir la taille du buffer. fullsize est un pointeur sur un entier qui sera affecté à la taille effective de la réponse. Le paramètre errmsg devra pointer sur un buffer de 255 caractères pour récupérer un éventuel message d'erreur. Ce pointeur peut aussi être à null. Cette fonction retourne un entier négatif en cas d'erreur, ou zéro dans le cas contraire.

Le format des requêtes est le même que celui décrit dans la section Virtual Hub et HTTP GET. Toutes les chaînes de caractères utilisées par l'API sont des chaînes constituées de caractères 8 bits: l'Unicode et l'UTF8 ne sont pas supportés.

Le résultat retourné dans la variable buffer respecte le protocole HTTP, il inclut donc un header HTTP . Ce header se termine par deux lignes vides, c'est-à-dire une séquence de quatre caractères ASCII 13, 10, 13, 10.

Voici un programme d'exemple écrit en pascal qui utilise la DLL yapi.dll pour lire puis changer la luminosité d'un module.


// Dll functions import
function  yapiInitAPI(mode:integer;
                      errmsg : pansichar):integer;cdecl;
                      external 'yapi.dll' name 'yapiInitAPI';
function  yapiUpdateDeviceList(force:integer;errmsg : pansichar):integer;cdecl;
                      external 'yapi.dll' name 'yapiUpdateDeviceList';
function  yapiHTTPRequest(device:pansichar;url:pansichar; buffer:pansichar;
                      buffsize:integer;var fullsize:integer;
                      errmsg : pansichar):integer;cdecl;
                      external 'yapi.dll' name 'yapiHTTPRequest';

var
 errmsgBuffer  : array [0..256] of ansichar;
 dataBuffer    : array [0..1024] of ansichar;
 errmsg,data   : pansichar;
 fullsize,p    : integer;

const
  serial      = 'MOTORCTL-12345';
  getValue = 'GET /api/module/luminosity HTTP/1.1'#13#10#13#10;
  setValue = 'GET /api/module?luminosity=100 HTTP/1.1'#13#10#13#10;

begin
  errmsg  :=  @errmsgBuffer;
  data    :=  @dataBuffer;
  // API  initialization
  if(yapiInitAPI(1,errmsg)<0) then
   begin
    writeln(errmsg);
    halt;
  end;

  // forces a device inventory
  if( yapiUpdateDeviceList(1,errmsg)<0) then
    begin
     writeln(errmsg);
     halt;
   end;

  // requests the  module luminosity
  if (yapiHTTPRequest(serial,getValue,data,sizeof(dataBuffer),fullsize,errmsg)<0) then
   begin
     writeln(errmsg);
     halt;
   end;

  // searches for the HTTP header end
  p := pos(#13#10#13#10,data);

  // displays the response minus the HTTP header
  writeln(copy(data,p+4,length(data)-p-3));

  // change the luminosity
  if (yapiHTTPRequest(serial,setValue,data,sizeof(dataBuffer),fullsize,errmsg)<0) then
   begin
     writeln(errmsg);
     halt;
   end;

end.

Inventaire des modules

Pour procéder à l'inventaire des modules Yoctopuce, deux fonctions de la librairie dynamique sont nécessaires


 int yapiGetAllDevices(int *buffer,int maxsize,int *neededsize,char *errmsg);
 int yapiGetDeviceInfo(int devdesc,yDeviceSt *infos, char *errmsg);

La fonction yapiGetAllDevices permet d'obtenir la liste des modules connectés sous la forme d'une liste de handles. buffer pointe sur un tableau d'entiers 32 bits qui contiendra les handles retournés. Maxsize est la taille en bytes du buffer. neededsize contiendra au retour la taille nécessaire pour stocker tous les handles. Cela permet d'en déduire le nombre de module connectés, ou si le buffer passé en entrée est trop petit. Le paramètre errmsg devra pointer sur un buffer de 255 caractères pour récupérer un éventuel message d'erreur. Ce pointeur peut aussi être à null. Cette fonction retourne un entier négatif en cas d'erreur, ou zéro dans le cas contraire.

La fonction yapiGetDeviceInfo permet de récupérer les informations relatives à un module à partir de son handle. devdesc est un entier 32bit qui représente le module, et qui a été obtenu grâce à yapiGetAllDevices. infos pointe sur une structure de données dans laquelle sera stocké le résultat. Le format de cette structure est le suivant:

Nom TypeTaille (bytes)Description
vendorid int4ID USB de Yoctopuce
deviceid int4ID USB du module
devrelease int4Version du module
nbinbterfaces int4Nombre d'interfaces USB utilisée par le module
manufacturer char[]20Yoctopuce (null terminé)
productname char[]28Modèle (null terminé)
serial char[]20Numéro de série (null terminé)
logicalname char[]20Nom logique (null terminé)
firmware char[]22Version du firmware (null terminé)
beacon byte1Etat de la balise de localisation (0/1)

Le paramètre errmsg devra pointer sur un buffer de 255 caractères pour récupérer un éventuel message d'erreur.

Voici un programme d'exemple écrit en pascal qui utilise la DLL yapi.dll pour lister les modules connectés.


// device description structure
type yDeviceSt = packed record
   vendorid        : word;
   deviceid        : word;
   devrelease      : word;
   nbinbterfaces   : word;
   manufacturer    : array [0..19] of ansichar;
   productname     : array [0..27] of ansichar;
   serial          : array [0..19] of ansichar;
   logicalname     : array [0..19] of ansichar;
   firmware        : array [0..21] of ansichar;
   beacon          : byte;
 end;

// Dll function import
function  yapiInitAPI(mode:integer;
                      errmsg : pansichar):integer;cdecl;
                      external 'yapi.dll' name 'yapiInitAPI';

function  yapiUpdateDeviceList(force:integer;errmsg : pansichar):integer;cdecl;
                      external 'yapi.dll' name 'yapiUpdateDeviceList';

function  yapiGetAllDevices( buffer:pointer;
                             maxsize:integer;
                             var neededsize:integer;
                             errmsg : pansichar):integer; cdecl;
                             external 'yapi.dll' name 'yapiGetAllDevices';

function  apiGetDeviceInfo(d:integer; var infos:yDeviceSt;
                             errmsg : pansichar):integer;  cdecl;
                             external 'yapi.dll' name 'yapiGetDeviceInfo';


var
 errmsgBuffer  : array [0..256] of ansichar;
 dataBuffer    : array [0..127] of integer;   // max of 128 USB devices
 errmsg,data   : pansichar;
 neededsize,i  : integer;
 devinfos      : yDeviceSt;

begin
  errmsg  :=  @errmsgBuffer;

  // API  initialisation
  if(yapiInitAPI(1,errmsg)<0) then
   begin
    writeln(errmsg);
    halt;
  end;

   // forces a device inventory
  if( yapiUpdateDeviceList(1,errmsg)<0) then
    begin
     writeln(errmsg);
     halt;
   end;

  // loads all device handles into dataBuffer
  if yapiGetAllDevices(@dataBuffer,sizeof(dataBuffer),neededsize,errmsg)<0 then
    begin
     writeln(errmsg);
     halt;
    end;

  // gets device info from each handle
  for i:=0 to  neededsize div sizeof(integer)-1 do
   begin
     if (apiGetDeviceInfo(dataBuffer[i], devinfos, errmsg)<0) then
       begin
         writeln(errmsg);
         halt;
       end;
     writeln(pansichar(@devinfos.serial)+' ('+pansichar(@devinfos.productname)+')');
   end;

end.

VB6 et yapi.dll

Chaque point d'entrée de la DLL yapi.dll est disponible en deux versions, une classique C-decl, et un seconde compatible avec Visual Basic 6 préfixée avec vb6_.

21.5. Port de la librairie haut niveau

Toutes les sources de l'API Yoctopuce étant fournies dans leur intégralité, vous pouvez parfaitement entreprendre le port complet de l'API dans le langage de votre choix. Sachez cependant qu'une grande partie du code source de l'API est généré automatiquement.

Ainsi, il n'est pas nécessaire de porter la totalité de l'API, il suffit de porter le fichier yocto_api et un de ceux correspondant à une fonctionnalité, par exemple yocto_relay. Moyennant un peu de travail supplémentaire, Yoctopuce sera alors en mesure de générer tous les autres fichiers. C'est pourquoi il est fortement recommandé de contacter le support Yoctopuce avant d'entreprendre le port de la librairie Yoctopuce dans un autre langage. Un travail collaboratif sera profitable aux deux parties.

22. Programmation avancée

Les chapitres précédents vous ont présenté dans chaque language disponible les fonctions de programmation de base utilisables avec votre module Yocto-Motor-DC. Ce chapitre présente de façon plus générale une utilisation plus avancée de votre module. Les exemples sont donnés dans le language le plus populaire auprès des clients de Yoctopuce, à savoir C#. Néanmoins, vous trouverez dans les librairies de programmation pour chaque language des exemples complets illustrant les concepts présentés ici.

Afin de rester le plus concis possible, les exemples donnés dans ce chapitre ne font aucune gestion d'erreur. Ne les copiez pas tels-quels dans une application de production.

22.1. Programmation par événements

Les méthodes de gestion des modules Yoctopuce qui vous ont été présentées dans les chapitres précédents sont des fonctions de polling, qui consistent à demander en permanence à l'API si quelque chose a changé. Facile à appréhender, cette technique de programmation est n'est pas la plus efficace ni la plus réactive. C'est pourquoi l'API de programmation Yoctopuce propose aussi un modèle de programmation par événements. Cette technique consiste à demander à l'API de signaler elle-même les changements importants dès qu'ils sont détectés. A chaque fois qu'un paramètre clé change, l'API appelle une fonction de callback que vous avez prédéfinie.

Détecter l'arrivée et le départ des modules

La gestion du hot-plug est importante lorsque l'on travaille avec des modules USB, car tôt ou tard vous serez amené à brancher et débrancher un module après le lancement de votre programme. L'API a été conçue pour gérer l'arrivée et le départ inopinés des modules de manière transparente, mais votre application doit en général en tenir compte si elle veut éviter de prétendre utiliser un module qui a été débranché.

La programmation par événements est particulièrement utile pour détecter les branchements/débranchements de modules. Il est en effet plus simple de se faire signaler les branchements, que de devoir lister en permanence les modules branchés pour en déduire ceux qui sont arrivés et ceux qui sont partis. Pour pouvoir être prévenu dès qu'un module arrive, vous avez besoin de trois morceaux de code.

Le callback

Le callback est la fonction qui sera appelée à chaque fois qu'un nouveau module Yoctopuce sera branché. Elle prend en paramètre le module concerné.


 static void deviceArrival(YModule m)
 {
     Console.WriteLine("Nouveau module  : " + m.get_serialNumber());
 }

L'initialisation

Vous devez ensuite signaler à l'API qu'il faut appeler votre callback quand un nouveau module est branché.


  YAPI.RegisterDeviceArrivalCallback(deviceArrival);

Notez que si des modules sont déjà branchés lorsque le callback est enregistré, le callback sera appelé pour chacun de ces modules déjà branchés.

Déclenchement des callbacks

Un problème classique de la programmation par callbacks est que ces callbacks peuvent être appelés n'importe quand, y compris à des moments où le programme principal n'est pas prêt à les recevoir, ce qui peut avoir des effets de bords indésirables comme des dead-locks et autres conditions de course. C'est pourquoi dans l'API Yoctopuce, les callbacks d'arrivée/départs de modules ne sont appelés que pendant l'exécution de la fonction UpdateDeviceList(). Il vous suffit d'appeler UpdateDeviceList() à intervalle régulier depuis un timer ou un thread spécifique pour controller précisément quand les appels à ces callbacks auront lieu:


// boucle d'attente gérant les callback
while (true)
{  
    // callback d'arrivée / départ de modules
    YAPI.UpdateDeviceList(ref errmsg);
    // attente non active gérant les autres callbacks
    YAPI.Sleep(500, ref errmsg);
}

De manière similaire, il est possible d'avoir un callback quand un module est débranché. Vous trouverez un exemple concret démontrant toutes ces techniques dans la librairie de programmation Yoctopuce de chaque langage. L'exemple se trouve dans le répertoire Examples/Prog-EventBased.

Attention: dans la plupart des langages, les callbacks doivent être des procédures globales, et non pas des méthodes. Si vous souhaitez que le callback appelle une méthode d'un objet, définissez votre callback sous la forme d'une procédure globale qui ensuite appellera votre méthode.

23. Mise à jour du firmware

Il existe plusieurs moyens de mettre à jour le firmware des modules Yoctopuce.

23.1. Le VirtualHub ou le YoctoHub

Il est possible de mettre à jour un module directement depuis l'interface web du VirutalHub ou du YoctoHub. Il suffit d'accéder à la fenêtre de configuration du module que à mettre à jour et de cliquer sur le bouton "upgrade". Le VirtualHub démarre un assistant qui vous guidera durant la procédure de mise à jour.

Si pour une raison ou une autre, la mise à jour venait à échouer et que le module de fonctionnait plus, débranchez puis rebranchez le module en maintenant sur le Yocto-bouton appuyé. Le module va démarrer en mode "mise à jour" et sera listé en dessous des modules connectés.

23.2. La librairie ligne de commandes

Tous les outils en lignes de commandes ont la possibilité de mettre à jour les modules Yoctopuce grâce à la commande downloadAndUpdate. Le mécanisme de sélection des modules fonctionne comme pour une commande traditionnelle. La [cible] est le nom du module qui va être mis à jour. Vous pouvez aussi utiliser les alias "any" ou "all", ou encore une liste de noms, séparés par des virgules, sans espace.


C:\>Executable [options] [cible] commande [paramètres]

L'exemple suivant met à jour tous les modules Yoctopuce connectés en USB.


C:\>YModule all downloadAndUpdate
ok: Yocto-PowerRelay RELAYHI1-266C8(rev=15430) is up to date.
ok: 0 / 0 hubs in 0.000000s.
ok: 0 / 0 shields in 0.000000s.
ok: 1 / 1 devices in 0.130000s 0.130000s per device.
ok: All devices are now up to date.
C:\>

23.3. L'application Android Yocto-Firmware

Il est possible de mettre à jour le firmware de vos modules depuis votre téléphone ou tablette Android avec l'application Yocto-Firmware. Cette application liste tous les modules Yoctopuce branchés en USB et vérifie si un firmware plus récent est disponible sur www.yoctopuce.com. Si un firmware plus récent est disponible, il est possible de mettre à jour le module. L'application se charge de télécharger et d'installer le nouveau firmware en préservant les paramètres du module.

Attention, pendant la mise à jour du firmware, le module redémarre plusieurs fois. Android interprète le reboot d'un périphérique USB comme une déconnexion et reconnexion du périphérique USB, et demande à nouveau l'autorisation d'utiliser le port USB. L'utilisateur est obligé de cliquer sur OK pour que la procédure de mise à jour se termine correctement.

23.4. La librairie de programmation

Si vous avez besoin d'intégrer la mise à jour de firmware dans votre application, les librairies proposent une API pour mettre à jour vos modules.59

Sauvegarder et restaurer les paramètres

La méthode get_allSettings() retourne un buffer binaire qui permet de sauvegarder les paramètres persistants d'un module. Cette fonction est très utile pour sauvegarder la configuration réseau d'un YoctoHub par exemple.


YWireless wireless = YWireless.FindWireless("reference");
YModule m = wireless.get_module();
byte[] default_config =  m.get_allSettings();
saveFile("default.bin", default_config);
...

Ces paramètres peuvent être appliqués sur d'autres modules à l'aide de la méthode set_allSettings().


byte[] default_config = loadFile("default.bin");
YModule m = YModule.FirstModule();
while (m != null) {
  if (m.get_productName() == "YoctoHub-Wireless") {
    m.set_allSettings(default_config);
  }
  m = m.next();
}

Chercher le bon firmware

La première étape pour mettre à jour un module Yoctopuce est de trouver quel firmware il faut utiliser, c'est le travail de la méthode checkFirmware(path, onlynew) de l'objet YModule. Cette méthode vérifie que le firmware passé en argument (path) est compatible avec le module. Si le paramètre onlynew est vrai, cette méthode vérifie si le firmware est plus récent que la version qui est actuellement utilisée par le module. Quand le fichier n'est pas compatible (ou si le fichier est plus vieux que la version installée), cette méthode retourne une chaîne vide. Si au contraire le fichier est valide, la méthode retourne le chemin d'accès d'un fichier.

Le code suivant vérifie si le fichier c:\tmp\METEOMK1.17328.byn est compatible avec le module stocké dans la variable m.


YModule m = YModule.FirstModule();
...
...
string path = "c:\\tmp\METEOMK1.17328.byn";
string newfirm = m.checkFirmware(path, false);
if (newfirm != "") {
  Console.WriteLine("firmware " + newfirm + " is compatible");
}
...

Il est possible de passer un répertoire en argument (au lieu d'un fichier). Dans ce cas la méthode va parcourir récursivement tous les fichiers du répertoire et retourner le firmware compatible le plus récent. Le code suivant vérifie s'il existe un firmware plus récent dans le répertoire c:\tmp\.


YModule m = YModule.FirstModule();
...
...
string path = "c:\\tmp";
string newfirm = m.checkFirmware(path, true);
if (newfirm != "") {
  Console.WriteLine("firmware " + newfirm + " is compatible and newer");
}
...

Il est aussi possible de passer la chaîne "www.yoctopuce.com" en argument pour vérifier s'il existe un firmware plus récent publié sur le site web de Yoctopuce. Dans ce cas, la méthode retournera l'URL du firmware. Vous pourrez soit utiliser cette URL pour télécharger le firmware sur votre disque, soit utiliser cette URL lors de la mise à jour du firmware (voir ci-dessous). Bien évidemment, cette possibilité ne fonctionne que si votre machine est reliée à Internet.


YModule m = YModule.FirstModule();
...
...
string url = m.checkFirmware("www.yoctopuce.com", true);
if (url != "") {
  Console.WriteLine("new firmware is available at " + url );
}
...

Mettre à jour le firmware

La mise à jour du firmware peut prendre plusieurs minutes, c'est pourquoi le processus de mise à jour est exécuté par la librairie en arrière plan et est contrôlé par le code utilisateur à l'aide de la classe YFirmwareUdpate.

Pour mettre à jour un module Yoctopuce, il faut obtenir une instance de la classe YFirmwareUpdate à l'aide de la méthode updateFirmware d'un objet YModule. Le seul paramètre de cette méthode est le path du firmware à installer. Cette méthode ne démarre pas immédiatement la mise à jour, mais retourne un objet YFirmwareUpdate configuré pour mettre à jour le module.


string newfirm = m.checkFirmware("www.yoctopuce.com", true);
.....
YFirmwareUpdate fw_update = m.updateFirmware(newfirm);

La méthode startUpdate() démarre la mise à jour en arrière plan. Ce processus en arrière plan se charge automatiquement de:

  1. sauvegarder des paramètres du module,
  2. redémarrer le module en mode "mise à jour"
  3. mettre à jour le firmware
  4. démarrer le module avec la nouvelle version du firmware
  5. restaurer les paramètres

Les méthodes get_progress() et get_progressMessage() permettent de suivre la progression de la mise à jour. get_progress()retourne la progression sous forme de pourcentage (100 = mise à jour terminée). get_progressMessage() retourne une chaîne de caractères décrivant l'opération en cours (effacement, écriture, reboot,...). Si la méthode get_progress() retourne une valeur négative, c'est que le processus de mise à jour à échoué. Dans ce cas la méthode get_progressMessage() retourne le message d'erreur.

Le code suivant démarre la mise à jour et affiche la progression sur la sortie standard.


YFirmwareUpdate fw_update = m.updateFirmware(newfirm);
....
int status = fw_update.startUpdate();
while (status < 100 && status >= 0) {
  int newstatus = fw_update.get_progress();
  if (newstatus != status) {
    Console.WriteLine(status + "% "
      + fw_update.get_progressMessage());
  }
  YAPI.Sleep(500, ref errmsg);
  status = newstatus;
}

if (status < 0) {
  Console.WriteLine("Firmware Update failed: "
    + fw_update.get_progressMessage());
} else {
  Console.WriteLine("Firmware Updated Successfully!");
}

Particularité d'Android

Il est possible de mettre à jour un firmware d'un module en utilisant la librairie Android. Mais pour les modules branchés en USB, Android va demander à l'utilisateur d'autoriser l'application à accéder au port USB.

Pendant la mise à jour du firmware, le module redémarre plusieurs fois. Android interprète le reboot d'un périphérique USB comme une déconnexion et reconnexion du port USB, et interdit tout accès USB tant que l'utilisateur n'a pas fermé le pop-up. L'utilisateur est obligé de cliquer sur OK pour que la procédure de mise à jour puisse continuer correctement. Il n'est pas possible de mettre à jour un module branché en USB à un appareil Android sans que l'utilisateur ne soit obligé d'interagir avec l'appareil.

23.5. Le mode "mise à jour"

Si vous désirez effacer tous les paramètres du module ou que votre module ne démarre plus correctement, il est possible d'installer un firmware depuis le mode "mise à jour".

Pour forcer le module à fonctionner dans le mode "mis à jour", débranchez-le, attendez quelques secondes, et rebranchez-le en maintenant le Yocto-Bouton appuyé. Cela a pour effet de faire démarrer le module en mode "mise à jour". Ce mode de fonctionnement est protégé contre les corruptions et est toujours accessible.

Dans ce mode, le module n'est plus détecté par les objets YModules. Pour obtenir la liste des modules connectés en mode "mise à jour", il faut utiliser la fonction YAPI.GetAllBootLoaders(). Cette fonction retourne un tableau de chaînes de caractères avec le numéro de série des modules en le mode "mise à jour".


List<string> allBootLoader = YAPI.GetAllBootLoaders();

La procédure de mise à jour est identique au cas standard (voir section précédente), mais il faut instancier manuellement l'objet YFirmwareUpdate au lieu d'appeler module.updateFirmware(). Le constructeur prend en argument trois paramètres: le numéro de série du module, le path du firmware à installer, et un tableau de bytes avec les paramètres à restaurer à la fin de la mise à jour (ou null pour restaurer les paramètres d'origine).


YFirmwareUpdateupdate fw_update;
fw_update = new YFirmwareUpdate(allBootLoader[0], newfirm, null);
int status = fw_update.startUpdate();
.....

24. Référence de l'API de haut niveau

Ce chapitre résume les fonctions de l'API de haut niveau pour commander votre Yocto-Motor-DC. La syntaxe et les types précis peuvent varier d'un langage à l'autre mais, sauf avis contraire toutes sont disponibles dans chaque language. Pour une information plus précise sur les types des arguments et des valeurs de retour dans un langage donné, veuillez vous référer au fichier de définition pour ce langage (yocto_api.* ainsi que les autres fichiers yocto_* définissant les interfaces des fonctions).

Dans les langages qui supportent les exceptions, toutes ces fonctions vont par défaut générer des exceptions en cas d'erreur plutôt que de retourner la valeur d'erreur documentée pour chaque fonction, afin de faciliter le déboguage. Il est toutefois possible de désactiver l'utilisation d'exceptions à l'aide de la fonction yDisableExceptions(), si l'on préfère travailler avec des valeurs de retour d'erreur.

Ce chapitre ne reprend pas en détail les concepts de programmation décrits plus tôt, afin d'offrir une référence plus concise. En cas de doute, n'hésitez pas à retourner au chapitre décrivant en détail de chaque attribut configurable.

24.1. La classe YAPI

Fonctions générales

Ces quelques fonctions générales permettent l'initialisation et la configuration de la librairie Yoctopuce. Dans la plupart des cas, un appel à yRegisterHub() suffira en tout et pour tout. Ensuite, vous pourrez appeler la fonction globale yFind...() ou yFirst...() correspondant à votre module pour pouvoir interagir avec lui.

Pour utiliser les fonctions décrites ici, vous devez inclure:

java
import com.yoctopuce.YoctoAPI.YAPI;
dnp
import YoctoProxyAPI.YAPIProxy
cp
#include "yocto_api_proxy.h"
ml
import YoctoProxyAPI.YAPIProxy"
js
<script type='text/javascript' src='yocto_api.js'></script>
cpp
#include "yocto_api.h"
m
#import "yocto_api.h"
pas
uses yocto_api;
vb
yocto_api.vb
cs
yocto_api.cs
uwp
import com.yoctopuce.YoctoAPI.YModule;
py
from yocto_api import *
php
require_once('yocto_api.php');
ts
in HTML: import { YAPI, YErrorMsg, YModule, YSensor } from '../../dist/esm/yocto_api_browser.js';
in Node.js: import { YAPI, YErrorMsg, YModule, YSensor } from 'yoctolib-cjs/yocto_api_nodejs.js';
es
in HTML: <script src="../../lib/yocto_api.js"></script>
in node.js: require('yoctolib-es2017/yocto_api.js');
vi
YModule.vi
Fonction globales
YAPI.CheckLogicalName(name)

Vérifie si un nom donné est valide comme nom logique pour un module ou une fonction.

YAPI.ClearHTTPCallbackCacheDir(bool_removeFiles)

Désactive le cache de callback HTTP.

YAPI.DisableExceptions()

Désactive l'utilisation d'exceptions pour la gestion des erreurs.

YAPI.EnableExceptions()

Réactive l'utilisation d'exceptions pour la gestion des erreurs.

YAPI.EnableUSBHost(osContext)

Cette fonction est utilisée uniquement sous Android.

YAPI.FreeAPI()

Attends que toutes les communications en cours avec les modules Yoctopuce soient terminées puis libère les ressources utilisées par la librairie Yoctopuce.

YAPI.GetAPIVersion()

Retourne la version de la librairie Yoctopuce utilisée.

YAPI.GetCacheValidity()

Retourne la durée de validité des données chargée par la libraire.

YAPI.GetDeviceListValidity()

Retourne le délai entre chaque énumération forcée des YoctoHubs utilisés.

YAPI.GetDllArchitecture()

Retourne l'architecture du binaire de la librairie de communication Yoctopuce utilisée.

YAPI.GetDllPath()

Retourne l'emplacement sur le disque des librairies Yoctopuce utilisées.

YAPI.GetLog(lastLogLine)

Récupère les messages de logs de la librairie de communication Yoctopuce.

YAPI.GetNetworkTimeout()

Retourne le délai de connexion réseau pour yRegisterHub() et yUpdateDeviceList().

YAPI.GetTickCount()

Retourne la valeur du compteur monotone de temps (en millisecondes).

YAPI.HandleEvents(errmsg)

Maintient la communication de la librairie avec les modules Yoctopuce.

YAPI.InitAPI(mode, errmsg)

Initialise la librairie de programmation de Yoctopuce explicitement.

YAPI.PreregisterHub(url, errmsg)

Alternative plus tolerante à yRegisterHub().

YAPI.RegisterDeviceArrivalCallback(arrivalCallback)

Enregistre une fonction de callback qui sera appelée à chaque fois qu'un module est branché.

YAPI.RegisterDeviceRemovalCallback(removalCallback)

Enregistre une fonction de callback qui sera appelée à chaque fois qu'un module est débranché.

YAPI.RegisterHub(url, errmsg)

Configure la librairie Yoctopuce pour utiliser les modules connectés sur une machine donnée.

YAPI.RegisterHubDiscoveryCallback(hubDiscoveryCallback)

Enregistre une fonction de callback qui est appelée chaque fois qu'un hub réseau s'annonce avec un message SSDP.

YAPI.RegisterHubWebsocketCallback(ws, errmsg, authpwd)

Variante de la fonction yRegisterHub() destinée à initialiser l'API Yoctopuce sur une session Websocket existante, dans le cadre d'un callback WebSocket entrant.

YAPI.RegisterLogFunction(logfun)

Enregistre une fonction de callback qui sera appellée à chaque fois que l'API a quelque chose à dire.

YAPI.SelectArchitecture(arch)

Sélectionne manuellement l'architecture de la libraire dynamique à utiliser pour accéder à USB.

YAPI.SetCacheValidity(cacheValidityMs)

Change la durée de validité des données chargées par la librairie.

YAPI.SetDelegate(object)

(Objective-C uniquement) Enregistre un objet délégué qui doit se conformer au protocole YDeviceHotPlug.

YAPI.SetDeviceListValidity(deviceListValidity)

Change le délai entre chaque énumération forcée des YoctoHub utilisés.

YAPI.SetHTTPCallbackCacheDir(str_directory)

Active le cache du callback HTTP.

YAPI.SetNetworkTimeout(networkMsTimeout)

Change le délai de connexion réseau pour yRegisterHub() et yUpdateDeviceList().

YAPI.SetTimeout(callback, ms_timeout, args)

Appelle le callback spécifié après un temps d'attente spécifié.

YAPI.SetUSBPacketAckMs(pktAckDelay)

Active la quittance des paquets USB reçus par la librairie Yoctopuce.

YAPI.Sleep(ms_duration, errmsg)

Effectue une pause dans l'exécution du programme pour une durée spécifiée.

YAPI.TestHub(url, mstimeout, errmsg)

Test si un hub est joignable.

YAPI.TriggerHubDiscovery(errmsg)

Relance une détection des hubs réseau.

YAPI.UnregisterHub(url)

Configure la librairie Yoctopuce pour ne plus utiliser les modules connectés sur une machine préalablement enregistrer avec RegisterHub.

YAPI.UpdateDeviceList(errmsg)

Force une mise-à-jour de la liste des modules Yoctopuce connectés.

YAPI.UpdateDeviceList_async(callback, context)

Force une mise-à-jour de la liste des modules Yoctopuce connectés.

YAPI.CheckLogicalName()
YAPI.CheckLogicalName()
yCheckLogicalName()YAPI::CheckLogicalName()[YAPI CheckLogicalName: ]yCheckLogicalName()YAPI.CheckLogicalName()YAPI.CheckLogicalName()YAPI.CheckLogicalName()YAPI.CheckLogicalName()YAPI.CheckLogicalName()YAPI::CheckLogicalName()YAPI.CheckLogicalName()YAPI.CheckLogicalName()

Vérifie si un nom donné est valide comme nom logique pour un module ou une fonction.

js
function yCheckLogicalName(name)
cpp
bool CheckLogicalName(string name)
m
+(BOOL) CheckLogicalName:(NSString *) name
pas
boolean yCheckLogicalName(name: string): boolean
vb
function CheckLogicalName(ByVal name As String) As Boolean
cs
static bool CheckLogicalName(string name)
java
boolean CheckLogicalName(String name)
uwp
bool CheckLogicalName(string name)
py
CheckLogicalName(name)
php
function CheckLogicalName($name)
ts
async CheckLogicalName(name: string): Promise<boolean>
es
async CheckLogicalName(name)

Un nom logique valide est formé de 19 caractères au maximum, choisis parmi A..Z, a..z, 0..9, _ et -. Lorsqu'on configure un nom logique avec une chaîne incorrecte, les caractères invalides sont ignorés.

Paramètres :

nameune chaîne de caractères contenant le nom vérifier.

Retourne :

true si le nom est valide, false dans le cas contraire.

YAPI.ClearHTTPCallbackCacheDir()
YAPI.ClearHTTPCallbackCacheDir()
YAPI::ClearHTTPCallbackCacheDir()

Désactive le cache de callback HTTP.

php
function ClearHTTPCallbackCacheDir($bool_removeFiles)

Cette méthode désctive la cache de callback HTTP, et permet également d'en effacer le contenu.

Paramètres :

bool_removeFilesVrai pour effacer le contenu du répertoire de cache.

Retourne :

nothing.

YAPI.DisableExceptions()
YAPI.DisableExceptions()
yDisableExceptions()YAPI::DisableExceptions()[YAPI DisableExceptions]yDisableExceptions()YAPI.DisableExceptions()YAPI.DisableExceptions()YAPI.DisableExceptions()YAPI.DisableExceptions()YAPI::DisableExceptions()YAPI.DisableExceptions()YAPI.DisableExceptions()

Désactive l'utilisation d'exceptions pour la gestion des erreurs.

js
function yDisableExceptions()
cpp
void DisableExceptions()
m
+(void) DisableExceptions
pas
yDisableExceptions()
vb
procedure DisableExceptions()
cs
static void DisableExceptions()
uwp
void DisableExceptions()
py
DisableExceptions()
php
function DisableExceptions()
ts
async DisableExceptions(): Promise<void>
es
async DisableExceptions()

Lorsque les exceptions sont désactivées, chaque fonction retourne une valeur d'erreur spécifique selon son type, documentée dans ce manuel de référence.

YAPI.EnableExceptions()
YAPI.EnableExceptions()
yEnableExceptions()YAPI::EnableExceptions()[YAPI EnableExceptions]yEnableExceptions()YAPI.EnableExceptions()YAPI.EnableExceptions()YAPI.EnableExceptions()YAPI.EnableExceptions()YAPI::EnableExceptions()YAPI.EnableExceptions()YAPI.EnableExceptions()

Réactive l'utilisation d'exceptions pour la gestion des erreurs.

js
function yEnableExceptions()
cpp
void EnableExceptions()
m
+(void) EnableExceptions
pas
yEnableExceptions()
vb
procedure EnableExceptions()
cs
static void EnableExceptions()
uwp
void EnableExceptions()
py
EnableExceptions()
php
function EnableExceptions()
ts
async EnableExceptions(): Promise<void>
es
async EnableExceptions()

Attention, lorsque les exceptions sont activées, tout appel à une fonction de la librairie qui échoue déclenche une exception. Dans le cas où celle-ci n'est pas interceptée correctement par le code appelant, soit le debugger se lance, soit le programme de l'utilisateur est immédiatement stoppé (crash).

YAPI.EnableUSBHost()
YAPI.EnableUSBHost()
YAPI.EnableUSBHost()

Cette fonction est utilisée uniquement sous Android.

java
void EnableUSBHost(Object osContext)

Avant d'appeler yRegisterHub("usb") il faut activer le port USB host du systeme. Cette fonction prend en argument un objet de la classe android.content.Context (ou d'une sous-classe). Il n'est pas nécessaire d'appeler cette fonction pour accéder au modules à travers le réseau.

Paramètres :

En cas d'erreur, déclenche une exception
osContextun objet de classe android.content.Context (ou une sous-classe)

YAPI.FreeAPI()
YAPI.FreeAPI()
yFreeAPI()YAPI::FreeAPI()[YAPI FreeAPI]yFreeAPI()YAPI.FreeAPI()YAPI.FreeAPI()YAPI.FreeAPI()YAPI.FreeAPI()YAPI.FreeAPI()YAPI::FreeAPI()YAPI.FreeAPI()YAPI.FreeAPI()YAPI.FreeAPI()YAPI.FreeAPI()

Attends que toutes les communications en cours avec les modules Yoctopuce soient terminées puis libère les ressources utilisées par la librairie Yoctopuce.

js
function yFreeAPI()
cpp
void FreeAPI()
m
+(void) FreeAPI
pas
yFreeAPI()
vb
procedure FreeAPI()
cs
static void FreeAPI()
java
void FreeAPI()
uwp
void FreeAPI()
py
FreeAPI()
php
function FreeAPI()
ts
async FreeAPI(): Promise<void>
es
async FreeAPI()
dnp
static void FreeAPI()
cp
static void FreeAPI()

Du point de vue du système d'exploitation, il n'est en général pas nécessaire d'appeler cette fonction puisque que l'OS libèrera automatiquement les ressources allouées dès que le programme sera terminé. Cependant il existe deux situations où vous auriez un intérêt à l'appeler: - Vous désirez libérer tous les blocs de mémoire alloués dynamiquement dans le but d'identifier une source de blocs perdus par exemple. - Votre code envoie des commandes aux modules juste avant de se terminer. Les commandes étant envoyées de manière asynchrone, sans cet appel le programme risquerait de se terminer avant que toutes les commandes n'aient eu le temps de partir. Vous ne devez plus appeler aucune fonction de la librairie après avoir appelé yFreeAPI(), sous peine de crash.

YAPI.GetAPIVersion()
YAPI.GetAPIVersion()
yGetAPIVersion()YAPI::GetAPIVersion()[YAPI GetAPIVersion]yGetAPIVersion()YAPI.GetAPIVersion()YAPI.GetAPIVersion()YAPI.GetAPIVersion()YAPI.GetAPIVersion()YAPI.GetAPIVersion()YAPI::GetAPIVersion()YAPI.GetAPIVersion()YAPI.GetAPIVersion()YAPI.GetAPIVersion()YAPI.GetAPIVersion()

Retourne la version de la librairie Yoctopuce utilisée.

js
function yGetAPIVersion()
cpp
string GetAPIVersion()
m
+(NSString*) GetAPIVersion
pas
string yGetAPIVersion(): string
vb
function GetAPIVersion() As String
cs
static String GetAPIVersion()
java
static String GetAPIVersion()
uwp
static string GetAPIVersion()
py
GetAPIVersion()
php
function GetAPIVersion()
ts
async GetAPIVersion()
es
async GetAPIVersion()
dnp
static string GetAPIVersion()
cp
static string GetAPIVersion()

La version est retournée sous forme d'une chaîne de caractères au format "Majeure.Mineure.NoBuild", par exemple "1.01.5535". Pour les langages utilisant une DLL externe (par exemple C#, VisualBasic ou Delphi), la chaîne contient en outre la version de la DLL au même format, par exemple "1.01.5535 (1.01.5439)".

Si vous désirez vérifier dans votre code que la version de la librairie est compatible avec celle que vous avez utilisé durant le développement, vérifiez que le numéro majeur soit strictement égal et que le numéro mineur soit égal ou supérieur. Le numéro de build n'est pas significatif par rapport à la compatibilité de la librairie.

Retourne :

une chaîne de caractères décrivant la version de la librairie.

YAPI.GetCacheValidity()
YAPI.GetCacheValidity()
YAPI::GetCacheValidity()[YAPI GetCacheValidity]yGetCacheValidity()YAPI.GetCacheValidity()YAPI.GetCacheValidity()YAPI.GetCacheValidity()YAPI.GetCacheValidity()YAPI.GetCacheValidity()YAPI::GetCacheValidity()YAPI.GetCacheValidity()YAPI.GetCacheValidity()

Retourne la durée de validité des données chargée par la libraire.

cpp
static u64 GetCacheValidity()
m
+(u64) GetCacheValidity
pas
u64 yGetCacheValidity(): u64
vb
function GetCacheValidity() As Long
cs
ulong GetCacheValidity()
java
long GetCacheValidity()
uwp
async Task<ulong> GetCacheValidity()
py
GetCacheValidity()
php
function GetCacheValidity()
ts
async GetCacheValidity(): Promise<number>
es
async GetCacheValidity()

Cette méthode retourne la durée de mise en cache de tous les attributs des fonctions du module. Note: Cette fonction doit être appelée après yInitAPI.

Retourne :

un entier correspondant à la durée de validité attribuée aux les paramètres chargés, en millisecondes.

YAPI.GetDeviceListValidity()
YAPI.GetDeviceListValidity()
YAPI::GetDeviceListValidity()[YAPI GetDeviceListValidity]yGetDeviceListValidity()YAPI.GetDeviceListValidity()YAPI.GetDeviceListValidity()YAPI.GetDeviceListValidity()YAPI.GetDeviceListValidity()YAPI.GetDeviceListValidity()YAPI::GetDeviceListValidity()YAPI.GetDeviceListValidity()YAPI.GetDeviceListValidity()

Retourne le délai entre chaque énumération forcée des YoctoHubs utilisés.

cpp
static int GetDeviceListValidity()
m
+(int) GetDeviceListValidity
pas
LongInt yGetDeviceListValidity(): LongInt
vb
function GetDeviceListValidity() As Integer
cs
int GetDeviceListValidity()
java
int GetDeviceListValidity()
uwp
async Task<int> GetDeviceListValidity()
py
GetDeviceListValidity()
php
function GetDeviceListValidity()
ts
async GetDeviceListValidity(): Promise<number>
es
async GetDeviceListValidity()

Note: Cette fonction doit être appelée après yInitAPI.

Retourne :

le nombre de secondes entre chaque énumération.

YAPI.GetDllArchitecture()
YAPI.GetDllArchitecture()
YAPI.GetDllArchitecture()

Retourne l'architecture du binaire de la librairie de communication Yoctopuce utilisée.

dnp
static string GetDllArchitecture()

Pour Windows, l'architecture peut être "Win32" ou "Win64". Pour les machines ARM, l'architecture est "Armhf32" ou "Aarch64". Pour les autres machines Linux, l'architecture est "Linux32" ou "Linux64". Pour MacOS, l'architecture est "MacOs32" ou "MacOs64".

Retourne :

une chaîne de caractères décrivant l'architecture du binaire de la librairie de communication Yoctopuce utilisée.

YAPI.GetDllPath()
YAPI.GetDllPath()
YAPI.GetDllPath()

Retourne l'emplacement sur le disque des librairies Yoctopuce utilisées.

dnp
static string GetDllPath()

Pour les architectures qui demandent l'utilisation de plusieurs DLLs, et en particulier dans le cadre de l'utilisation de la librairie sous forme de .NET Assembly, la chaîne retournée est au format suivant: "DotNetProxy=/...; yapi=/...;", où le premier path correspond à l'emplacement de la DLL .NET Assembly, et le deuxïème path correspond à la librairie de communication de bas niveau.

Retourne :

une chaîne de caractères décrivant l'emplacement de la DLL.

YAPI.GetLog()
YAPI.GetLog()
YAPI.GetLog()YAPI.GetLog()

Récupère les messages de logs de la librairie de communication Yoctopuce.

dnp
static string GetLog(string lastLogLine)
cp
static string GetLog(string lastLogLine)

Cette méthode permet de récupérer progressivement les messages de logs, ligne par ligne. La méthode doit être appelée en boucle, jusqu'à ce qu'elle retourne une chaîne vide. Prenez garde à sortir de votre boucle dès qu'une chaîne vide est retournée, car si vous repassez une chaîne vide dans le paramètre lastLogLine lors de l'appel suivant, la fonction recommencera à énumérer les messages depuis le plus vieux message disponible.

Paramètres :

lastLogLineLors du premier appel, passez une chaîne vide. Pour les appels suivants, passez le dernier message retourné par GetLog().

Retourne :

une chaîne de caractères contenant le message de log qui suit immédiatement celui passé en argument, si une telle ligne existe. Si ce n'est pas le cas, lorsque tous les messages ont été retournés, retourne une chaîne vide.

YAPI.GetNetworkTimeout()
YAPI.GetNetworkTimeout()
YAPI::GetNetworkTimeout()[YAPI GetNetworkTimeout]yGetNetworkTimeout()YAPI.GetNetworkTimeout()YAPI.GetNetworkTimeout()YAPI.GetNetworkTimeout()YAPI.GetNetworkTimeout()YAPI.GetNetworkTimeout()YAPI::GetNetworkTimeout()YAPI.GetNetworkTimeout()YAPI.GetNetworkTimeout()YAPI.GetNetworkTimeout()YAPI.GetNetworkTimeout()

Retourne le délai de connexion réseau pour yRegisterHub() et yUpdateDeviceList().

cpp
static int GetNetworkTimeout()
m
+(int) GetNetworkTimeout
pas
LongInt yGetNetworkTimeout(): LongInt
vb
function GetNetworkTimeout() As Integer
cs
int GetNetworkTimeout()
java
int GetNetworkTimeout()
uwp
async Task<int> GetNetworkTimeout()
py
GetNetworkTimeout()
php
function GetNetworkTimeout()
ts
async GetNetworkTimeout(): Promise<number>
es
async GetNetworkTimeout()
dnp
static int GetNetworkTimeout()
cp
static int GetNetworkTimeout()

Ce délai n'affecte que les YoctoHubs et VirtualHub qui sont accessibles par réseau. Par défaut, ce délai est de 20000 millisecondes, mais en fonction de votre réseau il peut être souhaitable de changer ce délai, par exemple, si votre infrastructure réseau utilise une connexion GSM.

Retourne :

le délai de connexion réseau en millisecondes.

YAPI.GetTickCount()
YAPI.GetTickCount()
yGetTickCount()YAPI::GetTickCount()[YAPI GetTickCount]yGetTickCount()YAPI.GetTickCount()YAPI.GetTickCount()YAPI.GetTickCount()YAPI.GetTickCount()YAPI.GetTickCount()YAPI::GetTickCount()YAPI.GetTickCount()YAPI.GetTickCount()

Retourne la valeur du compteur monotone de temps (en millisecondes).

js
function yGetTickCount()
cpp
u64 GetTickCount()
m
+(u64) GetTickCount
pas
u64 yGetTickCount(): u64
vb
function GetTickCount() As Long
cs
static ulong GetTickCount()
java
static long GetTickCount()
uwp
static ulong GetTickCount()
py
GetTickCount()
php
function GetTickCount()
ts
GetTickCount(): number
es
GetTickCount()

Ce compteur peut être utilisé pour calculer des délais en rapport avec les modules Yoctopuce, dont la base de temps est aussi la milliseconde.

Retourne :

un long entier contenant la valeur du compteur de millisecondes.

YAPI.HandleEvents()
YAPI.HandleEvents()
yHandleEvents()YAPI::HandleEvents()[YAPI HandleEvents: ]yHandleEvents()YAPI.HandleEvents()YAPI.HandleEvents()YAPI.HandleEvents()YAPI.HandleEvents()YAPI.HandleEvents()YAPI::HandleEvents()YAPI.HandleEvents()YAPI.HandleEvents()

Maintient la communication de la librairie avec les modules Yoctopuce.

js
function yHandleEvents(errmsg)
cpp
YRETCODE HandleEvents(string errmsg)
m
+(YRETCODE) HandleEvents:(NSError**) errmsg
pas
integer yHandleEvents(var errmsg: string): integer
vb
function HandleEvents(ByRef errmsg As String) As YRETCODE
cs
static YRETCODE HandleEvents(ref string errmsg)
java
int HandleEvents()
uwp
async Task<int> HandleEvents()
py
HandleEvents(errmsg=None)
php
function HandleEvents(&$errmsg)
ts
async HandleEvents(errmsg: YErrorMsg | null): Promise<number>
es
async HandleEvents(errmsg)

Si votre programme inclut des longues boucles d'attente, vous pouvez y inclure un appel à cette fonction pour que la librairie prenne en charge les informations mise en attente par les modules sur les canaux de communication. Ce n'est pas strictement indispensable mais cela peut améliorer la réactivité des la librairie pour les commandes suivantes.

Cette fonction peut signaler une erreur au cas à la communication avec un module Yoctopuce ne se passerait pas comme attendu.

Paramètres :

errmsgune chaîne de caractères passée par référence, dans laquelle sera stocké un éventuel message d'erreur.

Retourne :

YAPI.SUCCESS si l'opération se déroule sans erreur.

En cas d'erreur, déclenche une exception ou retourne un code d'erreur négatif.

YAPI.InitAPI()
YAPI.InitAPI()
yInitAPI()YAPI::InitAPI()[YAPI InitAPI: ]yInitAPI()YAPI.InitAPI()YAPI.InitAPI()YAPI.InitAPI()YAPI.InitAPI()YAPI.InitAPI()YAPI::InitAPI()YAPI.InitAPI()YAPI.InitAPI()

Initialise la librairie de programmation de Yoctopuce explicitement.

js
function yInitAPI(mode, errmsg)
cpp
YRETCODE InitAPI(int mode, string errmsg)
m
+(YRETCODE) InitAPI:(int) mode :(NSError**) errmsg
pas
integer yInitAPI(mode: integer, var errmsg: string): integer
vb
function InitAPI(ByVal mode As Integer, ByRef errmsg As String) As Integer
cs
static int InitAPI(int mode, ref string errmsg)
java
int InitAPI(int mode)
uwp
async Task<int> InitAPI(int mode)
py
InitAPI(mode, errmsg=None)
php
function InitAPI($mode, &$errmsg)
ts
async InitAPI(mode: number, errmsg: YErrorMsg): Promise<number>
es
async InitAPI(mode, errmsg)

Il n'est pas indispensable d'appeler yInitAPI(), la librairie sera automatiquement initialisée de toute manière au premier appel à yRegisterHub().

Lorsque cette fonctin est utilisée avec comme mode la valeur YAPI.DETECT_NONE, il faut explicitement appeler yRegisterHub() pour indiquer à la librairie sur quel VirtualHub les modules sont connectés, avant d'essayer d'y accéder.

Paramètres :

modeun entier spécifiant le type de détection automatique de modules à utiliser. Les valeurs possibles sont YAPI.DETECT_NONE, YAPI.DETECT_USB, YAPI.DETECT_NET et YAPI.DETECT_ALL.
errmsgune chaîne de caractères passée par référence, dans laquelle sera stocké un éventuel message d'erreur.

Retourne :

YAPI.SUCCESS si l'opération se déroule sans erreur.

En cas d'erreur, déclenche une exception ou retourne un code d'erreur négatif.

YAPI.PreregisterHub()
YAPI.PreregisterHub()
yPreregisterHub()YAPI::PreregisterHub()[YAPI PreregisterHub: ]yPreregisterHub()YAPI.PreregisterHub()YAPI.PreregisterHub()YAPI.PreregisterHub()YAPI.PreregisterHub()YAPI.PreregisterHub()YAPI::PreregisterHub()YAPI.PreregisterHub()YAPI.PreregisterHub()YAPI.PreregisterHub()YAPI.PreregisterHub()

Alternative plus tolerante à yRegisterHub().

js
function yPreregisterHub(url, errmsg)
cpp
YRETCODE PreregisterHub(string url, string errmsg)
m
+(YRETCODE) PreregisterHub:(NSString *) url :(NSError**) errmsg
pas
integer yPreregisterHub(url: string, var errmsg: string): integer
vb
function PreregisterHub(ByVal url As String,
  ByRef errmsg As String) As Integer
cs
static int PreregisterHub(string url, ref string errmsg)
java
int PreregisterHub(String url)
uwp
async Task<int> PreregisterHub(string url)
py
PreregisterHub(url, errmsg=None)
php
function PreregisterHub($url, &$errmsg)
ts
async PreregisterHub(url: string, errmsg: YErrorMsg): Promise<number>
es
async PreregisterHub(url, errmsg)
dnp
static string PreregisterHub(string url)
cp
static string PreregisterHub(string url)

Cette fonction a le même but et la même paramètres que la fonction yRegisterHub(), mais contrairement à celle-ci yPreregisterHub() ne déclanche pas d'erreur si le hub choisi n'est pas joignable au moment de l'appel. Il est ainsi possible d'enregistrer un hub réseau indépendemment de la connectivité, afin de tenter de ne le contacter que lorsqu'on cherche réellement un module.

Paramètres :

urlune chaîne de caractères contenant "usb","callback", ou l'URL racine du VirtualHub à utiliser.
errmsgune chaîne de caractères passée par référence, dans laquelle sera stocké un éventuel message d'erreur.

Retourne :

YAPI.SUCCESS si l'opération se déroule sans erreur.

En cas d'erreur, déclenche une exception ou retourne un code d'erreur négatif.

YAPI.RegisterDeviceArrivalCallback()
YAPI.RegisterDeviceArrivalCallback()
yRegisterDeviceArrivalCallback()YAPI::RegisterDeviceArrivalCallback()[YAPI RegisterDeviceArrivalCallback: ]yRegisterDeviceArrivalCallback()YAPI.RegisterDeviceArrivalCallback()YAPI.RegisterDeviceArrivalCallback()YAPI.RegisterDeviceArrivalCallback()YAPI.RegisterDeviceArrivalCallback()YAPI.RegisterDeviceArrivalCallback()YAPI::RegisterDeviceArrivalCallback()YAPI.RegisterDeviceArrivalCallback()YAPI.RegisterDeviceArrivalCallback()

Enregistre une fonction de callback qui sera appelée à chaque fois qu'un module est branché.

js
function yRegisterDeviceArrivalCallback(arrivalCallback)
cpp
void RegisterDeviceArrivalCallback(yDeviceUpdateCallback arrivalCallback)
m
+(void) RegisterDeviceArrivalCallback:(yDeviceUpdateCallback) arrivalCallback
pas
yRegisterDeviceArrivalCallback(arrivalCallback: yDeviceUpdateFunc)
vb
procedure RegisterDeviceArrivalCallback(ByVal arrivalCallback As yDeviceUpdateFunc)
cs
static void RegisterDeviceArrivalCallback(yDeviceUpdateFunc arrivalCallback)
java
void RegisterDeviceArrivalCallback(DeviceArrivalCallback arrivalCallback)
uwp
void RegisterDeviceArrivalCallback(DeviceUpdateHandler arrivalCallback)
py
RegisterDeviceArrivalCallback(arrivalCallback)
php
function RegisterDeviceArrivalCallback($arrivalCallback)
ts
async RegisterDeviceArrivalCallback(arrivalCallback: YDeviceUpdateCallback| null): Promise<void>
es
async RegisterDeviceArrivalCallback(arrivalCallback)

Le callback sera appelé pendant l'éxecution de la fonction yUpdateDeviceList, que vous devrez appeler régulièrement.

Paramètres :

pour supprimer un callback déja enregistré.
arrivalCallbackune procédure qui prend un YModule en paramètre, ou null

YAPI.RegisterDeviceRemovalCallback()
YAPI.RegisterDeviceRemovalCallback()
yRegisterDeviceRemovalCallback()YAPI::RegisterDeviceRemovalCallback()[YAPI RegisterDeviceRemovalCallback: ]yRegisterDeviceRemovalCallback()YAPI.RegisterDeviceRemovalCallback()YAPI.RegisterDeviceRemovalCallback()YAPI.RegisterDeviceRemovalCallback()YAPI.RegisterDeviceRemovalCallback()YAPI.RegisterDeviceRemovalCallback()YAPI::RegisterDeviceRemovalCallback()YAPI.RegisterDeviceRemovalCallback()YAPI.RegisterDeviceRemovalCallback()

Enregistre une fonction de callback qui sera appelée à chaque fois qu'un module est débranché.

js
function yRegisterDeviceRemovalCallback(removalCallback)
cpp
void RegisterDeviceRemovalCallback(yDeviceUpdateCallback removalCallback)
m
+(void) RegisterDeviceRemovalCallback:(yDeviceUpdateCallback) removalCallback
pas
yRegisterDeviceRemovalCallback(removalCallback: yDeviceUpdateFunc)
vb
procedure RegisterDeviceRemovalCallback(ByVal removalCallback As yDeviceUpdateFunc)
cs
static void RegisterDeviceRemovalCallback(yDeviceUpdateFunc removalCallback)
java
void RegisterDeviceRemovalCallback(DeviceRemovalCallback removalCallback)
uwp
void RegisterDeviceRemovalCallback(DeviceUpdateHandler removalCallback)
py
RegisterDeviceRemovalCallback(removalCallback)
php
function RegisterDeviceRemovalCallback($removalCallback)
ts
async RegisterDeviceRemovalCallback(removalCallback: YDeviceUpdateCallback| null): Promise<void>
es
async RegisterDeviceRemovalCallback(removalCallback)

Le callback sera appelé pendant l'éxecution de la fonction yUpdateDeviceList, que vous devrez appeler régulièrement.

Paramètres :

pour supprimer un callback déja enregistré.
removalCallbackune procédure qui prend un YModule en paramètre, ou null

YAPI.RegisterHub()
YAPI.RegisterHub()
yRegisterHub()YAPI::RegisterHub()[YAPI RegisterHub: ]yRegisterHub()YAPI.RegisterHub()YAPI.RegisterHub()YAPI.RegisterHub()YAPI.RegisterHub()YAPI.RegisterHub()YAPI::RegisterHub()YAPI.RegisterHub()YAPI.RegisterHub()YAPI.RegisterHub()YAPI.RegisterHub()

Configure la librairie Yoctopuce pour utiliser les modules connectés sur une machine donnée.

js
function yRegisterHub(url, errmsg)
cpp
YRETCODE RegisterHub(string url, string errmsg)
m
+(YRETCODE) RegisterHub:(NSString *) url :(NSError**) errmsg
pas
integer yRegisterHub(url: string, var errmsg: string): integer
vb
function RegisterHub(ByVal url As String,
  ByRef errmsg As String) As Integer
cs
static int RegisterHub(string url, ref string errmsg)
java
int RegisterHub(String url)
uwp
async Task<int> RegisterHub(string url)
py
RegisterHub(url, errmsg=None)
php
function RegisterHub($url, &$errmsg)
ts
async RegisterHub(url: string, errmsg: YErrorMsg): Promise<number>
es
async RegisterHub(url, errmsg)
dnp
static string RegisterHub(string url)
cp
static string RegisterHub(string url)

Le premier paramètre détermine le fonctionnement de l'API, il peut prendre les valeurs suivantes:

usb: Si vous utilisez le mot-clé usb, l'API utilise les modules Yoctopuce connectés directement par USB. Certains languages comme PHP, Javascript et Java ne permettent pas un accès direct aux couches matérielles, usb ne marchera donc pas avec ces languages. Dans ce cas, utilisez un VirtualHub ou un YoctoHub réseau (voir ci-dessous).

x.x.x.x ou hostname: L'API utilise les modules connectés à la machine dont l'adresse IP est x.x.x.x, ou dont le nom d'hôte DNS est hostname. Cette machine peut être un ordinateur classique faisant tourner un VirtualHub, ou un YoctoHub avec réseau (YoctoHub-Ethernet / YoctoHub-Wireless). Si vous désirez utiliser le VirtualHub tournant sur votre machine locale, utilisez l'adresse IP 127.0.0.1.

callback Le mot-clé callback permet de faire fonctionnner l'API dans un mode appélé "callback HTTP". C'est un mode spécial permettant, entre autres, de prendre le contrôle de modules Yoctopuce à travers un filtre NAT par l'intermédiaire d'un VirtualHub ou d'un Hub Yoctopuce. Il vous suffit de configuer le hub pour qu'il appelle votre script à intervalle régulier. Ce mode de fonctionnement n'est disponible actuellement qu'en PHP et en Node.JS.

Attention, seule une application peut fonctionner à la fois sur une machine donnée en accès direct à USB, sinon il y aurait un conflit d'accès aux modules. Cela signifie en particulier que vous devez stopper le VirtualHub avant de lancer une application utilisant l'accès direct à USB. Cette limitation peut être contournée en passant par un VirtualHub plutôt que d'utiliser directement USB.

Si vous désirez vous connecter à un Hub, virtuel ou non, sur lequel le controle d'accès a été activé, vous devez donner le paramètre url sous la forme:

http://nom:mot_de_passe@adresse:port

Vous pouvez appeller RegisterHub plusieurs fois pour vous connecter à plusieurs machines différentes.

Paramètres :

urlune chaîne de caractères contenant "usb","callback", ou l'URL racine du VirtualHub à utiliser.
errmsgune chaîne de caractères passée par référence, dans laquelle sera stocké un éventuel message d'erreur.

Retourne :

YAPI.SUCCESS si l'opération se déroule sans erreur.

En cas d'erreur, déclenche une exception ou retourne un code d'erreur négatif.

YAPI.RegisterHubDiscoveryCallback()
YAPI.RegisterHubDiscoveryCallback()
YAPI::RegisterHubDiscoveryCallback()[YAPI RegisterHubDiscoveryCallback: ]yRegisterHubDiscoveryCallback()YAPI.RegisterHubDiscoveryCallback()YAPI.RegisterHubDiscoveryCallback()YAPI.RegisterHubDiscoveryCallback()YAPI.RegisterHubDiscoveryCallback()YAPI.RegisterHubDiscoveryCallback()YAPI.RegisterHubDiscoveryCallback()YAPI.RegisterHubDiscoveryCallback()

Enregistre une fonction de callback qui est appelée chaque fois qu'un hub réseau s'annonce avec un message SSDP.

cpp
void RegisterHubDiscoveryCallback(YHubDiscoveryCallback hubDiscoveryCallback)
m
+(void) RegisterHubDiscoveryCallback: (YHubDiscoveryCallback) hubDiscoveryCallback
pas
yRegisterHubDiscoveryCallback(hubDiscoveryCallback: YHubDiscoveryCallback)
vb
procedure RegisterHubDiscoveryCallback(ByVal hubDiscoveryCallback As YHubDiscoveryCallback)
cs
static void RegisterHubDiscoveryCallback(YHubDiscoveryCallback hubDiscoveryCallback)
java
void RegisterHubDiscoveryCallback(HubDiscoveryCallback hubDiscoveryCallback)
uwp
async Task RegisterHubDiscoveryCallback(HubDiscoveryHandler hubDiscoveryCallback)
py
RegisterHubDiscoveryCallback(hubDiscoveryCallback)
ts
async RegisterHubDiscoveryCallback(hubDiscoveryCallback: YHubDiscoveryCallback): Promise<number>
es
async RegisterHubDiscoveryCallback(hubDiscoveryCallback)

la fonction de callback reçois deux chaînes de caractères en paramètre La première chaîne contient le numéro de série du hub réseau et la deuxième chaîne contient l'URL du hub. L'URL peut être passée directement en argument à la fonction yRegisterHub. Le callback sera appelé pendant l'exécution de la fonction yUpdateDeviceList, que vous devrez appeler régulièrement.

Paramètres :

utilisez null.
hubDiscoveryCallbackune procédure qui prend deux chaîne de caractères en paramètre, le numéro de série et l'URL du hub découvert. Pour supprimer un callback déjà enregistré,

YAPI.RegisterHubWebsocketCallback()
YAPI.RegisterHubWebsocketCallback()

Variante de la fonction yRegisterHub() destinée à initialiser l'API Yoctopuce sur une session Websocket existante, dans le cadre d'un callback WebSocket entrant.

Paramètres :

wsl'objet WebSocket lié à au callback WebSocket entrant.
errmsgune chaîne de caractères passée par référence, dans laquelle sera stocké un éventuel message d'erreur.
authpwdle mot de passe optionnel, nécessaire seulement si une authentification WebSocket est configurée sur le hub appelant.

Retourne :

YAPI.SUCCESS si l'opération se déroule sans erreur.

En cas d'erreur, déclenche une exception ou retourne un code d'erreur négatif.

YAPI.RegisterLogFunction()
YAPI.RegisterLogFunction()
YAPI::RegisterLogFunction()[YAPI RegisterLogFunction: ]yRegisterLogFunction()YAPI.RegisterLogFunction()YAPI.RegisterLogFunction()YAPI.RegisterLogFunction()YAPI.RegisterLogFunction()YAPI.RegisterLogFunction()YAPI.RegisterLogFunction()YAPI.RegisterLogFunction()

Enregistre une fonction de callback qui sera appellée à chaque fois que l'API a quelque chose à dire.

cpp
void RegisterLogFunction(yLogFunction logfun)
m
+(void) RegisterLogFunction:(yLogCallback) logfun
pas
yRegisterLogFunction(logfun: yLogFunc)
vb
procedure RegisterLogFunction(ByVal logfun As yLogFunc)
cs
static void RegisterLogFunction(yLogFunc logfun)
java
void RegisterLogFunction(LogCallback logfun)
uwp
void RegisterLogFunction(LogHandler logfun)
py
RegisterLogFunction(logfun)
ts
async RegisterLogFunction(logfun: YLogCallback): Promise<number>
es
async RegisterLogFunction(logfun)

Utile pour débugger le fonctionnement de l'API.

Paramètres :

ou null pour supprimer un callback déja enregistré.
logfunune procedure qui prend une chaîne de caractère en paramètre,

YAPI.SelectArchitecture()
YAPI.SelectArchitecture()
YAPI.SelectArchitecture()

Sélectionne manuellement l'architecture de la libraire dynamique à utiliser pour accéder à USB.

py
SelectArchitecture(arch)

Par défaut, la libraire Python détecte automatiquement la version de la libraire dynamique à utiliser pour accéder au port USB. Sous Linux ARM il n'est pas possible de détecter de manière fiable si il s'agit d'une installation Soft float (armel) ou Hard float (armhf). Dans ce cas, il est donc recommendé d'appeler SelectArchitecture() avant tout autre appel à la librairie pour forcer l'utilisation d'une architecture spécifiée.

Paramètres :

archune chaîne de caractère spécifiant l'architecture à utiliser. Les valeurs possibles sont "armhf","armel", "aarch64","i386","x86_64", "32bit", "64bit"

Retourne :

rien.

En cas d'erreur, déclenche une exception.

YAPI.SetCacheValidity()
YAPI.SetCacheValidity()
YAPI::SetCacheValidity()[YAPI SetCacheValidity: ]ySetCacheValidity()YAPI.SetCacheValidity()YAPI.SetCacheValidity()YAPI.SetCacheValidity()YAPI.SetCacheValidity()YAPI.SetCacheValidity()YAPI::SetCacheValidity()YAPI.SetCacheValidity()YAPI.SetCacheValidity()

Change la durée de validité des données chargées par la librairie.

cpp
static void SetCacheValidity(u64 cacheValidityMs)
m
+(void) SetCacheValidity: (u64) cacheValidityMs
pas
ySetCacheValidity(cacheValidityMs: u64)
vb
procedure SetCacheValidity(ByVal cacheValidityMs As Long)
cs
void SetCacheValidity(ulong cacheValidityMs)
java
void SetCacheValidity(long cacheValidityMs)
uwp
async Task SetCacheValidity(ulong cacheValidityMs)
py
SetCacheValidity(cacheValidityMs)
php
function SetCacheValidity($cacheValidityMs)
ts
async SetCacheValidity(cacheValidityMs: number): Promise<void>
es
async SetCacheValidity(cacheValidityMs)

Par défaut, lorsqu'on accède à un module, tous les attributs des fonctions du module sont automatiquement mises en cache pour la durée standard (5 ms). Cette méthode peut être utilisée pour changer cette durée, par exemple dans le but de réduire le trafic réseau ou USB. Ce paramètre n'affecte pas les callbacks de changement de valeur Note: Cette fonction doit être appelée après yInitAPI.

Paramètres :

cacheValidityMsun entier correspondant à la durée de validité attribuée aux les paramètres chargés, en millisecondes.

YAPI.SetDelegate()
YAPI.SetDelegate()
[YAPI SetDelegate: ]

(Objective-C uniquement) Enregistre un objet délégué qui doit se conformer au protocole YDeviceHotPlug.

m
+(void) SetDelegate:(id) object

Les méthodes yDeviceArrival et yDeviceRemoval seront appelées pendant l’exécution de la fonction yUpdateDeviceList, que vous devrez appeler régulièrement.

Paramètres :

pour supprimer un objet déja enregistré.
objectun objet qui soit se conformer au protocole YAPIDelegate, ou nil

YAPI.SetDeviceListValidity()
YAPI.SetDeviceListValidity()
YAPI::SetDeviceListValidity()[YAPI SetDeviceListValidity: ]ySetDeviceListValidity()YAPI.SetDeviceListValidity()YAPI.SetDeviceListValidity()YAPI.SetDeviceListValidity()YAPI.SetDeviceListValidity()YAPI.SetDeviceListValidity()YAPI::SetDeviceListValidity()YAPI.SetDeviceListValidity()YAPI.SetDeviceListValidity()

Change le délai entre chaque énumération forcée des YoctoHub utilisés.

cpp
static void SetDeviceListValidity(int deviceListValidity)
m
+(void) SetDeviceListValidity: (int) deviceListValidity
pas
ySetDeviceListValidity(deviceListValidity: LongInt)
vb
procedure SetDeviceListValidity(ByVal deviceListValidity As Integer)
cs
void SetDeviceListValidity(int deviceListValidity)
java
void SetDeviceListValidity(int deviceListValidity)
uwp
async Task SetDeviceListValidity(int deviceListValidity)
py
SetDeviceListValidity(deviceListValidity)
php
function SetDeviceListValidity($deviceListValidity)
ts
async SetDeviceListValidity(deviceListValidity: number): Promise<void>
es
async SetDeviceListValidity(deviceListValidity)

Par défaut la librairie effectue une énumération complète toute les 10 secondes. Pour réduire le trafic réseau, il est possible d'augmenter ce délai. C'est particulièrement utile lors un YoctoHub est connecté à un réseau GSM où le trafic est facturé. Ce paramètre n'affecte pas les modules connectés par USB, ni le fonctionnement des callback de connexion/déconnexion de module. Note: Cette fonction doit être appelée après yInitAPI.

Paramètres :

deviceListValiditynombre de secondes entre chaque énumération.

YAPI.SetHTTPCallbackCacheDir()
YAPI.SetHTTPCallbackCacheDir()
YAPI::SetHTTPCallbackCacheDir()

Active le cache du callback HTTP.

php
function SetHTTPCallbackCacheDir($str_directory)

Le cache du callback HTTP permet de réduire de 50 à 70 % la quantité de données transmise au script PHP. Pour activer le cache, la méthode ySetHTTPCallbackCacheDir() doit être appelée avant premier appel à yRegisterHub(). Cette méthode prend en paramètre le path du répertoire dans lequel seront stockés les données entre chaque callback. Ce répertoire doit exister et le script PHP doit y avoir les droits d'écriture. Il est recommandé d'utiliser un répertoire qui n'est pas accessible depuis le serveur Web, car la librairie va y stocker des données provenant des modules Yoctopuce.

Note : Cette fonctionnalité est supportée par les YoctoHub et VirtualHub depuis la version 27750

Paramètres :

str_directoryle path du répertoire utilisé comme cache.

Retourne :

nothing.

On failure, throws an exception.

YAPI.SetNetworkTimeout()
YAPI.SetNetworkTimeout()
YAPI::SetNetworkTimeout()[YAPI SetNetworkTimeout: ]ySetNetworkTimeout()YAPI.SetNetworkTimeout()YAPI.SetNetworkTimeout()YAPI.SetNetworkTimeout()YAPI.SetNetworkTimeout()YAPI.SetNetworkTimeout()YAPI::SetNetworkTimeout()YAPI.SetNetworkTimeout()YAPI.SetNetworkTimeout()YAPI.SetNetworkTimeout()YAPI.SetNetworkTimeout()

Change le délai de connexion réseau pour yRegisterHub() et yUpdateDeviceList().

cpp
static void SetNetworkTimeout(int networkMsTimeout)
m
+(void) SetNetworkTimeout: (int) networkMsTimeout
pas
ySetNetworkTimeout(networkMsTimeout: LongInt)
vb
procedure SetNetworkTimeout(ByVal networkMsTimeout As Integer)
cs
void SetNetworkTimeout(int networkMsTimeout)
java
void SetNetworkTimeout(int networkMsTimeout)
uwp
async Task SetNetworkTimeout(int networkMsTimeout)
py
SetNetworkTimeout(networkMsTimeout)
php
function SetNetworkTimeout($networkMsTimeout)
ts
async SetNetworkTimeout(networkMsTimeout: number): Promise<void>
es
async SetNetworkTimeout(networkMsTimeout)
dnp
static void SetNetworkTimeout(int networkMsTimeout)
cp
static void SetNetworkTimeout(int networkMsTimeout)

Ce délai n'affecte que les YoctoHubs et VirtualHub qui sont accessibles par réseau. Par défaut ce délai est de 20000 millisecondes, mais en fonction de votre réseau il peut être souhaitable de changer ce délai, par exemple si votre infrastructure réseau utilise une connexion GSM.

Paramètres :

networkMsTimeoutle délais de connexion réseau en millisecondes.

YAPI.SetTimeout()
YAPI.SetTimeout()
ySetTimeout()YAPI.SetTimeout()YAPI.SetTimeout()

Appelle le callback spécifié après un temps d'attente spécifié.

js
function ySetTimeout(callback, ms_timeout, args)
ts
SetTimeout(callback: Function, ms_timeout: number): number
es
SetTimeout(callback, ms_timeout, args)

Cette fonction se comporte plus ou moins comme la fonction Javascript setTimeout, mais durant le temps d'attente, elle va appeler yHandleEvents et yUpdateDeviceList périodiquement pour maintenir l'API à jour avec les modules connectés.

Paramètres :

callbackla fonction à appeler lorsque le temps d'attente est écoulé. Sous Microsoft Internet Explorer, le callback doit être spécifié sous forme d'une string à évaluer.
ms_timeoutun entier correspondant à la durée de l'attente, en millisecondes
argsdes arguments supplémentaires peuvent être fournis, pour être passés à la fonction de callback si nécessaire.

Retourne :

YAPI.SUCCESS si l'opération se déroule sans erreur.

En cas d'erreur, déclenche une exception ou retourne un code d'erreur négatif.

YAPI.SetUSBPacketAckMs()
YAPI.SetUSBPacketAckMs()
YAPI.SetUSBPacketAckMs()

Active la quittance des paquets USB reçus par la librairie Yoctopuce.

java
void SetUSBPacketAckMs(int pktAckDelay)

Cette fonction permet à la librairie de fonctionner même sur les téléphones Android qui perdent des paquets USB. Par défaut, la quittance est désactivée, car elle double le nombre de paquets échangés et donc ralentit sensiblement le fonctionnement de L'API. La quittance des paquets USB ne doit donc être activée que sur des tablette ou des téléphones qui posent problème. Un délais de 50 millisecondes est en général suffisant. En cas de doute contacter le support Yoctopuce. Pour désactiver la quittance des paquets USB, appeler cette fonction avec la valeur 0. Note : Cette fonctionnalité est disponible uniquement sous Android.

Paramètres :

le dernier paquet USB.
pktAckDelaynombre de ms avant que le module ne renvoie

YAPI.Sleep()
YAPI.Sleep()
ySleep()YAPI::Sleep()[YAPI Sleep: ]ySleep()YAPI.Sleep()YAPI.Sleep()YAPI.Sleep()YAPI.Sleep()YAPI.Sleep()YAPI::Sleep()YAPI.Sleep()YAPI.Sleep()

Effectue une pause dans l'exécution du programme pour une durée spécifiée.