Yocto-Relay

User's guide

Table of contents

L INEFOAUCTION ot 1
1.1, Safety INTOrMaAtionviiiiic e e e e e e e e e e e 2
1.2. Environmental CONAITIONS ...ooiiiiiiiiiiiii et e e e e e 3
2. PreSeNtatioN ... 5
2.1. COMMON ElEMENTS ..ottt ettt e e s et e e e s e b e e e e e e abbnreeaeeeaees 5
P S o 1= ot} o =Y =T g =] SO 7
2.3. FUNCLIONAL ISOIALION ...ttt e st e e e e e nb e e e e e e e nnneeeeeas 7
P @ o] A o] g F= L= Lo o 2] o 4 == 7
S FIISE STBPS ot 11
o Tt I o 1= /=T [U= =SSO 11
3.2. TesSting USB CONNECLIVITY ..ocoiiiiiiiiii it e e e e e e e e e e aaaaaeas 12
TG T o Yo 1 2 1§ o] o [Pt 13
3.4. Test Of the MOAUIE .ot e e e e 13
3.5, CONFIGUIALION ittt e e ettt e e e s et b e e e e s s e nbbe e e e e e e anbbeeeaaeas 13
4. Assembly and CONNECLIONS ... 15
g o D Yo PR PRRRP 15
4.2. ASSEMDBDIY EXAMPIES oottt aaaaaes 16
4.3. Electro-magnetic relays and COIlSccccuviiiiiiiiiiiiiiic e 16
4.4. USB POWET AiSTIHDULION ..ttt e e 16
5. Programming, general CONCEPLS ..o 19
5.1. Programming PAradigm eeeeeooiirieieiee ettt e et e e e st r e e s e e s ea e 19
5.2. The YOCtO-Relay MOUUIEuuiiiieiiiiiiiiiiiee et r e e e e e e e e e e e e e e e e s e nnnnes 21
LG T 1Y (o To LU =P PPPPRPRPRRR 21
Lo L - RSP 22
5.5. What interface: Native, DLL OF SEIVICE 2 oottt e e e e e e 23
5.6. Programming, Where t0 STArt? ...ttt 26
6. Using the Yocto-Relay in command line ... 27
0 I [K= = 1 T Yo PP PPRPPPPTP 27
6.2. Use: general deSCriPLION ..ot e e e et e e e e e e e e e e s s s e s s s s e reerneeeees 27

www.yoctopuce.com iii

6.3. Control of the Relay fUNCLION ... e e e 28

6.4. Control of the MOAUIE PArt ... e 28
oI T 411 = 1 o o B PP EPPUUPURRRRR 29
7. Using the Yocto-Relay with PYthon ..., 31
7.0 SOUICE TIlES ittt e e e sttt e e e e s st et e e e e s annnne e e e e e 31
7.2. DYNAMIC [IDIArY oottt e et e e e e e e e e e e e e e e e e e e e 31
7.3. Control of the Relay fUNCLION ..o 31
7.4. Control of the MOAUIE PANTeeeiiiie e e e e e e e e e e e ennnes 33
48T =3 o] g o = o |11 Vo P 35
8. Using Yocto-Relay With CHt .o 37
8.1. Control of the Relay fUNCLION ..o 37
8.2. Control of the MOAUIE PANTeiiiiiiiiiie e e 39
S TR T = o o] o = e |11 Vo P 42
8.4. Integration variants for the C++ Yoctopuce library ..o, 42
9. Using Yocto-Relay With CH# ... 45
0.0, INSTAIIALION oo bbbt r e e e e e e et e e e e e e e e e e e e e e e e e e e aaaae 45
9.2. Using the Yoctopuce APl in a Visual CH Projectcccccociiriiiiiiiiiiiieieeeeee e 45
9.3. Control of the Relay fUNCLION ... 46
9.4. Control of the MOAUIE PAIToooi i 48
1S IR T = o] o = e 11 Vo SO 50
10. Using the Yocto-Relay with LADVIEWcc.coooimoioeeeeeeeeeeeeeeeee e 53
O T N o 1] €= To3 U = TP PRPPRP 53
T2 @70 101 o T= L | o1 1 VPSR PRPP 54
(O RCT [53 = 11 F= AT o] o E PO PSP PP PPUPTPPPPPP 54
10.4. Presentation Of YOCTOPUCE VISuiiiiiiiiiiiiiiiiece ettt a e e e e 59
10.5. FUNCLiONIiNG @nd USE OF VIS ittt e e e e e e e e e e 62
L0180 S 1 o o PR 64
10.7. Managing the data l0gger ... 66
L0.8. FUNCTION TIST ettt ettt e e e e e e e e e e s e e e s s e e bbbt e e e e e e e eeeaaaeaaeens 67
10.9. A WOrd ON PEIrfOIMANCES ...uiiiiiiiiiiiiieiie s e ennnes 68
10.10. A full example of @ LAbVIEW PrOogram ...t e siieeee s 68
10.11. Differences from other YOCIOPUCE APISoooiiiiiiiiiiiie e 69
11. Using the Yocto-Relay With Java ... 71
IS O = Yo T == T PP 71
11.2. Control of the Relay fUNCLION ... 71
11.3. Control of the MOdUIE PArt ... e 73
IS S o T =1 T 1 o SRR 75
12. Using the Yocto-Relay with ANdroid ... 77
12.1. Native access and VirtualHUD ... 77
i €1] o o T T To | TP URTPR 77
028G T 0o T ¢ 1 F=1 €1 o1 111 EE RPN 77
12.4. Activating the USB port under ANdroidccccvviiiiiiiiiiiiieeiceeeceeee e 78
12.5. Control of the Relay fUNCLION ... 79
12.6. Control of the MOAUIE PArtcoeeeieeiee e eeeees 82
D2 R = 0T o = T 1 T o SRR 86

www.yoctopuce.com

13. Using Yocto-Relay with TYpeSCript ..o 89

13.1. Using the Yoctopuce library for TYPESCIIPLvuiiiiiiiiiiiiiieiiieeeeee e 90
13.2. Refresher on asynchronous 1/O in JavaScCript ... 90
13.3. Control of the Relay fUNCLION ... 91
13.4. Control of the MOAUIE PArtcoeeieeiiie e eeees 94
IR ST =1 0T o =12 T 1 1T o [PPSR 96
14. Using Yocto-Relay with JavaScript / ECmaScript ..o, 97
14.1. Blocking I/0 versus Asynchronous 1/O in JavaScCriptcccccoviiiiiieiniiiiiiee e 97
14.2. Using Yoctopuce library for JavaScript / EcmaScript 2017ccccvveeiiiiiiieieeeen 98
14.3. Control of the Relay fUNCLION ... 100
14.4. Control of the MOAUIE PArt ... et e e e 103
145, Error NANAIING oo e e e e e et e e e e e e e e e e e e s aaaaaaa 106
15. Using Yocto-Relay With PHP ... 107
ST I =Y Yo T == T PP 107
15.2. Control of the Relay fUNCLION ... 107
15.3. Control of the MOdUIe PArt ... e 109
15.4. HTTP callback APl and NAT filters ... 112
TN = o T g o =Yoo | 1T s T PSPPI 115
16. Using Yocto-Relay with Visual Basic .NET ..., 117
LT8O [X3 = 11 =LA T] o O SRTP 117
16.2. Using the Yoctopuce APl in a Visual BasiC Projectcccccceeeviiiiiiiiiiiiciiiiieiieeeeeeen 117
16.3. Control of the Relay fUNCLION ... 118
16.4. Control of the MOAUIE PArt ... e e e e 119
16.5. Error NANAIING oot e e e et e e e e e e e e e e e e s e aanans 122
17. Using Yocto-Relay with Delphi ..o 123
A O = =T o = L= Lo SO 123
17.2. Control of the Relay fUNCLION ... 123
17.3. Control of the MOdUIE PArtcccoeii i 125
17.4. Error NANAIING oo s ra et e e e e e e e e e e e anaaaaan 128
18. Using the Yocto-Relay with Universal Windows Platform 129
18.1. Blocking and asynchronous fUNCLIONS ... 129
2 [L] = 11 = 11 Lo o PP PO TP PP 130
18.3. Using the Yoctopuce APl in a Visual Studio projectcccccccccccveeviiieeeeeeeeeeieeeessenns 130
18.4. Control of the Relay fUNCLIONoiii e 131
18.5. Areal EXAMPIE oo 132
18.6. Control of the MOdUIE PArtcooiiiii i 132
R T = o T g o =Y o o | 1T s T PRSPPI 135
19. Using Yocto-Relay with Objective-C ..., 137
19.1. Control of the Relay fUNCLION ... 137
19.2. Control of the MOdUIE PArtccoeiiii e 139
I RGN =1 0T g o =10 T 1 T o PP SEERERURPRRR 141
20. Using with unsupported languages ..., 143
P20 B I 0 171 4 =T Lo BN 1 [P PERPT R 143
20.2. INET ASSEMIDIY it e e ettt e e e e aaaaaeeaneea e e aananaane 143

www.yoctopuce.com \

20.3. VirtualHub and HTTP GET ...t 145

20.4. Using dynamic lIDrari@S ...t 147
20.5. Porting the high [evel lIDrary ... 150
21. Advanced Programming ... 151
21.1. EVENT PrOQramMMIUNG .oeeeeeeeeeeieieeeieeeeeeeeeeaeesesssssassaaassnsssnssssneeeeerrerereeeeeaaeeeessseannannansnsssnnes 151
22. FIrMWaAre UPAALte ... 153
22.1. The VirtualHub or the YOCtOHUDcooiiiiiii e 153
22.2. The command lINE HTDFAry ..ot 153
22.3. The Android application YOCIO-FiIrMWAI®ccccieeiiiiiiiiiiiiiee it 153
22.4. Updating the firmware with the programming libraryccccciiiiiiiiiiiiiiieieee, 154
22.5. The "UPAAte” MOAE ..oooiieeiii et e e e e st e e e e e s anneeee e s 156
23. High-level APl REfEIENCE ... 157
b2 T I O - T S 41 = PSSR 158
23.2. ClaSS YMOUUIE ...ttt e e s et e e e s bbb e e e e s e anbb e e s 199
23.3. ClaSS YREIAY .oooeiiiiiiiiii et aaaaaaaaaan 276
24, TroubleSNOOtING ..o 339
24. 1. WREIE 10 STAIT? oot e et e e e e e e e e aaaaaaaaeaeeeaassaanaannans 339
24.2. Programming examples don't SEem t0 WOIKooooiiiiiiiiiiiiiiiiiieeeeeeeee e 339
24.3. LiNUX @NA USB ...ttt et e e e st e e e e s e bbb e e e e e s e annbe e e s 339
24.4. ARM Platforms: HF and EL ...t 340
24.5. Powered module but invisible for the OS ... 340
24.6. Another process named xxx is already using YAPI ... 340
24.7. Disconnections, erratiCc DENAVIOrooouveiiiii e 340
R F PSR R 341
/e I D] oY o] o1=To I oo 1412 = T Lo K= PP 341
24.10. DAMAQEA GBVICE ittt a e bbbt e et e et et e e e aaaaaeeeaeseaessaanaannnn 341
25. CRAlACIEIISTICS ..o 343

vi www.yoctopuce.com

1. Introduction

The Yocto-Relay module is a small 45x20mm module which allows you to control small relays by
USB. These relays can commute up to 60V DC and 2A, max. 60W, which allows you to pilot small
low-voltage equipments by acting directly on their power supply, or by emulating a switch button. The
module small dimensions enable it to be slipped almost anywhere, including inside the piloted
equipment.

The Yocto-Relay module

The Yocto-Relay is not in itself a complete product. It is a component intended to be integrated into a
solution used in laboratory equipments, or in industrial process-control equipments, or for similar
applications in domestic and commercial environments. In order to use it, you must at least install it
in a protective enclosure and connect it to a host computer.

Yoctopuce thanks you for buying this Yocto-Relay and sincerely hopes that you will be satisfied with
it. The Yoctopuce engineers have put a large amount of effort to ensure that your Yocto-Relay is
easy to install anywhere and easy to drive from a maximum of programming languages. If you are
nevertheless disappointed with this module, or if you need additional information, do not hesitate to
contact Yoctopuce support:

E-mail address: support@yoctopuce.com
Web site: www.yoctopuce.com
Postal address: Chemin des Journaliers, 1
ZIP code, city: 1236 Cartigny

Country: Switzerland

www.yoctopuce.com 1

1. Introduction

1.1. Safety Information

The Yocto-Relay is designed to meet the requirements of IEC 61010-1:2010 safety standard. It does
not create any serious hazards to the operator and surrounding area, even in single fault condition,
as long as it is integrated and used according to the instructions contained in this documentation, and
in this section in particular.

Protective enclosure

The Yocto-Relay should not be used without a protective enclosure, because of the accessible bare
electronic components. For optimal safety, it should be put into a non-metallic, non-inflammable
enclosure, resistant to a mechanical stress level of 5 J. For instance, use a polycarbonate (e.g.
LEXAN) enclosure rated IK08 with a IEC 60695-11-10 flammability rating of V-1 or better. Using a
lower quality enclosure may require specific warnings for the operator and/or compromise conformity
with the safety standard.

Maintenance

If a damage is observed on the electronic board or on the enclosure, it should be replaced in order to
ensure continued safety of the equipment, and to prevent damaging other parts of the system due to
overload that a short circuit could cause.

Identification

In order to ease the maintenance and the identification of risks during maintenance, you should
affixate the water-resistant identification label provided together with the electronic board as close as
possible to the device. If the device is put in a dedicated enclosure, the identification label should be
affixated on the outside of the enclosure. This label is resistant to humidity, and can hand rubbing
with a piece of cloth soaked with water.

Identification label is integrated in the package label.

Application

The safety standard applied is intended to cover laboratory equipment, industrial process-control
equipment and similar applications in residential or commercial environment. If you intend to use the
Yocto-Relay for another kind of application, you should check the safety regulations according to the
standard applicable to your application.

In particular, the Yocto-Relay is not certified for use in medical environments or for life-support
applications.

Environment

The Yocto-Relay is not certified for use in hazardous locations, explosive environments, or life-
threatening applications. Environmental ratings are provided below.

2 www.yoctopuce.com

1. Introduction

IEC 61140 Protection Class lli

The Yocto-Relay has been designed to work with safety extra-low voltages only. Do not
exceed voltages indicated in this manual, and never connect to the Yocto-Relay
terminal blocks any wire that could be connected to the mains.

1.2. Environmental conditions

Yoctopuce devices have been designed for indoor use in a standard office or laboratory environment
(IEC 60664 pollution degree 2): air pollution is expected to be limited and mainly non-conductive.
Relative humidity is expected to be between 10% and 90% RH, non condensing. Use in
environments with significant solid pollution or conductive pollution requires a protection from such
pollution using an IP67 or IP68 enclosure. The products are designed for use up to altitude 2000m.

All Yoctopuce devices are warranted to perform according to their documentation and technical
specifications under normal temperature conditions according to IEC61010-1, i.e. 5°C to 40°C. In
addition, most devices can also be used on an extended temperature range, where some limitations
may apply from case to case.

The extended operating temperature range for the Yocto-Relay is -30...85°C. This temperature range
has been determined based on components manufacturer recommendations, and on controlled
environment tests performed during a limited duration (1h). If you plan to use the Yocto-Relay in
harsh environments for a long period of time, we strongly advise you to run extensive tests before
going to production.

www.yoctopuce.com 3

www.yoctopuce.com

2. Presentation

|

O oane
LOWI
021XV

1: USB socket 4: Input of relay 1 9: Input of relay 2

2: Yocto-button 5: Output A of relay 1 10: Output A of relay 2

3: Yocto-led 6: Output B of relay 1 11: Output B of relay 2
7: Output A led of relay1 12: Output A led of relay 2
8: Qutput B led of relay 1 13: Output B led of relay 2

2.1. Common elements
All Yocto-modules share a number of common functionalities.

USB connector

Yoctopuce modules all come with a USB 2.0 micro-B socket. Warning: the USB connector is simply
soldered in surface and can be pulled out if the USB plug acts as a lever. In this case, if the tracks
stayed in position, the connector can be soldered back with a good iron and using flux to avoid

www.yoctopuce.com 5

2. Presentation

bridges. Alternatively, you can solder a USB cable directly in the 1.27mm-spaced holes near the
connector.

If you plan to use a power source other then a standard USB host port to power the device through
the USB connector, that power source must respect the assigned values of USB 2.0 specifications:

* Voltage min.: 4.75V DC
* Voltage max.: 5.25V DC
» Over-current protection: 5.0 A max.

A higher voltage is likely to destroy the device. THe behaviour with a lower voltage is not specified,
but it can result firmware corruption.

Yocto-button

The Yocto-button has two functionalities. First, it can activate the Yocto-beacon mode (see below
under Yocto-led). Second, if you plug in a Yocto-module while keeping this button pressed, you can
then reprogram its firmware with a new version. Note that there is a simpler Ul-based method to
update the firmware, but this one works even in case of severely damaged firmware.

Yocto-led

Normally, the Yocto-led is used to indicate that the module is working smoothly. The Yocto-led then
emits a low blue light which varies slowly, mimicking breathing. The Yocto-led stops breathing when
the module is not communicating any more, as for instance when powered by a USB hub which is
disconnected from any active computer.

When you press the Yocto-button, the Yocto-led switches to Yocto-beacon mode. It starts flashing
faster with a stronger light, in order to facilitate the localization of a module when you have several
identical ones. It is indeed possible to trigger off the Yocto-beacon by software, as it is possible to
detect by software that a Yocto-beacon is on.

The Yocto-led has a third functionality, which is less pleasant: when the internal software which
controls the module encounters a fatal error, the Yocto-led starts emitting an SOS in morse . If this
happens, unplug and re-plug the module. If it happens again, check that the module contains the
latest version of the firmware, and, if it is the case, contact Yoctopuce support?.

Current sensor

Each Yocto-module is able to measure its own current consumption on the USB bus. Current supply
on a USB bus being quite critical, this functionality can be of great help. You can only view the
current consumption of a module by software.

Serial number

Each Yocto-module has a unique serial number assigned to it at the factory. For Yocto-Relay
modules, this number starts with RELAYLO1. The module can be software driven using this serial
number. The serial number cannot be modified.

Logical name

The logical name is similar to the serial number: it is a supposedly unique character string which
allows you to reference your module by software. However, in the opposite of the serial number, the
logical name can be modified at will. The benefit is to enable you to build several copies of the same
project without needing to modify the driving software. You only need to program the same logical
name in each copy. Warning: the behavior of a project becomes unpredictable when it contains
several modules with the same logical name and when the driving software tries to access one of
these modules through its logical name. When leaving the factory, modules do not have an assigned
logical name. It is yours to define.

1 short-short-short long-long-long short-short-short
support@yoctopuce.com

6 www.yoctopuce.com

2. Presentation

2.2. Specific elements

Screw terminal

The two relays embedded in the Yocto-Relay module are commutators, which means that they can
commute their input current onto one of two outputs. This is why the terminal has six poles. When the
module is powered off, the outputs A are active. Be aware: the outputs A and B are wired in mirror for
relay 1 and 2.

)
y sl
J\:
?

Relay wiring inside the module.

The Yocto-Relay is only intended to be connected to safety extra low voltage (SELV) circuits. It
should not be presented with voltages exceeding 60V, nor connected to mains circuits. The Yocto-
Relay endurance to surge and lightning transiants has not been tested. If you intend to use the
Yocto-Relay with wires longer than 30m or running outside, you should perform this testing yourself
(see IEC 61000-4-5).

In some cases, the magnets included in the enclosure base might interfere with the Yocto-Relay
working. If that happens, just remove the magnets from the base, as described in the enclosure
documentation

Leds indicating the active outputs

On the front of the terminal, there are four green leds which indicate which module outputs are
active. By default, the light of these leds is rather strong, but you can modify the luminosity.

2.3. Functional isolation

The Yocto-Relay is designed as two distinct electrical circuits, separated by a functional isolation.
This isolation plays no role for the operator safety, since both circuits of the Yocto-Relay work with
safety extra low voltages (SELV) and are accessible without risk at any time. You must be aware that
this isolation is not sufficient to permit a safe use of the product in case it would be connected to the
mains, or to a similar source where transiant overvoltages can be expected. Make sure not to exceed
the specified voltage limit in any circumstance.

The specifications of the USB bus isolation are as follows:

+ Withholding voltage®: 0.25kV
+ Clearance distance: 0.25mm
» Creepage distance: 0.25mm
» Material group: Cat llla (FR4)

2.4. Optional accessories

The accessories below are not necessary to use the Yocto-Relay module but might be useful
depending on your project. These are mostly common products that you can buy from your favorite
hacking store. To save you the tedious job of looking for them, most of them are also available on the
Yoctopuce shop.

3 Nominal value, not tested

www.yoctopuce.com 7

2. Presentation

Screws and spacers

In order to mount the Yocto-Relay module, you can put small screws in the 2.5mm assembly holes,
with a screw head no larger than 4.5mm. The best way is to use threaded spacers, which you can
then mount wherever you want. You can find more details on this topic in the chapter about
assembly and connections.

Micro-USB hub

If you intend to put several Yoctopuce modules in a very small space, you can connect them directly
to a micro-USB hub. Yoctopuce builds a USB hub particularly small for this purpose (down to
20mmx36mm), on which you can directly solder a USB cable instead of using a USB plug. For more
details, see the micro-USB hub information sheet.

YoctoHub-Ethernet, YoctoHub-Wireless and YoctoHub-GSM

You can add network connectivity to your Yocto-Relay, thanks to the YoctoHub-Ethernet, the
YoctoHub-Wireless and the YoctoHub-GSM which provides repectiveley Ethernet, WiFi and GSM
connectivity. All of them can drive up to three devices and behave exactly like a regular computer
running a VirtualHub.

1.27mm (or 1.25mm) connectors

In case you wish to connect your Yocto-Relay to a Micro-hub USB or a YoctoHub without using a
bulky USB connector, you can use the four 1.27mm pads just behind the USB connector. There are
two options.

You can mount the Yocto-Relay directly on the hub using screw and spacers, and connect it using
1.27mm board-to-board connectors. To prevent shortcuts, it is best to solder the female connector on
the hub and the male connector on the Yocto-Relay.

You can also use a small 4-wires cable with a 1.27mm connector. 1.25mm works as well, it does not
make a difference for 4 pins. This makes it possible to move the device a few inches away. Don't put
it too far away if you use that type of cable, because as the cable is not shielded, it may cause
undesirable electromagnetic emissions.

Enclosure

Your Yocto-Relay has been designed to be installed as is in your project. Nevertheless, Yoctopuce
sells enclosures specifically designed for Yoctopuce devices. These enclosures have removable
mounting brackets and magnets allowing them to stick on ferromagnetic surfaces. More details are
available on the Yoctopuce web site . The suggested enclosure model for your Yocto-Relay is the
YoctoBox-Short-Thick-Black.

4 http://www.yoctopuce.com/EN/products/category/enclosures

8 www.yoctopuce.com

2. Presentation

You can install your Yocto-Relay in an optional enclosure

www.yoctopuce.com

10

www.yoctopuce.com

3. First steps

By design, all Yoctopuce modules are driven the same way. Therefore, user's guides for all the
modules of the range are very similar. If you have already carefully read through the user's guide of
another Yoctopuce module, you can jump directly to the description of the module functions.

3.1. Prerequisites
In order to use your Yocto-Relay module, you should have the following items at hand.

A computer

Yoctopuce modules are intended to be driven by a computer (or possibly an embedded
microprocessor). You will write the control software yourself, according to your needs, using the
information provided in this manual.

Yoctopuce provides software libraries to drive its modules for the following operating systems:
Windows, macOS X, Linux, and Android. Yoctopuce modules do not require installing any specific
system driver, as they leverage the standard HID driver' provided with every operating system.

Windows versions currently supported are: Windows XP, Windows 2003, Windows Vista, Windows
7, Windows 8 and Windows 10. Both 32 bit and 64 bit versions are supported. The programming
library is also available for the Universal Windows Platform (UWP), which is supported by all flavors
of Windows 10, including Windows 10 IoT. Yoctopuce is frequently testing its modules on Windows 7
and Windows 10.

MacOS versions currently supported are: Mac OS X 10.9 (Maverick), 10.10 (Yosemite), 10.11 (El
Capitan), macOS 10.12 (Sierra), macOS 10.13 (High Sierra) and macOS 10.14 (Mojave). Yoctopuce
is frequently testing its modules on macOS 10.14.

Linux kernels currently supported are the 2.6 branch, the 3.x branch and the 4.x branch. Other
versions of the Linux kernel, and even other UNIX variants, are very likely to work as well, as Linux
support is implemented through the standard libusb API. Yoctopuce is frequently testing its modules
on Linux kernel 4.15 (Ubuntu 18.04 LTS).

Android versions currently supported are: Android 3.1 and later. Moreover, it is necessary for the
tablet or phone to support the Host USB mode. Yoctopuce is frequently testing its modules on
Android 7.x on a Samsung Galaxy A6 with the Java for Android library.

" The HID driver is the one that takes care of the mouse, the keyboard, etc.

www.yoctopuce.com 11

3. First steps

A USB 2.0 cable, type A-micro B

USB 2.0 connectors exist in three sizes: the "standard" size that you probably use to connect your
printer, the very common mini size to connect small devices, and finally the micro size often used to
connect mobile phones, as long as they do not exhibit an apple logo. All USB modules manufactured

by Yoctopuce use micro size connectors.
(=] (=)

02 7] I_I]
o |
T 0§ ¥

The most common USB 2.0 connectors: A, B, Mini B, Micro A, Micro B?

0

%]

To connect your Yocto-Relay module to a computer, you need a USB 2.0 cable of type A-micro B.
The price of this cable may vary a lot depending on the source, look for it under the name USB 2.0 A
to micro B Data cable. Make sure not to buy a simple USB charging cable without data connectivity.
The correct type of cable is available on the Yoctopuce shop.

You must plug in your Yocto-Relay module with a USB 2.0 cable of type A - micro B

If you insert a USB hub between the computer and the Yocto-Relay module, make sure to take into
account the USB current limits. If you do not, be prepared to face unstable behaviors and
unpredictable failures. You can find more details on this topic in the chapter about assembly and
connections.

3.2. Testing USB connectivity

At this point, your Yocto-Relay should be connected to your computer, which should have recognized
it. It is time to make it work.

Go to the Yoctopuce web site and download the Virtual Hub software®. It is available for Windows,
Linux, and Mac OS X. Normally, the Virtual Hub software serves as an abstraction layer for
languages which cannot access the hardware layers of your computer. However, it also offers a
succinct interface to configure your modules and to test their basic functions. You access this
interface with a simple web browser*. Start the Virtual Hub software in a command line, open your

2 Although they existed for some time, Mini A connectors are not available anymore http.//www.usb.org/developers/
Deprecation_Announcement_052507.pdf

www.yoctopuce.com/EN/virtualhub.php

The interface is tested on Chrome, FireFox, Safari, Edge et IE 11.

12 www.yoctopuce.com

3. First steps

preferred web browser and enter the URL http://127.0.0.1:4444. The list of the Yoctopuce modules
connected to your computer is displayed.

Serial Laogical Mame Description Action
VIRTHUBO-T7dlagéfb VirtualHub (beacon) [configure) (view log file)
RELAYLO1-000CC Yocto-Relay (beacon) [configure] [wiew ko

Pl (Show devics functions |

Module list as displayed in your web bowser

3.3. Localization

You can then physically localize each of the displayed modules by clicking on the beacon button.
This puts the Yocto-led of the corresponding module in Yocto-beacon mode. It starts flashing, which
allows you to easily localize it. The second effect is to display a little blue circle on the screen. You
obtain the same behavior when pressing the Yocto-button of the module.

3.4. Test of the module
The first item to check is that your module is working well: click on the serial number corresponding

to your module. This displays a window summarizing the properties of your Yocto-Relay.

RELAYLO1-000CC

2T RELAYLO1-000CC is a 20x45mm
| board with two 220w2Amp (max 50W)
relay.

Kernel

Serial # RELAYLO1-000CC
Product name Yocio-Relay
Logical name:

Product release: 1

Firmware 3375
Consumption: 26 mA

Beacon: Inactive {turn on)
Luminosity: 50%

Actuators

State of relay 1: A

State of relay 2. A

Misc

Open APl browser (pop-up
Get user manual from yoctopuce.com

Properties of the Yocto-Relay module

This window allows you, among other things, to test the module relays with the switch to A / switch
to B buttons. There is a characteristic clicking when the relays are working. Moreover, the leds
indicating the active outputs light up. Notice that the module consumption varies according to the
activated outputs.

3.5. Configuration

When, in the module list, you click on the configure button corresponding to your module, the
configuration window is displayed.

www.yoctopuce.com 13

3. First steps

RELAYLO1-000CC |

Edit parameters for device RELAYLO1-000CC, and click
on the Save button.

Serial # RELAYLO1-000CC

Product name Yocto-Relay

Firmware: 3375 ((ugrade
Logical name |

Luminosity U

Device's functions

Each function of the device have two names: a physical

name and a logical name. You can change the logical
name using the rename button

RELAYLO1-000CC relay1/
RELAYLO1-000CC.relay2/

| save| [cancel|

Yocto-Relay module configuration.

Firmware

The module firmware can easily be updated with the help of the interface. Firmware destined for
Yoctopuce modules are available as .byn files and can be downloaded from the Yoctopuce web site.

To update a firmware, simply click on the upgrade button on the configuration window and follow the
instructions. If the update fails for one reason or another, unplug and re-plug the module and start
the update process again. This solves the issue in most cases. If the module was unplugged while it
was being reprogrammed, it does probably not work anymore and is not listed in the interface.
However, it is always possible to reprogram the module correctly by using the Virtual Hub software °
in command line ©.

Logical name of the module

The logical name is a name that you choose, which allows you to access your module, in the same
way a file name allows you to access its content. A logical name has a maximum length of 19
characters. Authorized characters are A..7Z, a..z, 0..9, , and -. If you assign the same logical name
to two modules connected to the same computer and you try to access one of them through this
logical name, behavior is undetermined: you have no way of knowing which of the two modules
answers.

Luminosity

This parameter allows you to act on the maximal intensity of the leds of the module. This enables
you, if necessary, to make it a little more discreet, while limiting its power consumption. Note that this
parameter acts on all the signposting leds of the module, including the Yocto-led. If you connect a
module and no led turns on, it may mean that its luminosity was set to zero.

Logical names of functions

Each Yoctopuce module has a serial number and a logical name. In the same way, each function on
each Yoctopuce module has a hardware name and a logical name, the latter can be freely chosen by
the user. Using logical names for functions provides a greater flexibility when programming modules.

The only functions of the Yocto-Relay module correspond to the embedded relays and have the
hardware names "relay1" and "relay2".

5 www.yoctopuce.com/EN/virtualhub.php

More information available in the virtual hub documentation

14 www.yoctopuce.com

4. Assembly and connections

This chapter provides important information regarding the use of the Yocto-Relay module in real-
world situations. Make sure to read it carefully before going too far into your project if you want to
avoid pitfalls.

4.1. Fixing

While developing your project, you can simply let the module hang at the end of its cable. Check only
that it does not come in contact with any conducting material (such as your tools). When your project
is almost at an end, you need to find a way for your modules to stop moving around.

Examples of assembly on supports

The Yocto-Relay module contains 2.5mm assembly holes. You can use these holes for screws. The
screw head diameter must not be larger than 4.5mm or they will damage the module circuits. Make
sure that the lower surface of the module is not in contact with the support. We recommend using

www.yoctopuce.com 15

4. Assembly and connections

spacers, but other methods are possible. Nothing prevents you from fixing the module with a glue
gun; it will not be good-looking, but it will hold.

4.2. Assembly examples

If you obtained this Yocto-Relay module, it is probably because you know exactly what you intend to
do with it. You can nevertheless find below a few wiring examples, among the simplest.

Pilot a light bulb with your Yocto-Relay module.

Pilot two light bulbs in alternation with your Yocto-Relay module.

4.3. Electro-magnetic relays and coils

Some devices that you may wish to control with your Yocto-Relay module contain large coils. It is in
particular the case for electric motors and transformers. This may cause trouble because of the auto-
induction generated when current goes through a coil. A very high voltage briefly appears at the ends
of a coil when when one brutally cuts the current passing through it. This high voltage can create an
electric arc where the circuit was cut, in our case inside the relay soldered on the module. This
electric arc can eat away the relay connections, leading to premature aging.

Therefore, we advise against controlling electric motors or transformers with an electro-magnetic
relay, be it a Yocto-Relay module, or any other command system based on this technology.

It is possible to limit this phenomenon by inserting a TVS diode in parallel with the device containing
the coil. These diodes are blocking below a specified voltage, and conductive beyond. So if you
clamp one of theses diode on your inductive load, this will short cut voltage peaks. You only have to
choose a diode with the right clamping voltage for your application. If you wish to know more, Tyco
published an application note about this .

1 Y=

Controlling an electric motor with a relay, using a protecting diode.

4.4. USB power distribution

Although USB means Universal Serial BUS, USB devices are not physically organized as a flat bus
but as a tree, using point-to-point connections. This has consequences on power distribution: to
make it simple, every USB port must supply power to all devices directly or indirectly connected to it.
And USB puts some limits.

1 Relay contact life, Application note, Tyco electronics, http://relays.te.com/appnotes/app_pdfs/13c3236.pdf

16 www.yoctopuce.com

4. Assembly and connections

In theory, a USB port provides 100mA, and may provide up to 500mA if available and requested by
the device. In the case of a hub without external power supply, 100mA are available for the hub itself,
and the hub should distribute no more than 100mA to each of its ports. This is it, and this is not
much. In particular, it means that in theory, it is not possible to connect USB devices through two
cascaded hubs without external power supply. In order to cascade hubs, it is necessary to use self-
powered USB hubs, that provide a full 500mA to each subport.

In practice, USB would not have been as successful if it was really so picky about power distribution.
As it happens, most USB hub manufacturers have been doing savings by not implementing current
limitation on ports: they simply connect the computer power supply to every port, and declare
themselves as self-powered hub even when they are taking all their power from the USB bus (in
order to prevent any power consumption check in the operating system). This looks a bit dirty, but
given the fact that computer USB ports are usually well protected by a hardware current limitation
around 2000mA, it actually works in every day life, and seldom makes hardware damage.

What you should remember: if you connect Yoctopuce modules through one, or more, USB hub
without external power supply, you have no safe-guard and you depend entirely on your computer
manufacturer attention to provide as much current as possible on the USB ports, and to detect
overloads before they lead to problems or to hardware damages. When modules are not provided
enough current, they may work erratically and create unpredictable bugs. If you want to prevent any
risk, do not cascade hubs without external power supply, and do not connect peripherals requiring
more than 100mA behind a bus-powered hub.

In order to help you controlling and planning overall power consumption for your project, all
Yoctopuce modules include a built-in current sensor that indicates (with 5mA precision) the
consumption of the module on the USB bus.

Note also that the USB cable itself may also cause power supply issues, in particular when the wires
are too thin or when the cable is too long 2. Good cables are usually made using AWG 26 or AWG 28
wires for data lines and AWG 24 wires for power.

4.5. Electromagnetic compatibility (EMI)

Connection methods to integrate the Yocto-Relay obviously have an impact on the system overall
electromagnetic emissions, and therefore also impact the conformity with international standards.

When we perform reference measurements to validate the conformity of our products with IEC
CISPR 11, we do not use any enclosure but connect the devices using a shielded USB cable,
compliant with USB 2.0 specifications: the cable shield is connected to both connector shells, and the
total resistance from shell to shell is under 0.6Q. The USB cable length is 3m, in order to expose one
meter horizontally, one meter vertically and keep the last meter close to the host computer within a
ferrite bead.

If you use a non-shielded USB cable, or an improperly shielded cable, your system will work perfectly
well but you may not remain in conformity with the emission standard. If you are building a system
made of multiple devices connected using 1.27mm pitch connectors, or with a sensor moved away
from the device CPU, you can generally recover the conformity by using a metallic enclosure acting
as an external shield.

Still on the topic of electromagnetic compatibility, the maximum supported length of the USB cable is
3m. In addition to the voltage drop issue mentionned above, using longer wires would require to run
extra tests to assert compatibility with the electromagnetic immunity standards.

2 www.yoctopuce.com/EN/article/usb-cables-size-matters

www.yoctopuce.com 17

18

www.yoctopuce.com

5. Programming, general concepts

The Yoctopuce API was designed to be at the same time simple to use and sufficiently generic for
the concepts used to be valid for all the modules in the Yoctopuce range, and this in all the available
programming languages. Therefore, when you have understood how to drive your Yocto-Relay with
your favorite programming language, learning to use another module, even with a different language,
will most likely take you only a minimum of time.

5.1. Programming paradigm

The Yoctopuce API is object oriented. However, for simplicity's sake, only the basics of object
programming were used. Even if you are not familiar with object programming, it is unlikely that this
will be a hinderance for using Yoctopuce products. Note that you will never need to allocate or
deallocate an object linked to the Yoctopuce API: it is automatically managed.

There is one class per Yoctopuce function type. The name of these classes always starts with a Y
followed by the name of the function, for example YTemperature, YRelay, YPressure, etc.. There is
also a YModule class, dedicated to managing the modules themselves, and finally there is the static
YAPI class, that supervises the global workings of the APl and manages low level communications.

Low level handling : Module handling : Feature handling
[YAPI] [YModule] [YTemperature]
- ' :YPressure \
: YRelay \
: Y XXX j

Structure of the Yoctopuce API.

The YSensor class

Each Yoctopuce sensor function has its dedicated class: YTemperature to measure the temperature,

YVoltage to measure a voltage, YRelay to drive a relay, etc. However there is a special class that
can do more: YSensor.

www.yoctopuce.com 19

5. Programming, general concepts

The YSensor class is the parent class for all Yoctopuce sensors, and can provide access to any
sensor, regardless of its type. It includes methods to access all common functions. This makes it
easier to create applications that use many different sensors. Moreover, if you create an application
based on YSensor, it will work with all Yoctopuce sensors, even those which do no yet exist.

Programmation

In the Yoctopuce API, priority was put on the ease of access to the module functions by offering the
possibility to make abstractions of the modules implementing them. Therefore, it is quite possible to
work with a set of functions without ever knowing exactly which module are hosting them at the
hardware level. This tremendously simplifies programming projects with a large number of modules.

From the programming stand point, your Yocto-Relay is viewed as a module hosting a given number
of functions. In the API, these functions are objects which can be found independently, in several
ways.

Access to the functions of a module

Access by logical name

Each function can be assigned an arbitrary and persistent logical name: this logical name is stored in
the flash memory of the module, even if this module is disconnected. An object corresponding to an
Xxx function to which a logical name has been assigned can then be directly found with this logical
name and the YXxx.FindXxx method. Note however that a logical name must be unique among all
the connected modules.

Access by enumeration
You can enumerate all the functions of the same type on all the connected modules with the help of
the classic enumeration functions FirstXxx and nextXxxx available for each YXxx class.

Access by hardware name

Each module function has a hardware name, assigned at the factory and which cannot be modified.
The functions of a module can also be found directly with this hardware name and the YXxx.FindXxx
function of the corresponding class.

Difference between Find and First

The YXxx.FindXxxx and YXxx.FirstXxxx methods do not work exactly the same way. If there is no
available module, YXxx.FirstXxxx returns a null value. On the opposite, even if there is no
corresponding module, YXxx.FindXxxx returns a valid object, which is not online but which could
become so if the corresponding module is later connected.

Function handling

When the object corresponding to a function is found, its methods are available in a classic way.
Note that most of these subfunctions require the module hosting the function to be connected in
order to be handled. This is generally not guaranteed, as a USB module can be disconnected after
the control software has started. The isOnline method, available in all the classes, is then very
helpful.

Access to the modules

Even if it is perfectly possible to build a complete project while making a total abstraction of which
function is hosted on which module, the modules themselves are also accessible from the API. In
fact, they can be handled in a way quite similar to the functions. They are assigned a serial number
at the factory which allows you to find the corresponding object with YModule.Find(). You can also
assign arbitrary logical names to the modules to make finding them easier. Finally, the YModule
class contains the YModule.FirstModule() and nextModule() enumeration methods allowing you to list
the connected modules.

20 www.yoctopuce.com

5. Programming, general concepts

Functions/Module interaction

From the API standpoint, the modules and their functions are strongly uncorrelated by design.
Nevertheless, the API provides the possibility to go from one to the other. Thus, the get_module()
method, available for each function class, allows you to find the object corresponding to the module
hosting this function. Inversely, the YModule class provides several methods allowing you to
enumerate the functions available on a module.

5.2. The Yocto-Relay module

The Yocto-Relay module provides two instances of Relay function, corresponding to the two relays of
the module.

module : Module

attribute type modifiable ?
productName String read-only
serialNumber String read-only
logicalName String modifiable
productId Hexadecimal number read-only
productRelease Hexadecimal number read-only
firmwareRelease String read-only
persistentSettings Enumerated modifiable
luminosity 0..100% modifiable
beacon On/Off modifiable
upTime Time read-only
usbCurrent Used current (mA) read-only
rebootCountdown Integer modifiable
userVar Integer modifiable
relay1 : Relay
relay2 : Relay
attribute type modifiable ?
logicalName String modifiable
advertisedvValue String modifiable
state A/B modifiable
stateAtPowerOn Enumerated modifiable
maxTimeOnStateA Time modifiable
maxTimeOnStateB Time modifiable
output On/Off modifiable
pulseTimer Time modifiable
delayedPulseTimer Aggregate modifiable
countdown Time read-only

5.3. Module

Global parameters control interface for all Yoctopuce devices

The YModule class can be used with all Yoctopuce USB devices. It can be used to control the
module global parameters, and to enumerate the functions provided by each module.

productName
Character string containing the commercial name of the module, as set by the factory.

serialNumber

Character string containing the serial number, unique and programmed at the factory. For a Yocto-
Relay module, this serial number always starts with RELAYLO1. You can use the serial number to
access a given module by software.

www.yoctopuce.com 21

5. Programming, general concepts

logicalName

Character string containing the logical name of the module, initially empty. This attribute can be
modified at will by the user. Once initialized to an non-empty value, it can be used to access a given
module. If two modules with the same logical name are in the same project, there is no way to
determine which one answers when one tries accessing by logical name. The logical name is limited
to 19 characters among A..7,a..z,0..9, ,and -.

productid
USB device identifier of the module, preprogrammed to 12 at the factory.

productRelease

Release number of the module hardware, preprogrammed at the factory. The original hardware
release returns value 1, revision B returns value 2, etc.

firmwareRelease
Release version of the embedded firmware, changes each time the embedded software is updated.

persistentSettings

State of persistent module settings: loaded from flash memory, modified by the user or saved to flash
memory.

luminosity

Lighting strength of the informative leds (e.g. the Yocto-Led) contained in the module. It is an integer
value which varies between 0 (LEDs turned off) and 100 (maximum led intensity). The default value
is 50. To change the strength of the module LEDs, or to turn them off completely, you only need to
change this value.

beacon

Activity of the localization beacon of the module.

upTime
Time elapsed since the last time the module was powered on.

usbCurrent
Current consumed by the module on the USB bus, in milli-amps.

rebootCountdown
Countdown to use for triggering a reboot of the module.

userVar
32bit integer variable available for user storage.

5.4. Relay

relay control interface, available for instance in the Yocto-LatchedRelay, the Yocto-MaxiPowerRelay,
the Yocto-PowerRelay-V3 or the Yocto-Relay

The YRelay class allows you to drive a Yoctopuce relay or optocoupled output. It can be used to
simply switch the output on or off, but also to automatically generate short pulses of determined
duration. On devices with two output for each relay (double throw), the two outputs are named A and
B, with output A corresponding to the idle position (normally closed) and the output B corresponding
to the active state (normally open).

22 www.yoctopuce.com

5. Programming, general concepts

logicalName

Character string containing the logical name of the relay, initially empty. This attribute can be
modified at will by the user. Once initialized to an non-empty value, it can be used to access the relay
directly. If two relays with the same logical name are used in the same project, there is no way to
determine which one answers when one tries accessing by logical name. The logical name is limited
to 19 characters among A..7,a..z,0..9, ,and -.

advertisedValue

Short character string summarizing the current state of the relay, that will be automatically advertised
up to the parent hub. For a relay, the advertised value is the the relays state (A for the idle position, B
for the active position).

state

Active output of the relays: A for the idle position, B for the active position.

stateAtPowerOn

Active output of the relays at device power on: A for the idle position, B for the active position,
UNCHANGED to leave the relay as is.

maxTimeOnStateA

Maximum time (ms) allowed for relays to stay in state A before automatically switching back in to B
state. Zéro means no maximum time.

maxTimeOnStateB

Maximum time (ms) allowed for relays to stay in state B before automatically switching back in to A

state. Zéro means no maximum time.

output
Output state of the relays, when used as a simple switch (single throw).

pulseTimer

Time during which the relays should be kept in state B (active) before returning automatically to state
A (idle state). Any explicit state change issued afterwards will cancel the automated switch.
delayedPulseTimer

Delayed pulse parameters.

countdown
Waiting delay before next pulse (delayed pulse case).

5.5. What interface: Native, DLL or Service ?

There are several methods to control you Yoctopuce module by software.

Native control

In this case, the software driving your project is compiled directly with a library which provides control
of the modules. Objectively, it is the simplest and most elegant solution for the end user. The end
user then only needs to plug the USB cable and run your software for everything to work.
Unfortunately, this method is not always available or even possible.

www.yoctopuce.com 23

5. Programming, general concepts

application

native
library

iz ' -

The application uses the native library to control the locally connected module

Native control by DLL

Here, the main part of the code controlling the modules is located in a DLL. The software is compiled
with a small library which provides control of the DLL. It is the fastest method to code module support
in a given language. Indeed, the "useful" part of the control code is located in the DLL which is the
same for all languages: the effort to support a new language is limited to coding the small library
which controls the DLL. From the end user stand point, there are few differences: one must simply
make sure that the DLL is installed on the end user's computer at the same time as the main
software.

()

| application

DLL interface

DLL

ofill] <«

The application uses the DLL to natively control the locally connected module

Control by service

Some languages do simply not allow you to easily gain access to the hardware layers of the
machine. It is the case for Javascript, for instance. To deal with this case, Yoctopuce provides a
solution in the form of a small piece of software called VirtualHub'. It can access the modules, and
your application only needs to use a library which offers all necessary functions to control the
modules via this VirtualHub. The end users will have to start the Virtual[Hub before running the
project control software itself, unless they decide to install the hub as a service/deamon, in which
case the VirtualHub starts automatically when the machine starts up.

1 www.yoctopuce.com/EN/virtualhub.php

24 www.yoctopuce.com

5. Programming, general concepts

virtual hub

e

The application connects itself to the VirtualHub to gain access to the module

The service control method comes with a non-negligible advantage: the application does not need to
run on the machine on which the modules are connected. The application can very well be located
on another machine which connects itself to the service to drive the modules. Moreover, the native
libraries and DLL mentioned above are also able to connect themselves remotely to one or several
machines running VirtualHub.

plication

| hub library

hub library

virtual hub

application

DLL interface

DLL

When a VirtualHub is used, the control application does not need to reside on the same machine as the module.

Whatever the selected programming language and the control paradigm used, programming itself
stays strictly identical. From one language to another, functions bear exactly the same name, and
have the same parameters. The only differences are linked to the constraints of the languages
themselves.

Language Native Native with DLL VirtualHub
Command line v
Python -
C++ v
C# .Net -
C# UWP 4
LabVIEW -

Java -

Java for Android v

TypeScript - -

JavaScript / ECMAScript - -

PHP -

VisualBasic .Net -

Delphi -

Objective-C v

Support methods for different languages

AN VLR N N N

STUTTRNSNSNNRRRRN

|\\|

www.yoctopuce.com 25

5. Programming, general concepts

Limitations of the Yoctopuce libraries

Natives et DLL libraries have a technical limitation. On the same computer, you cannot concurrently
run several applications accessing Yoctopuce devices directly. If you want to run several projects on
the same computer, make sure your control applications use Yoctopuce devices through a
VirtualHub software. The modification is ftrivial: it is just a matter of parameter change in the
yRegisterHub () call.

5.6. Programming, where to start?

At this point of the user's guide, you should know the main theoretical points of your Yocto-Relay. It
is now time to practice. You must download the Yoctopuce library for your favorite programming
language from the Yoctopuce web site?. Then skip directly to the chapter corresponding to the
chosen programming language.

All the examples described in this guide are available in the programming libraries. For some
languages, the libraries also include some complete graphical applications, with their source code.

When you have mastered the basic programming of your module, you can turn to the chapter on
advanced programming that describes some techniques that will help you make the most of your
Yocto-Relay.

2 http://www.yoctopuce.com/EN/libraries.php

26 www.yoctopuce.com

6. Using the Yocto-Relay in command line

When you want to perform a punctual operation on your Yocto-Relay, such as reading a value,
assigning a logical name, and so on, you can obviously use the Virtual Hub, but there is a simpler,
faster, and more efficient method: the command line API.

The command line API is a set of executables, one by type of functionality offered by the range of
Yoctopuce products. These executables are provided pre-compiled for all the Yoctopuce officially
supported platforms/OS. Naturally, the executable sources are also provided'.

6.1. Installing

Download the command line API?. You do not need to run any setup, simply copy the executables
corresponding to your platform/OS in a directory of your choice. You may add this directory to your
PATH variable to be able to access these executables from anywhere. You are all set, you only need
to connect your Yocto-Relay, open a shell, and start working by typing for example:

YRelay any set state B

To use the command API on Linux, you need either have root privileges or to define an udev rule for
your system. See the Troubleshooting chapter for more details.

6.2. Use: general description

All the command line API executables work on the same principle. They must be called the following
way

Executable [options] [target] command [parameter]

[options] manage the global workings of the commands, they allow you, for instance, to pilot a
module remotely through the network, or to force the module to save its configuration after executing
the command.

[target] is the name of the module or of the function to which the command applies. Some very
generic commands do not need a target. You can also use the aliases "any" and "all', or a list of
names separated by comas without space.

i you want to recompile the command line API, you also need the C++ API.
2 http://www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com 27

6. Using the Yocto-Relay in command line

command is the command you want to run. Almost all the functions available in the classic
programming APIls are available as commands. You need to respect neither the case nor the
underlined characters in the command name.

[parameters] logically are the parameters needed by the command.

At any time, the command line AP| executables can provide a rather detailed help. Use for instance:

executable elp

to know the list of available commands for a given command line API executable, or even:

executable command

to obtain a detailed description of the parameters of a command.

6.3. Control of the Relay function

To control the Relay function of your Yocto-Relay, you need the YRelay executable file.

For instance, you can launch:
YRelay any set state B

This example uses the "any" target to indicate that we want to work on the first Relay function found
among all those available on the connected Yoctopuce modules when running. This prevents you
from having to know the exact names of your function and of your module.

But you can use logical names as well, as long as you have configured them beforehand. Let us
imagine a Yocto-Relay module with the RELAYLO1-123456 serial number which you have called
"MyModule", and its relay1 function which you have renamed "MyFunction". The five following calls
are strictly equivalent (as long as MyFunction is defined only once, to avoid any ambiguity).

YRelay RELAYLO1-123456.relayl describe
YRelay RELAYLO1-123456.MyFunction describe
YRelay MyModule.relayl describe

YRelay MyModule.MyFunction describe

YRelay MyFunction describe

To work on all the Relay functions at the same time, use the "all" target.

YRelay all describe

For more details on the possibilities of the YRe1ay executable, use:

YRelay

6.4. Control of the module part

Each module can be controlled in a similar way with the help of the YModule executable. For
example, to obtain the list of all the connected modules, use:

YModule inventory

You can also use the following command to obtain an even more detailed list of the connected
modules:

28 www.yoctopuce.com

6. Using the Yocto-Relay in command line

YModule all describe

Each xxx property of the module can be obtained thanks to a command of the get xxxx () type,
and the properties which are not read only can be modified with the set xxx () command. For
example:

YModule RELAYLO1-12346 set logicalName MonPremierModule

YModule RELAYLO1-12346 get logicalName

Changing the settings of the module

When you want to change the settings of a module, simply use the corresponding set xxx
command. However, this change happens only in the module RAM: if the module restarts, the
changes are lost. To store them permanently, you must tell the module to save its current
configuration in its nonvolatile memory. To do so, use the saveToFlash command. Inversely, it is
possible to force the module to forget its current settings by using the revertFromFlash method.
For example:

YModule RELAYLO1-12346 set logicalName MonPremierModule
YModule RELAYLO1-12346 saveToFlash

Note that you can do the same thing in a single command with the —s option.

YModule -s RELAYLO1-12346 set logicalName MonPremierModule

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

6.5. Limitations

The command line API has the same limitation than the other APIs: there can be only one application
at a given time which can access the modules natively. By default, the command line APl works in
native mode.

You can easily work around this limitation by using a Virtual Hub: run the VirtualHub® on the
concerned machine, and use the executables of the command line API with the —r option. For
example, if you use:

YModule inventory

you obtain a list of the modules connected by USB, using a native access. If another command which
accesses the modules natively is already running, this does not work. But if you run a Virtual Hub,
and you give your command in the form:

YModule -r 127.0.0.1 inventory

it works because the command is not executed natively anymore, but through the Virtual Hub. Note
that the Virtual Hub counts as a native application.

3 http://www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 29

30

www.yoctopuce.com

7. Using the Yocto-Relay with Python

Python is an interpreted object oriented language developed by Guido van Rossum. Among its
advantages is the fact that it is free, and the fact that it is available for most platforms, Windows as
well as UNIX. It is an ideal language to write small scripts on a napkin. The Yoctopuce library is
compatible with Python 2.6+ and 3+. It works under Windows, Mac OS X, and Linux, Intel as well as
ARM. The library was tested with Python 2.6 and Python 3.2. Python interpreters are available on the
Python web site’.

7.1. Source files

The Yoctopuce library classes? for Python that you will use are provided as source files. Copy all the
content of the Sources directory in the directory of your choice and add this directory to the
PYTHONPATH environment variable. If you use an IDE to program in Python, refer to its
documentation to configure it so that it automatically finds the API source files.

7.2. Dynamic library

A section of the low-level library is written in C, but you should not need to interact directly with it: it is
provided as a DLL under Windows, as a .so files under UNIX, and as a .dylib file under Mac OS X.
Everything was done to ensure the simplest possible interaction from Python: the distinct versions of
the dynamic library corresponding to the distinct operating systems and architectures are stored in
the cdll directory. The API automatically loads the correct file during its initialization. You should not
have to worry about it.

If you ever need to recompile the dynamic library, its complete source code is located in the
Yoctopuce C++ library.

In order to keep them simple, all the examples provided in this documentation are console

applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

7.3. Control of the Relay function

A few lines of code are enough to use a Yocto-Relay. Here is the skeleton of a Python code snipplet
to use the Relay function.

1 http://www.python.org/download/
www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com 31

7. Using the Yocto-Relay with Python

[...]

errmsg=YRefParam ()
YAPI.RegisterHub ("usb",errmsqg)

ool

relay = YReiuy.FihdRelay("RELAYLOI—123456.relayTW

if feléylisOnline(): ’ ‘ ‘ ‘ ‘
[...]
[...]

Let's look at these lines in more details.

YAPIL.RegisterHub

The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPI.SUCCESS and errmsg contains the error message.

YRelay.FindRelay

The YRelay.FindRelay function allows you to find a relay from the serial number of the module
on which it resides and from its function name. You can use logical names as well, as long as you
have initialized them. Let us imagine a Yocto-Relay module with serial number RELAYLO1-123456
which you have named "MyModule", and for which you have given the relay1 function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

relay = .FindRelay ("RELAYLO1-123456.relayl")
relay = .FindRelay ("RELAYLO1-123456.MyFunction")
relay = .FindRelay ("MyModule.relayl"

relay = ay.FindRelay ("MyModule.MyFunction")

relay = 1y . FindRelay ("MyFunction")

YRelay.FindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by YRelay.FindRelay allows you to know if
the corresponding module is present and in working order.

set_state

The set state () method of the objet returned by YRelay.FindRelay switches the relay
position to one of its two outputs. The two possible parameter values are YRelay.STATE A for
output A, and YRelay.STATE B for output B.

A real example

Launch Python and open the corresponding sample script provided in the directory Examples/Doc-
GettingStarted-Yocto-Relay of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

-l

import os, sys

from yocto api import *
from yocto relay import *

32 www.yoctopuce.com

7. Using the Yocto-Relay with Python

def usage():
scriptname = os.path.basename (sys.argv[0])
print ("Usage:")

print (scriptname + ' <serial number> <channel> < A | B >'")
print (scriptname + ' <logical name> <channel> < A | B >'")
print (scriptname + ' any <channel> < A | B >"')

print ('Example: ')

print (scriptname + ' any 2 B')

sys.exit ()

def die (msg) :
sys.exit (msg + ' (check USB cable)')

if len(sys.argv) < 4:

usage ()
target = sys.argv([l].upper ()
channel = sys.argv([2]
state = sys.argv[3].upper ()

Setup the API to use local USB devices

errmsg = YRefParam()

if YAPI.RegisterHub ("usb", errmsg) != YAPI.SUCCESS:
sys.exit ("init error" + errmsg.value)

if target == 'ANY':
retreive any Relay then find its serial
relay = YRelay.FirstRelay()
if relay is None:
die ('No module connected')
m = relay.get module ()
target = m.get serialNumber ()

print ('using ' + target)
relay = YRelay.FindRelay(target +

.relay' + channel)

if not (relay.isOnline()):
die ('device not connected')

if state == 'A':
relay.set_state(YRelay.STATE A)
else:
relay.set output (YRelay.STATE B)
YAPI.FreeAPI ()

7.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

from yocto api import *

def usage():
sys.exit ("usage: demo <serial or logical name> [ON/OFF]")

errmsg = YRefParam()
if YAPI.RegisterHub ("usb", errmsg) != YAPI.SUCCESS:
sys.exit ("RegisterHub error: " + str(errmsg))

if len(sys.argv) < 2:
usage ()

m = YModule.FindModule (sys.argv[1l]) # # use serial or logical name

www.yoctopuce.com 33

7. Using the Yocto-Relay with Python

if m.isOnline () :
if len(sys.argv) > 2:

if sys.argv[2].upper() == "ON":
m.set beacon (YModule.BEACON_ ON)
if sys.argv[2].upper() == "OFF":

m.set beacon (YModule.BEACON OFF)

print ("serial: " + m.get serialNumber ())
print ("logical name: " + m.get logicalName ()
print ("luminosity: " + str(m.get luminosity()))
if m.get beacon() == YModule.BEACON ON:
print ("beacon: ON")
else:
print ("beacon: OFE")
print ("upTime: " + str(m.get upTime() / 1000) + " sec")
print ("USB current: " + str(m.get usbCurrent()) + " mA")
print ("logs:\n" + m.get lastLogs())
else:
print (sys.argv[l] + " not connected (check identification and USB cable)"

YAPI.FreeAPI ()

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx (),
and properties which are not read-only can be modified with the help of the YModule.set xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

]

import os, sys

from yocto api import *

def usage():
sys.exit ("usage: demo <serial or logical name> <new logical name>")

if len(sys.argv) != 3:

usage ()
errmsg = YRefParam()
if YAPI.RegisterHub ("usb", errmsg) != YAPI.SUCCESS:

sys.exit ("RegisterHub error: " + str(errmsg))
m = YModule.FindModule (sys.argv[1l]) # use serial or logical name
if m.isOnline () :

newname = sys.argv[2]

if not YAPI.CheckLogicalName (newname) :

sys.exit ("Invalid name (" + newname + ")")

m.set logicalName (newname)

m.saveToFlash () # do not forget this

print ("Module: serial= " + m.get serialNumber() + " / name= " + m.get logicalName())
else:

sys.exit ("not connected (check identification and USB cable")
YAPI.FreeAPI ()

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

34 www.yoctopuce.com

7. Using the Yocto-Relay with Python

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

import os, sys

from yocto api import *

errmsg = YRefParam()

if YAPI.RegisterHub ("usb", errmsg) != YAPI.SUCCESS:
sys.exit ("init error" + str(errmsqg))

print ('Device list')

module = YModule.FirstModule ()

while module is not None:
print (module.get serialNumber() + ' (' + module.get productName() + ')')
module = module.nextModule ()

YAPI.FreeAPI ()

7.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

+ If your code catches the exception and handles it, everything goes well.

* If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPT.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return

www.yoctopuce.com 35

7. Using the Yocto-Relay with Python

information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

36 www.yoctopuce.com

8. Using Yocto-Relay with C++

C++ is not the simplest language to master. However, if you take care to limit yourself to its essential
functionalities, this language can very well be used for short programs quickly coded, and it has the
advantage of being easily ported from one operating system to another. Under Windows, all the
examples and the project models are tested with Microsoft Visual Studio 2010 Express, freely
available on the Microsoft web site’. Under Mac OS X, all the examples and project models are
tested with XCode 4, available on the App Store. Moreover, under Max OS X and under Linux, you
can compile the examples using a command line with GCC using the provided GNUmakefile. In
the same manner under Windows, a Makefile allows you to compile examples using a command
line, fully knowing the compilation and linking arguments.

Yoctopuce C++ libraries? are integrally provided as source files. A section of the low-level library is
written in pure C, but you should not need to interact directly with it: everything was done to ensure
the simplest possible interaction from C++. The library is naturally also available as binary files, so
that you can link it directly if you prefer.

You will soon notice that the C++ API defines many functions which return objects. You do not need
to deallocate these objects yourself, the APl does it automatically at the end of the application.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface. You will find in the last section of this chapter all the information
needed to create a wholly new project linked with the Yoctopuce libraries.

8.1. Control of the Relay function

A few lines of code are enough to use a Yocto-Relay. Here is the skeleton of a C++ code snipplet to
use the Relay function.

#include "yocto api.h"
#include "yocto relay.h"

[oool

String errmsg;
YAPI::RegisterHub ("usb", errmsqg);

[oool

1 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express
www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com 37

8. Using Yocto-Relay with C++

YRelay *relay;
relay = YRelay::FindRelay ("RELAYLO1-123456.relayl");

Y

if(relay—>isOnline())'
{

}

Let's look at these lines in more details.

yocto_api.h et yocto_relay.h

These two include files provide access to the functions allowing you to manage Yoctopuce modules.
yocto api.h must always be used, yocto relay.h is necessary to manage modules
containing a relay, such as Yocto-Relay.

YAPI::RegisterHub

The YAPI: : RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPTI SUCCESS and errmsg contains the error message.

YRelay::FindRelay

The YRelay: :FindRelay function allows you to find a relay from the serial number of the module
on which it resides and from its function name. You can use logical names as well, as long as you
have initialized them. Let us imagine a Yocto-Relay module with serial number RELAYLO1-123456
which you have named "MyModule", and for which you have given the relay? function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

ay *relay = YRelay::FindRelay ("RELAYL0O1-123456.relayl");

ay *relay = Y ::FindRelay ("RELAYLO1-123456.MyFunction") ;
ay *relay = 1 ::FindRelay ("MyModule.relayl") ;

ay *relay = YRelay::FindRelay ("MyModule.MyFunction") ;

ay *relay = YRelay::FindRelay ("MyFunction");

YRelay: :FindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by YRelay: :FindRelay allows you to know if
the corresponding module is present and in working order.

set_state

The set state () method of the objet returned by yFindRelay switches the relay position to
one of its two outputs. The two possible parameter values are Y STATE A for output A, and
Y STATE B for output B.

A real example

Launch your C++ environment and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-Relay of the Yoctopuce library. If you prefer to work with your
favorite text editor, open the file main.cpp, and type make to build the example when you are
done.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

#include "yocto api.h"
#include "yocto relay.h"
#include <iostream>
#include <ctype.h>

38 www.yoctopuce.com

8. Using Yocto-Relay with C++

#include <stdlib.h>
using namespace std;

static void usage (void)

{

1" << endl;
" << endl;

cout << "usage: demo <serial number> [

cout << " demo <logical name> [A

cout << " demo any [A | B 1" << e
u64 now = YAPI::GetTickCount ()

while (YAPI::GetTickCount() -

— W

now < 3000) {
// wait 3 sec to show the message
}
exit (1) ;
}

int main(int argc, const char * argv[])
{

string errmsg;

string target;

YRelay *relay;

char state;

if (argc < 3) {
usage () ;
}
target = (string) argv[l
state = toupper (argv[2] [

17

01) 7

// Setup the API to use local USB devices

if (YAPI::RegisterHub ("usb", errmsg) != YAPI::SUCCESS) {
cerr << "RegisterHub error: " << errmsg << endl;
return 1;

}

if (target == "any") {
relay = YRelay::FirstRelay():;
if (relay == NULL) {
cout << "No module connected (check USB cable)" << endl;
return 1;
}
} else {
relay = YRelay::FindRelay(target + ".relayl");
}

if (relay->isOnline()) {
relay->set state(state == 'A' ? Y STATE A : Y STATE B);
} else {
cout << "Module not connected (check identification and USB cable)" << endl;

}
YAPI: :FreeAPI():;

return 0;

8.2. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#include <iostream>
#include <stdlib.h>

#include "yocto_api.h"
using namespace std;

static void usage (const char *exe)

{
cout << "usage: " << exe << " <serial or logical name> [ON/OFF]" << endl;
exit (1) ;

}

www.yoctopuce.com 39

8. Using Yocto-Relay with C++

int main(int argc,

{

string

/' S€

if (YAPT:

:RegisterHub
cerr << "RegisterHub error:

const char * argv[])

errmsg,

> AP O use USB devices

("usb", errmsg) != YAPI::SUCCESS) ({
" << errmsg << endl;

return 1;

}

if (argc < 2)
usage (argv[0]) ;

YModule *module =

if
if
if

else

}
cout
cout
cout
cout
if

<<
<<
<<
<<

(module->get beacon() ==

YModule: :FindModule (argv[1l]); // use serial

(module->isOnline ()) {
(argc > 2) {

(string(argv([2])
module->set beacon (Y BEACON ON) ;

"ON™)

module->set beacon (Y BEACON OFF) ;

"serial: " << module->get serialNumber () << endl;
"logical name: " << module->get logicalName () << endl;
"luminosity: " << module->get luminosity() << endl;
"beacon: W

Y BEACON_ON)

cout << "ON" << endl;

else

cout << "OFF" << endl;

cout
cout
cout
} else
cout

}

<<
<<
<<
{

<<
<<

"upTime: " << module->get upTime() / 1000 << "
"USB current: " << module->get usbCurrent () << "
"Logs:" << endl << module->get lastLogs() << endl;

argv[l] << " not connected

endl;

YAPI::FreeAPI();

return

0;

sec" << endl;

mA" << endl;

(check identification and USB cable)"

Each property xxx of the module can be read thanks to a method of type get xxxx (), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

#include <iostream>
#include <stdlib.h>

#include "yocto api.h"

using namespace std;

static

{

cerr << "usage:

exit (1),

}

int main(int argc,

void usage (const char *exe)

const char * argvl[])

errmsg,

" << exe << " <serial> <newlLogicalName>" << endl;

40

www.yoctopuce.com

8. Using Yocto-Relay with C++

if (YAPI::RegisterHub ("usb", errmsg) != YAPI::SUCCESS) {
cerr << "RegisterHub error: " << errmsg << endl;
return 1;

}

if (argc < 2)
usage (argv[0]) ;

YModule *module = YModule::FindModule (argv[1l]); // use serial or logical name
if (module->isOnline()) {
if (argc >= 3) {
string newname = argv[2];
if (!yCheckLogicalName (newname)) {
cerr << "Invalid name (" << newname << ")" << endl;

usage (argv[0]) ;
}
module->set logicalName (newname) ;
module->saveToFlash () ;

}

cout << "Current name: " << module->get logicalName () << endl;
} else {
cout << argv[l] << " not connected (check identification and USB cable)"
<< endl;

}
YAPI: :FreeAPI():;
return 0;

}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

#include <iostream>
#include "yocto api.h"
using namespace std;

int main(int argc, const char * argvl[])
{

string errmsg;

if(VAPT}:RegisterHub(”usb", errmsg) != YAPI::SUCCESS) {
cerr << "RegisterHub error: " << errmsg << endl;
return 1;

}

cout << "Device list: " << endl;
YModule *module = YModule::FirstModule():;
while (module != NULL) {
cout << module->get serialNumber () << " ";
cout << module->get productName () << endl;

module = module->nextModule () ;
}
YAPI: :FreeAPI();
return 0;

www.yoctopuce.com 41

8. Using Yocto-Relay with C++

8.3. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

* If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

8.4. Integration variants for the C++ Yoctopuce library

Depending on your needs and on your preferences, you can integrate the library into your projects in
several distinct manners. This section explains how to implement the different options.

Integration in source format (recommended)
Integrating all the sources of the library into your projects has several advantages:

+ It guaranties the respect of the compilation conventions of your project (32/64 bits, inclusion of
debugging symbols, unicode or ASCII characters, etc.);

+ |t facilitates debugging if you are looking for the cause of a problem linked to the Yoctopuce
library;

* It reduces the dependencies on third party components, for example in the case where you
would need to recompile this project for another architecture in many years;

42 www.yoctopuce.com

8. Using Yocto-Relay with C++

+ It does not require the installation of a dynamic library specific to Yoctopuce on the final
system, everything is in the executable.

To integrate the source code, the easiest way is to simply include the Sources directory of your
Yoctopuce library into your IncludePath, and to add all the files of this directory (including the sub-
directory yapi) to your project.

For your project to build correctly, you need to link with your project the prerequisite system libraries,
that is:

* For Windows: the libraries are added automatically
* For Mac OS X: IOKit.framework and CoreFoundation.framework
* For Linux: libm, libpthread, libusb1.0, and libstdc++

Integration as a static library

With the integration of the Yoctopuce library as a static library, you do not need to install a dynamic
library specific to Yoctopuce, everything is in the executable.

To use the static library, you must first compile it using the shell script build.sh on UNIX, or
build.bat on Windows. This script, located in the root directory of the library, detects the OS and
recompiles all the corresponding libraries as well as the examples.

Then, to integrate the static Yoctopuce library to your project, you must include the Sources
directory of the Yoctopuce library into your IncludePath, and add the sub-directory Binaries/...
corresponding to your operating system into your libPath.

Finally, for you project to build correctly, you need to link with your project the Yoctopuce library and
the prerequisite system libraries:

* For Windows: yocto-static.lib
» For Mac OS X: libyocto-static.a, IOKit.framework, and CoreFoundation.framework
» For Linux: libyocto-static.a, libm, libpthread, libusb1.0, and libstdc++.

Note, under Linux, if you wish to compile in command line with GCC, it is generally advisable to link
system libraries as dynamic libraries, rather than as static ones. To mix static and dynamic libraries
on the same command line, you must pass the following arguments:

gcc (...) -Wl,-Bstatic -lyocto-static -Wl,-Bdynamic -1lm -lpthread -lusb-1.0 -lstdc++

Integration as a dynamic library

Integration of the Yoctopuce library as a dynamic library allows you to produce an executable smaller
than with the two previous methods, and to possibly update this library, if a patch reveals itself
necessary, without needing to recompile the source code of the application. On the other hand, it is
an integration mode which systematically requires you to copy the dynamic library on the target
machine where the application will run (yocto.dll for Windows, libyocto.s0.1.0.1 for Mac OS X and
Linux).

To use the dynamic library, you must first compile it using the shell script build.sh on UNIX, or
build.bat on Windows. This script, located in the root directory of the library, detects the OS and
recompiles all the corresponding libraries as well as the examples.

Then, To integrate the dynamic Yoctopuce library to your project, you must include the Sources
directory of the Yoctopuce library into your IncludePath, and add the sub-directory Binaries/. ..
corresponding to your operating system into your LibPath.

Finally, for you project to build correctly, you need to link with your project the dynamic Yoctopuce
library and the prerequisite system libraries:

* For Windows: yocto.lib

www.yoctopuce.com 43

8. Using Yocto-Relay with C++

» For Mac OS X: libyocto, I0Kit.framework, and CoreFoundation.framework
* For Linux: libyocto, libm, libpthread, libusb1.0, and libstdc++.

With GCC, the command line to compile is simply:

gcc (...) -lyocto -1lm -lpthread -lusb-1.0 -lstdc++

44 www.yoctopuce.com

9. Using Yocto-Relay with C#

C# (pronounced C-Sharp) is an object-oriented programming language promoted by Microsoft, it is
somewhat similar to Java. Like Visual-Basic and Delphi, it allows you to create Windows applications
quite easily. All the examples and the project models are tested with Microsoft C# 2010 Express,
freely available on the Microsoft web site’.

Our programming library is also compatible with Mono, the open source version of C# that also works
on Linux and MacOS. You will find on our web site various articles that describe how to configure
Mono to use our library.

9.1. Installation

Download the Visual C# Yoctopuce library from the Yoctopuce web site?. There is no setup program,
simply copy the content of the zip file into the directory of your choice. You mostly need the content
of the Sources directory. The other directories contain the documentation and a few sample
programs. All sample projects are Visual C# 2010, projects, if you are using a previous version, you
may have to recreate the projects structure from scratch.

9.2. Using the Yoctopuce API in a Visual C# project

The Visual C#.NET Yoctopuce library is composed of a DLL and of source files in Visual C#. The
DLL is not a .NET DLL, but a classic DLL, written in C, which manages the low level communications
with the modules®. The source files in Visual C# manage the high level part of the API. Therefore,
your need both this DLL and the .cs files of the sources directory to create a project managing
Yoctopuce modules.

Configuring a Visual C# project

The following indications are provided for Visual Studio Express 2010, but the process is similar for
other versions. Start by creating your project. Then, on the Solution Explorer panel, right click on your
project, and select "Add" and then "Add an existing item".

A file selection window opens. Select the yocto api.cs file and the files corresponding to the
functions of the Yoctopuce modules that your project is going to manage. If in doubt, select all the
files.

1 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-csharp-express
www.yoctopuce.com/EN/libraries.php
The sources of this DLL are available in the C++ API

www.yoctopuce.com 45

9. Using Yocto-Relay with C#

You then have the choice between simply adding these files to your project, or to add them as links
(the Add button is in fact a scroll-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply keeps a link on the original files. We
recommend you to use links, which makes updates of the library much easier.

Then add in the same manner the yapi.d11l DLL, located in the Sources/d11 directory*. Then,
from the Solution Explorer window, right click on the DLL, select Properties and in the Properties
panel, set the Copy to output folder to always. You are now ready to use your Yoctopuce modules
from Visual Studio.

In order to keep them simple, all the examples provided in this documentation are console

applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

9.3. Control of the Relay function

A few lines of code are enough to use a Yocto-Relay. Here is the skeleton of a C# code snipplet to
use the Relay function.

[oooll

string errmsg ="";

YAPI.RegisterHub ("usb", errmsqg):;
[...]
YRelay relay = YRelay.FindRelay ("RELAYLO1-123456.relayl");

if (relay.isOnline())

{

}

Let's look at these lines in more details.

YAPIL.RegisterHub

The YAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPI.SUCCESS and errmsg contains the error message.

YRelay.FindRelay

The YRelay.FindRelay function allows you to find a relay from the serial number of the module
on which it resides and from its function name. You can use logical names as well, as long as you
have initialized them. Let us imagine a Yocto-Relay module with serial number RELAYLO1-123456
which you have named "MyModule", and for which you have given the relay1 function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

relay = YRelay.FindRelay ("RELAYLO1-123456.relayl");
relay = Y ay.FindRelay ("RELAYLO1-123456 .MyFunction") ;
relay = Y ay.FindRelay ("MyModule.relayl") ;

relay = YRelay.FindRelay ("MyModule.MyFunction") ;

relay = YRelay.FindRelay ("MyFunction") ;

YRelay.FindRelay returns an object which you can then use at will to control the relay.

4 Remember to change the filter of the selection window, otherwise the DLL will not show.

46 www.yoctopuce.com

9. Using Yocto-Relay with C#

isOnline

The isOnline () method of the object returned by YRelay.FindRelay allows you to know if
the corresponding module is present and in working order.

set_state

The set state () method of the objet returned by YRelay.FindRelay switches the relay
position to one of its two outputs. The two possible parameter values are YRelay.STATE A for
output A, and YRelay.STATE B for output B.

A real example

Launch Microsoft Visual C# and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-Relay of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl

{

class Program
{

static void usage ()

{

string execname = System.AppDomain.CurrentDomain.FriendlyName;
Console.WriteLine ("Usage:");

Console.WriteLine (execname + " <serial number> < A | B >");
Console.WriteLine (execname + " <logical name> < A | B >");
Console.Writeline (execname + " any < A | B >");

System.Threading.Thread.Sleep (2500) ;
Environment.Exit (0) ;

}

static void Main(string[] args)
{

string errmsg = "";

string target;

YRelay relay;

string state;

if (args.Length < 2) usage():;
target = args[0].ToUpper () ;
state = args[1l].ToUpper () ;

if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS) {
Console.WritelLine ("RegisterHub error: " + errmsg);
Environment.Exit (0) ;

}

if (target == "ANY") {
relay = YRelay.FirstRelay();
if (relay == null) {

Console.WriteLine ("No module connected (check USB cable) ");
Environment.Exit (0);
}
} else relay = YRelay.FindRelay (target + ".relayl");

if (relay.isOnline()) {
if (state == "A") relay.set state(YRelay.STATE A);
else relay.set state(YRelay.STATE B);

} else {

Console.WriteLine ("Module not connected");
Console.WriteLine ("check identification and USB cable");
}
YAPI.FreeAPI();

www.yoctopuce.com 47

9. Using Yocto-Relay with C#

9.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl
{
class Program
{
static void usage()
{
string execname = System.AppDomain.CurrentDomain.FriendlyName;
Console.WriteLine ("Usage:");
Console.WriteLine (execname + " <serial or logical name> [ON/OFF]");
System.Threading.Thread.Sleep (2500) ;
Environment.Exit (0) ;

}

static void Main(string[] args)
{

YModule m;

string errmsg = "";

if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS) {
Console.WritelLine ("RegisterHub error: " + errmsgqg);
Environment.Exit (0) ;

}

if (args.Length < 1) usage();

m = YModule.FindModule (args[0]); // use serial or logical name
if (m.isOnline()) {
if (args.Length >= 2) {
if (args[l].ToUpper () == "ON") {

m.set beacon (YModule.BEACON ON) ;
}
if (args[l].ToUpper () == "OFF") {
m.set beacon (YModule.BEACON OFF) ;
}
}

Console.WriteLine ("serial: " + m.get serialNumber()):;
Console.WriteLine ("logical name: " + m.get logicalName ()) ;
Console.WriteLine ("luminosity: " + m.get luminosity().ToString());
Console.Write ("beacon: e
if (m.get beacon() == YModule.BEACON_ ON)
Console.WriteLine ("ON") ;
else
Console.WriteLine ("OFF") ;
Console.WriteLine ("upTime: " + (m.get upTime () / 1000).ToString() + " sec");
Console.WriteLine ("USB current: " + m.get usbCurrent().ToString() + " mA");
Console.WriteLine ("Logs:\r\n" + m.get lastLogs());
} else {
Console.WriteLine(args[0] + " not connected (check identification and USB cable)");

}
YAPI.FreeAPI ()

}

48 www.yoctopuce.com

9. Using Yocto-Relay with C#

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl
{
class Program
{
static void usage()
{
string execname = System.AppDomain.CurrentDomain.FriendlyName;
Console.WriteLine ("Usage:");
Console.WriteLine ("usage: demo <serial or logical name> <new logical name>");
System.Threading.Thread.Sleep (2500) ;
Environment.Exit (0) ;

}

static void Main(string[] args)
{

YModule m;

string errmsg = "";

string newname;

if (args.Length != 2) usage();
if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS) ({
Console.WriteLine ("RegisterHub error: " + errmsqg);

Environment.Exit (0) ;

}
m = YModule.FindModule (args[0]); use serial or logical name

if (m.isOnline()) {
newname = args[l];
if (!'YAPI.CheckLogicalName (newname)) {
Console.WriteLine ("Invalid name (" + newname + ")");
Environment.Exit (0);

}

m.set logicalName (newname) ;
m.saveToFlash () ; do not forge

Console.Write ("Module: serial= " + m.get serialNumber());
Console.WriteLine (" / name= " + m.get logicalName());
} else {

Console.Write ("not connected (check identification and USB cable"):;

}
YAPI.FreeAPI();
}
}
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

www.yoctopuce.com 49

9. Using Yocto-Relay with C#

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl

{

class Program
{
static void Main(string[] args)
{
YModule m;
string errmsg = ""
if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS) {
Console.WritelLine ("RegisterHub error: " + errmsg);

Environment.Exit (0) ;

}

Console.WriteLine ("Device list");

m = YModule.FirstModule () ;
while (m != null) {
Console.WritelLine (m.get serialNumber() + " (" + m.get productName() + ")");

m = m.nextModule () ;

}
YAPI.FreeAPI();
}
}
}

9.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPTI.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return

50 www.yoctopuce.com

9. Using Yocto-Relay with C#

values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 51

52

www.yoctopuce.com

10. Using the Yocto-Relay with LabVIEW

LabVIEW is edited by National Instruments since 1986. It is a graphic development environment:
rather than writing lines of code, the users draw their programs, somewhat like a flow chart.
LabVIEW was designed mostly to interface measuring tools, hence the Virtual Instruments name for
LabVIEW programs. With visual programming, drawing complex algorithms becomes quickly
fastidious. The LabVIEW Yoctopuce library was thus designed to make it as easy to use as possible.
In other words, LabVIEW being an environment extremely different from other languages supported
by Yoctopuce, there are major differences between the LabVIEW API and the other APls.

10.1. Architecture

The LabVIEW library is based on the Yoctopuce DotNetProxy library contained in the
DotNetProxyLibrary.dll DLL. In fact, it is this DotNetProxy library which takes care or most of the work
by relying on the C# library which, in turn, uses the low level library coded in yapi.dll (32bits) and
amd64\yapi.dll(64bits).

r)
Yoctopuce library for LabVIEW
\. n J
2l
DotNetProxy.dll (.NET Assembly)
[YoctoProxyAPlL.* : .NET Proxy API]
il
o |n
[YoctoLib.* : Yoctopuce standard C# API]
) 37 37
yapi.dil | [amd64/iyapidil
low-level API (32 bit) J Llow-level API (64 bit)
\

LabVIEW Yoctopuce API architecture

You must therefore imperatively distribute the DotNetProxyLibrary.dll, yapi.dll, and amd64\yapi.dil
with your LabVIEW applications using the Yoctopuce API.

If need be, you can find the low level API sources in the C# library and the DotNetProxyLibrary.dll
sources in the DotNetProxy library.

www.yoctopuce.com 53

10. Using the Yocto-Relay with LabVIEW

10.2. Compatibility

Firmware

For the LabVIEW Yoctopuce library to work correctly with your Yoctopuce modules, these modules
need to have firmware 37120, or higher.

LabVIEW for Linux and MacOS

At the time of writing, the LabVIEW Yoctopuce API has been tested under Windows only. It is
therefore most likely that it simply does not work with the Linux and MacOS versions of LabVIEW.

LabVIEW NXG

The LabVIEW Yoctopuce library uses many techniques which are not yet available in the new
generation of LabVIEW. The library is therefore absolutely not compatible with LabVIEW NXG.

About DotNewProxyLibrary.dll

In order to be compatible with as many versions of Windows as possible, including Windows XP, the
DotNetProxyLibrary.dll library is compiled in .NET 3.5, which is available by default on all the
Windows versions since XP.

10.3. Installation

Download the LabVIEW library from the Yoctopuce web site'. It is a ZIP file in which there is a
distinct directory for each version of LabVIEW. Each of these directories contains two subdirectories:
the first one contains programming examples for each Yoctopuce product; the second one, called
Vis, contains all the Vls of the API and the required DLLs.

Depending on Windows configuration and the method used to copy the DotNetProxyLibrary.dll on
your system, Windows may block it because it comes from an other computer. This may happen
when the library zip file is uncompressed with Window's file explorer. If the DLL is blocked, LabVIEW
will not be able to load it and an error 1386 will occur whenever any of the Yoctopuce Vls is
executed.

There are two ways to fix this. The simplest is to unblock the file with the Windows file explorer: right
click / properties on the DotNetProxyLibrary.dll file, and click on the unblock button. But this has to be
done each time a new version of the DLL is copied on your system.

1 http://www.yoctopuce.com/EN/libraries.php

54 www.yoctopuce.com

10. Using the Yocto-Relay with LabVIEW

{ * DotNetProxyLibrary.dll Properties = 1

General | Digital Signatures | Security | Details | Previous Versionsl

, Dot Met Prosgy Librany.dll

Type of file: Application extension {.dll)

Opens with: Unknown application [Change...

Location: CmphLabVIEW 2017 \Wls
Size: 720 KB (738,000 bytes)
Size on disk: 724 KB (741,376 bytes)

Created: Friday, November 15, 2015, 11:06:38 AM
Maodified: Monday, Movember 18, 2015, 7:08:48 PM
Accessed: Friday, Movember 15, 2015, 11:06:38 AM

Attributes: [C| Read-only [Hidden

Security: This file came from anather
computer and might be blocked th
help protect this computer.

[ok || cance || ool

Unblock the DotNetProxyLibrary DLL.

Alternatively, one can modify the LabVIEW configuration by creating, in the same directory as the
labview.exe executable, an XML file called labview.exe.config containing the following code:

<?xml version ="1.0"?2>

<configuration>

<runtime>

<loadFromRemoteSources enabled="true" />
</runtime>

</configuration>

Make sure to select the correct directory depending on the LabVIEW version you are using (32 bits
vs. 64 bits). You can find more information about this file on the National Instruments web site.?

To install the LabVIEW Yoctopuce API, there are several methods.

Method 1 : "Take-out" installation

The simplest way to use the Yoctopuce library is to copy the content of the Vis directory wherever
you want and to use the Vls in LabVIEW with a simple drag-n-drop operation.

To use the examples provided with the API, it is simpler if you add the directory of Yoctopuce Vls into
the list of where LabVIEW must look for Vls that it has not found. You can access this list through the
Tools > Options > Paths > VI Search Path menu.

2 https://knowledge.ni.com/KnowledgeAtrticleDetails?id=kA00Z000000P8XnSAK

www.yoctopuce.com 55

10. Using the Yocto-Relay with LabVIEW

[-] tabview = Esn =<
File Opelote Help
urement & Automation Explorer...

Instrumentation »
Security 3

User Name...

[- | options

Category -
Front Panel

[ESRECR =)

LLB Manager...
Import » Block Diagram
Shared Variable » Controls/Functions Palettes VISearch Path [] [EJuse defautt

Distributed System Manager

Vi T ——
<foundvi>

<vilib>\"

<userib>*

<instrlib>*

aireyTd lesiNational

C:\Yoctopuce\LabVIEW2017\VIs

nment -
Search /

Menu Shortcuts.
Revision History
Security

Shared Variable Engine
VI Server

Web Server

Find VIs on Disk...
brepare Example Vis for NI Example Finder...
Remote Panel Connection Manager...
b Publishing Tool...
brtrol and Simulation

Browse...

EI C:\Yoctopuce\LabVIEW2017\VIs

agpts N abVIEW 2017\resource

[msertBefore N[Insertaster | [Replace | Rem,
E) NI Blog articles | Scalable EW Validation Solutions

*Changes to marked options will take effect the next time you start LabVIEW.

oK

][cancel][Help

Configuring the "VI Search Path"

Method 2 : Provided installer

In each LabVIEW folder of the Library, you will find a VI named "Install.vi", just open the one
matching your LabVIEW version.

'

D Yoctopuce library for LabVIEW (xooood)

computer, just choose the type of installation you want:

Then, click the "5Start” button to continue

This will install the Yoctopuce library for LabVIEW 2017 (64-bit) on your

E} Install: Copy VI and documentation files into LabVIEW's vilib folder

-

=3

| Start ' |Cancel'

The provider installer

This installer provide 3 installation options:

Install: Keep VI and documentation files where they are.
With this option, VI files are keep in the place where the library has been unzipped. So you will have
to make sure these files are not deleted as long as you need them. Here is what the installer will do if
that option is chosen:

the labview.ini file.

» A dir.mnu palette file referring to Vls in the install folder will be created in

» All references to Yoctopuce any library paths will be removed from the viSearchPath option in

C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce

labview.ini file.

» A reference to the VIs source install path will inserted into the viSearchPath option in the

56

www.yoctopuce.com

10. Using the Yocto-Relay with LabVIEW

Install: Copy VI and documentation files into LabVIEW's vi.lib folder

In that case all required files are copied inside the LabVIEW's installation folder, so you will be able
to delete the installation folder once the original installation is complete. Note that programming
examples won't be copied. Here is the exact behaviour of the installer in that case:

+ All references to Yoctopuce library paths will be removed from viSearchPath in labview.ini file
All Vis, DLLs, and documentation files will be copied into:

C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\Yoctopuce

Vls will be patched with the path to copied documentation files

A dir.mnu palette file referring to copied VIs will be created in

C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce

Uninstall Yoctopuce Library
this option is meant to remove the LabVIEW library from your LabVIEW installation, here is how it is
done:

+ All references to Yoctopuce library paths will be removed from viSearchPath in labview.ini file
» Following folders, if exists, will be removed:
C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce
C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\Yoctopuce

In any case, if the labview.ini file needs to be modified, a backup copy will be made beforehand.

The installer identifies Yoctopuce Vls library folders by checking the presence of the YRegisterHub.vi
file in said folders.

Once the installation is complete, a Yoctopuce palette will appear in Functions/Addons menu.

Method 3 : Installation in a LabVIEW palette (ancillary method)

The steps to manually install the VIs directly in the LabVIEW palette are somewhat more complex.
You can find the detailed procedure on the National Instruments web site 2, but here is a summary:

1. Create a Yoctopuce/API directory in the C:\Program Files\National Instruments\LabVIEW xxxx
\vi.lib directory and copy all the VIs and DLLs of the VIs directory into it.

2. Create a Yoctopuce directory in the C:\Program Files\National Instruments\LabVIEW xxxx
\menus\Categories directory.

3. Run LabVIEW and select the option Tools>Advanced>Edit Palette Set

File Edit View Project Operate [Jfd| Window Help

Measurement & Automation Explorer...

Instrumentation 4

Profile 2
Security »

User Name...
Information on Building Applications

LLB Manager...

Import 3
Shared Variable 2
Distributed System Manager

Find VIs on Disk...

Prepare Example Vs for NI Example Finder...
Remote Panel Connection Manager...

‘Web Publishing Tool...

Find LabVIEW Add-ons...

VI Package Manager...

Options... Clear Compiled Object Cache...
Edit Error Codes...

Create or Edit Express VI...

Export Strings...
Import Strings...

3 https://forums.ni.com/t5/Developer-Center-Resources/Creating-a-LabVIEW-Palette/ta-p/3520557

www.yoctopuce.com 57

10. Using the Yocto-Relay with LabVIEW

Three windows pop up:

o "Edit Controls and Functions Palette Set"
o "Functions"
o "Controls"

[dit Controls and Functions Palette Set =

LabVIEW loads a separate palette set for cach target. If you are working on
more than one target, the palette set you are editing is the one in use before
you displayed this dialog.

Current Palette Set

LocalHost

Save Changes Saves changes you just made to this palette set.

cha
Cancels changes you just made to this palette set.
Control & Sim
Restore to Default Resets to the default palette set when you installed oy —
LabVIEW.
Favorites mbedded Addons

E
Development

<UseDefaultM... FPGA Interface

WSN Host AP

Displays help for this dialog box.

in the Function window, there is a Yoctopuce icon. Double-click it to create an empty
"Yoctopuce" window.

4. In the Yoctopuce window, perform a Right click>Insert>Vi(s)..

Yoctopuce

4+ O\ Search Customizew

Subpalette...

| J Synchronize With Directory

Display S}fnchrﬁniz.atiﬂn Path... Empty Slot
Standard Palette View »
Empty Row

"WL..." Option

in order to open a file chooser. Put the file chooser in the vi.lib\Yoctopuce\API directory that
you have created in step 1 and click on Current Folder

Select a VI or directory to add =
G () =[J < Program Files » National Instruments » LebVIEW 2017 » vilib » Voctopuce » API » ~ %2 [Search aPi)
Organize v MNew folder i= » i @
“ Mame Date modified Type Size *
i Libraries .) =
o . amd4 21/09/201911:09 File folder
& locuments E ™
J’ - \gﬂ, YAccelerometer.vi 10/08/2019 07:40 LabVIEW Instrume...
= usie =, vARtude.vi E
it L
E V‘d ures [, vAnButton.vi
deos [, Y ArithmeticSensor.vi
_ [vBuzzervi
& Homegroup L (I Lo
=], YCarbonDioxide.vi
=], YColorLed.vi 01/08/2019 11:02
1% Computer 4 o
R =], YColorLedClustervi 13/08/2019 17:36
- ocal Dist . E
= =), ¥Compass.i 10/08/2019 0740 LabVIEW Instrume... -
~ [] +

Current Folder Open |v Cancel
/

All the Yoctopuce VIs now appear in the Yoctopuce window. By default, they are sorted by
alphabetical order, but you can arrange them as you see fit by moving them around with the
mouse. For the palette to be easy to use, we recommend to reorganize the icons over 8
columns.

5. In the "Edit Controls and Functions Palette Set" window, click on the "Save Changes" button,
the window indicates that it has created a dir.mnu file in your Documents directory.

58 www.yoctopuce.com

‘:l Edit Controls and Functions Palette Set

10. Using the Yocto-Relay with LabVIEW

|| [] Preview Palette Changes

LabVIEW loads a separate palette set for each target. If you are working on
more than one target, the palette set you are editing is the one in use before
you displayed this dialog.

Current Palette Set

Preview Saving Palette Files
"Yoctopuce palette”

Currently at: C:\Program Files\National Instruments\,
LabVIEW.
e saved at: C:\Users*YourName™ Documen

dir.mnu

q

LabVIEW Data\2017 (64- bit)\Palettes\menus\Categories\

[latopuce\dirmnd

LocalHost o

O ——
Save Changes ’ anges you just made to this palette set.

[¥] Preview changes before saving.

‘-

Cancel Cancels changes you just made to this palette set.

Resets to the default palette set when you installed [Continue] [Cancel l [Help]

LabVIEW.

Restore to Default

Help Displays help for this dialog box.

Copy this file in the "menus\Categories\Yoctopuce" directory that you have created in
step 2.

Restart LabVIEW, the LabVIEW palette now contains a Yoctopuce sub-palette with all the Vis
of the API.

4] Functions Q, Search
Programming »
Structures Aray Cluster, Class, &

Variant

Numeric Boolean String

[
Comparison Timing Dialog & User
Interface
File VO Application

ool 41 Yoctopuce

B 2
“m e = e o]) oumm)
Synchronization Graphics & Report [[=] = lo] =l (@]
Sound Generation
YRegisterHub.vi YFreeAPLvi YModule.vi YSensor.vi YAcceleromet... ‘YAnButton.vi VArithmeticSe... YBuzzer.vi
Measurement /O)
Izl » =] D [coueas [Cumeenm ezl
) @ &
Signal Processing) VAitudevi VCarbonDioxi.. YColorledvi YColoedClus.. YCompassi YCurentvi YCuentloop.. YDataloggervi
Data Communication)
Connectivity)) [)) proneR [Evse CIED oo]
Contt 8 Senin) [[E
Epress) VDstaloggerC.. VDigitallOi VDisplayi YDualPoweri YFilessi VGenericSenso.. YGroundSpee.. VGyrowi
Addons)
Selecta V.. = o =
- “)
la] B [t w18 D)
" VYHubPortvi YHumidity vi YRCPortyi YViatitudei YLedvi Vlightsensorvi Ylongitudevi VMagnetomet...
e [Powes | PSS [Fne]|
& % =
VMultiCelWei.. YNetworkwi VPowervi YPowerOutput. YPressurewi YProxmivi VPwminputvi VPwmOutputui
[meme]] [[
= = [L4 =
VRangeFinderwi VRealTimeClo.. YRelaywi VerialPortai VServoni VSPIPortyi VTemperatureni Viti
= = e e] | e
Bz B i a &
Wocvi YTvocyi VVoltagevi YVoltageOutp.. YWakeUpMon.. YWakeUpSche.. YWeighScalewi YWireless.vi

10.4. Presentation of Yoctopuce Vs

The LabVIEW Yoctopuce library contains one VI per class of the Yoctopuce API, as well as a few
special Vlis. All the VlIs have the traditional connectors Error IN and Error Out.

YRegisterHub

The YRegisterHub VI is used to initialize the API. You must imperatively call this VI once before
you do anything in relation with Yoctopuce modules.

url —L_ e successful

REG.HUB
async E = error msg
on
error in error out

The YRegisterHub VI

www.yoctopuce.com 59

10. Using the Yocto-Relay with LabVIEW

The YRegisterHub VI takes a url parameter which can be:

» The "usb" character string to indicated that you wish to work with local modules, directly
connected by USB

* An IP address to indicate that you wish to work with modules which are available through a
network connection. This IP address can be that of a YoctoHub* or even that of a machine on
which the VirtualHub® application is running.

In the case of an IP address, the YRegisterHub VI tries to contact this address and generates and
error if it does not succeed, unless the async parameter is set to TRUE. If async is set to TRUE, no
error is generated and Yoctopuce modules corresponding to that IP address become automatically
available as soon as the said machine can be reached.

If everything went well, the successful output contains the value TRUE. In the opposite case, it
contains the value FALSE and the error msg output contains a string of characters with a description
of the error.

You can use several YRegisterHub Vls with distinct URLs if you so wish. However, on the same
machine, there can be only one process accessing local Yoctopuce modules directly by USB (url set
to "usb™). You can easily work around this limitation by running the VirtualHub software on the local
machine and using the "127.0.0.1" url.

YFreeAPI
The YFreeAPTI VI enables you to free resources allocated by the Yoctopuce API.

FREE API

error in ;ﬁ'ég error out

The YFreeAPI VI

You must call the YFreeAPT VI when your code is done with the Yoctopuce API. Otherwise, direct
USB access (url set to "usb") could stay locked after the execution of your VI, and stay so for as
long as LabVIEW is not completely closed.

Structure of the VIs corresponding to a class

The other VlIs correspond to each function/class of the Yoctopuce API, they all have the same
structure:

[7] hardware name

[5] is online
name [11] _|—[3] optional reference
input 1[10] [2] output 1
input 2 [9] [1] output 2
error in [8] [0] error out

create ref [6]
Structure of most Vls of the API.

» Connector [11]: name must contain the hardware name or the logical name of the intended
function.

Connectors [10] and [9]: input parameters depending on the nature of the VI.

Connectors [8] and [0] : error in and error out.

Connector [7] : Unique hardware name of the found function.

Connector [5] : is online contains TRUE if the function is available, FALSE otherwise.
Connectors [2] and [1]: output values depending on the nature of the VI.

Connector [6]: If this input is set to TRUE, connector [3] contains a reference to the Proxy
objects implemented by the VI°. This input is initialized to FALSE by default.

4 www.yoctopuce.com/EN/products/category/extensions-and-networking
5 http://www.yoctopuce.com/EN/virtualhub.php
see section Using Proxy objects

60 www.yoctopuce.com

10. Using the Yocto-Relay with LabVIEW

» Connector [3]: Reference on the Proxy object implemented by the VI if input [6] is TRUE. This
object enables you to access additional features.

You can find the list of functions available on your Yocto-Relay in chapter Programming, general
concepts.

If the desired function (parameter name) is not available, this does not generate an error, but the is
online output contains FALSE and all the other outputs contain the value "N/A" whenever possible. If
the desired function becomes available later in the life of your program, is online switches to TRUE
automatically.

If the name parameter contains an empty string, the VI targets the first available function of the same
type. If no function is available, is online is set to FALSE.

The YModule VI

The YModule VI enables you to interface with the "module” section of each Yoctopuce module. It
enables you to drive the module led and to know the serial number of the module.

[7] hardware name

[5] is online
module name [11] [—[3] optional reference
. MODULE |
Beacon in [10] [2] beacon out
[1] serial number
error in [8] [0] error out

create ref [6]
The YModule VI

The name input works slightly differently from other Vis. If it is called with a name parameter
corresponding to a function name, the YModule VI finds the Module function of the module hosting
the function. You can therefore easily find the serial number of the module of any function. This
enables you to build the name of other functions which are located on the same module. The
following example finds the first available YHumidity function and builds the name of the
YTemperature function located on the same module. The examples provided with the Yoctopuce API
make extensive use of this technique.

E HL | MOGULE e TEWE.
I » temperature i

Using the YModule VI to retrieve functions hosted on the same module

The sensor Vis

All the VIs corresponding to Yoctopuce sensors have exactly the same geometry. Both outputs
enable you to retrieve the value measured by the corresponding sensor as well the unit used.

[7] hardware name

[5] is online
sensor name [11] _l_[3] optional reference
update freq[10] SENSOR) [2] current value
[I] [1] unit
error in [8] [0] error out

create ref [6]
The sensor Vls have all exactly the same geometry

The update freq input parameter is a character string enabling you to configure the way in which the
output value is updated:

» "auto" : The VI value is updated as soon as the sensor detects a significant modification of the
value. It is the default behavior.
» "x/s": The VI value is updated x times per second with the current value of the sensor.

www.yoctopuce.com 61

10. Using the Yocto-Relay with LabVIEW

* "x/m","x/h": The VI value is updated x times per minute (resp. hour) with the average value
over the latest period. Note, maximum frequencies are (60/m) and (3600/h), for higher
frequencies use the (x/s) syntax.

The update frequency of the VI is a parameter managed by the physical Yoctopuce module. If
several VIs try to change the frequency of the same sensor, the valid configuration is that of the
latest call. It is however possible to set different update frequencies to different sensors on the same
Yoctopuce module.

temperature

%1.23
DEL

Changing the update frequency of the same module

The update frequency of the VI is completely independent from the sampling frequency of the
sensor, which you usually cannot modify. It is useless and counterproductive to define an update
frequency higher than the sensor sampling frequency.

10.5. Functioning and use of Vis

Here is one of the simplest example of VIs using the Yoctopuce API.

value
%1.23
DEL!
[FEGHLE ‘“—m‘" (FREEA

Minimal example of use of the LabVIEW Yoctopuce API

This example is based on the YSensor VI which is a generic VI enabling you to interface any
sensor function of a Yoctopuce module. You can replace this VI by any other from the Yoctopuce
API, they all have the same geometry and work in the same way. This example is limited to three
actions:

1. ltinitializes the API in native ("usb") mode with the YRegisterHub VI.
2. It displays the value of the first Yoctopuce sensor it finds thanks to the YSensor VI.
3. It frees the API thanks to the YFreeAPT VI.

This example automatically looks for an available sensor. If there is such a sensor, we can retrieve
its name through the hardware name output and the isOnline output equals TRUE. If there is no
available sensor, the VI does not generate an error but emulates a ghost sensor which is "offline".
However, if later in the life of the application, a sensor becomes available because it has been
connected, isOnline switches to TRUE and the hardware name contains the name of the sensor. We
can therefore easily add a few indicators in the previous example to know how the executions goes.

62 www.yoctopuce.com

10. Using the Yocto-Relay with LabVIEW

hardware name jsOnline

'I
TF

: value
ush | T ME FREE 427
- -: |T| DEL %

Use of the hardware name and isOnline outputs

The Vls of the Yoctopuce API are actually an entry door into the library. Internally, this mechanism
works independently of the Yoctopuce Vis. Indeed, most communications with electronic modules
are managed automatically as background tasks. Therefore, you do not necessarily need to take any
specific care to use Yoctopuce Vls, you can for example use them in a non-delayed loop without
creating any specific problem for the API.

hardware name jsoOnline

The Yoctopuce Vls can be used in a non-delayed loop

Note that the YRegisterHub VI is not inside the loop. The YRegisterHub VI is used to initialize
the API. Unless you have several URLs that you need to register, it is better to call the
YRegisterHub VI only once.

When the name parameter is initialized to an empty string, the Yoctopuce VIs automatically look for a
function they can work with. This is very handy when you know that there is only one function of the
same type available and when you do not want to manage its name. If the name parameter contains
a hardware name or a logical name, the VI looks for the corresponding function. If it does not find it, it
emulates an offline function while it waits for the true function to become available.

hardware name jsonline

| METEOMEK2-1181D4 temperature

[el s

Using names to identify the functions to be used

www.yoctopuce.com 63

10. Using the Yocto-Relay with LabVIEW

Error handling

The LabVIEW Yoctopuce API is coded to handle errors as smoothly as possible: for example, if you
use a VI to access a function which does not exist, the isOnline output is set to FALSE, the other
outputs are set to NaN, and thus the inputs do not have any impact. Fatal errors are propagated
through the traditional error in, error out channel.

However, the YRegisterHub VI manages connection errors slightly differently. In order to make
them easier to manage, connection errors are signaled with Success and error msg outputs. If there
is an issue during a call to the YRegisterHub VI, Success contains FALSE and error msg contains
a description of the error.

IMETEOME2-1181D4 temperature hardware name isOnline

‘., ‘ Lol

:
3
<)

Error handling

The most common error message is "Another process is already using yAPI". It means that another
application, LabVIEW or other, already uses the API in native USB mode. For technical reasons, the
native USB API can be used by only one application at the same time on the same machine. You
can easily work around this limitation by using the network mode.

10.6. Using Proxy objects

The Yoctopuce API contains hundreds of methods, functions, and properties. It was not possible, or
desirable, to create a VI for each of them. Therefore, there is a VI per class that shows the two
properties that Yoctopuce deemed the most useful, but this does not mean that the rest is not
available.

Each VI corresponding to a class has two connectors create ref and optional ref which enable you to
obtain a reference on the Proxy object of the .NET Proxy APl on which the LabVIEW library is built.

[—[3] optional reference

create ref [6]
The connectors to obtain a reference on the Proxy object corresponding to the VI

To obtain this reference, you only need to set optional ref to TRUE. Note, it is essential to close all
references created in this way, otherwise you risk to quickly saturate the computer memory.

Here is an example which uses this technique to change the luminosity of the leds of a Yoctopuce
module.

64 www.yoctopuce.com

10. Using the Yocto-Relay with LabVIEW

error msg hardware name

B YModuleProxy _ﬂ i, | [FREERS]

3 Luminasity ch | #x

L]

stop

Regulating the luminosity of the leds of a module

Note that each reference allows you to obtain properties (property nodes) as well as methods (invoke
nodes). By convention, properties are optimized to generate a minimum of communication with the
modules. Therefore, we recommend to use them rather than the corresponding get xxx and set_xxx
methods which might seem equivalent but which are not optimized. Properties also enable you to
retrieve the various constants of the API, prefixed with the " " character. For technical reasons, the

get xxx and set_xxx methods are not all available as properties.

5 == YSensorProxy §

CurrentValue K

S YSensorProxy o

get_currentValue v

B oy YSensorProxy _E;

D-'ssm— _CurrentValue INVALID»

Property and Invoke nodes: Using properties, methods and constants

You can find a description of all the available properties, functions, and methods in the
documentation of the .NET Proxy API.

Network mode

On a given machine, there can be only one process accessing local Yoctopuce modules directly by
USB (url set to "usb"). It is however possible that multiple process connect in parallel to
YoctoHubs’ or tp a machine on which VirtualHub® is running, including the local machine. Therefore,
if you use the local address of your machine (127.0.0.1) and if a VirtualHub runs on it, you can work
around the limitation which prevents using the native USB APl in parallel.

127.0.0.1 [~{FEcHus

L

Network mode

7 https://www.yoctopuce.com/EN/products/category/extensions-and-networking
www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 65

10. Using the Yocto-Relay with LabVIEW

In the same way, there is no limitation on the number of network interfaces to which the API can
connect itself in parallel. This means that it is quite possible to make multiple calls to the
YRegisterHub VI. This is the only case where it is useful to call the YRegisterHub VI several
times in the life of the application.

192.168.0.10 192.168.011

You can have multiple network connections

By default, the YRegisterHub VI tries to connect itself on the address given as parameter and
generates an error (success=FALSE) when it cannot do so because nobody answers. But if the
async parameter is initialized to TRUE, no error is generated when the connection does not succeed.
If the connection becomes possible later in the life of the application, the corresponding modules are
automatically made available.

192.168.0.10

Asynchronous connection

10.7. Managing the data logger

Almost all the Yoctopuce sensors have a data logger which enables you to store the measures of the
sensors in the non-volatile memory of the module. You can configure the data logger with the
VirtualHub, but also with a little bit of LabVIEW code.

Logging

To do so, you must configure the logging frequency by using the "LogFrequency" property which you
can reach with a reference on the Proxy object of the sensor you are using. Then, you must turn the
data logger on thanks to the YDataLogger VI. Note that, like with the YModule VI, you can obtain
the YDataLogger VI corresponding to a module with its own name, but also with the name of any
of the functions available on the same module.

hardware name
Errar msg

abic

| Recording ON ~ tl e
e e

& =% ¥SensorProxy § c D Y

"-.:L ‘J r b.- LCEIFI'Equen.:-;_-

Activating the data logger

Reading
You can retrieve the data in the data logger with the YDatalLoggerContents VI.

66 www.yoctopuce.com

10. Using the Yocto-Relay with LabVIEW

context in [0] [4] context out
sensor name [9] -} e I—[G] progress
start [7] [8] data
] nf > 1 .
end [9] [10] preview

error in [1] [15] error out
The YDatalLoggerContents VI

Retrieving the data from the logger of a Yoctopuce module is a slow process which can take up to
several tens of seconds. Therefore, we designed the VI enabling this operation to work iteratively.

As a first step, you must call the VI with a sensor name, a start date, and an end date (UTC UNIX
timestamp). The (0,0) pair enables you to obtain the complete content of the data logger. This first
call enables you to obtain a summary of the data logger content and a context.

As a second step, you must call the YDatalLoggerContents VI in a loop with the context parameter,
until the progress output reaches the 100 value. At this time, the data output represents the content
of the data logger.

errar msg hardware name preview

[e[z=z]
[= > }ﬂ
HEC HE 7

progress
data
__ AT

FEGHE D-ssm E_l—mmrn Loenmr 100 —_— @
—{ b=gl Ty eI

[

Retrieving the content of the data logger

L,

S, |

The results and the summary are returned as an array of structures containing the following fields:

startTime: beginning of the measuring period
endTime: end of the measuring period
averageValue: average value for the period
minValue: minimum value over the period
maxValue: maximum value over the period

Note that if the logging frequency is superior to 1Hz, the data logger stores only current values. In
this case, averageValue, minValue, and maxValue share the same value.

10.8. Function list

Each VI corresponding to an object of the Proxy API enables you to list all the functions of the same
class with the getSimilarfunctions() method of the corresponding Proxy object. Thus, you can easily
perform an inventory of all the connected modules, of all the connected sensors, of all the connected
relays, and so on.

www.yoctopuce.com 67

10. Using the Yocto-Relay with LabVIEW

error msg

5 YModuleProxy 4

GetSimilarFunctions »
GetSimilarFunctions
Il[guzs

l—kldl:-cl—
Retrieving the list of all the modules which are connected

10.9. A word on performances

The LabVIEW Yoctopuce API is optimized so that all the VIs and .NET Proxy API object properties
generate a minimum of communication with Yoctopuce modules. Thus, you can use them in loops
without taking any specific precaution: you do not have to slow down the loops with a timer.

- ﬂ =% YSensorProxy ﬂ

CurrentValue ¥

These two loops generate little USB communication and do not need to be slowed down

However, almost all the methods of the available Proxy objects initiate a communication with the
Yoctopuce modules each time they are called. You should therefore avoid calling them too often

without purpose.

— & ¥ YSensorProxy §

g]f‘r._:!_ll‘lfrﬁr.‘.‘-_=.|!_IE v

This loop, using a method, must be slowed down

10.10. A full example of a LabVIEW program

Here is a short example of how to use the Yocto-Relay in LabVIEW. After a call to the RegisterHub
VI, the YRelay VI finds the first relay available, then use the YModule VI to find out the device serial
number. This number is used to build the name of all relays present on the device. Theses names
are used to initialize one VI per relay. This technique avoids ambiguities when several Yocto-Relay
are connected at the same time. Once every VI is initialized, the relay state can be displayed and a
switch allow the toggle the relay. When the application is about to exit, it frees the Yoctopuce API,

thanks to the YFreeAPI VI.

68 www.yoctopuce.com

10. Using the Yocto-Relay with LabVIEW

- Serial HTwe H
[Module serial number
M
Module logical name
or
Empty string if you have no clue
RL
iR n
&=
[“usb“ to use local devices, or IP address | [Fai= =] L E'j
T

) A
BEINT oy
A - R - 51 L2
e L (=11 D) T Eg 5
Default Vals Reinit All [-&] T 7
s0p

A
A
e} >
- . ,
n
egisterHub error management

main loop

Find out the device serial number_and
construct all relay names from it

Find a matching relay function
e

and check if it is onling

Example of Yocto-Relay usage in LabVIEW

If you read this documentation on screen, you can zoom on the image above. You can also find this
example in the LabVIEW Yoctopuce library.

10.11. Differences from other Yoctopuce APIs

Yoctopuce does everything it can to maintain a strong coherence between its different programming
libraries. However, LabVIEW being clearly apart as an environment, there are, as a consequence,
important differences from the other libraries.

These differences were introduced to make the use of modules as easy as possible and requiring a
minimum of LabVIEW code.

YFreeAPI

In the opposite to other languages, you must absolutely free the native API by calling the YFreeAPT
VI when your code does not need to use the API anymore. If you forget this call, the native API risks
to stay locked for the other applications until LabVIEW is completely closed.

Properties

In the opposite to classes of the other APls, classes available in LabVIEW implement properties. By
convention, these properties are optimized to generate a minimum of communication with the
modules while automatically refreshing. By contrast, methods of type get xxx and set xxx
systematically generate communications with the Yoctopuce modules and must be called sparingly.

Callback vs. Properties

There is no callback in the LabVIEW Yoctopuce API, the VIs automatically refresh: they are based
on the properties of the .NET Proxy API objects.

www.yoctopuce.com 69

70

www.yoctopuce.com

11. Using the Yocto-Relay with Java

Java is an object oriented language created by Sun Microsystem. Beside being free, its main
strength is its portability. Unfortunately, this portability has an excruciating price. In Java, hardware
abstraction is so high that it is almost impossible to work directly with the hardware. Therefore, the
Yoctopuce API does not support native mode in regular Java. The Java API needs a Virtual Hub to
communicate with Yoctopuce devices.

11.1. Getting ready

Go to the Yoctopuce web site and download the following items:

+ The Java programming library’
+ The VirtualHub software? for Windows, Mac OS X or Linux, depending on your OS

The library is available as source files as well as a jar file. Decompress the library files in a folder of
your choice, connect your modules, run the VirtualHub software, and you are ready to start your first
tests. You do not need to install any driver.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

11.2. Control of the Relay function

A few lines of code are enough to use a Yocto-Relay. Here is the skeleton of a Java code snippet to
use the Relay function.

[...]
YAPI.RegisterHub ("127.0.0.1");
[...]

relay = YRelay.FindRelay ("RELAYLO1-123456.relayl");

if (relay.isOnline())

{

1 www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 71

11. Using the Yocto-Relay with Java

Let us look at these lines in more details.

YAPIL.RegisterHub

The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the Virtual Hub able to see the devices. If the
initialization does not succeed, an exception is thrown.

YRelay.FindRelay

The YRelay.FindRelay function allows you to find a relay from the serial number of the module
on which it resides and from its function name. You can use logical names as well, as long as you
have initialized them. Let us imagine a Yocto-Relay module with serial number RELAYLO1-123456
which you have named "MyModule", and for which you have given the relay1 function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

relay = FindRelay ("RELAYLO1-123456.relayl")
relay = ay.FindRelay ("RELAYLO1-123456.MyFunction")
relay = .FindRelay ("MyModule.relayl"

relay = ay.FindRelay ("MyModule.MyFunction")

relay = 1y . FindRelay ("MyFunction")

YRelay.FindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by YRelay.FindRelay allows you to know if
the corresponding module is present and in working order.

set_state

The set state () method of the objet returned by YRelay.FindRelay switches the relay
position to one of its two outputs. The two possible parameter values are YRelay.STATE A for
output A, and YRelay.STATE B for output B.

A real example

Launch you Java environment and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-Relay of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

import com.yoctopuce.YoctoAPI.*;
public class Demo {

public static void main(String[] args) {
try {

YAPI.RegisterHub ("127.0.0.1");

} catch (YAPI Exception ex) {
System.out.println ("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage () + ")");

System.out.println ("Ensure that the VirtualHub application is running");
System.exit (1);
}

YRelay relay;
if (args.length > 0) {

relay = YRelay.FindRelay(args[0]);
} else {

72 www.yoctopuce.com

11. Using the Yocto-Relay with Java

relay = YRelay.FirstRelay();

if (relay == null) {
System.out.println ("No module connected (check USB cable)");
System.exit (1) ;

try {
System.out.println ("Switch relay to B"):;
relay.set state(YRelay.STATE B);
YAPI.Sleep (1000) ;
System.out.println ("Switch relay to A");
relay.set state(YRelay.STATE A);
} catch (YAPI Exception ex) {
System.out.println ("Module "+relay.describe ()+" not connected (check
identification and USB cable)");
}

YAPI.FreeAPI();

11.3. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

import com.yoctopuce.YoctoAPI.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class Demo {

public static void main (String[] args)

{

try {
// setup the API to use local VirtualHub
YAPI.RegisterHub ("127.0.0.1");
} catch (YAPI Exception ex) {
System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +

ex.getLocalizedMessage() + ")");
System.out.println ("Ensure that the VirtualHub application is running");
System.exit (1) ;
}

System.out.println ("usage: demo [serial or logical name] [ON/OFF]");

YModule module;

if (args.length == 0) {
module = YModule.FirstModule () ;
if (module == null) {

System.out.println("No module connected (check USB cable)");
System.exit (1) ;
}

} else {
module = YModule.FindModule (args[0]); // use serial or logical name
}
try {
if (args.length > 1) {
if (args[l].equalsIgnoreCase ("ON")) {
module.setBeacon (YModule.BEACON_ON) ;
} else {
module.setBeacon (YModule.BEACON_OFF) ;
}
}
System.out.println("serial: " + module.get serialNumber());
System.out.println("logical name: " + module.get logicalName ());
System.out.println ("luminosity: " + module.get luminosity());
if (module.get beacon() == YModule.BEACON ON) {
System.out.println ("beacon: ON") ;
} else {
System.out.println ("beacon: OFFE") ;

www.yoctopuce.com 73

11. Using the Yocto-Relay with Java

}
System.out.println ("upTime: " + module.get upTime() / 1000 + " sec");
System.out.println ("USB current: " + module.get usbCurrent() + " mA");
System.out.println("logs:\n" + module.get lastLogs()):;

} catch (YAPI Exception ex) {
System.out.println(args[l] + " not connected (check identification and USB

(U
(v

cable)");

}
YAPI.FreeAPI();

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx (),
and properties which are not read-only can be modified with the help of the YModule.set xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

import com.yoctopuce.YoctoAPI.*;
public class Demo {

public static void main(String[] args)
{
try {

setup the API to e local VirtualHub

YAPI.RegisterHub ("127.0.0.1");
} catch (YAPI Exception ex) {
System.out.println ("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage () + ")");
System.out.println ("Ensure that the VirtualHub application is running");
System.exit (1);

}

if (args.length != 2) {
System.out.println ("usage: demo <serial or logical name> <new logical name>");
System.exit (1) ;

}

YModule m;
String newname;

m = YModule.FindModule (args[0]); // use serial or logical name
try {
newname = args([l];
if (!YAPI.CheckLogicalName (newname))
{
System.out.println("Invalid name (" + newname + ")");

System.exit (1);
}

m.set logicalName (newname) ;

m.saveToFlash(); // do not forget this
System.out.println("Module: serial= " + m.get serialNumber()):;
System.out.println(" / name= " + m.get logicalName());

} catch (YAPI Exception ex) {
System.out.println("Module " + args[0] + "not connected (check identification
and USB cable)");
System.out.println(ex.getMessage()) ;
System.exit (1) ;
}

YAPI.FreeAPI () ;

74 www.yoctopuce.com

11. Using the Yocto-Relay with Java

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

import com.yoctopuce.YoctoAPI.*;

public class Demo {

public static void main(String[] args)
{
try {
YAPI.RegisterHub ("127.0.0.1");
} catch (YAPI Exception ex) {
System.out.println ("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage () + ")");

System.out.println ("Ensure that the VirtualHub application is running");
System.exit (1);
}

System.out.println ("Device list");
YModule module = YModule.FirstModule () ;

while (module != null) {
try {
System.out.println (module.get serialNumber () + " (" +
module.get productName () + ")");
} catch (YAPI Exception ex) {
break;

}

module = module.nextModule () ;

}
YAPI.FreeAPI():;

11.4. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software.

In the Java API, error handling is implemented with exceptions. Therefore you must catch and
handle correctly all exceptions that might be thrown by the API if you do not want your software to
crash as soon as you unplug a device.

www.yoctopuce.com 75

76

www.yoctopuce.com

12. Using the Yocto-Relay with Android

To tell the truth, Android is not a programming language, it is an operating system developed by
Google for mobile appliances such as smart phones and tablets. But it so happens that under
Android everything is programmed with the same programming language: Java. Nevertheless, the
programming paradigms and the possibilities to access the hardware are slightly different from
classical Java, and this justifies a separate chapter on Android programming.

12.1. Native access and VirtualHub

In the opposite to the classical Java API, the Java for Android API can access USB modules natively.
However, as there is no VirtualHub running under Android, it is not possible to remotely control
Yoctopuce modules connected to a machine under Android. Naturally, the Java for Android API
remains perfectly able to connect itself to a VirtualHub running on another OS.

12.2. Getting ready

Go to the Yoctopuce web site and download the Java for Android programming library'. The library is
available as source files, and also as a jar file. Connect your modules, decompress the library files in
the directory of your choice, and configure your Android programming environment so that it can find
them.

To keep them simple, all the examples provided in this documentation are snippets of Android
applications. You must integrate them in your own Android applications to make them work.
However, your can find complete applications in the examples provided with the Java for Android
library.

12.3. Compatibility

In an ideal world, you would only need to have a smart phone running under Android to be able to
make Yoctopuce modules work. Unfortunately, it is not quite so in the real world. A machine running
under Android must fulfil to a few requirements to be able to manage Yoctopuce USB modules
natively.

1 www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com 77

12. Using the Yocto-Relay with Android

Android 4.x

Android 4.0 (api 14) and following are officially supported. Theoretically, support of USB host
functions since Android 3.1. But be aware that the Yoctopuce Java for Android API is regularly tested
only from Android 4 onwards.

USB host support

Naturally, not only must your machine have a USB port, this port must also be able to run in host
mode. In host mode, the machine literally takes control of the devices which are connected to it. The
USB ports of a desktop computer, for example, work in host mode. The opposite of the host mode is
the device mode. USB keys, for instance, work in device mode: they must be controlled by a host.
Some USB ports are able to work in both modes, they are OTG (On The Go) ports. It so happens
that many mobile devices can only work in device mode: they are designed to be connected to a
charger or a desktop computer, and nothing else. It is therefore highly recommended to pay careful
attention to the technical specifications of a product working under Android before hoping to make
Yoctopuce modules work with it.

Unfortunately, having a correct version of Android and USB ports working in host mode is not enough
to guaranty that Yoctopuce modules will work well under Android. Indeed, some manufacturers
configure their Android image so that devices other than keyboard and mass storage are ignored,
and this configuration is hard to detect. As things currently stand, the best way to know if a given
Android machine works with Yoctopuce modules consists in trying.

Supported hardware
The library is tested and validated on the following machines:

Samsung Galaxy S3
Samsung Galaxy Note 2
Google Nexus 5

Google Nexus 7

Acer Iconia Tab A200

Asus Tranformer Pad TF300T
Kurio 7

If your Android machine is not able to control Yoctopuce modules natively, you still have the
possibility to remotely control modules driven by a VirtualHub on another OS, or a YoctoHub 2.

12.4. Activating the USB port under Android

By default, Android does not allow an application to access the devices connected to the USB port.
To enable your application to interact with a Yoctopuce module directly connected on your tablet on a
USB port, a few additional steps are required. If you intend to interact only with modules connected
on another machine through the network, you can ignore this section.

In your AndroidManifest.xml, you must declare using the "USB Host" functionality by adding
the <uses-feature android:name="android.hardware.usb.host™ /> tag in the
manifest section.

<manifest ...>
<uses-feature android:name="android.hardware.usb.host" />;

</manifest>

When first accessing a Yoctopuce module, Android opens a window to inform the user that the
application is going to access the connected module. The user can deny or authorize access to the
device. If the user authorizes the access, the application can access the connected device as long as

2 Yoctohubs are a plug and play way to add network connectivity to your Yoctopuce devices. more info on http://
www.yoctopuce.com/EN/products/category/extensions-and-networking

78 www.yoctopuce.com

12. Using the Yocto-Relay with Android

it stays connected. To enable the Yoctopuce library to correctly manage these authorizations, your
must provide a pointer on the application context by calling the EnableUSBHost method of the YAPI
class before the first USB access. This function takes as arguments an object of the
android.content.Context class (or of a subclass). As the Activity class is a subclass of
Context, it is simpler to call YAPI .EnableUSBHost (this) ; in the method onCreate of your
application. If the object passed as parameter is not of the correct type, a YAPI Exception
exception is generated.

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
try {

YAPI.EnableUSBHost (this) ;
} catch (YAPI Exception e) {
Log.e("Yocto",e.getLocalizedMessage());

}

Autorun

It is possible to register your application as a default application for a USB module. In this case, as
soon as a module is connected to the system, the application is automatically launched. You must
add <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"/> in the
section <intent-filter> of the main activity. The section <activity> must have a pointer to an XML file
containing the list of USB modules which can run the application.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
<uses-feature android:name="android.hardware.usb.host" />

<application ... >
<activity

android:name=".MainActivity" >

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<action android:name="android.hardware.usb.action.USB DEVICE ATTACHED" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

<meta-data
android:name="android.hardware.usb.action.USB DEVICE ATTACHED"

android:resource="@xml/device filter" />
</activity>
</application>

</manifest>

The XML file containing the list of modules allowed to run the application must be saved in the res/
xml directory. This file contains a list of USB vendorld and devicelD in decimal. The following
example runs the application as soon as a Yocto-Relay or a YoctoPowerRelay is connected. You can
find the vendorlD and the devicelD of Yoctopuce modules in the characteristics section of the

documentation.

<?xml version="1.0" encoding="utf-8"?2>

<resources>
<usb-device vendor-id="9440" product-id="12" />
<usb-device vendor-id="9440" product-id="13" />
</resources>

12.5. Control of the Relay function

www.yoctopuce.com 79

12. Using the Yocto-Relay with Android

A few lines of code are enough to use a Yocto-Relay. Here is the skeleton of a Java code snippet to
use the Relay function.

[...]

YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb");
[...]

relay = YRelay.FindRelay ("RELAYLO1-123456.relayl");

if (relay.isOnline()) {

[oooll
}

[oooll

Let us look at these lines in more details.

YAPI.EnableUSBHost

The YAPI.EnableUSBHost function initializes the APl with the Context of the current application.
This function takes as argument an object of the android.content.Context class (or of a
subclass). If you intend to connect your application only to other machines through the network, this
function is facultative.

YAPIL.RegisterHub

The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the virtual hub able to see the devices. If the
string "usb" is passed as parameter, the APl works with modules locally connected to the machine. If
the initialization does not succeed, an exception is thrown.

YRelay.FindRelay

The YRelay.FindRelay function allows you to find a relay from the serial number of the module
on which it resides and from its function name. You can use logical names as well, as long as you
have initialized them. Let us imagine a Yocto-Relay module with serial number RELAYLO1-123456
which you have named "MyModule", and for which you have given the relay? function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

relay ay.FindRelay ("RELAYLO1-123456.relayl")
relay ay.FindRelay ("RELAYLO1-123456.MyFunction™)
relay >lay.FindRelay ("MyModule.relayl"
relay ay.FindRelay ("MyModule.MyFunction")

(

relay >lay.FindRelay ("MyFunction")

YRelay.FindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by YRelay.FindRelay allows you to know if
the corresponding module is present and in working order.

set_state

The set state () method of the objet returned by YRelay.FindRelay switches the relay
position to one of its two outputs. The two possible parameter values are YRelay.STATE A for
output A, and YRelay.STATE B for output B.

A real example

Launch you Java environment and open the corresponding sample project provided in the directory
Examples//Doc-Examples of the Yoctopuce library.

80 www.yoctopuce.com

12. Using the Yocto-Relay with Android

In this example, you can recognize the functions explained above, but this time used with all the side

materials needed to make it work nicely as a small demo.

package com.yoctopuce.doc examples;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;

import android.widget.Spinner;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI Exception;
import com.yoctopuce.YoctoAPI.YRelay;

public class GettingStarted Yocto Relay extends Activity implements OnItemSelectedListener

{

private YRelay relay = null;
private ArrayAdapter<String> aa;

@Override
public void onCreate (Bundle savedInstanceState)
{
super.onCreate (savedInstanceState);
setContentView (R.layout.gettingstarted yocto relay);

Spinner my spin = (Spinner) findViewById(R.id.spinnerl);

my spin.setOnItemSelectedListener (this);

aa = new ArrayAdapter<String>(this, android.R.layout.simple spinner item);
aa.setDropDownViewResource (android.R.layout.simple spinner dropdown item) ;

my spin.setAdapter (aa);
}

@Override
protected void onStart ()
{

super.onStart () ;

try {
aa.clear():;
YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb") ;
YRelay r = YRelay.FirstRelay();
while (r !'= null) {
String hwid = r.get hardwareId();
aa.add (hwid) ;
r = r.nextRelay();
}
} catch (YAPI Exception e) {
e.printStackTrace () ;
}
// refresh Spinner with detected relay
aa.notifyDataSetChanged() ;
}

@Override
protected void onStop ()
{
super.onStop () ;
YAPI.FreeAPI();
}

@Override

public void onItemSelected (AdapterView<?> parent, View view,

{

String hwid = parent.getItemAtPosition (pos).toString() ;

relay = YRelay.FindRelay (hwid) ;
}

@Override

public void onNothingSelected (AdapterView<?> arg0)
{

}

/** Called when the user touches the button State A */

int pos, long id)

www.yoctopuce.com

81

12. Using the Yocto-Relay with Android

public void setStateA (View view)
{
// Do in response to button click
if (r
t
relay.setState (YRelay.STATE A);
} catch (YAPI Exception e) {
e.printStackTrace () ;
}
}
/** Called when the user touches the button State B */
public void setStateB(View view)
{
// Do something in response to button click
if (relay != null)
try {
relay.setState (YRelay.STATE B);
} catch (YAPI Exception e) {
e.printStackTrace () ;

}

12.6. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

package com.yoctopuce.doc examples;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;

import android.widget.Spinner;

import android.widget.Switch;

import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class ModuleControl extends Activity implements OnItemSelectedListener

{

private ArrayAdapter<String> aa;
private YModule module = null;

@Override
public void onCreate (Bundle savedInstanceState)
{
super.onCreate (savedInstanceState);
setContentView (R.layout.modulecontrol) ;
Spinner my spin = (Spinner) findViewById(R.id.spinnerl);
my spin.setOnItemSelectedListener (this);
aa = new ArrayAdapter<String>(this, android.R.layout.simple spinner item);
aa.setDropDownViewResource (android.R.layout.simple spinner dropdown item);
my spin.setAdapter (aa);

}

@Override
protected void onStart ()
{

super.onStart () ;

try {
aa.clear();
YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb") ;

82 www.yoctopuce.com

12. Using the Yocto-Relay with Android

YModule r = YModule.FirstModule () ;
while (r != null) {
String hwid = r.get hardwareId();
aa.add (hwid) ;
r = r.nextModule();
}
} catch (YAPI Exception e) {
e.printStackTrace () ;
}
// refresh Spinner with detected relay
aa.notifyDataSetChanged() ;
}

@Override
protected void onStop ()
{
super.onStop () ;
YAPI.FreeAPI();
}

private void DisplayModuleInfo ()
{
TextView field;

if (module == null)
return;

try {
field = (TextView) findViewById(R.id.serialfield);
field.setText (module.getSerialNumber ()) ;
field = (TextView) findViewById(R.id.logicalnamefield);
field.setText (module.getLogicalName()) ;
field = (TextView) findViewById(R.id.luminosityfield):;

field.setText (String. format ("%$d%%", module.getLuminosity())):
field = (TextView) findViewById(R.id.uptimefield);
field.setText (module.getUpTime () / 1000 + " sec");

field = (TextView) findViewById(R.id.usbcurrentfield) ;
field.setText (module.getUsbCurrent () + " mA");

Switch sw = (Switch) findViewById(R.id.beaconswitch);
sw.setChecked (module.getBeacon () == YModule.BEACON ON) ;

field = (TextView) findViewById(R.id.logs);

field.setText (module.get lastLogs());

} catch (YAPI Exception e) {
e.printStackTrace() ;
}
}

@Override
public void onItemSelected (AdapterView<?> parent, View view, int pos, long id)
{
String hwid = parent.getItemAtPosition (pos).toString() ;
module = YModule.FindModule (hwid) ;
DisplayModuleInfo () ;
}

@Override

public void onNothingSelected (AdapterView<?> arg0)
{

}

public void refreshInfo (View view)
{
DisplayModuleInfo () ;

}

public void toggleBeacon (View view)

{

if (module == null)

return;
boolean on = ((Switch) view) .isChecked();
try {

if (on) {
module.setBeacon (YModule.BEACON_ON) ;
} else {
module.setBeacon (YModule.BEACON OFF) ;
}
} catch (YAPI Exception e) {
e.printStackTrace () ;

www.yoctopuce.com 83

12. Using the Yocto-Relay with Android

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx (),
and properties which are not read-only can be modified with the help of the YModule.set xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

package com.yoctopuce.doc examples;

import
import
import
import
import
import
import
import
import
import

import
import
import

public
{

android.app.Activity;
android.os.Bundle;
android.view.View;

android.widget.
android.widget.

android.widget
android.widget

android.widget.
android.widget.
android.widget.

AdapterView;

.ArrayAdapter;
.EditText;
Spinner;
TextView;
Toast;

com.yoctopuce.YoctoAPI.YAPI;
com.yoctopuce.YoctoAPI.YAPI Exception;
com.yoctopuce.YoctoAPI.YModule;

class SaveSettings extends Activity implements

private ArrayAdapter<String> aa;

private YModule module = null;
@Override
public void onCreate (Bundle savedInstanceState)

{

}

super.onCreate (savedInstanceState);

setContentView (R.layout.savesettings);
Spinner my spin = (Spinner) findViewById(R.id.spinnerl);
my spin.setOnItemSelectedListener (this);

aa = new ArrayAdapter<String>(this,

my spin.setAdapter (aa);

@Override
protected void onStart ()

{

super.onStart

try {

() s

aa.clear () ;
YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb") ;

YModule r
while (r

= YModule.FirstModule () ;
= null) {

String hwid = r.get hardwareId();
aa.add (hwid) ;

r =r

}

.nextModule () ;

} catch (YAPI Exception e) {
e.printStackTrace () ;

},,

aa.notifyDatéSetChanged();

AdapterView.OnItemSelectedListener;

OnItemSelectedListener

android.R.layout.simple spinner item)
aa.setDropDownViewResource (android.R.layout.simple spinner dropdown_ item)

’
’

84

www.yoctopuce.com

@Override
protected void onStop ()
{
super.onStop () ;
YAPI.FreeAPI () ;
}

private void DisplayModuleInfo ()
{
TextView field;

12. Using the Yocto-Relay with Android

if (module == null)
return;
try {
YAPI.UpdateDevicelist ();// fixme
field = (TextView) findViewById(R.id.logicalnamefield):;
field.setText (module.getLogicalName()) ;
} catch (YAPI Exception e) {
e.printStackTrace () ;
}
}
@Override

public void onItemSelected (AdapterView<?> parent,

{
String hwid =
module = YModule.FindModule (hwid) ;
DisplayModuleInfo () ;

}

@Override

public void onNothingSelected (AdapterView<?> arg0)
{

}

public void saveName (View view)
{

if (module == null)
return;

EditText edit =

String newname =

try {
if

(EditText)
edit.getText () .toString();

(!YAPI.CheckLogicalName (newname)) {
Toast.makeText (getApplicationContext (),
Toast.LENGTH LONG) .show () ;
return;

}

module.set logicalName (newname) ;

module.saveToFlash(); / Ot

edit.setText ("");

} catch (YAPI Exception ex) {
ex.printStackTrace () ;

eI ol
not forget ti

}
DisplayModuleInfo () ;

View view,

int pos, long id)

parent.getItemAtPosition (pos) .toString () ;

findViewById(R.id.newname) ;

"Invalid name (" + newname + ")",

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.

Make sure you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not

null. Below a short example listing the connected modules.

package com.yoctopuce.doc examples;

www.yoctopuce.com

85

12. Using the Yocto-Relay with Android

import android.app.Activity;

import android.os.Bundle;

import android.util.TypedValue;
import android.view.View;

import android.widget.LinearLayout;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class Inventory extends Activity

{

@Override
public void onCreate (Bundle savedInstanceState)
{
super.onCreate (savedInstanceState);
setContentView (R.layout.inventory) ;

}

public void refreshInventory(View view)

{
LinearLayout layout = (LinearLayout) findViewById(R.id.inventoryList);
layout.removeAllViews () ;

try {
YAPI.UpdateDeviceList () ;
YModule module = YModule.FirstModule () ;
while (module != null) {
String line = module.get serialNumber() + " (" + module.get productName () +
")";
TextView tx = new TextView (this);
tx.setText (1line) ;
tx.setTextSize(TypedValue.COMPLEX_UNIT_SP, 20) ;
layout.addView (tx) ;
module = module.nextModule () ;
}
} catch (YAPI Exception e) {
e.printStackTrace();
}
}

@Override
protected void onStart ()
{
super.onStart () ;
try {
YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb") ;
} catch (YAPI Exception e) {
e.printStackTrace () ;

}

refreshInventory(null) ;

}

@Override
protected void onStop ()
{

super.onStop () ;
YAPI.FreeAPI () ;

12.7. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

86 www.yoctopuce.com

12. Using the Yocto-Relay with Android

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software.

In the Java API for Android, error handling is implemented with exceptions. Therefore you must catch
and handle correctly all exceptions that might be thrown by the API if you do not want your software
to crash soon as you unplug a device.

www.yoctopuce.com 87

88

www.yoctopuce.com

13. Using Yocto-Relay with TypeScript

TypeScript is an enhanced version of the JavaScript programming language. It is a syntaxic superset
with strong typing, therefore increasing the code reliability, but transpiled - aka compiled - into
JavaScript for execution in any standard Web browser or Node.js environment.

This Yoctopuce library therefore makes it possible to implement JavaScript applications using strong
typing. Similarly to our EcmaScript library, it uses the new asynchronous features introduced in
ECMAScript 2017, which are now available in all modern JavaScript environments. Note however
that at the time of writting, Web browsers and Node.JS cannot use TypeScript code directly, so you
must first compile your TypeScript into JavaScript before running it.

The library works both in a Web browser and in Node.js. In order to allow for a static resolution of
dependencies, and to avoid ambiguities that can arise when using hybrid environments such as
Electron, the choice of the runtime environment must be done explicitly upon import of the library, by
referencing in the project either yocto api nodejs.jsoryocto api html.js.

The library can be integrated in your projects in multiple ways, depending on what best fits your
requirements:

* by directly copying the TypeScript library source files into your project, and by adding them to
your build script. Only a few files are usually needed to handle most use-cases. You will find
TypeScript source files in the src subdirectory of our library.

* by using CommonJS module resolution, natively supported by TypeScript, with a package
manager such as npm. You will find a version of the library transpiled according to CommonJS
module standard in the dist/cjs subdirectory, including all type definition files (with
extension .d.ts) and source maps (with extension .js.map) enabling source-level error
reporting and debugging. We have also published these files on npmjs under the name
yoctolib-cjs.

* by using ECMAScript standard module resolution, also supported by TypeScript, usually
referenced by relative path. You will find a version of the library transpiled as an ECMAScript
2015 module in the dist/esm subdirectory, including all type definition files (with extension .d. ts)
and source maps (with extension .js.map) enabling source-level error reporting and
debugging. We have also published these files on npm7js under the name yoctolib-esm.

www.yoctopuce.com 89

13. Using Yocto-Relay with TypeScript

13.1. Using the Yoctopuce library for TypeScript

1. Start by installing TypeScript on your machine if this is not yet done. In order to do so:

* Install on your development machine the official version of Node.js (typically version 10 or
more recent). You can download it for free from the official web site: http://nodejs.org. Make
sure to install it fully, including npm, and add it to the system path.

* Then install TypeScript on your machine using the command line:

npm install -g typescript

2. Go to the Yoctopuce web site and download the following items:

+ The TypeScript programming library’

+ The VirtualHub software? for Windows, Mac OS X, or Linux, depending on your OS.
TypeScript and JavaScript are part of those languages which do not generally allow you to
directly access to USB peripherals. Therefore the library can only be used to access network-
enabled devices (connected through a YoctoHub), or USB devices accessible through
Yoctopuce TCP/IP to USB gateway, named VirtualHub. No extra driver will be needed,
though.

3. Extract the library files in a folder of your choice, and open a command window in the directory
where you have installed it. In order to install the few dependencies which are necessary to start the
examples, run this command:

npm install

When the command has run without error, you are ready to explore the examples. They are available
in two different trees, depending on the environment that you need to use: example html for
running the Yoctopuce library within a Web browser, or example node7js if you plan to use the
library in a Node.js environment.

The method to use for launching the examples depends on the environment. You will find more
about it below.

13.2. Refresher on asynchronous I/O in JavaScript

JavaScript is single-threaded by design. In order to handle time-consuming /O operations,
JavaScript relies on asynchronous operations: the 1/0O call is only triggered but then the code
execution flow is suspended. The JavaScript engine is therefore free to handle other pending tasks,
such as user interface. Whenever the pending I/O call is completed, the system invokes a callback
function with the result of the 1/0 call to resume execution of the original execution flow.

When used with plain callback functions, as pervasive in Node.js libraries, asynchronous 1/0 tend to
produce code with poor readability, as the execution flow is broken into many disconnected callback
functions. Fortunately, the ECMAScript 2015 standard came in with Promise objects and a new
async / await syntax to abstract calls to asynchronous calls:

+ a function declared async automatically encapsulates its result as a Promise

+ within an async function, any function call prefixed with by await chains the Promise returned
by the function with a promise to resume execution of the caller

» any exception during the execution of an async function automatically invokes the Promise
failure continuation

To make a long story short, async and await make it possible to write TypeScript code with all the
benefits of asynchronous 1/O, but without breaking the code flow. It is almost like multi-threaded

1 www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com/EN/virtualhub.php

90 www.yoctopuce.com

13. Using Yocto-Relay with TypeScript

execution, except that control switch between pending tasks only happens at places where the await
keyword appears.

This TypeScript library uses the Promise objects and async methods, to allow you to use the await
syntax. To keep it easy to remember, all public methods of the TypeScript library are async, i.e.
return a Promise object, except:

* GetTickCount (), because returning a time stamp asynchronously does not make sense...

* FindModule (), FirstModule (), nextModule (), ... because device detection and
enumeration always works on internal device lists handled in background, and does not
require immediate asynchronous I/O.

In most cases, TypeScript strong typing will remind you to use await when calling an asynchronous
method.

13.3. Control of the Relay function

A few lines of code are enough to use a Yocto-Relay. Here is the skeleton of a TypeScript code
snipplet to use the Relay function.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto api nodejs.js';
import { YRelay } from 'yoctolib-cjs/yocto relay.js';

[oool

await YAPI.RegisterHub('127.0.0.1");
[...]

var relay: YRelay = YRelay.FindRelay ("RELAYLO1-123456.relayl");

if (await relay.isOnline())
{

}

Let us look at these lines in more details.

yocto_api and yocto_relay import

These two imports provide access to functions allowing you to manage Yoctopuce modules.
yocto api is always needed, yocto relay is necessary to manage modules containing a relay,
such as Yocto-Relay. Other imports can be useful in other cases, such as YModule which can let
you enumerate any type of Yoctopuce device.

In order to properly bind yocto api to the proper network libraries (provided either by Node.js or
by the web browser for an HTML application), you must import at least once in your project one of
the two variants yocto api nodejs.jsoryocto api html.js.

Note that this example imports the Yoctopuce library as a CommonJS module, which is the most
frequently used with Node.JS, but if your project is designed around EcmaScript native modules, you
can also replace in the import directive the prefix yoctolib-cjs by yoctolib-esm.

YAPI.RegisterHub

The RegisterHub method allows you to indicate on which machine the Yoctopuce modules are
located, more precisely on which machine the VirtualHub software is running. In our case, the
127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port used by
Yoctopuce). You can very well modify this address, and enter the address of another machine on
which the VirtualHub software is running, or of a YoctoHub. If the host cannot be reached, this
function will trigger an exception.

www.yoctopuce.com 91

13. Using Yocto-Relay with TypeScript

As explained above, using RegisterHub ("usb") is not supported in TypeScript, because the
JavaScript engine has no direct access to USB devices. It needs to go through the VirtualHub via a
localhost connection.

YRelay.FindRelay

The FindRelay method allows you to find a relay from the serial number of the module on which it
resides and from its function name. You can also use logical names, as long as you have initialized
them. Let us imagine a Yocto-Relay module with serial number RELAYLO1-123456 which you have
named "MyModule", and for which you have given the relay1 function the name "MyFunction". The
following five calls are strictly equivalent, as long as "MyFunction" is defined only once.

relay = YRelay.FindRelay ("RELAYLO1-123456.relayl")
relay = YRelay.FindRelay ("RELAYLO1-123456.MaFonction")
relay = YRelay.FindRelay ("MonModule.relayl"

relay = YRelay.FindRelay ("MonModule.MaFonction")

relay = YRelay.FindRelay ("MaFonction")

YRelay.FindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by FindRelay allows you to know if the
corresponding module is present and in working order.

set_state

The set state () method of the objet returned by YRelay.FindRelay switches the relay
position to one of its two outputs. The two possible parameter values are YRelay.STATE A for
output A, and YRelay.STATE B for output B.

A real example, for Node.js

Open a command window (a terminal, a shell...) and go into the directory example_nodejs/Doc-
GettingStarted-Yocto-Relay within Yoctopuce library for TypeScript. In there, you will find a file
named demo . ts with the sample code below, which uses the functions explained above, but this
time used with all side materials needed to make it work nicely as a small demo.

If your Yocto-Relay is not connected on the host running the browser, replace in the example the
address 127.0.0.1 by the IP address of the host on which the Yocto-Relay is connected and
where you run the VirtualHub.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto api nodejs.js';
import { YRelay } from 'yoctolib-cjs/yocto relay.js'

async function startDemo (args: string[]): Promise<void>
{

await YAPI.LogUnhandledPromiseRejections();

let errﬁsg: YErrorMsg = new YErrorMsg();

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msqg);
return;

}

let target: string}

if (args[0] == "any") {
let anyrelay = YRelay.FirstRelay();
if (anyrelay == null) {

console.log ("No module connected (check USB cable)\n");
await YAPI.FreeAPI ()

return;
}
let module: YModule = await anyrelay.get module();
target = await module.get serialNumber () ;

} else {
target = args[0];

92 www.yoctopuce.com

13. Using Yocto-Relay with TypeScript

}

console.log("Set ouput " + args[l] + " of " + target + " to " + args[2]);

let relay: YRelay = YRelay.FindRelay(target + ".relay" + args[l]);
if (await relay.isOnline()) {

await relay.set output (args[2] == "ON" ? YRelay.OUTPUT ON : YRelay.OUTPUT OFF) ;
} else {

console.log("Module not connected (check identification and USB cable)\n");

}

await YAPI.FreeAPI ();
}

if (process.argv.length < 5) {

console.log("usage: node demo.js <serial number> <channel> [ON | OFF]");
console.log (" node demo.js <logical name> <channel> [ON | OFF]");
console.log (" node demo.js any <channel> [ON | OFF]");

} else {
startDemo (process.argv.slice (process.argv.length - 3));

}

As explained at the beginning of this chapter, you need to have installed the TypeScript compiler on
your machine to test these examples, and to install the typescript library dependencies. If you have
done that, you can now type the following two commands in the example directory, to finalize the
resolution of the example-specific dependencies:

npm install

You ar now ready to start the sample code with Node.js. The easiest way to do it is to use the
following command, replacing the [...] by the arguments that you want to pass to the demo code:

npm run demo [...]

This command, defined in package. json, will first start the TypeScript compiler using the simple
tsc command, then run the transpiled code in Node.js.

The compilation uses the parameters specified in the file tsconfig. json, and produces

+ a JavaScript file named demo . js, that Node.js can run
+ a debug file named demo . js.map, that will help Node.js to locate the source of errors in the
original TypeScript source file rather than reporting them in the JavaScript compiled file.

Note that the package. json file in our examples uses a relative reference to the local copy of the
library, to avoid duplicating the library in each example. But of course, for your application, you can
refer to the package directly in npm repository, by adding it to your project using the command:

npm install yoctolib-cijs

Same example, but this time running in a browser

If you want to see how to use the library within a browser rather than with Node.js, switch to the
directory example_html/Doc-GettingStarted-Yocto-Relay. You will find there an HTML file named
app.html, and a TypeScript file app . ts similar to the code above, but with a few changes since it
has to interact through an HTML page rather than through the JavaScript console.

No installation is needed to run this example, as the TypeScript library is referenced using a relative
path. However, in order to allow the browser to run the code, the HTML page must be served by a
Web server. We therefore provide a simple test server for this purpose, that you can start with the
command:

npm run app-server

www.yoctopuce.com 93

13. Using Yocto-Relay with TypeScript

This command will compile the TypeScript sample code, make it available via an HTTP server on
port 3000 and open a Web browser on this example. If you change the example source code, the
TypeScript compiler will automatically be triggered to update the transpiled code and a simple page
reload on the browser will make it possible to test the change.

As for the Node.js example, the compilation process will create a source map file which makes it
possible to debug the example code in TypeScript source form within the browser debugger. Note
that as of the writing of this document, this works on Chromium-based browsers but not yet in
Firefox.

13.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto api nodejs.Jjs';

async function startDemo (args: string[]): Promise<void>
{

await YAPI.LogUnhandledPromiseRejections();

let errmsg: YErrorMsg = new YErrorMsg();

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) ({
console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
return;

}

let module: YModule = YModule.FindModule (args[0]);
if (await module.isOnline()) {
if (args.length > 1) {

if (args[l] == 'ON') {
await module.set beacon (YModule.BEACON ON) ;
} else {

await module.set beacon (YModule.BEACON OFF) ;
}
}

console.log('serial: 'tawait module.get serialNumber ());
console.log('logical name: '+await module.get logicalName()) ;
console.log('luminosity: 'tawait module.get luminosity()+'$');
console.log('beacon: vt

(await module.get beacon() == YModule.BEACON ON ? 'ON' : 'OFF'));
console.log('upTime: '+

((await module.get upTime()/1000)>>0) +' sec');
console.log ('USB current: '+tawait module.get usbCurrent()+' mA');

console.log('logs:"'");

console.log(await module.get lastLogs());
} else {

console.log("Module not connected (check identification and USB cable)\n");
}
await YAPI.FreeAPI ():;

}

if (process.argv.length < 3) {

console.log("usage: npm run demo <serial or logicalname> [ON | OFF]");
} else {

startDemo (process.argv.slice(2)) ;

}

Each property xxx of the module can be read thanks to a method of type get xxxx(), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used methods, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () method. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent

94 www.yoctopuce.com

13. Using Yocto-Relay with TypeScript

memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto api nodejs.js';

async function startDemo (args: string[]): Promise<void>
{

await YAPI.LogUnhandledPromiseRejections();

S p the AP ocal machine

>tup the se the VirtualHu

let errﬁsg: YErrorMsg = new YErrorMsg();

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
console.log ('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
return;

}

let module: YModule = YModule.FindModule (args[0]);

if (await module.isOnline()) {
if (args.length > 1) {

let newname: string = args[l];
if (!await YAPI.CheckLogicalName (newname)) {
console.log("Invalid name (" + newname + ")");

process.exit (1) ;
}
await module.set logicalName (newname) ;
await module.saveToFlash () ;

}
console.log ('Current name: '+await module.get logicalName()) ;
} else {
console.log("Module not connected (check identification and USB cable)\n");

}
await YAPI.FreeAPI ():;

}

if (process.argv.length < 3) {

console.log("usage: npm run demo <serial> [newLogicalName]");
} else {

startDemo (process.argv.slice(2)) ;

}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () method only 100000 times in the life of the module. Make sure
you do not call this method within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.FirstModule ()
method which returns the first module found. Then, you only need to call the nextModule ()
method of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto api nodejs.js';

async function startDemo(): Promise<void>

{

await YAPI.LogUnhandledPromiseRejections();

/ Setup the AFPL T use the VirtualHuo on local macnine

let errmsg = new YErrorMsg();

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) ({
console.log('Cannot contact VirtualHub on 127.0.0.1");
return;
}
refresh();
}
async function refresh(): Promise<void>
{
try {

www.yoctopuce.com 95

13. Using Yocto-Relay with TypeScript

let errmsg: YErrorMsg = new YErrorMsg():
await YAPI.UpdateDevicelist (errmsg) ;

let module = YModule.FirstModule () ;

while (module) ({
let line: string = await module.get serialNumber () ;
line += ' (' + (await module.get productName()) + ')';

console.log(line);
module = module.nextModule () ;
}
setTimeout (refresh, 500);
} catch(e) {
console.log(e);
}
}

startDemo () ;

13.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

» Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPT.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

96 www.yoctopuce.com

14. Using Yocto-Relay with JavaScript / EcmaScript

EcmaScript is the official name of the standardized version of the web-oriented programming
language commonly referred to as JavaScript. This Yoctopuce library take advantages of advanced
features introduced in EcmaScript 2017. It has therefore been named Library for JavaScript/
EcmaScript 2017 to differentiate it from the previous Library for JavaScript, now deprecated in favor
of this new version.

This library provides access to Yoctopuce devices for modern JavaScript engines. It can be used
within a browser as well as with Node.js. The library will automatically detect upon initialization
whether the runtime environment is a browser or a Node.js virtual machine, and use the most
appropriate system libraries accordingly.

Asynchronous communication with the devices is handled across the whole library using Promise
objects, leveraging the new EcmaScript 2017 async / await non-blocking syntax for asynchronous
I/O (see below). This syntax is now available out-of-the-box in most Javascript engines. No
transpilation is needed: no Babel, no jspm, just plain Javascript. Here is your favorite engines
minimum version needed to run this code. All of them are officially released at the time we write this
document.

Node.js v7.6 and later

Firefox 52

Opera 42 (incl. Android version)
Chrome 55 (incl. Android version)
Safari 10.1 (incl. iOS version)
Android WebView 55

Google V8 Javascript engine v5.5

If you need backward-compatibility with older releases, you can always run Babel to transpile your
code and the library to older standards, as described a few paragraphs below.

We don't suggest using j spm anymore now that async / await are part of the standard.

14.1. Blocking I/O versus Asynchronous I/O in JavaScript

JavaScript is single-threaded by design. That means, if a program is actively waiting for the result of
a network-based operation such as reading from a sensor, the whole program is blocked. In browser
environments, this can even completely freeze the user interface. For this reason, the use of blocking
I/0 in JavaScript is strongly discouraged nowadays, and blocking network APIs are getting
deprecated everywhere.

www.yoctopuce.com 97

14. Using Yocto-Relay with JavaScript / EcmaScript

Instead of using parallel threads, JavaScript relies on asynchronous I/O to handle operations with a
possible long timeout: whenever a long I/O call needs to be performed, it is only triggered and but
then the code execution flow is terminated. The JavaScript engine is therefore free to handle other
pending tasks, such as Ul. Whenever the pending I/0O call is completed, the system invokes a
callback function with the result of the I/O call to resume execution of the original execution flow.

When used with plain callback functions, as pervasive in Node.js libraries, asynchronous 1/0 tend to
produce code with poor readability, as the execution flow is broken into many disconnected callback
functions. Fortunately, new methods have emerged recently to improve that situation. In particular,
the use of Promise objects to abstract and work with asynchronous tasks helps a lot. Any function
that makes a long I/O operation can return a Promise, which can be used by the caller to chain
subsequent operations in the same flow. Promises are part of EcmaScript 2015 standard.

Promise objects are good, but what makes them even better is the new async / await keywords to
handle asynchronous I/O:

+ a function declared async will automatically encapsulate its result as a Promise

« within an async function, any function call prefixed with by await will chain the Promise
returned by the function with a promise to resume execution of the caller

+ any exception during the execution of an async function will automatically invoke the Promise
failure continuation

Long story made short, async and await make it possible to write EcmaScript code with all benefits of
asynchronous /O, but without breaking the code flow. It is almost like multi-threaded execution,
except that control switch between pending tasks only happens at places where the await keyword
appears.

We have therefore chosen to write our new EcmaScript library using Promises and async functions,
so that you can use the friendly await syntax. To keep it easy to remember, all public methods of
the EcmaScript library are async, i.e. return a Promise object, except:

* GetTickCount (), because returning a time stamp asynchronously does not make sense...

* FindModule (), FirstModule (), nextModule (), ... because device detection and
enumeration always work on internal device lists handled in background, and does not require
immediate asynchronous 1/O.

14.2. Using Yoctopuce library for JavaScript / EcmaScript 2017

JavaScript is one of those languages which do not generally allow you to directly access the
hardware layers of your computer. Therefore the library can only be used to access network-enabled
devices (connected through a YoctoHub), or USB devices accessible through Yoctopuce TCP/IP to
USB gateway, named VirtualHub.

Go to the Yoctopuce web site and download the following items:

+ The Javascript / EcmaScript 2017 programming library’
+ The VirtualHub software? for Windows, Mac OS X or Linux, depending on your OS

Extract the library files in a folder of your choice, you will find many of examples in it. Connect your
modules and start the VirtualHub software. You do not need to install any driver.

Using the official Yoctopuce library for node.js

Start by installing the latest Node.js version (v7.6 or later) on your system. It is very easy. You can
download it from the official web site: http://nodejs.org. Make sure to install it fully, including npm, and
add it to the system path.

1 www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com/EN/virtualhub.php

98 www.yoctopuce.com

14. Using Yocto-Relay with JavaScript / EcmaScript

To give it a try, go into one of the example directory (for instance example_nodejs/Doc-Inventory).
You will see that it include an application description file (package.json) and a source file (demo.js).
To download and setup the libraries needed by this example, just run:

npm install

Once done, you can start the example file using:

node demo.]js

Using a local copy of the Yoctopuce library with node.js

If for some reason you need to make changes to the Yoctopuce library, you can easily configure your
project to use the local copy in the 1ib/ subdirectory rather than the official npm package. In order
to do so, simply type the following command in your project directory:

npm link ../../lib

Using the Yoctopuce library within a browser (HTML)

For HTML examples, it is even simpler: there is nothing to install. Each example is a single HTML file
that you can open in a browser to try it. In this context, loading the Yoctopuce library is no different
from any standard HTML script include tag.

Using the Yoctoluce library on older JavaScript engines

If you need to run this library on older JavaScript engines, you can use Babel® to transpile your code
and the library into older JavaScript standards. To install Babel with typical settings, simply use:

npm instal -g babel-cli
npm instal babel-preset-env

You would typically ask Babel to put the transpiled files in another directory, named compat for
instance. Your files and all files of the Yoctopuce library should be transpiled, as follow:

babel --presets env demo.js --out-dir compat/
babel --presets env ../../lib --out-dir compat/

Although this approach is based on node.js toolchain, it actually works as well for transpiling
JavaScript files for use in a browser. The only thing that you cannot do so easily is transpiling
JavaScript code embedded directly in an HTML page. You have to use an external script file for
using EcmaScript 2017 syntax with Babel.

Babel has many smart features, such as a watch mode that will automatically refresh transpiled files
whenever the source file is changed, but this is beyond the scope of this note. You will find more in
Babel documentation.

Backward-compatibility with the old JavaScript library

This new library is not fully backward-compatible with the old JavaScript library, because there is no
way to transparently map the old blocking API to the new asynchronous APIl. The method names
however are the same, and old synchronous code can easily be made asynchronous just by adding
the proper await keywords before the method calls. For instance, simply replace:

beaconState = module.get beacon() ;

by

3 hitp://babeljs.io

www.yoctopuce.com 99

14. Using Yocto-Relay with JavaScript / EcmaScript

beaconState = await module.get beacon();

Apart from a few exceptions, most XXX async redundant methods have been removed as well, as
they would have introduced confusion on the proper way of handling asynchronous behaviors. It is

however very simple to get an async method to invoke a callback upon completion, using the
returned Promise object. For instance, you can replace:

module.get beacon async(callback, myContext);

by

module.get beacon () .then (function(res) { callback (myContext, module, res); });

In some cases, it might be desirable to get a sensor value using a method identical to the old
synchronous methods (without using Promises), even if it returns a slightly outdated cached value
since 1/0 is not possible. For this purpose, the EcmaScript library introduce new classes called
synchronous proxies. A synchronous proxy is an object that mirrors the most recent state of the

connected class, but can be read using regular synchronous function calls. For instance, instead of
writing:

async function logInfo (module)

{
console.log('Name: '+await module.get logicalName ()) ;
console.log('Beacon: 't+await module.get beacon());

iéélnfo(myModule);
you can use:

function logInfoProxy (moduleSyncProxy)

{
console.log('Name: '+moduleProxy.get logicalName());
console.log('Beacon: '+moduleProxy.get beacon());

}

logInfoSync (await myModule.get syncProxy());

You can also rewrite this last asynchronous call as:

myModule.get syncProxy () .then(logInfoProxy);

14.3. Control of the Relay function

A few lines of code are enough to use a Yocto-Relay. Here is the skeleton of a JavaScript code
snippet to use the Relay function.

Node.js, we use function require ()

(o) I'M we would use &1t)« ript St " "eq
ror oiML, We v 11 5 ¢ -

require ('yoctolib-es2017/yocto _api.js');
require ('yoctolib-es2017/yocto relay.js');
[...]

await YA?I.RegistérHub('127.0.0.1');

[...]

Retrieve he 5= A A 1 oy I
etrien > 1

he device

var relay = YRe?ag;FindRelay("RELAYLOI—123456.relayl");

ine to handle hot-plug

100 www.yoctopuce.com

14. Using Yocto-Relay with JavaScript / EcmaScript

if (await relay.isOnline())

{

}

Let us look at these lines in more details.

yocto_api and yocto_relay import

These two import provide access to functions allowing you to manage Yoctopuce modules.
yocto api is always needed, yocto relay is necessary to manage modules containing a relay,
such as Yocto-Relay. Other imports can be useful in other cases, such as YModule which can let
you enumerate any type of Yoctopuce device.

YAPI.RegisterHub

The RegisterHub method allows you to indicate on which machine the Yoctopuce modules are
located, more precisely on which machine the VirtualHub software is running. In our case, the
127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port used by
Yoctopuce). You can very well modify this address, and enter the address of another machine on
which the VirtualHub software is running, or of a YoctoHub. If the host cannot be reached, this
function will trigger an exception.

YRelay.FindRelay

The FindRelay method allows you to find a relay from the serial number of the module on which it
resides and from its function name. You can also use logical names, as long as you have initialized
them. Let us imagine a Yocto-Relay module with serial number RELAYLO1-123456 which you have
named "MyModule", and for which you have given the relay1 function the name "MyFunction". The
following five calls are strictly equivalent, as long as "MyFunction" is defined only once.

relay = ay.FindRelay ("RELAYLO1-123456.relayl")
relay = ay.FindRelay ("RELAYLO1-123456.MaFonction")
relay = 1y . FindRelay ("MonModule.relayl"

relay = 1y . FindRelay ("MonModule.MaFonction")

relay = 1y .FindRelay ("MaFonction")

YRelay.FindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by FindRelay allows you to know if the
corresponding module is present and in working order.

set_state

The set state () method of the objet returned by YRelay.FindRelay switches the relay
position to one of its two outputs. The two possible parameter values are YRelay.STATE A for
output A, and YRelay.STATE B for output B.

A real example, for Node.js

Open a command window (a terminal, a shell...) and go into the directory example_nodejs/Doc-
GettingStarted-Yocto-Relay within Yoctopuce library for JavaScript/ EcmaScript 2017. In there,
you will find a file named demo . j s with the sample code below, which uses the functions explained
above, but this time used with all side materials needed to make it work nicely as a small demo.

If your Yocto-Relay is not connected on the host running the browser, replace in the example the
address 127.0.0.1 with the IP address of the host on which the Yocto-Relay is connected and
where you run the VirtualHub.

"use strict";

require ('yoctolib-es2017/yocto _api.js');
require ('yoctolib-es2017/yocto _relay.js');

www.yoctopuce.com 101

14. Using Yocto-Relay with JavaScript / EcmaScript

async function startDemo (args)

{
await YAPI.LogUnhandledPromiseRejections();
await YAPI.DisableExceptions();

API to use the VirtualHub on local machine

>tup the API to use the
let errmsg = new YErrorMsg();

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
return;

}

ect

let target;

if (args[0] == "any") {
let anyrelay = YRelay.FirstRelay();
if (anyrelay == null) {

console.log ("No module connected (check USB cable)\n");
process.exit (1) ;

}

let module = await anyrelay.get module();
target = await module.get serialNumber () ;
} else {

target = args[0];
}

relay as requested

args[l] + " of " + target + " to " + args[2]);

Switch

console.log("Sét oupuﬁ WA

let relay = YRelay.FindRelay(target + ".relay" + args[l]):;
if (await relay.isOnline()) {

await relay.set output (args[2] == "ON" ? YRelay.OUTPUT ON : YRelay.OUTPUT OFF) ;
} else {

console.log("Module not connected (check identification and USB cable)\n");

}

await YAPI.FreeAPI ():;

}

if (process.argv.length < 5) {
console.log("usage: node demo.js <serial number> <channel> [ON | OFF]");

console.log (" node demo.js <logical name> <channel> [ON | OFF]");
console.log (" node demo.js any <channel> [ON | OFF 1");

} else {
startDemo (process.argv.slice (process.argv.length - 3));

}

As explained at the beginning of this chapter, you need to have Node.js v7.6 or later installed to try
this example. When done, you can type the following two commands to automatically download and
install the dependencies for building this example:

npm install

You can the start the sample code within Node.js using the following command, replacing the [...] by
the arguments that you want to pass to the demo code:

node demo.js [...]

Same example, but this time running in a browser

If you want to see how to use the library within a browser rather than with Node.js, switch to the
directory example_html/Doc-GettingStarted-Yocto-Relay. You will find there a single HTML file,
with a JavaScript section similar to the code above, but with a few changes since it has to interact
through an HTML page rather than through the JavaScript console.

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Hello World</title>
<script src="../../lib/yocto api.js"></script>

102 www.yoctopuce.com

14. Using Yocto-Relay with JavaScript / EcmaScript

<script src="../../lib/yocto relay.js"></script>
<script>
let relays = [];

async function startDemo ()

{
await YAPI.LogUnhandledPromiseRejections();
await YAPI.DisableExceptions();

// Setup the API to use the VirtualHub on local machine
let errmsg = new YErrorMsg();

if (await YAPI.RegisterHub ('127.0.0.1', errmsg) != YAPI.SUCCESS) {
alert ('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);

}

refresh () ;

}

async function refresh()
{
let serial = document.getElementById('serial') .value;
if (serial == "") {
// by default use any connected module suitable for the demo
let anyRelay = YRelay.FirstRelay();
if (anyRelay) {
let module = await anyRelay.module();
serial = await module.get serialNumber () ;

document.getElementById('serial') .value serial;
}

}

for(let 1 = 1; 1 <= 2; i++) {

relays|[i] YRelay.FindRelay (serial+".relay"+i);
}
if (await relays[1l].isOnline()) {

document.getElementById('msg') .value Uy
} else {

document.getElementById('msg') .value 'Module not connected';

}

setTimeout (refresh, 500);

}

window.sw function (index, state)
{

relays[index] .set output (state ? YRelay.OUTPUT ON : YRelay.OUTPUT OFF);
}i

startDemo () ;
</script>
</head>
<body>
Module to use: <input id='serial'>
<input id='msg' style='color:red;border:none;' readonly>

Relayl OFF / 0ON

Relay2 0FF / 0ON

</body>
</html>

No installation is needed to run this example, all you have to do is open the HTML file using a web
browser,

14.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

"use strict";

require ('yoctolib-es2017/yocto api.js');
async function startDemo (args)

{

await YAPI.LogUnhandledPromiseRejections();

// Setup the API to use the VirtualHub on local machine

let errmsg = new YErrorMsg();

www.yoctopuce.com 103

14. Using Yocto-Relay with JavaScript / EcmaScript

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
return;

let module = YModuie.FindModule(argS[O]);
if (await module.isOnline()) {
if (args.length > 1) {

~+ he relav tFo 179
e the relay to use

if (args[1] == 'ON') {
await module.set beacon (YModule.BEACON_ ON) ;
} else {

await module.set beacon (YModule.BEACON OFF) ;
}
}

console.log('serial: 'tawait module.get serialNumber());

console.log('logical name: '+await module.get logicalName()) ;

console.log('luminosity: 'tawait module.get luminosity()+'$');

console.log('beacon: '+ (await module.get beacon ()==YModule.BEACON_ ON
?'ON':'OFF'));

console.log('upTime: 'tparselnt (await module.get upTime () /1000)+' sec');

console.log ('USB current: '+await module.get usbCurrent()+' mA');

(
(
console.log('logs:"');
console.log(await module.get lastLogs());
} else {
console.log("Module not connected (check identification and USB cable)\n");

}

await YAPI.FreeAPI ();

}

if (process.argv.length < 2) {

console.log("usage: node demo.]js <serial or logicalname> [ON | OFF]");
} else {

startDemo (process.argv.slice(2)) ;

}

Each property xxx of the module can be read thanks to a method of type get xxxx(), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

"use strict";
require ('yoctolib-es2017/yocto _api.js');
async function startDemo (args)

{

await YAPI.LogUnhandledPromiseRejections();

// Setup the API to use the VirtualHub on local ma ne

let errmsg = new YErrorMsg();

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
return;

}

= lecis the Aelaw -
>elecCl tne rela) use

let module = YModule.FindModule(args[O]);

if (await module.isOnline()) {
if (args.length > 1) {
let newname = args[l];
if (!'await YAPI.CheckLogicalName (newname)) {
console.log("Invalid name (" + newname + ")");

process.exit (1) ;

104 www.yoctopuce.com

14. Using Yocto-Relay with JavaScript / EcmaScript

await module.set logicalName (newname) ;
await module.saveToFlash () ;
}
console.log('Current name: '+await module.get logicalName());
} else {
console.log("Module not connected (check identification and USB cable)\n");

}

await YAPI.FreeAPI ();

}

if (process.argv.length < 2) {

console.log("usage: node demo.js <serial> [newLogicalName]");
} else {

startDemo (process.argv.slice(2));

}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.FirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

"use strict";
require ('yoctolib-es2017/yocto api.js');

async function startDemo ()

{
await YAPI.LogUnhandledPromiseRejections();
await YAPI.DisableExceptions();
/ up the API to use the VirtualHub on loca
let errmsg = new YErrorMsg();

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) ({
console.log('Cannot contact VirtualHub on 127.0.0.1");
return;

}

refresh () ;

}

async function refresh()
{
try {
let errmsg = new YErrorMsg();
await YAPI.UpdateDevicelist (errmsqg) ;

let module = YModule.FirstModule () ;
while (module) {
let line = await module.get serialNumber () ;

line += '(' + (await module.get productName()) + ')';
console.log(line);
module = module.nextModule () ;

}
setTimeout (refresh, 500);
} catch(e) {
console.log(e);
}
}

try {
startDemo () ;

} catch(e) {
console.log(e) ;

}

www.yoctopuce.com 105

14. Using Yocto-Relay with JavaScript / EcmaScript

14.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

+ If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

106 www.yoctopuce.com

15. Using Yocto-Relay with PHP

PHP is, like Javascript, an atypical language when interfacing with hardware is at stakes.
Nevertheless, using PHP with Yoctopuce modules provides you with the opportunity to very easily
create web sites which are able to interact with their physical environment, and this is not available to
every web server. This technique has a direct application in home automation: a few Yoctopuce
modules, a PHP server, and you can interact with your home from anywhere on the planet, as long
as you have an internet connection.

PHP is one of those languages which do not allow you to directly access the hardware layers of your
computer. Therefore you need to run a virtual hub on the machine on which your modules are
connected.

To start your tests with PHP, you need a PHP 5.3 (or more) server', preferably locally on you
machine. If you wish to use the PHP server of your internet provider, it is possible, but you will

probably need to configure your ADSL router for it to accept and forward TCP request on the 4444
port.

15.1. Getting ready

Go to the Yoctopuce web site and download the following items:

+ The PHP programming library?
+ The VirtualHub software® for Windows, Mac OS X, or Linux, depending on your OS

Decompress the library files in a folder of your choice accessible to your web server, connect your

modules, run the VirtualHub software, and you are ready to start your first tests. You do not need to
install any driver.

15.2. Control of the Relay function

A few lines of code are enough to use a Yocto-Relay. Here is the skeleton of a PHP code snipplet to
use the Relay function.

include ('yocto api.php');
include ('yocto relay.php');

A couple of free PHP servers: easyPHP for Windows, MAMP for Mac OS X.
www.yoctopuce.com/EN/libraries.php
www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 107

15. Using Yocto-Relay with PHP

loooll

YAPI::RegisterHub ('http://127.0.0.1:4444/',Serrmsq) ;
[...]

Srelay = YRelay::FindRelay ("RELAYLO1-123456.relayl");
if ($relay->isOnline())
{

y->set state ()

}

Let's look at these lines in more details.

yocto_api.php and yocto_relay.php

These two PHP includes provides access to the functions allowing you to manage Yoctopuce
modules. yocto api.php must always be included, yocto relay.php is necessary to
manage modules containing a relay, such as Yocto-Relay.

YAPI::RegisterHub

The YAPI::RegisterHub function allows you to indicate on which machine the Yoctopuce
modules are located, more precisely on which machine the VirtualHub software is running. In our
case, the 127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port
used by Yoctopuce). You can very well modify this address, and enter the address of another
machine on which the VirtualHub software is running.

YRelay::FindRelay

The YRelay: : FindRelay function allows you to find a relay from the serial number of the module
on which it resides and from its function name. You can use logical names as well, as long as you
have initialized them. Let us imagine a Yocto-Relay module with serial number RELAYLO1-123456
which you have named "MyModule", and for which you have given the relay? function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

Srelay = YRelay::FindRelay ("RELAYLO1-123456.relayl");
Srelay = YRelay::FindRelay ("RELAYLO1-123456.MyFunction") ;
Srelay = YRelay::FindRelay ("MyModule.relayl");

Srelay = ay::FindRelay ("MyModule.MyFunction") ;

Srelay = YRelay::FindRelay ("MyFunction") ;

YRelay: :FindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by YRelay: :FindRelay allows you to know if
the corresponding module is present and in working order.

set_state

The set state () method of the objet returned by yFindRelay switches the relay position to
one of its two outputs. The two possible parameter values are Y STATE A for output A, and
Y STATE B for output B.

A real example

Open your preferred text editor*, copy the code sample below, save it with the Yoctopuce library files
in a location which is accessible to you web server, then use your preferred web browser to access

45 you do not have a text editor, use Notepad rather than Microsoft Word.

108 www.yoctopuce.com

15. Using Yocto-Relay with PHP

this page. The code is also provided in the directory Examples/Doc-GettingStarted-Yocto-Relay of
the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

<HTML>

<HEAD>

<TITLE>Hello World</TITLE>

</HEAD>

<BODY>

<FORM method='get'>

<?php
include ('yocto api.php');
include ('yocto relay.php');

// Use explicit error handling rather than exceptions
YAPI::DisableExceptions () ;

// Setup the API to use the VirtualHub on local machine
1f (YAPI::RegisterHub ('http://127.0.0.1:4444/"',Serrmsg) != YAPI::SUCCESS) {
die ("Cannot contact VirtualHub on 127.0.0.1");

}

@$serial = $ GET['serial'l;
if ($Sserial != '"") {

/ Check if a specified modul

5 available online

serial.relayl")
serial.relay2")

Srelayl = YRelay::FindRelay ("

Srelay2 = YRelay::FindRelay ("

if (!$relayl->isOnline()) {
die ("Module not connected (check serial and USB cable)");

R 7 0]

}

} else {

// (r € e o r of e
Srelayl = YRelay::FirstRelay();
if (is null (Srelayl)) {

die ("No module connected (check USB cable)");

} else {
Srelay?2 = S$relayl->nextRelay();
$serial = S$relayl->module () ->get serialnumber () ;

}
}
Print ("Module to use: <input name='serial' value='$serial'>
");

// Drive the selected module
if (isset($_GET['statel'l)) {
$state = $ GET['statel'];

if ($state=='A') Srelayl->set state(Y STATE A);

if ($state=='B') S$relayl->set state(Y STATE B);

}
if (isset($_GET['state2'])) {
Sstate = § GET['state2'];
if ($state=='A') Srelay2->set state(Y STATE A);
if ($state=='B') Srelay2->set state(Y STATE B);
}
YAPI: :FreeAPI();
?>
Relay 1: <input type='radio' name='statel' value='A'>Output A
<input type='radio' name='statel' value='B'>Output B

Relay 2: <input type='radio' name='state2' value='A'>Output A
<input type='radio' name='state2' value='B'>Output B

<input type='submit'>
</FORM>
</BODY>
</HTML>

15.3. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

www.yoctopuce.com 109

15. Using Yocto-Relay with PHP

<HTML>
<HEAD>
<TITLE>Module Control</TITLE>
</HEAD>
<BODY>
<FORM method='get'>
<?php
include ('yocto api.php');

// Use explicit error handling rather tions

YAPI::DisableExceptions () ;

// Setup the API to use the VirtualHub on local machine

1f (YAPI::RegisterHub ('http://127.0.0.1:4444/"',Serrmsg) != YAPI::SUCCESS) {
die ("Cannot contact VirtualHub on 127.0.0.1 : ".Serrmsg);

}

@Sserial = $ GET['serial'l;
if ($serial != '') {

e oniin

0]

// Check if a specified module is availab
Smodule = YModule::FindModule ("$serial") ;
if (!$module->isOnline()) {
die ("Module not connected (check serial and USB cable)");
}
} else {

// or use any connected module suitable for the demo
Smodule = YModule::FirstModule () ;
if ($module) { // skip VirtualHub

Smodule = $module->nextModule () ;

}
if (is null (Smodule)) {
die ("No module connected (check USB cable)");
} else {
$serial = $module->get serialnumber () ;
}
}

Print ("Module to use: <input name='serial' value='$serial'>
");

if (isset($_GET['beacon'])) {
if ($_GET['beacon']=='ON")
Smodule->set beacon (Y BEACON ON) ;
else
Smodule->set beacon (Y BEACON OFF) ;
}
printf ('serial: $s
', Smodule->get serialNumber());
printf ('logical name: %$s
', $Smodule->get logicalName ());
printf ('luminosity: %s
', Smodule->get luminosity());
print ('beacon: ');
if ($module->get beacon() == Y BEACON ON) {
printf ("<input type='radio' name='beacon' value='ON' checked>ON ");
printf ("<input type='radio' name='beacon' value='OFF'>OFF
");
} else {
printf ("<input type='radio' name='beacon' value='ON'>ON ");
printf ("<input type='radio' name='beacon' value='OFF' checked>OFF
");
}
printf ('upTime: %s sec
',intVal ($Smodule->get upTime ()/1000));
printf ('USB current: %smA
',$module—>get_usturrent())
printf ('logs:
<pre>%s</pre>', Smodule->get lastLogs());
YAPI: :FreeAPI();
?>
<input type='submit' value='refresh'>
</FORM>
</BODY>
</HTML>

’

Each property xxx of the module can be read thanks to a method of type get xxxx (), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them

110 www.yoctopuce.com

15. Using Yocto-Relay with PHP

persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

<HTML>
<HEAD>
<TITLE>save settings</TITLE>
<BODY>
<FORM method='get'>
<?php
include ('yocto api.php');

:DisébleExceptions();

if (YAPI::RegisterHub ('http://127.0.0.1:4444/',Serrmsg) != YAPI::SUCCESS) {
die ("Cannot contact VirtualHub on 127.0.0.1");
}

@$serial = $ GET['serial'l;
if ($serial !'= '"') {

Smodule = YModule::FindModule ("$serial") ;
if (!$module->isOnline()) {
die ("Module not connected (check serial and USB cable)");

}
} else {
Smodule = YModul FirstModule () ;
if ($Smodule) { / skip VirtualHub
Smodule = $module->nextModule () ;

}

if (is null (Smodule)) {

die ("No module connected (check USB cable)");
} else {

$serial = $module->get serialnumber () ;

}
}

Print ("Module to use: <input name='serial' value='$serial'>
");

if (isset($_GET['newname'])) {
Snewname = $ GET['newname'];
if (!yCheckLogicalName ($newname))

die('Invalid name') ;
Smodule->set logicalName ($newname) ;
Smodule->saveToFlash () ;

}

printf ("Current name: %s
", Smodule->get logicalName());
print ("New name: <input name='newname' value='' maxlength=19>
");
YAPI: :FreeAPI():;

?>

<input type='submit'>

</FORM>

</BODY>

</HTML>

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

<HTML>
<HEAD>

www.yoctopuce.com 111

15. Using Yocto-Relay with PHP

<TITLE>inventory</TITLE>
</HEAD>
<BODY>
<H1>Device list</H1>
<TT>
<?php
include ('yocto api.php');
YAPI: :RegisterHub ("http://127.0.0.1:4444/");
Smodule = YModule: :FirstModule () ;
while (!is null (Smodule)) {
printf ("%$s (%s)
", $module->get serialNumber (),
$module—>get7productName());
Smodule=Smodule->nextModule () ;
}
YAPI::FreeAPI();
?>
</TT>
</BODY>
</HTML>

15.4. HTTP callback API and NAT filters

The PHP library is able to work in a specific mode called HTTP callback Yocto-API. With this mode,
you can control Yoctopuce devices installed behind a NAT filter, such as a DSL router for example,
and this without needing to open a port. The typical application is to control Yoctopuce devices,
located on a private network, from a public web site.

The NAT filter: advantages and disadvantages

A DSL router which translates network addresses (NAT) works somewhat like a private phone
switchboard (a PBX): internal extensions can call each other and call the outside; but seen from the
outside, there is only one official phone number, that of the switchboard itself. You cannot reach the
internal extensions from the outside.

www.mysite.com 192.168.0.1

(64.136.20.37)

192.168.0.101

46.14.51.32 192.168.0.102

==
Typical DSL configuration: LAN machines are isolated from the outside by the DSL router

Transposed to the network, we have the following: appliances connected to your home automation
network can communicate with one another using a local IP address (of the 192.168.xxx.yyy type),
and contact Internet servers through their public address. However, seen from the outside, you have
only one official IP address, assigned to the DSL router only, and you cannot reach your network
appliances directly from the outside. It is rather restrictive, but it is a relatively efficient protection
against intrusions.

112 www.yoctopuce.com

15. Using Yocto-Relay with PHP

_— 0000 (¢)

response ——eEm

Responses from request from LAN machines are routed.

0000 —

m__) =

But requests from the outside are blocked.

Seeing Internet without being seen provides an enormous security advantage. However, this signifies
that you cannot, a priori, set up your own web server at home to control a home automation
installation from the outside. A solution to this problem, advised by numerous home automation
system dealers, consists in providing outside visibility to your home automation server itself, by
adding a routing rule in the NAT configuration of the DSL router. The issue of this solution is that it
exposes the home automation server to external attacks.

The HTTP callback API solves this issue without having to modify the DSL router configuration. The
module control script is located on an external site, and it is the VirtualHub which is in charge of
calling it a regular intervals.

VirtualHub

yoctocontrol.php

request
|-
0O 0O00O O k\/

response —

The HTTP callback API uses the VirtualHub which initiates the requests.

Configuration

The callback API thus uses the VirtualHub as a gateway. All the communications are initiated by the
VirtualHub. They are thus outgoing communications and therefore perfectly authorized by the DSL
router.

www.yoctopuce.com 113

15. Using Yocto-Relay with PHP

You must configure the VirtualHub so that it calls the PHP script on a regular basis. To do so:

1. Launch a VirtualHub

2. Access its interface, usually 127.0.0.1:4444

3. Click on the configure button of the line corresponding to the VirtualHub itself
4. Click on the edit button of the Outgoing callbacks section

Serial Logical Name Description Action
WVIRT VirtualHub (

RELA Yocto-PowerRelay
Yocto-Temperature

P |

Click on the "configure" button on the first line

Edit parameters for VIRTHUBO0-7d1a86fb09, and click on the Save

button.

Serial # VIRTHUBO-7d1aB6fb09
Product name VirtualHub

Software version: 10789

Logical name:

Incoming connections

Authentication to read information from the devices:
Authentication to make changes to the devices:

‘Qutgoing callbacks

Callback URL: octoHub ((edit)
Delay between callbacks: min: 3[s] max: 600 [s]

|:Save | \"Cancell

Click on the "edit" button of the "Outgoing callbacks" section

This VirtualHub can post the advertised values of all devices on a specific URL on a
regular hasis. If you wish to use this feature, choose the callback type follow the steps
below carefully.

1. Specify the Type of callback you want to use: ‘ “Yocto-AP| callback 'I

Yoctopuce devices can be controled through remote PHP scripts. That Yoclo-AP1 callback
protocol is designed so it can pass frough MAT filters without opening ports. See your
device user manual, PHP programming section for more details.

2. Specify the URL to use for reporting values, HTTPS protocol Is not vet supported.

Callback URL: hitp tﬂwww mysite.comfyoctotestiyoctocontrol php ‘

3. If your callback reguires authentication, enter credentials here. Digest authentication is
recommended, but Basic authentication works as well

Username ‘ynmn |
J

4. Setup the desired frequency of notifications:

Password

Mo less than ‘3 ‘semnds hetween two notification

But notify after ‘EDU ‘secundsm any case

5. Press on the Test hutton to check your parameters.

6. When everything works, press on the OK hutton

\E\ \a\ |Cance\“

And select "Yocto-API callback”.

You then only need to define the URL of the PHP script and, if need be, the user name and
password to access this URL. Supported authentication methods are basic and digest. The second
method is safer than the first one because it does not allow transfer of the password on the network.

114 www.yoctopuce.com

15. Using Yocto-Relay with PHP

Usage

From the programmer standpoint, the only difference is at the level of the yRegisterHub function call.
Instead of using an IP address, you must use the callback string (or http://callback which is
equivalent).

include ("yocto_api.php");
yRegisterHub ("callback") ;

The remainder of the code stays strictly identical. On the VirtualHub interface, at the bottom of the
configuration window for the HTTP callback API , there is a button allowing you to test the call to the
PHP script.

Be aware that the PHP script controlling the modules remotely through the HTTP callback API can
be called only by the VirtualHub. Indeed, it requires the information posted by the VirtualHub to
function. To code a web site which controls Yoctopuce modules interactively, you must create a user
interface which stores in a file or in a database the actions to be performed on the Yoctopuce
modules. These actions are then read and run by the control script.

Common issues

For the HTTP callback API to work, the PHP option allow_url_fopen must be set. Some web site
hosts do not set it by default. The problem then manifests itself with the following error:

error: URL file-access is disabled in the server configuration

To set this option, you must create, in the repertory where the control PHP script is located, an .htaccess
file containing the following line:

php flag "allow url fopen" "On"

Depending on the security policies of the host, it is sometimes impossible to authorize this option at
the root of the web site, or even to install PHP scripts receiving data from a POST HTTP. In this
case, place the PHP script in a subdirectory.

Limitations

This method that allows you to go through NAT filters cheaply has nevertheless a price.
Communications being initiated by the VirtualHub at a more or less regular interval, reaction time to
an event is clearly longer than if the Yoctopuce modules were driven directly. You can configure the
reaction time in the specific window of the VirtualHub, but it is at least of a few seconds in the best
case.

The HTTP callback Yocto-API mode is currently available in PHP, EcmaScript (Node.JS) and Java
only.

15.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

www.yoctopuce.com 115

15. Using Yocto-Relay with PHP

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI .DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

116 www.yoctopuce.com

16. Using Yocto-Relay with Visual Basic .NET

VisualBasic has long been the most favored entrance path to the Microsoft world. Therefore, we had
to provide our library for this language, even if the new trend is shifting to C#. All the examples and
the project models are tested with Microsoft VisualBasic 2010 Express, freely available on the
Microsoft web site’.

16.1. Installation

Download the Visual Basic Yoctopuce library from the Yoctopuce web site?. There is no setup
program, simply copy the content of the zip file into the directory of your choice. You mostly need the
content of the Sources directory. The other directories contain the documentation and a few
sample programs. All sample projects are Visual Basic 2010, projects, if you are using a previous
version, you may have to recreate the projects structure from scratch.

16.2. Using the Yoctopuce API in a Visual Basic project

The Visual Basic.NET Yoctopuce library is composed of a DLL and of source files in Visual Basic.
The DLL is not a .NET DLL, but a classic DLL, written in C, which manages the low level
communications with the modules®. The source files in Visual Basic manage the high level part of the
API. Therefore, your need both this DLL and the .vb files of the sources directory to create a
project managing Yoctopuce modules.

Configuring a Visual Basic project

The following indications are provided for Visual Studio Express 2010, but the process is similar for
other versions. Start by creating your project. Then, on the Solution Explorer panel, right click on your
project, and select "Add" and then "Add an existing item".

A file selection window opens. Select the yocto api.vb file and the files corresponding to the
functions of the Yoctopuce modules that your project is going to manage. If in doubt, select all the
files.

You then have the choice between simply adding these files to your project, or to add them as links
(the Add button is in fact a scroll-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply keeps a link on the original files. We
recommend you to use links, which makes updates of the library much easier.

1 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-basic-express
www.yoctopuce.com/EN/libraries.php
The sources of this DLL are available in the C++ API

www.yoctopuce.com 117

16. Using Yocto-Relay with Visual Basic .NET

Then add in the same manner the yapi.d11 DLL, located in the Sources/d11 directory*. Then,
from the Solution Explorer window, right click on the DLL, select Properties and in the Properties
panel, set the Copy to output folder to always. You are now ready to use your Yoctopuce modules
from Visual Studio.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

16.3. Control of the Relay function

A few lines of code are enough to use a Yocto-Relay. Here is the skeleton of a Visual Basic code
snhipplet to use the Relay function.

[oooll

Dim errmsg As String errmsg

YAPI.RegisterHub ("usb", errmsqg)

[Loool

Dim relay As YRelay

relay = YRelay.FindRelay ("RELAYLO1-123456.relayl")

If (relay.isOnline()) Then
' Use rela set state ()
[...]

End If

[...]

Let's look at these lines in more details.

YAPIL.RegisterHub

The YAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPI SUCCESS and errmsg contains the error message.

YRelay.FindRelay

The YRelay.FindRelay function allows you to find a relay from the serial number of the module
on which it resides and from its function name. You can use logical names as well, as long as you
have initialized them. Let us imagine a Yocto-Relay module with serial number RELAYLO1-123456
which you have named "MyModule", and for which you have given the relay1 function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

relay = YRelay.FindRelay ("RELAYLO1-123456.relayl")
relay = YRelay.FindRelay ("RELAYLO1-123456.MyFunction")
relay = YRelay.FindRelay ("MyModule.relayl")

relay = YRelay.FindRelay ("MyModule.MyFunction")

relay = YRelay.FindRelay ("MyFunction")

YRelay.FindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by YRelay.FindRelay allows you to know if
the corresponding module is present and in working order.

4 Remember to change the filter of the selection window, otherwise the DLL will not show.

118 www.yoctopuce.com

16. Using Yocto-Relay with Visual Basic .NET

set_state

The set state () method of the objet returned by yFindRelay switches the relay position to
one of its two outputs. The two possible parameter values are Y STATE A for output A, and
Y STATE B for output B.

A real example

Launch Microsoft VisualBasic and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-Relay of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

Module Modulel

Private Sub Usage ()

Dim execname = System.AppDomain.CurrentDomain.FriendlyName
Console.WriteLine ("Usage:")
Console.WriteLine (execname + " <serial number> < A | B >")
Console.WritelLine (execname + " <logical name> < A | B >")
Console.WritelLine (execname + " any < A | B >")
System.Threading.Thread.Sleep (2500)
End

End Sub

Sub Main ()
Dim argv() As String = System.Environment.GetCommandLineArgs ()
Dim errmsg As String = ""

Dim target As S né
Dim relay As YRelay
Dim state As Char

If argv.Length < 3 Then Usage ()

target = argv (1)
state = CChar (Mid(argv(2), 1, 1) .ToUpper())

REM Setup the API to use local USB devices
If (YAPI.RegisterHub ("usb", errmsg) <> YAPI SUCCESS) Then

Console.WriteLine ("RegisterHub error: " + errmsg)
End

End If

If target = "any" Then

relay = YRelay.FirstRelay ()
If relay Is Nothing Then
Console.WriteLine ("No module connected (check USB cable) ")
End
End If
Else
relay = YRelay.FindRelay(target + ".relayl")
End If

If (relay.isOnline()) Then
If state = "A" Then relay.set state(Y STATE A) Else relay.set state(Y STATE B)
Else
Console.WriteLine ("Module not connected (check identification and USB cable)")
End If
YAPI.FreeAPI ()
End Sub

End Module

16.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

Imports System.IO

www.yoctopuce.com 119

16. Using Yocto-Relay with Visual Basic .NET

Imports System.Environment
Module Modulel

Sub usage ()
Console.WriteLine ("usage: demo <serial or logical name> [ON/OFF]")
End

End Sub

Sub Main ()
Dim argv () As String System.Environment.GetCommandLineArgs ()
Dim errmsg As String = ""
Dim m As ymodule

If (YAPI.RegisterHub ("usb", errmsg) <> YAPI SUCCESS) Then
Console.WritelLine ("RegisterHub error:" + errmsg)
End

End If

If argv.Length < 2 Then usage ()

m = YModule.FindModule (argv(l)) REM use serial or logical name
If (m.isOnline()) Then
If argv.Length > 2 Then
If argv(2) = "ON" Then m.set beacon (Y BEACON ON)
If argv(2) = "OFF" Then m.set beacon (Y BEACON_ OFF)
End If
Console.WriteLine ("serial: " + m.get serialNumber ())
Console.WriteLine("logical name: " + m.get logicalName ())
Console.WritelLine ("luminosity: " + Str(m.get luminosity()))
Console.Write ("beacon: ")
If (m.get beacon() = Y BEACON ON) Then
Console.WriteLine ("ON")
Else
Console.WriteLine ("OFF")
End If
Console.WriteLine ("upTime: " + Str(m.get upTime() / 1000) + " sec")
Console.WriteLine ("USB current: " + Str(m.get usbCurrent()) + " mA")
Console.WriteLine ("Logs:")
Console.WriteLine (m.get lastLogs ()
Else
Console.WriteLine (argv(l) + " not connected (check identification and USB cable)")
End If
YAPI.FreeAPI ()
End Sub
End Module

Each property xxx of the module can be read thanks to a method of type get xxxx(), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

Module Modulel

Sub usage ()

Console.WriteLine ("usage: demo <serial or logical name> <new logical name>")

End

End Sub

Sub Main ()
Dim argv() As String = System.Environment.GetCommandLineArgs ()
Dim errmsg As String = ""

120 www.yoctopuce.com

16. Using Yocto-Relay with Visual Basic .NET

Dim newname As String
Dim m As YModule

If (argv.Length <> 3) Then usage()

REM Setup the API to use local USB devices
If YAPI.RegisterHub ("usb", errmsg) <> YAPI SUCCESS Then

Console.WriteLine ("RegisterHub error: " + errmsg)
End
End If
m = YModule.FindModule (argv(l)) REM use serial or logical name
If m.isOnline () Then
newname = argv(2)
If (Not YAPI.CheckLogicalName (newname)) Then
Console.WritelLine ("Invalid name (" + newname + ")")
End
End If

m.set logicalName (newname)
m.saveToFlash() REM do not forget this

Console.Write ("Module: serial= " + m.get serialNumber)
Console.Write(" / name= " + m.get logicalName ())
Else
Console.Write ("not connected (check identification and USB cable")
End If

YAPI.FreeAPI ()
End Sub

End Module

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not Nothing. Below a
short example listing the connected modules.

Module Modulel

Sub Main ()
Dim M As ymodule
Dim errmsg As String = ""

REM Setup the API to use local USB devices

If YAPI.RegisterHub ("usb", errmsg) <> YAPI SUCCESS Then
Console.WriteLine ("RegisterHub error: " + errmsqg)
End

End If

Console.WriteLine ("Device list")

M = YModule.FirstModule ()

While M IsNot Nothing
Console.WriteLine (M.get serialNumber() + " (" + M.get productName() + ")")
M = M.nextModule ()

End While

YAPI.FreeAPI ()

End Sub

End Module

www.yoctopuce.com 121

16. Using Yocto-Relay with Visual Basic .NET

16.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

+ If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

122 www.yoctopuce.com

17. Using Yocto-Relay with Delphi

Delphi is a descendent of Turbo-Pascal. Originally, Delphi was produced by Borland, Embarcadero
now edits it. The strength of this language resides in its ease of use, as anyone with some notions of
the Pascal language can develop a Windows application in next to no time. Its only disadvantage is
to cost something”.

Delphi libraries are provided not as VCL components, but directly as source files. These files are
compatible with most Delphi versions.?

To keep them simple, all the examples provided in this documentation are console applications.
Obviously, the libraries work in a strictly identical way with VCL applications.

You will soon notice that the Delphi APl defines many functions which return objects. You do not
need to deallocate these objects yourself, the API does it automatically at the end of the application.

17.1. Preparation

Go to the Yoctopuce web site and download the Yoctopuce Delphi libraries®. Uncompress everything
in a directory of your choice, add the subdirectory sources in the list of directories of Delphi libraries.

By default, the Yoctopuce Delphi library uses the yapi.dll DLL, all the applications you will create with
Delphi must have access to this DLL. The simplest way to ensure this is to make sure yapi.dll is
located in the same directory as the executable file of your application.

17.2. Control of the Relay function

A few lines of code are enough to use a Yocto-Relay. Here is the skeleton of a Delphi code snipplet
to use the Relay function.

uses yocto api, yocto relay;

var errmsg: string;
relay: TYRelay;

[...]

1 Actually, Borland provided free versions (for personal use) of Delphi 2006 and 2007. Look for them on the Internet, you
may still be able to download them.
2 Delphi libraries are regularly tested with Delphi 5 and Delphi XE2.

www.yoctopuce.com/EN/libraries.php

Use the Tools / Environment options menu.

www.yoctopuce.com 123

17. Using Yocto-Relay with Delphi

yRegisterHub ('usb', errmsqg)

[...]
relay = yFindRelay ("RELAYLO1-123456.relayl"

if relay.isOnline() then
begin

[...]
end;

ool

Let's look at these lines in more details.

yocto_api and yocto_relay

These two units provide access to the functions allowing you to manage Yoctopuce modules.
yocto api must always be used, yocto relay is necessary to manage modules containing a
relay, such as Yocto-Relay.

yRegisterHub

The yRegisterHub function initializes the Yoctopuce API and specifies where the modules should
be looked for. When used with the parameter 'usb', it will use the modules locally connected to the
computer running the library. If the initialization does not succeed, this function returns a value
different from YAPI SUCCESS and errmsg contains the error message.

yFindRelay

The yFindRelay function allows you to find a relay from the serial number of the module on which
it resides and from its function name. You can also use logical names, as long as you have initialized
them. Let us imagine a Yocto-Relay module with serial number RELAYLO1-123456 which you have
named "MyModule", and for which you have given the relay1 function the name "MyFunction". The
following five calls are strictly equivalent, as long as "MyFunction" is defined only once.

relay := yFindRelay ("RELAYLO1-123456.relayl");
relay := yFindRelay ("RELAYLO1-123456.MyFunction");
relay := yFindRelay("MyModule.relayl");

relay := yFindRelay("MyModule.MyFunction") ;

relay := yFindRelay ("MyFunction");

yFindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by yFindRelay allows you to know if the
corresponding module is present and in working order.

set_state

The set state () method of the objet returned by yFindRelay switches the relay position to
one of its two outputs. The two possible parameter values are Y STATE A for output A, and
Y STATE B for output B.

A real example

Launch your Delphi environment, copy the yapi.dll DLL in a directory, create a new console
application in the same directory, and copy-paste the piece of code below:

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

program helloworld;
{SAPPTYPE CONSOLE}
uses

124 www.yoctopuce.com

SysUtils,
Windows,
yocto_ api,
yocto relay;

procedure usage();

17. Using Yocto-Relay with Delphi

var
execname:string;
begin
execname := ExtractFileName (paramstr (0));
Writeln ('Usage:");
Writeln (execname + ' <serial number> <channel> < A | B >');
Writeln (execname + ' <logical name> <channel> < A | B >');
Writeln (execname + ' any <channel> < A | B >');
Writeln ('Example:"'");
Writeln (execname + ' any 2 B');
sleep (2500) ;
halt;
end;
var
errmsg, target, state,channel:string;
relay:TYRelay;
m : TYModule;
begin
if (paramcount<3) then usage();
// parse command line
target := UpperCase (paramstr (1)) ;
channel paramstr (2);
state := UpperCase (paramstr(3));
// Setup the API to use local USB devices
if (YRegisterHub ('usb', errmsg) <> YAPI SUCCESS) then
begin
writeln ('RegisterHub error: ' + errmsqg);
halt;
end;
if (target='ANY') then
begin
// try to find the first vavailable relay
relay := YFirstRelay():;
if (relay =nil) then
begin
writeln ('No module connected (check USB cable)');
halt;
end;

// retreive the hosting device

m := relay.get module();
target := m. get serialNumber();
end;

v

Writeln ('using + target);

// retreive the right channel

serial

'.relay'+channel);

relay.set output (Y OUTPUT ON)

else relay.set output (Y OUTPUT OFF) ;

relay := YFindRelay(target +
// lets switch the relay
if (relay.isOnline()) then
begin
if (state = 'B') then
end

else writeln('Module not connected
yFreeAPI () ;

end.

(check identification and USB cable)');

17.3. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

www.yoctopuce.com

125

17. Using Yocto-Relay with Delphi

program modulecontrol;
{SAPPTYPE CONSOLE}
uses

SysUtils,

yocto api;

const
serial = 'RELAYLO1-123456'; // use serial number or logical name

procedure refresh (module:Tymodule) ;

begin
if (module.isOnline()) then
begin
Writeln('"');
Writeln('Serial : ' + module.get serialNumber());
Writeln('Logical name : ' + module.get logicalName());
Writeln ('Luminosity : ' + intToStr (module.get luminosity()));

Write ('Beacon HAD I
if (module.get beacon()=Y BEACON ON) then Writeln('on')
else Writeln('off');

Writeln ('uptime : ' + intToStr (module.get upTime () div 1000)+'s"');
Writeln ('USB current : ' + intToStr (module.get usbCurrent())+'mA');
Writeln ('Logs g U)g
Writeln(module get lastlogs(ﬂ
Writeln (')'
Writeln (' refresh / b:beacon ON / space : beacon off');

end

else Writeln('Module not connected (check identification and USB cable)'):;

end;

procedure beacon (module:Tymodule;state:integer);
begin
module.set beacon (state);
refresh (module) ;

end;
var
module : TYModule;
c : char;
errmsg : string;
begin
1f yReglsterHub('usb', errmsg)<>YAPI SUCCESS then
begin
Write ('RegisterHub error: '+errmsgqg);
exit;
end;
module := yFindModule (serial) ;

refresh (module) ;

repeat
read (c) ;
case c of
'r': refresh (module) ;
'b': beacon (module,Y BEACON ON) ;
' ': beacon(module,Y BEACON OFF) ;

end;
until ¢ = 'x';
yFreeAPI () ;

end.

Each property xxx of the module can be read thanks to a method of type get xxxx(), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to

126 www.yoctopuce.com

17. Using Yocto-Relay with Delphi

forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

program savesettings;
{SAPPTYPE CONSOLE}
uses

SysUtils,

yocto api;

const
serial = 'RELAYLO1-123456"'; / 1se serial number or logica
var
module : TYModule;
errmsg : string;
newname : string;
begin
if yRegisterHub('usb', errmsg)<>YAPI SUCCESS then
begin
Write ('RegisterHub error: '+errmsgqg);
exit;
end;
module := yFindModule (serial);
if (not (module.isOnline)) then
begin
writeln ('Module not connected (check identification and USB cable)');
exit;
end;
Writeln ('Current logical name : '+module.get logicalName ()) ;

Write ('"Enter new name : ');
Readln (newname) ;

if (not (yCheckLogicalName (newname))) then
begin

Writeln('invalid logical name');

exit;
end;

module.set logicalName (newname) ;

module.saveToFlash() ;

yFreeAPI () ;

Writeln('logical name is now : '+module.get logicalName());
end.

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not nil. Below a short
example listing the connected modules.

program inventory;
{SAPPTYPE CONSOLE}
uses

SysUtils,

yocto api;

var
module : TYModule;
errmsg : string;
begin

if yRegiSterHub('usb', errmsg) <>YAPI SUCCESS then
begin

he A 3 ce Sy~ SB devices

www.yoctopuce.com 127

17. Using Yocto-Relay with Delphi

Write ('RegisterHub error: '+errmsg);
exit;
end;

Writeln ('Device list');

module := yFirstModule();

while module<>nil do

begin
Writeln(module.get serialNumber ()+' ('+module.get productName()+')');
module := module.nextModule () ;

end;

yFreeAPI () ;

end.

17.4. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI .DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

128 www.yoctopuce.com

18. Using the Yocto-Relay with Universal Windows
Platform

Universal Windows Platform (UWP) is not a language per say, but a software platform created by
Microsoft. This platform allows you to run a new type of applications: the universal Windows
applications. These applications can work on all machines running under Windows 10. This includes
computers, tablets, smart phones, XBox One, and also Windows loT Core.

The Yoctopuce UWP library allows you to use Yoctopuce modules in a universal Windows
application and is written in C# in its entirety. You can add it to a Visual Studio 2017" project.

18.1. Blocking and asynchronous functions

The Universal Windows Platform does not use the Win32 API but only the Windows Runtime API
which is available on all the versions of Windows 10 and for any architecture. Thanks to this library,
you can use UWP on all the Windows 10 versions, including Windows 10 IoT Core.

However, using the new UWP API has some consequences: the Windows Runtime API to access
the USB ports is asynchronous, and therefore the Yoctopuce library must be asynchronous as well.
Concretely, the asynchronous methods do not return a result directly but a Task or Task<> object
and the result can be obtained later. Fortunately, the C# language, version 6, supports the async
and await keywords, which simplifies using these functions enormously. You can thus use
asynchronous functions in the same way as traditional functions as long as you respect the following
two rules:

* The method is declared as asynchronous with the async keyword
* The await keyword is added when calling an asynchronous function

Example:

async Task<int> MyFunction (int wval)

{

return result;

nt res = await MyFunction(1234);

1 https://www.visualstudio.com/vs/cordoval/vs/

www.yoctopuce.com 129

18. Using the Yocto-Relay with Universal Windows Platform

Our library follows these two rules and can therefore use the await notation.

For you not to have to wonder wether a function is asynchronous or not, there is the following
convention: all the public methods of the UWP library are asynchronous, that is that you must call
them with the await keyword, except:

* GetTickCount (), because measuring time in an asynchronous manner does not make a
lot of sense...

* FindModule (), FirstModule(), nextModule(),.. because detecting and
enumerating modules is performed as a background task on internal structures which are
managed transparently. It is therefore not necessary to use blocking functions while going
though the lists of modules.

18.2. Installation

Download the Yoctopuce library for Universal Windows Platform from the Yoctopuce web site?.
There is no installation software, simply copy the content of the zip file in a directory of your choice.
You essentially need the content of the Sources directory. The other directories contain
documentation and a few sample programs. Sam?Ie projects are Visual Studio 2017 projects. Visual
Studio 2017 is available on the Microsoft web site”.

18.3. Using the Yoctopuce API in a Visual Studio project

Start by creating your project. Then, from the Solution Explorer panel right click on your project and
select Add then Existing element .

A file chooser opens: select all the files in the library Sources directory.

You then have the choice between simply adding the files to your project or adding them as a link
(the Add button is actually a drop-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply creates a link to the original files. We
recommend to use links, as a potential library update is thus much easier.

The Package.appxmanifest file

By default a Universal Windows application doesn't have access rights to the USB ports. If you want
to access USB devices, you must imperatively declare it in the Package . appxmanifest file.

Unfortunately, the edition window of this file doesn't allow this operation and you must modify the
Package.appxmanifest file by hand. In the "Solution Explorer" panel, right click on the
Package.appxmanifest and select "View Code".

In this XML file, we must add a DeviceCapability node in the Capabilities node. This
node must have a "Name" attribute with a "humaninterfacedevice" value.

Inside this node, you must declare all the modules that can be used. Concretely, for each module,
you must add a "Device" node with an "Id" attribute, which has for value a character string
"vidpid:USB_VENDORID USB DEVICE ID". The Yoctopuce USB VENDORID is 24e0 and you can
find the USB_DEVICE ID of each Yoctopuce device in the documentation in the "Characteristics"
section. Finally, the "Device" node must contain a "Function" node with the "Type" attribute with a
value of "usage:ff00 0001".

For the Yocto-Relay, here is what you must add in the "Capabilities" node:

<DeviceCapability Name="humaninterfacedevice">
<!-- Yocto-Relay -->
<Device Id="vidpid:24e0 000C">
<Function Type="usage:ff00 0001" />

2 www.yoctopuce.com/EN/libraries.php

https://www.visualstudio.com/downloads/

130 www.yoctopuce.com

18. Using the Yocto-Relay with Universal Windows Platform

</Device>
</DeviceCapability>

Unfortunately, it's not possible to write a rule authorizing all Yoctopuce modules. Therefore, you must
imperatively add each module that you want to use.

18.4. Control of the Relay function

A few lines of code are enough to use a Yocto-Relay. Here is the skeleton of a C# code snippet to
use the Relay function.

[oooll

await YAPI.RegisterHub ("usb");

[oooll

YRelay relay = YRelay.FindRelay ("RELAYLO1-123456.relayl");

if (await relay.isOnline())

Let us look at these lines in more details.

YAPI.RegisterHub

The YAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the virtual hub able to see the devices. If the
string "usb" is passed as parameter, the API works with modules locally connected to the machine. If
the initialization does not succeed, an exception is thrown.

YRelay.FindRelay

The YRelay.FindRelay function allows you to find a relay from the serial number of the module
on which it resides and from its function name. You can use logical names as well, as long as you
have initialized them. Let us imagine a Yocto-Relay module with serial number RELAYLO1-123456
which you have named "MyModule", and for which you have given the relay1 function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

relay = YRelay.FindRelay ("RELAYLO1-123456.relayl");
relay lay.FindRelay ("RELAYLO1-123456.MaFonction") ;
relay = 1y . FindRelay ("MonModule.relayl") ;

relay = ay.FindRelay ("MonModule.MaFonction") ;

relay = YRelay.FindRelay("MaFonction") ;

YRelay.FindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by YRelay.FindRelay allows you to know if
the corresponding module is present and in working order.

set_state

The set state () method of the objet returned by YRelay.FindRelay switches the relay
position to one of its two outputs. The two possible parameter values are YRelay.STATE A for
output A, and YRelay.STATE B for output B.

www.yoctopuce.com 131

18. Using the Yocto-Relay with Universal Windows Platform

18.5. A real example

Launch Visual Studio and open the corresponding project provided in the directory Examples/Doc-
GettingStarted-Yocto-Relay of the Yoctopuce library.

Visual Studio projects contain numerous files, and most of them are not linked to the use of the
Yoctopuce library. To simplify reading the code, we regrouped all the code that uses the library in the
Demo class, located in the demo. cs file. Properties of this class correspond to the different fields
displayed on the screen, and the Run () method contains the code which is run when the "Start"
button is pushed.

In this example, you can recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

using System;

using System.Diagnostics;

using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
public class Demo : DemoBase
{
public string HubURL { get; set; }
public string Target { get; set; }
public string RequestedState { get; set; }
public string Channel { get; set; }

public override async Task<int> Run()

{
try {
await YAPI.RegisterHub (HubURL) ;

YRelay relay;

if (Target.ToLower () == "any") {
relay = YRelay.FirstRelay();
if (relay == null) {
WriteLine ("No module connected (check USB cable) ");

return -1;

}

Target = await (await relay.get module()) .get serialNumber () ;

}

WriteLine ("using " + Target + ".relay" + Channel);
relay = YRelay.FindRelay(Target + ".relay" + Channel);

if (await relay.isOnline()) {
if (RequestedState.ToUpper () == "B")
await relay.set state(YRelay.STATE B);
else
await relay.set state(YRelay.STATE A);
} else {
WriteLine ("Module not connected (check identification and USB cable)");
}
} catch (YAPI Exception ex) {
WriteLine ("error: " + ex.Message);

}

YAPI.FreeAPI () ;
return 0;

18.6. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

132 www.yoctopuce.com

using System;

using System.Diagnostics;

using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo

{
public class Demo

{

DemoBase

public string HubURL { get; set; }
public string Target { get; set; }
public bool Beacon { get; set; }

public override async Task<int> Run()
{
YModule m;
string errmsg =

nn .
’

18. Using the Yocto-Relay with Universal Windows Platform

if (await YAPI.RegisterHub (HubURL) != YAPI.SUCCESS) {
WriteLine ("RegisterHub error: " + errmsgqg);

return -1;

}

m = YModule.FindModule (Target + ".module");

if (await m.isOnline()) {
if (Beacon) {

await m.set beacon (YModule.BEACON ON) ;

} else {

await m.set beacon (YModule.BEACON OFF) ;

}

WriteLine ("serial: " + await m.get serialNumber());
WriteLine ("logical name: " + await m.get logicalName());
WriteLine ("luminosity: " + await m.get luminosity()):

Write ("beacon: ");

if (await m.get beacon() == YModule.BEACON_ ON)

WriteLine ("ON") ;
else
WriteLine ("OFF") ;

WriteLine ("upTime: " + (await m.get upTime() / 1000) + " sec");
WriteLine ("USB current: " + await m.get usbCurrent() + " mA");
WriteLine ("Logs:\r\n" + await m.get lastLogs());

} else {
WriteLine (Target + " not connected on" + HubURL +

" (check identification and USB cable)");

}
YAPI.FreeAPI () ;
return 0;

}

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

using System;

using System.Diagnostics;

using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo

{

www.yoctopuce.com

133

18. Using the Yocto-Relay with Universal Windows Platform

public class Demo : DemoBase

{
public string HubURL { get; set; }
public string Target { get; set; }
public string LogicalName { get; set; }
public override async Task<int> Run ()
{

try {

}
}
}

YModule m;

await YAPI.RegisterHub (HubURL) ;

m
if

}
}

} ca
Wr
}
YAPT
retu

= YModule.FindModule (Target); // use serial or logical name
(await m.isOnline()) {

if (!YAPI.CheckLogicalName (LogicalName)) {
WriteLine ("Invalid name (" + LogicalName + ")");
return -1;

}

await m.set logicalName (LogicalName) ;
await m.saveToFlash(); // do not forget this
Write ("Module: serial= " + await m.get serialNumber()) ;

WriteLine (" / name= " + await m.get logicalName());
else {

Write ("not connected (check identification and USB cable");

tch (YAPI Exception ex) {

iteLine ("RegisterHub error: " + ex.Message);
.FreeAPI () ;

rn 0;

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

using
using
using
using
using

Syst
Syst
Syst
Wind
com.

em;
em.Diagnostics;
em.Threading.Tasks;
ows.UI.Xaml.Controls;
yoctopuce.YoctoAPI;

namespace Demo

{

public class Demo : DemoBase

{

public string HubURL { get; set; }

public override async Task<int> Run ()

{

YMod
try
aw

Wr
m
wh

ule m;
{
ait YAPI.RegisterHub (HubURL) ;

iteLine ("Device list");
= YModule.FirstModule () ;
ile (m != null) {
WriteLine (await m.get serialNumber ()
+ " (" + await m.get productName() + ")");
m = m.nextModule () ;

134

www.yoctopuce.com

18. Using the Yocto-Relay with Universal Windows Platform

} catch (YAPI Exception ex) {
WriteLine ("Error:" + ex.Message);
}
YAPI.FreeAPI():;
return 0;
}
}
}

18.7. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software.

In the Universal Windows Platform library, error handling is implemented with exceptions. You must
therefore intercept and correctly handle these exceptions if you want to have a reliable project which
does not crash as soon as you disconnect a module.

Library thrown exceptions are always of the YAPI_Exception type, so you can easily separate them
from other exceptionsina try{...} catch{...} block.

Example:

try {

} catch (YAPI Exception ex) {

Debug.WriteLine ("Exception from Yoctopuce lib:" + ex.Message);
} catch (Exception ex) {

Debug.WriteLine ("Other exceptions :" + ex.Message);

}

www.yoctopuce.com 135

136 www.yoctopuce.com

19. Using Yocto-Relay with Objective-C

Objective-C is language of choice for programming on Mac OS X, due to its integration with the
Cocoa framework. In order to use the Objective-C library, you need XCode version 4.2 (earlier
versions will not work), available freely when you run Lion. If you are still under Snow Leopard, you
need to be registered as Apple developer to be able to download XCode 4.2. The Yoctopuce library
is ARC compatible. You can therefore implement your projects either using the traditional retain /
release method, or using the Automatic Reference Counting.

Yoctopuce Objective-C libraries’ are integrally provided as source files. A section of the low-level
library is written in pure C, but you should not need to interact directly with it: everything was done to
ensure the simplest possible interaction from Objective-C.

You will soon notice that the Objective-C API defines many functions which return objects. You do
not need to deallocate these objects yourself, the API does it automatically at the end of the
application.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface. You can find on Yoctopuce blog a detailed example? with video
shots showing how to integrate the library into your projects.

19.1. Control of the Relay function

A few lines of code are enough to use a Yocto-Relay. Here is the skeleton of a Objective-C code
snipplet to use the Relay function.

#import "yocto api.h"
#import "yocto relay.h"

NSError *error;
[YAPTI RegisterHub:@"usb": &error]

relay = [YRelay FindRelay:Q@"RELAYLO1-123456.relayl"];

if([relay isOnline])
{

1 www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com/EN/article/new-objective-c-library-for-mac-os-x

www.yoctopuce.com 137

19. Using Yocto-Relay with Objective-C

}

Let's look at these lines in more details.

yocto_api.h and yocto_relay.h

These two import files provide access to the functions allowing you to manage Yoctopuce modules.
yocto api.h must always be used, yocto relay.h is necessary to manage modules
containing a relay, such as Yocto-Relay.

[YAPI RegisterHub]

The [YAPI RegisterHub] function initializes the Yoctopuce API and indicates where the
modules should be looked for. When used with the parameter @"usb", it will use the modules
locally connected to the computer running the library. If the initialization does not succeed, this
function returns a value different from YAPI SUCCESS and errmsg contains the error message.

[Relay FindRelay]

The [Relay FindRelay] function allows you to find a relay from the serial number of the module
on which it resides and from its function name. You can use logical names as well, as long as you
have initialized them. Let us imagine a Yocto-Relay module with serial number RELAYLO1-123456
which you have named "MyModule", and for which you have given the relay? function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

ay *relay = [Relay FindRelay:Q@"RELAYLO1-123456.relayl"];

ay *relay = [Relay FindRelay:Q@"RELAYLO1-123456.MyFunction"];
ay *relay = [Relay FindRelay:@"MyModule.relayl"];

ay *relay = [Relay FindRelay:@"MyModule.MyFunction"];

1y *relay = [Relay FindRelay:@"MyFunction"];

[Relay FindRelay] returns an object which you can then use at will to control the relay.

isOnline

The isOnline method of the object returned by [Relay FindRelay] allows you to know if the
corresponding module is present and in working order.

set_state

The set state () method of the objet returned by YRelay.FindRelay switches the relay
position to one of its two outputs. The two possible parameter values are YRelay.STATE A for
output A, and YRelay.STATE B for output B.

A real example

Launch Xcode 4.2 and open the corresponding sample project provided in the directory Examples/
Doc-GettingStarted-Yocto-Relay of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

#import <Foundation/Foundation.h>
#import "yocto api.h"
#import "yocto relay.h"

static void usage (void)
{
NSLog (@"usage: demo <serial number> [A | B [");
NSLog (@" demo <logical name> [A | B 1");
NSLog (@" demo any [A | B] (use any discovered device)");
exit (1) ;
}
int main(int argc, const char * argv([])

138 www.yoctopuce.com

19. Using Yocto-Relay with Objective-C

NSError *error;
if (argc < 3) {
usage () ;

}

Qautoreleasepool {

// Setup the API to use local USB devices
if ([YAPI RegisterHub:@"usb": &error] != YAPI SUCCESS) {
NSLog (@"RegisterHub error: %$Q@", [error localizedDescription]);
return 1;
}
NSString *target = [NSString stringWithUTF8String:argv[1l]];
NSString *state = [NSString stringWithUTF8String:argv[2]];

YRelay *relay;

if ([target isEqualToString:@"any"]) {
relay = [YRelay FirstRelay];
if (relay == NULL) {
NSLog (@"No module connected (check USB cable)");

return 1;
}
} else {
relay = [YRelay FindRelay:[target stringByAppendingString:Q@".relayl"]1];
}
if ([relay isOnline]) {

if ([state isEqualToString:@"A"])
[relay set state:Y STATE A];
else
[relay set state:Y STATE B];
} else {
NSLog (@"Module not connected (check identification and USB cable)\n");

}
[YAPI FreeAPI];

}

return 0;

19.2. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#import <Foundation/Foundation.h>
#import "yocto api.h"

static void usage (const char *exe)

{
NSLog (@"usage: %s <serial or logical name> [ON/OFF]\n", exe);
exit (1) ;

}

int main (int argc, const char * argv([])
{

NSError *error;

Qautoreleasepool {
// Setup the API to use local USB devices

if ([YAPI RegisterHub:@"usb": &error] != YAPI SUCCESS) {
NSLog (@"RegisterHub error: %Q@", [error localizedDescription]);
return 1;

}
if (argc < 2)
usage (argv[0]) ;

NSString *serial or name = [NSString stringWithUTF8String:argv[1]];
// use serial or logical name
YModule *module = [YModule FindModule:serial or name];
if ([module isOnline]) {
if (argc > 2) {
if (strcmp(argv[2], "ON") == 0)

[module setBeacon:Y BEACON ON];

www.yoctopuce.com 139

19. Using Yocto-Relay with Objective-C

else
[module setBeacon:Y BEACON OFF];
}

NSLog (@"serial: %Q\n", [module serialNumber]) ;
NSLog (@"logical name: %@\n", [module logicalName]) ;
NSLog (@"luminosity: $d\n", [module luminosityl]);
NSLog (@"beacon: B
if ([module beacon] == Y BEACON ON)

NSLog (@"ON\n") ;
else

NSLog (@"OFF\n") ;
NSLog (@"upTime: %$1d sec\n", [module upTime] / 1000);
NSLog (@"USB current: %d mA\n", [module usbCurrent]) ;
NSLog (@"logs: %@\n", [module get lastLogs]);

} else {

NSLog (@"%@ not connected (check identification and USB cable)\n",

serial or name);
}
[YAPI FreeAPI];
}

return O;

}

Each property xxx of the module can be read thanks to a method of type get xxxx, and
properties which are not read-only can be modified with the help of the set xxx: method. For

more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx: function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash method. The short example below

allows you to modify the logical name of a module.

#import <Foundation/Foundation.h>
#import "yocto api.h"

static void usage (const char *exe)

{
NSLog (@"usage: %s <serial> <newLogicalName>\n", exe);
exit (1) ;

}

int main (int argc, const char * argv[])
{

NSError *error;

@Qautoreleasepool {

/ Se

if ([YAP

p the API t use local USB devices

' sb" :&error] != YAPI SUCCESS) {

I RegisterHub:Q@"u

NSLog (@"RegisterHub error: %$@", [error localizedDescription]):;

return 1;

}

if (argc < 2)
usage (argv[0]) ;

NSString *serial or name = [NSString stringWithUTF8String:argv[1l]];

> Serial or 1Lo0gl

YModule *module = [YModule FindModule:serial or name];

if (module.isOnline) {
if (argc >= 3) {

NSString *newname = [NSString stringWithUTF8String:argv([2]];

if (![YAPI CheckLogicalName:newname]) {
NSLog (@"Invalid name (%Q@)\n", newname) ;
usage (argv[0]) ;

}

module.logicalName = newname;

[module saveToFlash];

140

www.yoctopuce.com

19. Using Yocto-Relay with Objective-C

}

NSLog (@"Current name: %@\n", module.logicalName) ;

} else {
NSLog (@"%Q@ not connected (check identification and USB cable)\n",

serial or name);

}
[YAPI FreeAPI];

}

return 0;

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash function only 100000 times in the life of the module. Make sure you
do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

#import <Foundation/Foundation.h>
#import "yocto api.h"

int main (int argc, const char * argvl[])
{

NSError *error;

Qautoreleasepool {
if ([YAPI RegisterHub:@"usb" :&error] != YAPI SUCCESS) {
NSLog (@"RegisterHub error: %Q@\n", [error localizedDescription]);
return 1;

}
NSLog (@"Device list:\n");

YModule *module = [YModule FirstModule];

while (module != nil) {
NSLog (@"%Q@ %Q@", module.serialNumber, module.productName) ;
module = [module nextModule];

[YAPI FreeAPI];

return O;

}

19.3. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

www.yoctopuce.com 141

19. Using Yocto-Relay with Objective-C

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI .DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

142 www.yoctopuce.com

20. Using with unsupported languages

Yoctopuce modules can be driven from most common programming languages. New languages are
regularly added, depending on the interest expressed by Yoctopuce product users. Nevertheless,
some languages are not, and will never be, supported by Yoctopuce. There can be several reasons
for this: compilers which are not available anymore, unadapted environments, etc.

However, there are alternative methods to access Yoctopuce modules from an unsupported
programming language.

20.1. Command line

The easiest method to drive Yoctopuce modules from an unsupported programming language is to
use the command line API through system calls. The command line APl is in fact made of a group of
small executables which are easy to call. Their output is also easy to analyze. As most programming
languages allow you to make system calls, the issue is solved with a few lines of code.

However, if the command line API is the easiest solution, it is neither the fastest nor the most
efficient. For each call, the executable must initialize its own API and make an inventory of USB
connected modules. This requires about one second per call.

20.2. .NET Assembly

A .NET Assembly enables you to share a set of pre-compiled classes to offer a service, by stating
entry points which can be used by third-party applications. In our case, it's the whole Yoctopuce
library which is available in the .NET Assembly, so that it can be used in any environment which
supports .NET Assembly dynamic loading.

The Yoctopuce library as a .NET Assembly does not contain only the standard C# Yoctopuce library,
as this wouldn't have allowed an optimal use in all environments. Indeed, we cannot expect host
applications to necessarily offer a thread system or a callback system, although they are very useful
to manage plug-and-play events and sensors with a high refresh rate. Likewise, we can't expect from
external applications a transparent behavior in cases where a function call in Assembly creates a
delay because of network communications.

Therefore, we added to it an additional layer, called .NET Proxy library. This additional layer offers an
interface very similar to the standard library but somewhat simplified, as it internally manages all the
callback mechanisms. Instead, this library offers mirror objects, called Proxys, which publish through
Properties the main attributes of the Yoctopuce functions such as the current measure, configuration
parameters, the state, and so on.

www.yoctopuce.com 143

20. Using with unsupported languages

.NET Host Application

\ N

|
DotNetProxy.dll (.NET Assembly)

[YoctoProxyAPL.* : .NET Proxy API
I

-/

JL

[YoctoLib.* : Yoctopuce standard C# API

—

\

10 10
3z Sz

yapi.dIl) [amd64/yapidil

low-level API (32 bit) J Llow-level API (64 bit)
\

J

.NET Assembly Architecture

The callback mechanism automatically updates the properties of the Proxys objects, without the host
application needing to care for it. The later can thus, at any time and without any risk of latency,
display the value of all properties of Yoctopuce Proxy objects.

Pay attention to the fact that the yapi.dl1l low-level communication library is not included in
the .NET Assembly. You must therefore keep it together with DotNetProxyLibrary.dll. The
32 bit version must be located in the same directory as DotNetProxyLibrary.dl1, while the 64
bit version must be in a subdirectory amd64.

Example of use with MATLAB

Here is how to load our Proxy .NET Assembly in MATLAB and how to read the value of the first
sensor connected by USB found on the machine:

NET.addAssembly ("C:/Yoctopuce/DotNetProxyLibrary.dl1l") ;
import YoctoProxyAPI.*

errmsg = YAPIProxy.RegisterHub ("usb");
sensor = YSensorProxy.FindSensor ("");
measure = sprintf('%.3f %s', sensor.CurrentValue, sensor.Unit);

Example of use in PowerShell
PowerShell commands are a little stranger, but we can recognize the same structure:

Add-Type -Path "C:/Yoctopuce/DotNetProxyLibrary.dll"

Serrmsg = [YoctoProxyAPI.YAPIProxy]::RegisterHub ("usb")
S$Ssensor = [YoctoProxyAPI.YSensorProxy]::FindSensor (""
Smeasure = "{0:n3} {1}" -f $sensor.CurrentValue, $sensor.Unit

Specificities of the .NET Proxy library
With regards to classic Yoctopuce libraries, the following differences in particular should be noted:

No FirstModule/nextModule method
To obtain an object referring to the first found module, we call YModuleProxy.FindModule
(""). If there is no connected module, this method returns an object with its module.IsOnline
property set to False. As soon as a module is connected, the property changes to True and the
module hardware identifier is updated.

To list modules, you can call the module.GetSimilarFunctions () method which returns an
array of character strings containing the identifiers of all the modules which were found.

No callback function
Callback functions are implemented internally and they update the object properties. You can
therefore simply poll the properties, without significant performance penalties. Be aware that if you

144 www.yoctopuce.com

20. Using with unsupported languages

use one of the function that disables callbacks, the automatic refresh of object properties may not
work anymore.

A new method YAPIProxy.GetLog makes it possible to retrieve low-level debug logs without
using callbacks.

Enumerated types

In order to maximize compatibility with host applications, the .NET Proxy library does not use
true .NET enumerated types, but simple integers. For each enumerated type, the library includes
public constants named according to the possible values. Contrarily to standard Yoctopuce libraries,
numeric values always start from 1, as the value 0 is reserved to return an invalid value, for instance
when the device is disconnected.

Invalid numeric results
For all numeric results, rather than using an arbitrary constant, the invalid value returned in case of
error is NaN. You should therefore use function isNaN() to detect this value.

Using .NET Assembly without the Proxy library

If for a reason or another you don't want to use the Proxy library, and if your environment allows it,
you can use the standard C# API as it is located in the Assembly, under the YoctoLib namespace.
Beware however not to mix both types of use: either you go through the Proxy library, or you use he
YoctoLib version directly, but not both!

CompatibilitA®

For the LabVIEW Yoctopuce library to work correctly with your Yoctopuce modules, these modules
need to have firmware 37120, or higher.

In order to be compatible with as many versions of Windows as possible, including Windows XP, the
DotNetProxyLibrary.dll library is compiled in .NET 3.5, which is available by default on all the
Windows versions since XP. As of today, we have never met any non-Windows environment able to
load a .NET Assembly, so we only ship the low-level communication dll for Windows together with
the assembly.

20.3. VirtualHub and HTTP GET

The VirtualHub is available on almost all current platforms. It is generally used as a gateway to
provide access to Yoctopuce modules from languages which prevent direct access to hardware
layers of a computer (JavaScript, PHP, Java, ...).

In fact, the VirtualHub is a small web server able to route HTTP requests to Yoctopuce modules. This
means that if you can make an HTTP request from your programming language, you can drive
Yoctopuce modules, even if this language is not officially supported.

REST interface

At a low level, the modules are driven through a REST API. Thus, to control a module, you only need
to perform appropriate requests on the VirtualHub. By default, the VirtualHub HTTP port is 4444.

An important advantage of this technique is that preliminary tests are very easy to implement. You
only need a VirtualHub and a simple web browser. If you copy the following URL in your preferred
browser, while the VirtualHub is running, you obtain the list of the connected modules.

http://127.0.0.1:4444/api/services/whitePages.txt

Note that the result is displayed as text, but if you request whitePages.xml, you obtain an XML result.
Likewise, whitePages.json allows you to obtain a JSON result. The html extension even allows you to
display a rough interface where you can modify values in real time. The whole REST API is available
in these different formats.

www.yoctopuce.com 145

20. Using with unsupported languages

Driving a module through the REST interface

Each Yoctopuce module has its own REST interface, available in several variants. Let us imagine a
Yocto-Relay with the RELAYLO1-12345 serial number and the myModule logical name. The
following URL allows you to know the state of the module.

http://127.0.0.1:4444/bySerial /RELAYLO1-12345/api/module. txt

You can naturally also use the module logical name rather than its serial number.

http://127.0.0.1:4444/byName/myModule/api/module. txt

To retrieve the value of a module property, simply add the name of the property below module. For
example, if you want to know the signposting led luminosity, send the following request:

http://127.0.0.1:4444/bySerial /RELAYLO1-12345/api/module/luminosity

To change the value of a property, modify the corresponding attribute. Thus, to modify the luminosity,
send the following request:

http://127.0.0.1:4444/bySerial /RELAYLO1-12345/api/module?luminosity=100

Driving the module functions through the REST interface

The module functions can be manipulated in the same way. To know the state of the relay1 function,
build the following URL:

http://127.0.0.1:4444/bySerial/RELAYLO1-12345/api/relayl.txt

Note that if you can use logical names for the modules instead of their serial number, you cannot use
logical names for functions. Only hardware names are authorized to access functions.

You can retrieve a module function attribute in a way rather similar to that used with the modules. For
example:

http://127.0.0.1:4444/bySerial /RELAYLO1-12345/api/relayl/logicalName

Rather logically, attributes can be modified in the same manner.

http://127.0.0.1:4444/bySerial /RELAYLO1-12345/api/relayl?logicalName=myFunction

You can find the list of available attributes for your Yocto-Relay at the beginning of the Programming
chapter.

Accessing Yoctopuce data logger through the REST interface
This section only applies to devices with a built-in data logger.

The preview of all recorded data streams can be retrieved in JSON format using the following URL:

http://127.0.0.1:4444/bySerial /RELAYLO1-12345/datalogger.json

Individual measures for any given stream can be obtained by appending the desired function
identifier as well as start time of the stream:

http://127.0.0.1:4444/bySerial /RELAYLO1-12345/datalogger.json?id=relayl

146 www.yoctopuce.com

20. Using with unsupported languages

20.4. Using dynamic libraries

The low level Yoctopuce API is available under several formats of dynamic libraries written in C. The
sources are available with the C++ API. If you use one of these low level libraries, you do not need
the VirtualHub anymore.

Filename Platform

libyapi.dylib Max OS X
libyapi-amd64.so Linux Intel (64 bits)
libyapi-armel.so Linux ARM EL (32 bits)
libyapi-armhf.so Linux ARM HL (32 bits)
libyapi-aarch64.so Linux ARM (64 bits)
libyapi-i386.s0 Linux Intel (32 bits)
yapi64.dll Windows (64 bits)
yapi.dll Windows (32 bits)

These dynamic libraries contain all the functions necessary to completely rebuild the whole high level
APl in any language able to integrate these libraries. This chapter nevertheless restrains itself to
describing basic use of the modules.

Driving a module
The three essential functions of the low level API are the following:

int yapiInitAPI (int connection type, char *errmsg);
int yapiUpdateDevicelist (int forceupdate, char *errmsg);
int yapiHTTPRequest (char *device, char *request, char* buffer,int buffsize,int *fullsize,

char *errmsqg);

The yapilnitAPI function initializes the API and must be called once at the beginning of the program.
For a USB type connection, the connection_type parameter takes value 1. The errmsg parameter
must point to a 255 character buffer to retrieve a potential error message. This pointer can also point
to null. The function returns a negative integer in case of error, zero otherwise.

The yapiUpdateDevicelList manages the inventory of connected Yoctopuce modules. It must be
called at least once. To manage hot plug and detect potential newly connected modules, this function
must be called at regular intervals. The forceupdate parameter must take value 1 to force a hardware
scan. The errmsg parameter must point to a 255 character buffer to retrieve a potential error
message. This pointer can also point to null. The function returns a negative integer in case of error,
zero otherwise.

Finally, the yapiHTTPRequest function sends HTTP requests to the module REST API. The device
parameter contains the serial number or the logical name of the module which you want to reach.
The request parameter contains the full HTTP request (including terminal line breaks). buffer points
to a character buffer long enough to contain the answer. buffsize is the size of the buffer. fullsize is a
pointer to an integer to which will be assigned the actual size of the answer. The errmsg parameter
must point to a 255 character buffer to retrieve a potential error message. This pointer can also point
to null. The function returns a negative integer in case of error, zero otherwise.

The format of the requests is the same as the one described in the VirtualHub et HTTP GET section.
All the character strings used by the API are strings made of 8-bit characters: Unicode and UTF8 are
not supported.

The resutlt returned in the buffer variable respects the HTTP protocol. It therefore includes an HTTP
header. This header ends with two empty lines, that is a sequence of four ASCII characters 13, 10,
13, 10.

Here is a sample program written in pascal using the yapi.dll DLL to read and then update the
luminosity of a module.

function yapiInitAPI (mode:integer;

errmsg : pansichar) :integer;cdecl;

www.yoctopuce.com 147

20. Using with unsupported languages

external 'yapi.dll' name 'yapiInitAPI';

function yapiUpdateDevicelist (force:integer;errmsg : pansichar) :integer;cdecl;
external 'yapi.dll' name 'yapiUpdateDeviceList';

function yapiHTTPRequest (device:pansichar;url:pansichar; buffer:pansichar;
buffsize:integer;var fullsize:integer;
errmsg : pansichar) :integer;cdecl;
external 'yapi.dll' name 'yapiHTTPRequest';

var
errmsgBuffer : array [0..256] of ansichar;
dataBuffer : array [0..1024] of ansichar;
errmsg,data : pansichar;
fullsize,p : integer;
const
serial = 'RELAYLO1-12345";
getValue = 'GET /api/module/luminosity HTTP/1.1'#13#10#13#10;
setValue = 'GET /api/module?luminosity=100 HTTP/1.1'#13#10#13#10;
begin
errmsg := (@errmsgBuffer;
data := (@dataBuffer;
// API initialization
if (yapiInitAPI (1,errmsg)<0) then
begin
writeln (errmsg) ;
halt;
end;

if(yaplUpdateDev1ceLlst(l errmsg)<0) then
begin
writeln (errmsg) ;
halt;

end;

sts the

// reques I lu
if (yaleTTPRequest(serlal getValue data, sizeof (dataBuffer),fullsize,errmsqg)<0) then
begin
writeln (errmsg) ;
halt;
end;

for the HTTP header enc

#13#10#13#10 data) ;

wrlteln(copy(data p+4 length(data) == 3))
// cha 1inges 1€ luminc "'f'/
if (yaleTTPRequest(serial,setValue,data,sizeof(dataBuffer),fullsize,errmsq)<0) then
begin

writeln (errmsg) ;

halt;
end;

end.

Module inventory
To perform an inventory of Yoctopuce modules, you need two functions from the dynamic library:

int yapiGetAllDevices (int *buffer,int maxsize,int *neededsize,char *errmsgqg);
int yapiGetDevicelInfo (int devdesc,yDeviceSt *infos, char *errmsg);

The yapiGetAllDevices function retrieves the list of all connected modules as a list of handles. buffer
points to a 32-bit integer array which contains the returned handles. maxsize is the size in bytes of
the buffer. To neededsize is assigned the necessary size to store all the handles. From this, you can
deduce either the number of connected modules or that the input buffer is too small. The errmsg
parameter must point to a 255 character buffer to retrieve a potential error message. This pointer can
also point to null. The function returns a negative integer in case of error, zero otherwise.

148 www.yoctopuce.com

20. Using with unsupported languages

The yapiGetDevicelnfo function retrieves the information related to a module from its handle.

devdesc is a 32-bit integer

representing the module and which was obtained through

yapiGetAllDevices. infos points to a data structure in which the result is stored. This data structure

has the following format:

Name Type (St:;‘tae
vendorid int 4
deviceid int 4
devrelease int 4
nbinbterfaces int 4
manufacturer char[] 20
productname char[] 28
serial char[] 20
logicalname char[] 20
firmware char[] 22
beacon byte 1

s)

Description

Yoctopuce USB ID

Module USB ID

Module version

Number of USB interfaces used by the module
Yoctopuce (null terminated)

Model (null terminated)

Serial number (null terminated)

Logical name (null terminated)

Firmware version (null terminated)

Beacon state (0/1)

The errmsg parameter must point to a 255 character buffer to retrieve a potential error message.

Here is a sample program written in pascal using the yapi.dll DLL to list the connected modules.

type yDeviceSt :'packed record

vendorid word;
deviceid
devrelease
nbinbterfaces
manufacturer [0..19] of ansichar;
productname [0..27] of ansichar;
serial [0..19] of ansichar;
logicalname [0..19] of ansichar;
firmware [0..21] of ansichar;
beacon
end;
function yapiInitAPI (mode:integer;
errmsg pansichar) :integer;cdecl;
external 'yapi.dll' name 'yapiInitAPI';
function vyapiUpdateDevicelist (force:integer;errmsg : pansichar) :integer;cdecl;
external 'yapi.dll' name 'yapiUpdateDeviceList';

function

yapiGetAllDevices (buffer:pointer;

maxsize:integer;
var neededsize:integer;

errmsg : pansichar) :integer; cdecl;
external 'yapi.dll' name 'yapiGetAllDevices';
function apiGetDeviceInfo(d:integer; var infos:yDeviceSt;
errmsg : pansichar) :integer; cdecl;
external 'yapi.dll' name 'yapiGetDeviceInfo';
var
errmsgBuffer array [0..256] of ansichar;
dataBuffer array [0..127] of integer; // max of 128 USB dev

errmsg, data
neededsize, i

: pansichar;
integer;

devinfos yDeviceSt;
begin
errmsg := (@errmsgBuffer;

if (yapiInitAPI (1,errmsg)<0) then
begin

writeln (errmsg) ;

halt;

end;

www.yoctopuce.com

149

20. Using with unsupported languages

if (yapiUpdateDevicelList (1,errmsg)<0) then
begin
writeln (errmsg) ;
halt;

end;

Loaas all Aaevice nanailec nto lataBuffer
if yapiGetAllDevices (@dataBuffer,sizeof (dataBuffer),neededsize,errmsg)<0 then
begin
writeln (errmsg) ;
halt;
end;

for i:=0 to neededsize div sizeof (integer)-1 do
begin
if (apiGetDeviceInfo (dataBuffer[i], devinfos, errmsg)<0) then
begin
writeln (errmsgqg) ;
halt;
end;
writeln (pansichar (@devinfos.serial)+' ('+pansichar (@devinfos.productname)+')");
end;

end.

VB6 and yapi.dll

Each entry point from the yapi.dil is duplicated. You will find one regular C-decl version and one
Visual Basic 6 compatible version, prefixed with vb6 .

20.5. Porting the high level library

As all the sources of the Yoctopuce API are fully provided, you can very well port the whole APl in
the language of your choice. Note, however, that a large portion of the API source code is
automatically generated.

Therefore, it is not necessary for you to port the complete API. You only need to port the yocto api
file and one file corresponding to a function, for example yocto relay. After a little additional work,
Yoctopuce is then able to generate all other files. Therefore, we highly recommend that you contact
Yoctopuce support before undertaking to port the Yoctopuce library in another language.
Collaborative work is advantageous to both parties.

150 www.yoctopuce.com

21. Advanced programming

The preceding chapters have introduced, in each available language, the basic programming
functions which can be used with your Yocto-Relay module. This chapter presents in a more generic
manner a more advanced use of your module. Examples are provided in the language which is the
most popular among Yoctopuce customers, that is C#. Nevertheless, you can find complete
examples illustrating the concepts presented here in the programming libraries of each language.

To remain as concise as possible, examples provided in this chapter do not perform any error
handling. Do not copy them "as is" in a production application.

21.1. Event programming

The methods to manage Yoctopuce modules which we presented to you in preceding chapters were
polling functions, consisting in permanently asking the API if something had changed. While easy to
understand, this programming technique is not the most efficient, nor the most reactive. Therefore,
the Yoctopuce programming APl also provides an event programming model. This technique
consists in asking the API to signal by itself the important changes as soon as they are detected.
Each time a key parameter is modified, the API calls a callback function which you have defined in
advance.

Detecting module arrival and departure

Hot-plug management is important when you work with USB modules because, sooner or later, you
will have to connect or disconnect a module when your application is running. The API is designed to
manage module unexpected arrival or departure in a transparent way. But your application must take
this into account if it wants to avoid pretending to use a disconnected module.

Event programming is particularly useful to detect module connection/disconnection. Indeed, it is
simpler to be told of new connections rather than to have to permanently list the connected modules
to deduce which ones just arrived and which ones left. To be warned as soon as a module is
connected, you need three pieces of code.

The callback
The callback is the function which is called each time a new Yoctopuce module is connected. It takes
as parameter the relevant module.

static void deviceArrival (YModule m)
{

Console.WriteLine ("New module : " + m.get serialNumber());

}

www.yoctopuce.com 151

21. Advanced programming

Initialization
You must then tell the API that it must call the callback when a new module is connected.

YAPI.RegisterDeviceArrivalCallback (deviceArrival);

Note that if modules are already connected when the callback is registered, the callback is called for
each of the already connected modules.

Triggering callbacks

A classis issue of callback programming is that these callbacks can be triggered at any time,
including at times when the main program is not ready to receive them. This can have undesired side
effects, such as dead-locks and other race conditions. Therefore, in the Yoctopuce API, module
arrival/departure callbacks are called only when the UpdateDeviceList () function is running.
You only need to call UpdateDeviceList () at regular intervals from a timer or from a specific
thread to precisely control when the calls to these callbacks happen:

walting feJo)
while (true)

{

YAPI.UpdateDevicelist (ref errmsg);
YAPI.Sleep (500, ref errmsq);
}

In a similar way, it is possible to have a callback when a module is disconnected. You can find a
complete example implemented in your favorite programming language in the Examples/Prog-
EventBased directory of the corresponding library.

Be aware that in most programming languages, callbacks must be global procedures, and not
methods. If you wish for the callback to call the method of an object, define your callback as a global
procedure which then calls your method.

152 www.yoctopuce.com

22. Firmware Update

There are multiples way to update the firmware of a Yoctopuce module..

22.1. The VirtualHub or the YoctoHub

It is possible to update the firmware directly from the web interface of the VirtualHub or the
YoctoHub. The configuration panel of the module has an "upgrade" button to start a wizard that will
guide you through the firmware update procedure.

In case the firmware update fails for any reason, and the module does no start anymore, simply
unplug the module then plug it back while maintaining the Yocto-button down. The module will boot
in "firmware update" mode and will appear in the VirtualHub interface below the module list.

22.2. The command line library

All the command line tools can update Yoctopuce modules thanks to the downloadAndUpdate
command. The module selection mechanism works like for a traditional command. The [target] is the
name of the module that you want to update. You can also use the "any" or "all" aliases, or even a
name list, where the names are separated by commas, without spaces.

Executable [options] [target] command [parameters]

The following example updates all the Yoctopuce modules connected by USB.

YModule all downloadAndUpdate
ok: Yocto-PowerRelay RELAYHI1-266C8 (rev=15430) is up to date.
ok: 0 / O hubs in 0.000000s.
ok: 0 / 0 shields in 0.000000s.
ok: 1 / 1 devices in 0.130000s 0.130000s per device.
ok: All devices are now up to date.

22.3. The Android application Yocto-Firmware

You can update your module firmware from your Android phone or tablet with the Yocto-Firmware
application. This application lists all the Yoctopuce modules connected by USB and checks if a more
recent firmware is available on www.yoctopuce.com. If a more recent firmware is available, you can

www.yoctopuce.com 153

22. Firmware Update

update the module. The application is responsible for downloading and installing the new firmware
while preserving the module parameters.

Please note: while the firmware is being updated, the module restarts several times. Android
interprets a USB device reboot as a disconnection and reconnection of the USB device and asks the
authorization to use the USB port again. The user must click on OK for the update process to end
successfully.

22.4. Updating the firmware with the programming library

If you need to integrate firmware updates in your application, the libraries offer you an API to update
your modules.

Saving and restoring parameters

The get allSettings () method returns a binary buffer enabling you to save a module
persistent parameters. This function is very useful to save the network configuration of a YoctoHub
for example.

YWireless wireless = YWireless.FindWireless ("reference");
YModule m = wireless.get module () ;
byte[] default config = m.get allSettings();

saveFile ("default.bin", default config);
You can then apply these parameters to other modules with the set _allSettings () method.

byte[] default config = loadFile("default.bin");
odule m = YModule.FirstModule () ;
while (m !'= null) {
if (m.get productName () == "YoctoHub-Wireless") ({
m.set allSettings(default config);

}
m = m.next ();

}

Finding the correct firmware

The first step to update a Yoctopuce module is to find which firmware you must use. The
checkFirmware (path, onlynew) method of the YModule object does exactly this. The
method checks that the firmware given as argument (path) is compatible with the module. If the
onlynew parameter is set, this method checks that the firmware is more recent than the version
currently used by the module. When the file is not compatible (or if the file is older than the installed
version), this method returns an empty string. In the opposite, if the file is valid, the method returns a
file access path.

The following piece of code checks that the c: \tmp\METEOMK1.17328.byn is compatible with
the module stored in the m variable .

YModule m = YModule.FirstModule () ;

string path = "c:\\tmp\METEOMK1.17328.byn";
string newfirm = m.checkFirmware (path, false);
if (newfirm != "") {
Console.WritelLine ("firmware " + newfirm + " is compatible");

}

" The JavaScript, Node.js, and PHP libraries do not yet allow you to update the modules. These functions will be available in
a next build.

154 www.yoctopuce.com

22. Firmware Update

The argument can be a directory (instead of a file). In this case, the method checks all the files of the
directory recursively and returns the most recent compatible firmware. The following piece of code
checks whether there is a more recent firmware in the c: \ tmp\ directory.

YModule m = YModule.FirstModule() ;

string path = "c:\\tmp";
string newfirm = m.checkFirmware (path, true);
if (newfirm != "") {
Console.WritelLine ("firmware " + newfirm + " is compatible and newer");

}

You can also give the "www.yoctopuce.com" string as argument to check whether there is a more
recent published firmware on Yoctopuce's web site. In this case, the method returns the firmware
URL. You can use this URL to download the firmware on your disk or use this URL when updating
the firmware (see below). Obviously, this possibility works only if your machine is connected to
Internet.

YModule m = YModule.FirstModule () ;
string url = m.checkFirmware ("www.yoctopuce.com", true);
if (url !'= "") {
Console.WriteLine ("new firmware is available at " + url);

}

Updating the firmware

A firmware update can take several minutes. That is why the update process is run as a background
task and is driven by the user code thanks to the YFirmwareUdpate class.

To update a Yoctopuce module, you must obtain an instance of the YFirmwareUdpate class with
the updateFirmware method of a YModule object. The only parameter of this method is the path
of the firmware that you want to install. This method does not immediately start the update, but
returns a YFirmwareUdpate object configured to update the module.

string newfirm = m.checkFirmware ("www.yoctopuce.com", true);

YFirmwareUpdate fw update = m.updateFirmware (newfirm);

The startUpdate () method starts the update as a background task. This background task
automatically takes care of

saving the module parameters

restarting the module in "update" mode

updating the firmware

starting the module with the new firmware version
restoring the parameters

abrwN =

The get progress() and get progressMessage () methods enable you to follow the
progression of the update. get progress () returns the progression as a percentage (100 =
update complete). get progressMessage () returns a character string describing the current
operation (deleting, writing, rebooting, ...). If the get progress method returns a negative value,
the update process failed. In this case, the get progressMessage () returns an error message.

The following piece of code starts the update and displays the progress on the standard output.

YFirmwareUpdate fw update = m.updateFirmware (newfirm);

int status = fw update.startUpdate() ;
while (status < 100 && status >= 0) {

www.yoctopuce.com 155

22. Firmware Update

int newstatus = fw update.get progress();
if (newstatus != status) {
Console.WriteLine (status + "
+ fw update.get progressMessage());
}
YAPI.Sleep (500, ref errmsqg);
status = newstatus;

}

if (status < 0) {
Console.WriteLine ("Firmware Update failed: "
+ fw update.get progressMessage());
} else {
Console.WriteLine ("Firmware Updated Successfully!");

}

An Android characteristic

You can update a module firmware using the Android library. However, for modules connected by
USB, Android asks the user to authorize the application to access the USB port.

During firmware update, the module restarts several times. Android interprets a USB device reboot
as a disconnection and a reconnection to the USB port, and prevents all USB access as long as the
user has not closed the pop-up window. The use has to click on OK for the update process to
continue correctly. You cannot update a module connected by USB to an Android device
without having the user interacting with the device.

22.5. The "update” mode

If you want to erase all the parameters of a module or if your module does not start correctly
anymore, you can install a firmware from the "update" mode.

To force the module to work in "update" mode, disconnect it, wait a few seconds, and reconnect it
while maintaining the Yocto-button down. This will restart the module in "update" mode. This update
mode is protected against corruptions and is always available.

In this mode, the module is not detected by the YModule objects anymore. To obtain the list of
connected modules in "update" mode, you must use the YAPI.GetAllBootLoaders () function.
This function returns a character string array with the serial numbers of the modules in "update"
mode.

List<string> allBootLoader = YAPI.GetAllBootLoaders();

The update process is identical to the standard case (see the preceding section), but you must
manually instantiate the YFirmwareUpdate object instead of calling
module.updateFirmware (). The constructor takes as argument three parameters: the module
serial number, the path of the firmware to be installed, and a byte array with the parameters to be
restored at the end of the update (or null to restore default parameters).

YFirmwareUpdateupdate fw update;
fw _update = new YFirmwareUpdate (allBootLoader[0], newfirm, null);
int status = fw_update.startUpdate();

156 www.yoctopuce.com

23. High-level API Reference

This chapter summarizes the high-level API functions to drive your Yocto-Relay. Syntax and exact
type names may vary from one language to another, but, unless otherwise stated, all the functions
are available in every language. For detailed information regarding the types of arguments and return
values for a given language, refer to the definition file for this language (yocto api.* as well as
the other yocto_* files that define the function interfaces).

For languages which support exceptions, all of these functions throw exceptions in case of error by
default, rather than returning the documented error value for each function. This is by design, to
facilitate debugging. It is however possible to disable the use of exceptions using the
yDisableExceptions () function, in case you prefer to work with functions that return error
values.

This chapter does not repeat the programming concepts described earlier, in order to stay as concise
as possible. In case of doubt, do not hesitate to go back to the chapter describing in details all
configurable attributes.

www.yoctopuce.com 157

23. High-level API Reference
23.1. Class YAPI

General functions

These general functions should be used to initialize and configure the Yoctopuce library. In most cases,
a simple call to function yRegi st er Hub() should be enough. The module-specific functions
yFind...() oryFirst...() should then be used to retrieve an object that provides interaction
with the module.

In order to use the functions described here, you should include:

import com.yoctopuce.YoctoAPI.YAPI;

import YoctoProxyAPI.YAPIProxy
#include "yocto_api_proxy.h"
import YoctoProxyAPI.YAPIProxy"
<script type="text/javascript' src="yocto_api.js"></script>
#include "yocto_api.h"
#import "yocto_api.h"
uses yocto_api;
yocto_api.vb
yocto_api.cs
import com.yoctopuce.YoctoAPI.YModule;
from yocto_api import *
php | require_once('yocto_api.php");

ts |in HTML: import { YAPI, YErrorMsg, YModule, YSensor } from "../../dist/esm/yocto_api_browser.js';
in Node.js: import { YAPI, YErrorMsg, YModule, YSensor } from 'yoctolib-cjs/yocto_api_nodejs.js";
es |in HTML: <script src="../../lib/yocto_api.js"></script>

in node.js: require('yoctolib-es2017/yocto_api.js');

YModule.vi

Global functions
YAPI.CheckLogicalName(name)

Checks if a given string is valid as logical name for a module or a function.
YAPI.ClearHTTPCallbackCacheDir(bool_removeFiles)

Disables the HTTP callback cache.
YAPI.DisableExceptions()

Disables the use of exceptions to report runtime errors.
YAPI.EnableExceptions()

Re-enables the use of exceptions for runtime error handling.
YAPI.EnableUSBHost(osContext)

This function is used only on Android.
YAPI.FreeAPI()

Waits for all pending communications with Yoctopuce devices to be completed then frees dynamically
allocated resources used by the Yoctopuce library.

YAPI.GetAPIVersion()

Returns the version identifier for the Yoctopuce library in use.
YAPI.GetCacheValidity()

Returns the validity period of the data loaded by the library.
YAPI.GetDevicelListValidity()

158 www.yoctopuce.com

#YAPI.CheckLogicalName
#YAPI.ClearHTTPCallbackCacheDir
#YAPI.DisableExceptions
#YAPI.EnableExceptions
#YAPI.EnableUSBHost
#YAPI.FreeAPI
#YAPI.GetAPIVersion
#YAPI.GetCacheValidity
#YAPI.GetDeviceListValidity

23. High-level API Reference

Returns the delay between each forced enumeration of the used YoctoHubs.
YAPI.GetDIlArchitecture()

Returns the system architecture for the Yoctopuce communication library in use.
YAPI.GetDlIPath()

Returns the paths of the DLLs for the Yoctopuce library in use.
YAPI.GetLog(lastLogLine)

Retrieves Yoctopuce low-level library diagnostic logs.
YAPI.GetNetworkTimeout()

Returns the network connection delay for yRegi st er Hub() and yUpdat eDevi ceLi st ().
YAPI.GetTickCount()

Returns the current value of a monotone millisecond-based time counter.
YAPI.HandleEvents(errmsg)

Maintains the device-to-library communication channel.
YAPLInitAPI(mode, errmsg)

Initializes the Yoctopuce programming library explicitly.
YAPI.PreregisterHub(url, errmsg)

Fault-tolerant alternative to yRegi st er Hub() .
YAPI.RegisterDeviceArrivalCallback(arrivalCallback)

Register a callback function, to be called each time a device is plugged.
YAPI.RegisterDeviceRemovalCallback(removalCallback)

Register a callback function, to be called each time a device is unplugged.
YAPI.RegisterHub(url, errmsg)

Setup the Yoctopuce library to use modules connected on a given machine.
YAPI.RegisterHubDiscoveryCallback(hubDiscoveryCallback)

Register a callback function, to be called each time an Network Hub send an SSDP message.
YAPI.RegisterHubWebsocketCallback(ws, errmsg, authpwd)

Variant to YRegi st er Hub() used to initialize Yoctopuce API on an existing Websocket session, as
happens for incoming WebSocket callbacks.

YAPI.RegisterLogFunction(logfun)

Registers a log callback function.
YAPI.SelectArchitecture(arch)

Select the architecture or the library to be loaded to access to USB.
YAPI.SetCacheValidity(cacheValidityMs)

Change the validity period of the data loaded by the library.
YAPI.SetDelegate(object)

(Objective-C only) Register an object that must follow the protocol YDevi ceHot Pl ug.
YAPI.SetDeviceListValidity(deviceListValidity)

Modifies the delay between each forced enumeration of the used YoctoHubs.
YAPI.SetHTTPCallbackCacheDir(str_directory)

Enables the HTTP callback cache.
YAPI.SetNetworkTimeout(networkMsTimeout)

Modifies the network connection delay for yRegi st er Hub() and yUpdat eDevi ceLi st ().
YAPI.SetTimeout(callback, ms_timeout, args)

Invoke the specified callback function after a given timeout.
YAPI.SetUSBPacketAckMs(pktAckDelay)

www.yoctopuce.com 159

#YAPI.GetDllArchitecture
#YAPI.GetDllPath
#YAPI.GetLog
#YAPI.GetNetworkTimeout
#YAPI.GetTickCount
#YAPI.HandleEvents
#YAPI.InitAPI
#YAPI.PreregisterHub
#YAPI.RegisterDeviceArrivalCallback
#YAPI.RegisterDeviceRemovalCallback
#YAPI.RegisterHub
#YAPI.RegisterHubDiscoveryCallback
#YAPI.RegisterHubWebsocketCallback
#YAPI.RegisterLogFunction
#YAPI.SelectArchitecture
#YAPI.SetCacheValidity
#YAPI.SetDelegate
#YAPI.SetDeviceListValidity
#YAPI.SetHTTPCallbackCacheDir
#YAPI.SetNetworkTimeout
#YAPI.SetTimeout
#YAPI.SetUSBPacketAckMs

23. High-level API Reference

Enables the acknowledge of every USB packet received by the Yoctopuce library.
YAPI.Sleep(ms_duration, errmsg)

Pauses the execution flow for a specified duration.
YAPI.TestHub(url, mstimeout, errmsg)

Test if the hub is reachable.
YAPI.TriggerHubDiscovery(errmsg)

Force a hub discovery, if a callback as been registered with yRegi st er HubDi scover yCal | back it
will be called for each net work hub that will respond to the discovery.

YAPI.UnregisterHub(url)

Setup the Yoctopuce library to no more use modules connected on a previously registered machine with
RegisterHub.

YAPI.UpdateDeviceList(errmsg)

Triggers a (re)detection of connected Yoctopuce modules.
YAPI.UpdateDeviceList_async(callback, context)

Triggers a (re)detection of connected Yoctopuce modules.

160 www.yoctopuce.com

#YAPI.Sleep
#YAPI.TestHub
#YAPI.TriggerHubDiscovery
#YAPI.UnregisterHub
#YAPI.UpdateDeviceList
#YAPI.UpdateDeviceList_async

YAPI.CheckLogicalName()
YAPI.CheckLogicalName()

23. High-level API Reference

YAPI

Checks if a given string is valid as logical name for a module or a function.

function yCheckLogicalName(name)

bool CheckLogicalName(string name)

+(BOOL) CheckLogicalName :(NSString *) name

boolean yCheckLogicalName(name: string): boolean

function CheckLogicalName(ByVal name As String) As Boolean
static bool CheckLogicalName(string name)

boolean CheckLogicalName(String name)

bool CheckLogicalName(string name)

CheckLogicalName(name)

function CheckLogicalName($name)

async CheckLogicalName(name: string): Promise<boolean>

async CheckLogicalName(name)

A valid logical name has a maximum of 19 characters, allamong A. . Z,a..z,0..9, ,and-.Ifyou
try to configure a logical name with an incorrect string, the invalid characters are ignored.

Parameters :
name a string containing the name to check.

Returns :
t r ue if the name is valid, f al se otherwise.

www.yoctopuce.com

161

23. High-level API Reference

YAPI.ClearHTTPCallbackCacheDir() YAPI
YAPI.ClearHTTPCallbackCacheDir()

Disables the HTTP callback cache.

function ClearHTTPCallbackCacheDir($bool_removeFiles)

This method disables the HTTP callback cache, and can additionally cleanup the cache directory.

p
Parameters :
bool_removeFiles True to clear the content of the cache.

Returns :
nothing.

162 www.yoctopuce.com

23. High-level API Reference

YAPI.DisableExceptions() YAPI
YAPI.DisableExceptions()

Disables the use of exceptions to report runtime errors.

function yDisableExceptions()
mvoid DisableExceptions()
+(void) DisableExceptions
yDisableExceptions()
procedure DisableExceptions()
static void DisableExceptions()
[uw |void DisableExceptions()
DisableExceptions()
function DisableExceptions()
async DisableExceptions(): Promise<void>
async DisableExceptions()

When exceptions are disabled, every function returns a specific error value which depends on its type
and which is documented in this reference manual.

www.yoctopuce.com 163

23. High-level API Reference

YAPI.EnableExceptions() YAPI
YAPI.EnableExceptions()

Re-enables the use of exceptions for runtime error handling.

function yEnableExceptions()
mvoid EnableExceptions()
+(void) EnableExceptions

| pas_|yEnableExceptions()
procedure EnableExceptions()
static void EnableExceptions()
[uwp | void EnableExceptions()
EnableExceptions()
function EnableExceptions()
async EnableExceptions(): Promise<void>
async EnableExceptions()

Be aware than when exceptions are enabled, every function that fails triggers an exception. If the
exception is not caught by the user code, it either fires the debugger or aborts (i.e. crash) the program.
On failure, throws an exception or returns a negative error code.

164 www.yoctopuce.com

23. High-level API Reference

YAPI.EnableUSBHost() YAPI
YAPI.EnableUSBHost()

This function is used only on Android.
void EnableUSBHost(Object osContext)

Before calling yRegi st er Hub(" usb") you need to activate the USB host port of the system. This
function takes as argument, an object of class android.content.Context (or any subclass). It is not
necessary to call this function to reach modules through the network.

Parameters :
osContext an object of class android.content.Context (or any subclass).

www.yoctopuce.com 165

23. High-level API Reference

YAPI.FreeAPI() YAPI
YAPI.FreeAPI()

Waits for all pending communications with Yoctopuce devices to be completed then frees
dynamically allocated resources used by the Yoctopuce library.

function yFreeAPI()
void FreeAPI()
+(void) FreeAPI
yFreeAPI()
procedure FreeAPI()
static void FreeAPI()
void FreeAPI()
void FreeAPI()
FreeAPI()
function FreeAPI()
async FreeAPI(): Promise<void>
async FreeAPI()
static void FreeAPI()
static void FreeAPI()

From an operating system standpoint, it is generally not required to call this function since the OS will
automatically free allocated resources once your program is completed. However there are two
situations when you may really want to use that function: - Free all dynamically allocated memory
blocks in order to track a memory leak. - Send commands to devices right before the end of the
program. Since commands are sent in an asynchronous way the program could exit before all
commands are effectively sent. You should not call any other library function after calling
yFreeAPI (), or your program will crash.

166 www.yoctopuce.com

23. High-level API Reference

YAPI.GetAPIVersion() YAPI
YAPI.GetAPIVersion()

Returns the version identifier for the Yoctopuce library in use.

function yGetAPIVersion()
string GetAPIVersion()
+(NSString*) GetAPIVersion
string yGetAPIVersion(): string
function GetAPIVersion() As String
static String GetAPIVersion()
static String GetAPIVersion()
static string GetAPIVersion()
GetAPIVersion()

function GetAPIVersion()
async GetAPIVersion()

async GetAPIVersion()

static string GetAPIVersion()
static string GetAPIVersion()

The version is a string in the form " Maj or. M nor . Bui | d", for instance "1. 01. 5535" . For
languages using an external DLL (for instance C#, VisualBasic or Delphi), the character string includes
as well the DLL version, for instance " 1. 01. 5535 (1. 01. 5439)".

If you want to verify in your code that the library version is compatible with the version that you have
used during development, verify that the major number is strictly equal and that the minor number is
greater or equal. The build number is not relevant with respect to the library compatibility.

Returns :
a character string describing the library version.

www.yoctopuce.com 167

23. High-level API Reference

YAPI.GetCacheValidity() YAPI
YAPI.GetCacheValidity()

Returns the validity period of the data loaded by the library.

static u64 GetCacheValidity()

+(u64) GetCacheValidity

u64 yGetCacheValidity(): u64

[vb |function GetCacheValidity() As Long
ulong GetCacheValidity()

long GetCacheValidity()

async Task<ulong> GetCacheValidity()
GetCacheValidity()

function GetCacheValidity()

async GetCacheValidity(): Promise<number>

async GetCacheValidity()

This method returns the cache validity of all attributes module functions. Note: This function must be
called after yl ni t API

Returns :
an integer corresponding to the validity attributed to the loaded function parameters, in milliseconds

168 www.yoctopuce.com

YAPI.GetDeviceListValidity()
YAPI.GetDeviceListValidity()

23. High-level API Reference

YAPI

Returns the delay between each forced enumeration of the used YoctoHubs.

static int GetDevicelListValidity()

+(int) GetDeviceListValidity

LongInt yGetDeviceListValidity(): Longint
function GetDeviceListValidity() As Integer

int GetDevicelListValidity()

int GetDevicelListValidity()

async Task<int> GetDeviceListValidity()
GetDeviceListValidity()

function GetDeviceListValidity()

async GetDevicelListValidity(): Promise<number>

async GetDevicelListValidity()

Note: you must call this function after yl ni t API .

Returns :
the number of seconds between each enumeration.

www.yoctopuce.com

169

23. High-level API Reference

YAPI.GetDIlIArchitecture() YAPI
YAPI.GetDIlIArchitecture()

Returns the system architecture for the Yoctopuce communication library in use.

static string GetDIlArchitecture()

On Windows, the architecture can be "W n32" or "W n64". On ARM machines, the architecture is
"Ar mhf 32" or "Aarch64". On other Linux machines, the architecture is " Li nux32" or
"Li nux64". On MacOS, the architecture is "Mac0s32" or "MacCs64".

Returns :
a character string describing the system architecture of the low-level communication library.

170 www.yoctopuce.com

23. High-level API Reference

YAPI.GetDIIPath() YAPI
YAPI.GetDIIPath()

Returns the paths of the DLLs for the Yoctopuce library in use.

static string GetDlIPath()

For architectures that require multiple DLLs, in particular when using a .NET assembly DLL, the
returned string takes the form " Dot Net Proxy=/...; yapi=/...;", where the first path
corresponds to the .NET assembly DLL and the second path corresponds to the low-level
communication library.

Returns :
a character string describing the DLL path.

www.yoctopuce.com 171

23. High-level API Reference

YAPI.GetLog() YAPI
YAPI.GetLog()

Retrieves Yoctopuce low-level library diagnostic logs.

static string GetLog(string lastLogLine)
static string GetLog(string lastLogLine)

This method allows to progessively retrieve API logs. The interface is line-based: it must called it within
a loop until the returned value is an empty string. Make sure to exit the loop when an empty string is
returned, as feeding an empty string into the | ast LogLi ne parameter for the next call would restart
enumerating logs from the oldest message available.

Parameters :

lastLogLine On first call, provide an empty string. On subsequent calls, provide the last log line returned
by Get Log() .

Returns :
a string with the log line immediately following the one given in argument, if such line exist. Returns an
empty string otherwise, when completed.

172 www.yoctopuce.com

23. High-level API Reference

YAPI.GetNetworkTimeout() YAPI
YAPI.GetNetworkTimeout()

Returns the network connection delay for yRegi st er Hub() and yUpdat eDevi ceLi st ().

static int GetNetworkTimeout()

+(int) GetNetworkTimeout

LongInt yGetNetworkTimeout(): Longint
function GetNetworkTimeout() As Integer
int GetNetworkTimeout()

int GetNetworkTimeout()

async Task<int> GetNetworkTimeout()
GetNetworkTimeout()

function GetNetworkTimeout()

async GetNetworkTimeout(): Promise<number>
async GetNetworkTimeout()

static int GetNetworkTimeout()

static int GetNetworkTimeout()

This delay impacts only the YoctoHubs and VirtualHub which are accessible through the network. By
default, this delay is of 20000 milliseconds, but depending or you network you may want to change this
delay, for example if your network infrastructure is based on a GSM connection.

Returns :
the network connection delay in milliseconds.

www.yoctopuce.com 173

23. High-level API Reference

YAPI.GetTickCount() YAPI
YAPI.GetTickCount()

Returns the current value of a monotone millisecond-based time counter.

function yGetTickCount()
u64 GetTickCount()

+(u64) GetTickCount

u64 yGetTickCount(): ué4
[vb |function GetTickCount() As Long
static ulong GetTickCount()
static long GetTickCount()
static ulong GetTickCount()
GetTickCount()
function GetTickCount()
GetTickCount(): number
GetTickCount()

This counter can be used to compute delays in relation with Yoctopuce devices, which also uses the
millisecond as timebase.

Returns :
a long integer corresponding to the millisecond counter.

174 www.yoctopuce.com

YAPI.HandleEvents()
YAPI.HandleEvents()

23. High-level API Reference

YAPI

Maintains the device-to-library communication channel.

function yHandleEvents(errmsg)
YRETCODE HandleEvents(string errmsg)
+(YRETCODE) HandleEvents :(NSError**) errmsg

integer yHandleEvents(var errmsg: string): integer
function HandleEvents(ByRef errmsg As String) As YRETCODE
static YRETCODE HandleEvents(ref string errmsg)

int HandleEvents()

async Task<int> HandleEvents()
HandleEvents(errmsg=None)
function HandleEvents(&$errmsg)

async HandleEvents(errmsg: YErrorMsg | null): Promise<number>

async HandleEvents(errmsg)

If your program includes significant loops, you may want to include a call to this function to make sure
that the library takes care of the information pushed by the modules on the communication channels.
This is not strictly necessary, but it may improve the reactivity of the library for the following commands.

This function may signal an error in case there is a communication problem while contacting a module.

Parameters :
errmsg a string passed by reference to receive any error message.

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com

175

23. High-level API Reference

YAPLInitAPI() YAPI
YAPLInitAPI()

Initializes the Yoctopuce programming library explicitly.

function yInitAPI(mode, errmsg)
YRETCODE InitAPI(int mode, string errmsg)

+(YRETCODE) InitAPI :(int) mode :(NSError*) errmsg

integer yInitAPI(mode: integer, var errmsg: string): integer

function InitAPI(ByVal mode As Integer, ByRef errmsg As String) As Integer
static int InitAPI(int mode, ref string errmsg)

int InitAPI(int mode)

async Task<int> InitAPI(int mode)

InitAPI(mode, errmsg=None)

function InitAPI($mode, &$errmsg)

async InitAPI(mode: number, errmsg: YErrorMsg): Promise<number>

async InitAPI(mode, errmsg)

It is not strictly needed to call yl ni t API (), as the library is automatically initialized when calling
yRegi st er Hub() for the first time.

When YAPI . DETECT _NONE is used as detection node, you must explicitly use yRegi st er Hub()
to point the API to the VirtualHub on which your devices are connected before trying to access them.

Parameters :

mode an integer corresponding to the type of automatic device detection to use. Possible values are
YAPI . DETECT_NONE, YAPI.DETECT_USB, YAPI.DETECT_NET, and

YAPI . DETECT_ALL.
errmsg a string passed by reference to receive any error message.

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

176 www.yoctopuce.com

YAPI.PreregisterHub()
YAPI.PreregisterHub()

23. High-level API Reference

YAPI

Fault-tolerant alternative to yRegi st er Hub() .

function yPreregisterHub(url, errmsg)

YRETCODE PreregisterHub(string url, string errmsg)
+(YRETCODE) PreregisterHub :(NSString *) url :(NSError**) errmsg
integer yPreregisterHub(url: string, var errmsg: string): integer

function PreregisterHub(ByVal url As String,
ByRef errmsg As String) As Integer

static int PreregisterHub(string url, ref string errmsg)

int PreregisterHub(String url)

async Task<int> PreregisterHub(string url)

PreregisterHub(url, errmsg=None)

function PreregisterHub($url, &$errmsg)

async PreregisterHub(url: string, errmsg: YErrorMsg): Promise<number>
async PreregisterHub(url, errmsg)

static string PreregisterHub(string url)

static string PreregisterHub(string url)

This function has the same purpose and same arguments as YRegi st er Hub() , but does not trigger
an error when the selected hub is not available at the time of the function call. This makes it possible to
register a network hub independently of the current connectivity, and to try to contact it only when a

device is actively needed.

Parameters :

errmsg a string passed by reference to receive any error message.

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

url a string containing either "usb","callback" or the root URL of the hub to monitor

www.yoctopuce.com

177

23. High-level API Reference

YAPI.RegisterDeviceArrivalCallback() YAPI
YAPI.RegisterDeviceArrivalCallback()

Register a callback function, to be called each time a device is plugged.

function yRegisterDeviceArrivalCallback(arrivalCallback)

m void RegisterDeviceArrivalCallback(yDeviceUpdateCallback arrivalCallback)

+(void) RegisterDeviceArrivalCallback :(yDeviceUpdateCallback) arrivalCallback

| pas |yRegisterDeviceArrivalCallback(arrivalCallback: yDeviceUpdateFunc)

procedure RegisterDeviceArrivalCallback(ByVal arrivalCallback As yDeviceUpdateFunc)
static void RegisterDeviceArrivalCallback(yDeviceUpdateFunc arrivalCallback)

void RegisterDeviceArrivalCallback(DeviceArrivalCallback arrivalCallback)

| uw | void RegisterDeviceArrivalCallback(DeviceUpdateHandler arrivalCallback)
RegisterDeviceArrivalCallback(arrivalCallback)

function RegisterDeviceArrivalCallback($arrivalCallback)

async RegisterDeviceArrivalCallback(arrivalCallback: YDeviceUpdateCallback| null): Promise<void>
async RegisterDeviceArrivalCallback(arrivalCallback)

This callback will be invoked while yUpdat eDevi ceLi st is running. You will have to call this function
on a regular basis.

Parameters :
arrivalCallback a procedure taking a YModul e parameter, or nul |

178 www.yoctopuce.com

23. High-level API Reference

YAPI.RegisterDeviceRemovalCallback() YAPI
YAPI.RegisterDeviceRemovalCallback()

Register a callback function, to be called each time a device is unplugged.

function yRegisterDeviceRemovalCallback(removalCallback)

mvoid RegisterDeviceRemovalCallback(yDeviceUpdateCallback removalCallback)

+(void) RegisterDeviceRemovalCallback :(yDeviceUpdateCallback) removalCallback
yRegisterDeviceRemovalCallback(removalCallback: yDeviceUpdateFunc)

procedure RegisterDeviceRemovalCallback(ByVal removalCallback As yDeviceUpdateFunc)
static void RegisterDeviceRemovalCallback(yDeviceUpdateFunc removalCallback)
void RegisterDeviceRemovalCallback(DeviceRemovalCallback removalCallback)

void RegisterDeviceRemovalCallback(DeviceUpdateHandler removalCallback)
RegisterDeviceRemovalCallback(removalCallback)

function RegisterDeviceRemovalCallback($removalCallback)

ts |async RegisterDeviceRemovalCallback(removalCallback: YDeviceUpdateCallback| null):
Promise<void>

async RegisterDeviceRemovalCallback(removalCallback)

This callback will be invoked while yUpdat eDevi ceLi st is running. You will have to call this function
on a regular basis.

Parameters :
removalCallback a procedure taking a YModul e parameter, or nul |

www.yoctopuce.com 179

23. High-level API Reference

YAPI.RegisterHub() YAPI
YAPI.RegisterHub()

Setup the Yoctopuce library to use modules connected on a given machine.

function yRegisterHub(url, errmsg)
YRETCODE RegisterHub(string url, string errmsg)
+(YRETCODE) RegisterHub :(NSString *) url :(NSError**) errmsg

integer yRegisterHub(url: string, var errmsg: string): integer

function RegisterHub(ByVal url As String,

ByRef errmsg As String) As Integer
static int RegisterHub(string url, ref string errmsg)

int RegisterHub(String url)
async Task<int> RegisterHub(string url)

RegisterHub(url, errmsg=None)
[php_|function RegisterHub($url, &$errmsg)

async RegisterHub(url: string, errmsg: YErrorMsg): Promise<number>

async RegisterHub(url, errmsg)
static string RegisterHub(string url)
static string RegisterHub(string url)

The parameter will determine how the API will work. Use the following values:

ush: When the usb keyword is used, the API will work with devices connected directly to the USB bus.
Some programming languages such a JavaScript, PHP, and Java don't provide direct access to USB
hardware, so usb will not work with these. In this case, use a VirtualHub or a networked YoctoHub (see
below).

x.X.x.x or hostname: The API will use the devices connected to the host with the given IP address or
hostname. That host can be a regular computer running a VirtualHub, or a networked YoctoHub such
as YoctoHub-Ethernet or YoctoHub-Wireless. If you want to use the VirtualHub running on you local
computer, use the IP address 127.0.0.1.

callback: that keyword make the API run in "HTTP Callback™ mode. This a special mode allowing to
take control of Yoctopuce devices through a NAT filter when using a VirtualHub or a networked
YoctoHub. You only need to configure your hub to call your server script on a regular basis. This mode
is currently available for PHP and Node.JS only.

Be aware that only one application can use direct USB access at a given time on a machine. Multiple
access would cause conflicts while trying to access the USB modules. In particular, this means that you
must stop the VirtualHub software before starting an application that uses direct USB access. The
workaround for this limitation is to setup the library to use the VirtualHub rather than direct USB access.

If access control has been activated on the hub, virtual or not, you want to reach, the URL parameter
should look like:

http://usernanme: passwor d@ddr ess: port

You can call RegisterHub several times to connect to several machines.

Parameters :
url a string containing either "usb","callback” or the root URL of the hub to monitor

180 www.yoctopuce.com

23. High-level API Reference

errmsg a string passed by reference to receive any error message.

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 181

23. High-level API Reference

YAPI.RegisterHubDiscoveryCallback() YAPI
YAPI.RegisterHubDiscoveryCallback()

Register a callback function, to be called each time an Network Hub send an SSDP message.

void RegisterHubDiscoveryCallback(YHubDiscoveryCallback hubDiscoveryCallback)

+(void) RegisterHubDiscoveryCallback : (YHubDiscoveryCallback) hubDiscoveryCallback
yRegisterHubDiscoveryCaIIback(hubDiscoveryCallback: YHubDiscoveryCallback)

procedure RegisterHubDiscoveryCallback(ByVal hubDiscoveryCallback As YHubDiscoveryCallback)
static void RegisterHubDiscoveryCallback(YHubDiscoveryCallback hubDiscoveryCallback)
void RegisterHubDiscoveryCallback(HubDiscoveryCallback hubDiscoveryCallback)

async Task RegisterHubDiscoveryCallback(HubDiscoveryHandler hubDiscoveryCallback)
RegisterHubDiscoveryCallback(hubDiscoveryCallback)

ts |async RegisterHubDiscoveryCallback(hubDiscoveryCallback: YHubDiscoveryCallback):
Promise<number>

async RegisterHubDiscoveryCallback(hubDiscoveryCallback)

The callback has two string parameter, the first one contain the serial number of the hub and the
second contain the URL of the network hub (this URL can be passed to RegisterHub). This callback will
be invoked while yUpdateDeviceList is running. You will have to call this function on a regular basis.

Parameters :
hubDiscoveryCallback a procedure taking two string parameter, the serial

182 www.yoctopuce.com

23. High-level API Reference

YAPI.RegisterHubWebsocketCallback() YAPI
YAPI.RegisterHubWebsocketCallback()

Variant to yRegi st er Hub() used to initialize Yoctopuce API on an existing Websocket session,
as happens for incoming WebSocket callbacks.

Parameters :
ws node WebSocket object for the incoming WebSocket callback connection
errmsg a string passed by reference to receive any error message.
authpwd the optional authentication password, required only authentication is configured on the calling
hub.

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 183

23. High-level API Reference

YAPI.RegisterLogFunction() YAPI
YAPI.RegisterLogFunction()

Registers a log callback function.

mvoid RegisterLogFunction(yLogFunction logfun)

+(void) RegisterLogFunction :(yLogCallback) logfun

| pas |yRegisterLogFunction(logfun: yLogFunc)

procedure RegisterLogFunction(ByVal logfun As yLogFunc)
static void RegisterLogFunction(yLogFunc logfun)
void RegisterLogFunction(LogCallback logfun)

| uw | void RegisterLogFunction(LogHandler logfun)
RegisterLogFunction(logfun)

async RegisterLogFunction(logfun: YLogCallback): Promise<number>

async RegisterLogFunction(logfun)

This callback will be called each time the API have something to say. Quite useful to debug the API.

Parameters :
logfun a procedure taking a string parameter, or nul |

184 www.yoctopuce.com

23. High-level API Reference

YAPI.SelectArchitecture() YAPI
YAPI.SelectArchitecture()

Select the architecture or the library to be loaded to access to USB.

SelectArchitecture(arch)

By default, the Python library automatically detects the appropriate library to use. However, for Linux
ARM, it not possible to reliably distinguish between a Hard Float (armhf) and a Soft Float (armel) install.
For in this case, it is therefore recommended to manually select the proper architecture by calling
Sel ect Archi t ect ur e() before any other call to the library.

Ve

Parameters :

arch A string containing the architecture to use. Possibles value are: "armhf" "arnmel ",
"aarch64" "i 386" ,"x86_64", "32bit", "64bit"

Returns :
nothing.

On failure, throws an exception.

www.yoctopuce.com 185

23. High-level API Reference

YAPI.SetCacheValidity() YAPI
YAPI.SetCacheValidity()

Change the validity period of the data loaded by the library.

static void SetCacheValidity(u64 cacheValidityMs)

+(void) SetCacheValidity : (u64) cacheValidityMs

[pas |ySetCacheValidity(cacheValidityMs: u64)

procedure SetCacheValidity(ByVal cacheValidityMs As Long)
void SetCacheValidity(ulong cacheValidityMs)

void SetCacheValidity(long cacheValidityMs)

async Task SetCacheValidity(ulong cacheValidityMs)
SetCacheValidity(cacheValidityMs)

function SetCacheValidity($cacheValidityMs)
async SetCacheValidity(cacheValidityMs: number): Promise<void>

async SetCacheValidity(cacheValidityMs)

By default, when accessing a module, all the attributes of the module functions are automatically kept in
cache for the standard duration (5 ms). This method can be used to change this standard duration, for
example in order to reduce network or USB traffic. This parameter does not affect value change
callbacks Note: This function must be called after yI ni t API .

Parameters :

cacheValidityMs an integer corresponding to the validity attributed to the loaded function parameters, in
milliseconds.

186 www.yoctopuce.com

23. High-level API Reference

YAPI.SetDelegate() YAPI
YAPI.SetDelegate()

(Objective-C only) Register an object that must follow the protocol YDevi ceHot Pl ug.

+(void) SetDelegate :(id) object

The methods yDevi ceArrival and yDeviceRemoval will be invoked while
yUpdat eDevi celLi st is running. You will have to call this function on a regular basis.

Parameters :
object an object that must follow the protocol YAPI Del egat e, or ni |

www.yoctopuce.com 187

23. High-level API Reference

YAPI.SetDeviceListValidity() YAPI
YAPI.SetDeviceListValidity()

Modifies the delay between each forced enumeration of the used YoctoHubs.

static void SetDeviceListValidity(int deviceListValidity)

+(void) SetDeviceListValidity : (int) deviceListValidity

| pas |ySetDeviceListValidity(deviceListValidity: Longint)

procedure SetDeviceListValidity(ByVal deviceListValidity As Integer)
void SetDeviceListValidity(int deviceListValidity)

void SetDeviceListValidity(int deviceListValidity)

async Task SetDeviceListValidity(int deviceListValidity)
SetDeviceListValidity(deviceListValidity)

function SetDeviceListValidity($deviceListValidity)

async SetDeviceListValidity(deviceListValidity: number): Promise<void>

async SetDevicelListValidity(deviceListValidity)

By default, the library performs a full enumeration every 10 seconds. To reduce network traffic, you can
increase this delay. It's particularly useful when a YoctoHub is connected to the GSM network where
traffic is billed. This parameter doesn't impact modules connected by USB, nor the working of module
arrival/removal callbacks. Note: you must call this function after y1 ni t API .

Parameters :
deviceListValidity nubmer of seconds between each enumeration.

188 www.yoctopuce.com

23. High-level API Reference

YAPI.SetHTTPCallbackCacheDir() YAPI
YAPI.SetHTTPCallbackCacheDir()

Enables the HTTP callback cache.

function SetHTTPCallbackCacheDir($str_directory)

When enabled, this cache reduces the quantity of data sent to the PHP script by 50% to 70%. To
enable this cache, the method ySet HTTPCal | backCacheDi r () must be called before any call to
yRegi st er Hub() . This method takes in parameter the path of the directory used for saving data
between each callback. This folder must exist and the PHP script needs to have write access to it. It is
recommended to use a folder that is not published on the Web server since the library will save some
data of Yoctopuce devices into this folder.

Note: This feature is supported by YoctoHub and VirtualHub since version 27750.

Parameters :
str_directory the path of the folder that will be used as cache.

Returns :
nothing.

On failure, throws an exception.

www.yoctopuce.com 189

23. High-level API Reference

YAPI.SetNetworkTimeout()
YAPI.SetNetworkTimeout()

YAPI

Modifies the network connection delay for yRegi st er Hub() and yUpdat eDevi ceLi st ().

static void SetNetworkTimeout(int networkMsTimeout)

+(void) SetNetworkTimeout : (int) networkMsTimeout
ySetNetworkTimeout(networkMsTimeout: Longint)

procedure SetNetworkTimeout(ByVal networkMsTimeout As Integer)
void SetNetworkTimeout(int networkMsTimeout)

[java |void SetNetworkTimeout(int networkMsTimeout)

async Task SetNetworkTimeout(int networkMsTimeout)
SetNetworkTimeout(networkMsTimeout)

function SetNetworkTimeout($networkMsTimeout)

async SetNetworkTimeout(networkMsTimeout: number): Promise<void>
async SetNetworkTimeout(networkMsTimeout)

static void SetNetworkTimeout(int networkMsTimeout)

static void SetNetworkTimeout(int networkMsTimeout)

This delay impacts only the YoctoHubs and VirtualHub which are accessible through the network. By
default, this delay is of 20000 milliseconds, but depending or you network you may want to change this

delay, gor example if your network infrastructure is based on a GSM connection.

Parameters :
networkMsTimeout the network connection delay in milliseconds.

190

www.yoctopuce.com

23. High-level API Reference

YAPI.SetTimeout() YAPI
YAPI.SetTimeout()

Invoke the specified callback function after a given timeout.

function ySetTimeout(callback, ms_timeout, args)
SetTimeout(callback: Function, ms_timeout: number): number

SetTimeout(callback, ms_timeout, args)

This function behaves more or less like Javascript set Ti meout , but during the waiting time, it will call
yHandl eEvent s and yUpdat eDevi ceLi st periodically, in order to keep the API up-to-date with
current devices.

Parameters :

callback the function to call after the timeout occurs. On Microsoft Internet Explorer, the callback must
be provided as a string to be evaluated.

ms_timeout an integer corresponding to the duration of the timeout, in milliseconds.

args additional arguments to be passed to the callback function can be provided, if needed (not
supported on Microsoft Internet Explorer).

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 191

23. High-level API Reference

YAPI.SetUSBPacketAckMs() YAPI
YAPI.SetUSBPacketAckMs()

Enables the acknowledge of every USB packet received by the Yoctopuce library.
void SetUSBPacketAckMs(int pktAckDelay)

This function allows the library to run on Android phones that tend to loose USB packets. By default,
this feature is disabled because it doubles the number of packets sent and slows down the API
considerably. Therefore, the acknowledge of incoming USB packets should only be enabled on phones
or tablets that loose USB packets. A delay of 50 milliseconds is generally enough. In case of doubt,
contact Yoctopuce support. To disable USB packets acknowledge, call this function with the value 0.
Note: this feature is only available on Android.

Parameters :
pktAckDelay then number of milliseconds before the module

192 www.yoctopuce.com

23. High-level API Reference

YAPI.Sleep() YAPI
YAPI.Sleep()

Pauses the execution flow for a specified duration.

function ySleep(ms_duration, errmsg)
YRETCODE Sleep(unsigned ms_duration, string errmsg)
+(YRETCODE) Sleep :(unsigned) ms_duration :(NSError **) errmsg
integer ySleep(ms_duration: integer, var errmsg: string): integer
function Sleep(ByVal ms_duration As Integer,

ByRef errmsg As String) As Integer
static int Sleep(int ms_duration, ref string errmsg)

int Sleep(long ms_duration)
async Task<int> Sleep(ulong ms_duration)

Sleep(ms_duration, errmsg=None)
[php_|function Sleep($ms_duration, &$errmsg)
async Sleep(ms_duration: number, errmsg: YErrorMsg | null): Promise<number>

async Sleep(ms_duration, errmsg)

This function implements a passive waiting loop, meaning that it does not consume CPU cycles
significantly. The processor is left available for other threads and processes. During the pause, the
library nevertheless reads from time to time information from the Yoctopuce modules by calling
yHandl eEvent s(), in order to stay up-to-date.

This function may signal an error in case there is a communication problem while contacting a module.

Vs

Parameters :
ms_duration an integer corresponding to the duration of the pause, in milliseconds.
errmsg a string passed by reference to receive any error message.

Returns :

YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 193

23. High-level API Reference

YAPI.TestHub() YAPI
YAPI.TestHub()

Test if the hub is reachable.

YRETCODE TestHub(string url, int mstimeout, string errmsg)
+(YRETCODE) TestHub : (NSString*) url
: (int) mstimeout
: (NSError**) errmsg
integer yTestHub(url: string,
mstimeout: integer,
var errmsg: string): integer
function TestHub(ByVal url As String,
ByVal mstimeout As Integer,
ByRef errmsg As String) As Integer

[cs |static int TestHub(string url, int mstimeout, ref string errmsg)
int TestHub(String url, int mstimeout)
async Task<int> TestHub(string url, uint mstimeout)

[py | TestHub(url, mstimeout, errmsg=None)
[php_|function TestHub($url, $mstimeout, &$errmsg)
async TestHub(url: string, mstimeout: number, errmsg: YErrorMsg): Promise<number>

async TestHub(url, mstimeout, errmsg)
static string TestHub(string url, int mstimeout)

static string TestHub(string url, int mstimeout)

This method do not register the hub, it only test if the hub is usable. The url parameter follow the same
convention as the yRegi st er Hub method. This method is useful to verify the authentication
parameters for a hub. It is possible to force this method to return after mstimeout milliseconds.

Parameters :
url a string containing either "usb","callback" or the root URL of the hub to monitor
mstimeout the number of millisecond available to test the connection.
errmsg a string passed by reference to receive any error message.

Returns :
YAPI . SUCCESS when the call succeeds.

On failure returns a negative error code.

194 www.yoctopuce.com

23. High-level API Reference

YAPI.TriggerHubDiscovery() YAPI
YAPI.TriggerHubDiscovery()

Force a hub discovery, if a callback as been registered with
yRegi st er HubDi scover yCal | back it will be called for each net work hub that will respond to
the discovery.

YRETCODE TriggerHubDiscovery(string errmsg)

+(YRETCODE) TriggerHubDiscovery : (NSError**) errmsg

integer yTriggerHubDiscovery(var errmsg: string): integer
function TriggerHubDiscovery(ByRef errmsg As String) As Integer
static int TriggerHubDiscovery(ref string errmsg)

int TriggerHubDiscovery()

Task<int> TriggerHubDiscovery()

TriggerHubDiscovery(errmsg=None)

async TriggerHubDiscovery(errmsg: YErrorMsg | null): Promise<number>

async TriggerHubDiscovery(errmsg)

Ve

Parameters :
errmsg a string passed by reference to receive any error message.

Returns :

YAPI . SUCCESS when the call succeeds. On failure, throws an exception or returns a negative error
code.

www.yoctopuce.com 195

23. High-level API Reference

YAPI.UnregisterHub() YAPI
YAPI.UnregisterHub()

Setup the Yoctopuce library to no more use modules connected on a previously registered machine
with RegisterHub.

[is |function yUnregisterHub(url)
cpp |void UnregisterHub(string url)
+(void) UnregisterHub :(NSString *) url
yUnregisterHub(url: string)
procedure UnregisterHub(ByVal url As String)
static void UnregisterHub(string url)
void UnregisterHub(String url)
async Task UnregisterHub(string url)
UnregisterHub(url)
[php_|function UnregisterHub($url)
async UnregisterHub(url: string): Promise<void>

async UnregisterHub(url)

Parameters :
url a string containing either "usb" or the

196 www.yoctopuce.com

YAPI.UpdateDeviceList()
YAPI.UpdateDeviceL.ist()

23. High-level API Reference

YAPI

Triggers a (re)detection of connected Yoctopuce modules.

function yUpdateDeviceList(errmsg)

YRETCODE UpdateDevicelList(string errmsg)

+(YRETCODE) UpdateDeviceList :(NSError) errmsg

integer yUpdateDeviceList(var errmsg: string): integer

function UpdateDeviceList(ByRef errmsg As String) As YRETCODE
static YRETCODE UpdateDeviceList(ref string errmsg)

int UpdateDeviceList()

async Task<int> UpdateDeviceList()
UpdateDeviceList(errmsg=None)
function UpdateDeviceList(&$errmsg)

async UpdateDeviceList(errmsg: YErrorMsg | null): Promise<number>

async UpdateDeviceList(errmsg)

The library searches the machines or USB ports previously registered using yRegi st er Hub() , and
invokes any user-defined callback function in case a change in the list of connected devices is

detected.

This function can be called as frequently as desired to refresh the device list and to make the
application aware of hot-plug events. However, since device detection is quite a heavy process,

UpdateDeviceList shouldn't be called more than once every two seconds.

Parameters :
errmsg a string passed by reference to receive any error message.

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com

197

23. High-level API Reference

YAPI.UpdateDeviceList_async() YAPI
YAPI.UpdateDeviceList_async()

Triggers a (re)detection of connected Yoctopuce modules.
function yUpdateDeviceList_async(callback, context)

The library searches the machines or USB ports previously registered using yRegi st er Hub() , and
invokes any user-defined callback function in case a change in the list of connected devices is
detected.

This function can be called as frequently as desired to refresh the device list and to make the
application aware of hot-plug events.

This asynchronous version exists only in JavaScript. It uses a callback instead of a return value in order
to avoid blocking Firefox JavaScript VM that does not implement context switching during blocking 110
calls.

Parameters :

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the result code (YAPI . SUCCESS if the operation
completes successfully) and the error message.

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

198 www.yoctopuce.com

23. High-level API Reference

23.2. Class YModule

Global parameters control interface for all Yoctopuce devices

The YModul e class can be used with all Yoctopuce USB devices. It can be used to control the module
global parameters, and to enumerate the functions provided by each module.

In order to use the functions described here, you should include:

<script type="text/javascript' src="yocto_api.js"></script>
#include "yocto_api.h"
#import "yocto_api.h"
uses yocto_api;
yocto_api.vb
yocto_api.cs
import com.yoctopuce.YoctoAPI.YModule;
import com.yoctopuce.YoctoAPI.YModule;
from yocto_api import *
php |require_once('yocto_api.php");

ts |in HTML: import { YAPI, YErrorMsg, YModule, YSensor } from "../../dist/esm/yocto_api_browser.js’;
in Node.js: import { YAPI, YErrorMsg, YModule, YSensor } from 'yoctolib-cjs/yocto_api_nodejs.js’;
es [in HTML: <script src="../../lib/lyocto_api.js"></script>

in node.js: require('yoctolib-es2017/yocto_api.js');

import YoctoProxyAPI.YModuleProxy
#include "yocto_module_proxy.h"
YModule.vi

import YoctoProxyAPI.YModuleProxy"

Global functions
YModule.FindModule(func)

Allows you to find a module from its serial number or from its logical name.
YModule.FindModulelnContext(yctx, func)
Retrieves a module for a given identifier in a YAPI context.

YModule.FirstModule()
Starts the enumeration of modules currently accessible.

YModul e properties

module - Beacon [writable]

State of the localization beacon.
module - FirmwareRelease [read-only]

Version of the firmware embedded in the module.
module - Functionld [read-only]

Retrieves the hardware identifier of the nth function on the module.
module - Hardwareld [read-only]

Unique hardware identifier of the module.
module - IsOnline [read-only]

Checks if the module is currently reachable.
module - LogicalName [writable]

Logical name of the module.

module - Luminosity [writable]

www.yoctopuce.com 199

#YModule.FindModule
#YModule.FindModuleInContext
#YModule.FirstModule
#YModule.^Beacon
#YModule.^Beacon
#YModule.^Beacon
#YModule.^FirmwareRelease
#YModule.^FirmwareRelease
#YModule.^FirmwareRelease
#YModule.^FunctionId
#YModule.^FunctionId
#YModule.^FunctionId
#YModule.^HardwareId
#YModule.^HardwareId
#YModule.^HardwareId
#YModule.^IsOnline
#YModule.^IsOnline
#YModule.^IsOnline
#YModule.^LogicalName
#YModule.^LogicalName
#YModule.^LogicalName
#YModule.^Luminosity
#YModule.^Luminosity
#YModule.^Luminosity

23. High-level API Reference

Luminosity of the module informative LEDs (from 0 to 100).

module - Productld [read-only]
USB device identifier of the module.

module - ProductName [read-only]
Commercial name of the module, as set by the factory.

module - ProductRelease [read-only]
Release number of the module hardware, preprogrammed at the factory.

module - SerialNumber [read-only]
Serial number of the module, as set by the factory.

YModul e methods
module - checkFirmware(path, onlynew)
Tests whether the byn file is valid for this module.

module - clearCache()
Invalidates the cache.

module - describe()
Returns a descriptive text that identifies the module.

module - download(pathname)

Downloads the specified built-in file and returns a binary buffer with its content.

module - functionBaseType(functionindex)
Retrieves the base type of the nth function on the module.

module - functionCount()

Returns the number of functions (beside the "module" interface) available on the module.

module - functionld(functionindex)
Retrieves the hardware identifier of the nth function on the module.

module - functionName(functionindex)
Retrieves the logical name of the nth function on the module.

module - functionType(functionindex)
Retrieves the type of the nth function on the module.

module - functionValue(functionindex)
Retrieves the advertised value of the nth function on the module.

module - get_allSettings()
Returns all the settings and uploaded files of the module.

module - get_beacon()
Returns the state of the localization beacon.

module - get_errorMessage()
Returns the error message of the latest error with this module object.

module - get_errorType()

Returns the numerical error code of the latest error with this module object.

module - get_firmwareRelease()
Returns the version of the firmware embedded in the module.

module - get_functionlds(funType)
Retrieve all hardware identifier that match the type passed in argument.

module - get_hardwareld()
Returns the unique hardware identifier of the module.

module - get_icon2d()

200

www.yoctopuce.com

#YModule.^ProductId
#YModule.^ProductId
#YModule.^ProductId
#YModule.^ProductName
#YModule.^ProductName
#YModule.^ProductName
#YModule.^ProductRelease
#YModule.^ProductRelease
#YModule.^ProductRelease
#YModule.^SerialNumber
#YModule.^SerialNumber
#YModule.^SerialNumber
#YModule.checkFirmware
#YModule.checkFirmware
#YModule.checkFirmware
#YModule.clearCache
#YModule.clearCache
#YModule.clearCache
#YModule.describe
#YModule.describe
#YModule.describe
#YModule.download
#YModule.download
#YModule.download
#YModule.functionBaseType
#YModule.functionBaseType
#YModule.functionBaseType
#YModule.functionCount
#YModule.functionCount
#YModule.functionCount
#YModule.functionId
#YModule.functionId
#YModule.functionId
#YModule.functionName
#YModule.functionName
#YModule.functionName
#YModule.functionType
#YModule.functionType
#YModule.functionType
#YModule.functionValue
#YModule.functionValue
#YModule.functionValue
#YModule.get_allSettings
#YModule.get_allSettings
#YModule.get_allSettings
#YModule.get_beacon
#YModule.get_beacon
#YModule.get_beacon
#YModule.get_errorMessage
#YModule.get_errorMessage
#YModule.get_errorMessage
#YModule.get_errorType
#YModule.get_errorType
#YModule.get_errorType
#YModule.get_firmwareRelease
#YModule.get_firmwareRelease
#YModule.get_firmwareRelease
#YModule.get_functionIds
#YModule.get_functionIds
#YModule.get_functionIds
#YModule.get_hardwareId
#YModule.get_hardwareId
#YModule.get_hardwareId
#YModule.get_icon2d
#YModule.get_icon2d
#YModule.get_icon2d

Returns the icon of the module.

module - get_lastLogs()
Returns a string with last logs of the module.

module - get_logicalName()
Returns the logical name of the module.

module - get_luminosity()
Returns the luminosity of the module informative LEDs (from 0 to 100).

module - get_parentHub()
Returns the serial number of the YoctoHub on which this module is connected.

module - get_persistentSettings()
Returns the current state of persistent module settings.

module - get_productld()
Returns the USB device identifier of the module.

module - get_productName()
Returns the commercial name of the module, as set by the factory.

module - get_productRelease()

Returns the release number of the module hardware, preprogrammed at the factory.

module - get_rebootCountdown()

23. High-level API Reference

Returns the remaining number of seconds before the module restarts, or zero when no reboot has been

scheduled.

module - get_serialNumber()
Returns the serial number of the module, as set by the factory.

module - get_subDevices()
Returns a list of all the modules that are plugged into the current module.

module - get_upTime()
Returns the number of milliseconds spent since the module was powered on.

module - get_url()
Returns the URL used to access the module.

module - get_usbCurrent()
Returns the current consumed by the module on the USB bus, in milli-amps.

module - get_userData()

Returns the value of the userData attribute, as previously stored using method set _

module - get_userVar()
Returns the value previously stored in this attribute.

module - hasFunction(funcld)
Tests if the device includes a specific function.

module -isOnline()
Checks if the module is currently reachable, without raising any error.

module -isOnline_async(callback, context)
Checks if the module is currently reachable, without raising any error.

module - load(msValidity)
Preloads the module cache with a specified validity duration.

module - load_async(msValidity, callback, context)

Preloads the module cache with a specified validity duration (asynchronous version).

module - log(text)
Adds a text message to the device logs.

user Dat a.

www.yoctopuce.com

201

#YModule.get_lastLogs
#YModule.get_lastLogs
#YModule.get_lastLogs
#YModule.get_logicalName
#YModule.get_logicalName
#YModule.get_logicalName
#YModule.get_luminosity
#YModule.get_luminosity
#YModule.get_luminosity
#YModule.get_parentHub
#YModule.get_parentHub
#YModule.get_parentHub
#YModule.get_persistentSettings
#YModule.get_persistentSettings
#YModule.get_persistentSettings
#YModule.get_productId
#YModule.get_productId
#YModule.get_productId
#YModule.get_productName
#YModule.get_productName
#YModule.get_productName
#YModule.get_productRelease
#YModule.get_productRelease
#YModule.get_productRelease
#YModule.get_rebootCountdown
#YModule.get_rebootCountdown
#YModule.get_rebootCountdown
#YModule.get_serialNumber
#YModule.get_serialNumber
#YModule.get_serialNumber
#YModule.get_subDevices
#YModule.get_subDevices
#YModule.get_subDevices
#YModule.get_upTime
#YModule.get_upTime
#YModule.get_upTime
#YModule.get_url
#YModule.get_url
#YModule.get_url
#YModule.get_usbCurrent
#YModule.get_usbCurrent
#YModule.get_usbCurrent
#YModule.get_userData
#YModule.get_userData
#YModule.get_userData
#YModule.get_userVar
#YModule.get_userVar
#YModule.get_userVar
#YModule.hasFunction
#YModule.hasFunction
#YModule.hasFunction
#YModule.isOnline
#YModule.isOnline
#YModule.isOnline
#YModule.isOnline_async
#YModule.isOnline_async
#YModule.isOnline_async
#YModule.load
#YModule.load
#YModule.load
#YModule.load_async
#YModule.load_async
#YModule.load_async
#YModule.log
#YModule.log
#YModule.log

23. High-level API Reference

module - nextModule()
Continues the module enumeration started using yFi r st Modul e() .

module - reboot(secBeforeReboot)
Schedules a simple module reboot after the given number of seconds.

module - registerBeaconCallback(callback)
Register a callback function, to be called when the localization beacon of the module has been changed.

module - registerConfigChangeCallback(callback)
Register a callback function, to be called when a persistent settings in a device configuration has been
changed (e.g.
module - registerLogCallback(callback)
Registers a device log callback function.
module - revertFromFlash()
Reloads the settings stored in the nonvolatile memory, as when the module is powered on.
module - saveToFlash()
Saves current settings in the nonvolatile memory of the module.
module - set_allSettings(settings)
Restores all the settings of the device.
module - set_allSettingsAndFiles(settings)
Restores all the settings and uploaded files to the module.
module - set_beacon(newval)
Turns on or off the module localization beacon.
module - set_logicalName(newval)
Changes the logical name of the module.
module - set_luminosity(newval)
Changes the luminosity of the module informative leds.
module - set_userData(data)
Stores a user context provided as argument in the userData attribute of the function.
module - set_userVar(newval)
Stores a 32 bit value in the device RAM.
module - triggerConfigChangeCallback()
Triggers a configuration change callback, to check if they are supported or not.
module - triggerFirmwareUpdate(secBeforeReboot)
Schedules a module reboot into special firmware update mode.
module - updateFirmware(path)
Prepares a firmware update of the module.
module - updateFirmwareEx(path, force)
Prepares a firmware update of the module.
module - wait_async(callback, context)

Waits for all pending asynchronous commands on the module to complete, and invoke the user-provided
callback function.

202 www.yoctopuce.com

#YModule.nextModule
#YModule.nextModule
#YModule.nextModule
#YModule.reboot
#YModule.reboot
#YModule.reboot
#YModule.registerBeaconCallback
#YModule.registerBeaconCallback
#YModule.registerBeaconCallback
#YModule.registerConfigChangeCallback
#YModule.registerConfigChangeCallback
#YModule.registerConfigChangeCallback
#YModule.registerLogCallback
#YModule.registerLogCallback
#YModule.registerLogCallback
#YModule.revertFromFlash
#YModule.revertFromFlash
#YModule.revertFromFlash
#YModule.saveToFlash
#YModule.saveToFlash
#YModule.saveToFlash
#YModule.set_allSettings
#YModule.set_allSettings
#YModule.set_allSettings
#YModule.set_allSettingsAndFiles
#YModule.set_allSettingsAndFiles
#YModule.set_allSettingsAndFiles
#YModule.set_beacon
#YModule.set_beacon
#YModule.set_beacon
#YModule.set_logicalName
#YModule.set_logicalName
#YModule.set_logicalName
#YModule.set_luminosity
#YModule.set_luminosity
#YModule.set_luminosity
#YModule.set_userData
#YModule.set_userData
#YModule.set_userData
#YModule.set_userVar
#YModule.set_userVar
#YModule.set_userVar
#YModule.triggerConfigChangeCallback
#YModule.triggerConfigChangeCallback
#YModule.triggerConfigChangeCallback
#YModule.triggerFirmwareUpdate
#YModule.triggerFirmwareUpdate
#YModule.triggerFirmwareUpdate
#YModule.updateFirmware
#YModule.updateFirmware
#YModule.updateFirmware
#YModule.updateFirmwareEx
#YModule.updateFirmwareEx
#YModule.updateFirmwareEx
#YModule.wait_async
#YModule.wait_async
#YModule.wait_async

23. High-level API Reference

YModule.FindModule() YModule
YModule.FindModule()

Allows you to find a module from its serial number or from its logical name.

function yFindModule(func)

YModule* FindModule(string func)
+(YModule*) FindModule : (NSString*) func

TYModule yFindModule(func: string): TYModule
function FindModule(ByVal func As String) As YModule

static YModule FindModule(string func)
static YModule FindModule(String func)

static YModule FindModule(string func)
FindModule(func)

function FindModule($func)

static FindModule(func: string): YModule
| es |static FindModule(func)

static YModuleProxy FindModule(string func)
static YModuleProxy * FindModule(string func)

This function does not require that the module is online at the time it is invoked. The returned object is
nevertheless valid. Use the method YModul e. i sOnl i ne() to test if the module is indeed online at a
given time. In case of ambiguity when looking for a module by logical name, no error is notified: the first
instance found is returned. The search is performed first by hardware name, then by logical name.

If a call to this object's is_online() method returns FALSE although you are certain that the device is
plugged, make sure that you did call registerHub() at application initialization time.

Parameters :
func a string containing either the serial number or the logical name of the desired module

Returns :
a YModul e object allowing you to drive the module or get additional information on the module.

www.yoctopuce.com 203

23. High-level API Reference

YModule.FindModulelnContext() YModule
YModule.FindModulelnContext()

Retrieves a module for a given identifier in a YAPI context.

static YModule FindModulelnContext(YAPIContext yctx, String func)
static YModule FindModulelnContext(YAPIContext yctx, string func)
static FindModulelnContext(yctx: YAPIContext, func: string): YModule

static FindModulelnContext(yctx, func)

The identifier can be specified using several formats:

FunctionLogicalName
ModuleSerialNumber.Functionldentifier
ModuleSerialNumber.FunctionLogicalName
ModuleLogicalName.Functionldentifier
ModuleLogicalName.FunctionLogicalName

This function does not require that the module is online at the time it is invoked. The returned object is
nevertheless valid. Use the method YModul e. i sOnl i ne() to test if the module is indeed online at a
given time. In case of ambiguity when looking for a module by logical name, no error is notified: the first
instance found is returned. The search is performed first by hardware name, then by logical name.

Parameters :
yctx a YAPI context
func a string that uniquely characterizes the module, for instance MyDevi ce. nodul e.

Returns :
a YMbdul e object allowing you to drive the module.

204 www.yoctopuce.com

23. High-level API Reference

YModule.FirstModule() YModule
YModule.FirstModule()

Starts the enumeration of modules currently accessible.

function yFirstModule()

YModule * FirstModule()
+(YModule*) FirstModule
TYModule yFirstModule(): TYModule
function FirstModule() As YModule
static YModule FirstModule()

static YModule FirstModule()

static YModule FirstModule()
FirstModule()

function FirstModule()

static FirstModule(): YModule | null
static FirstModule()

Use the method YMbdul e. next Modul e() to iterate on the next modules.

Returns :
a pointer to a YModul e object, corresponding to the first module currently online, or a nul | pointer if
there are none.

www.yoctopuce.com 205

23. High-level API Reference

module - Beacon YModule

State of the localization beacon.
int Beacon

Writable. Turns on or off the module localization beacon.

206 www.yoctopuce.com

23. High-level API Reference

module - FirmwareRelease YModule

Version of the firmware embedded in the module.

string FirmwareRelease

www.yoctopuce.com 207

23. High-level API Reference

module - Functionld YModule

Retrieves the hardware identifier of the nth function on the module.

string Functionld

@param functionindex : the index of the function for which the information is desired, starting at O for
the first function.

208 www.yoctopuce.com

23. High-level API Reference

module - Hardwareld YModule

Unique hardware identifier of the module.

string Hardwareld

The unique hardware identifier is made of the device serial number followed by string ".module".

www.yoctopuce.com 209

23. High-level API Reference

module - IsOnline YModule

Checks if the module is currently reachable.

bool IsOnline

If there are valid cached values for the module, that have not yet expired, the device is considered
reachable. No exception is raised if there is an error while trying to contact the requested module.

210 www.yoctopuce.com

23. High-level API Reference

module - LogicalName YModule

Logical name of the module.

string LogicalName

Writable. You can use yCheckLogi cal Nane() prior to this call to make sure that your parameter is
valid. Remember to call the saveToF| ash() method of the module if the modification must be kept.

www.yoctopuce.com 211

23. High-level API Reference

module - Luminosity YModule

Luminosity of the module informative LEDs (from 0 to 100).

int Luminosity

Writable. Changes the luminosity of the module informative leds. The parameter is a value between 0
and 100. Remember to call the saveToFl ash() method of the module if the modification must be
kept.

212 www.yoctopuce.com

23. High-level API Reference

module - Productld YModule

USB device identifier of the module.

int Productld

www.yoctopuce.com 213

23. High-level API Reference

module - ProductName YModule

Commercial name of the module, as set by the factory.

string ProductName

214 www.yoctopuce.com

23. High-level API Reference

module - ProductRelease YModule

Release number of the module hardware, preprogrammed at the factory.

int ProductRelease

The original hardware release returns value 1, revision B returns value 2, etc.

www.yoctopuce.com 215

23. High-level API Reference

module = SerialNumber YModule

Serial number of the module, as set by the factory.

string SerialNumber

216 www.yoctopuce.com

23. High-level API Reference

module - checkFirmware() YModule

Tests whether the byn file is valid for this module.

function checkFirmware(path, onlynew)

string checkFirmware(string path, bool onlynew)
-(NSString*) checkFirmware : (NSString*) path

: (bool) onlynew
string checkFirmware(path: string, onlynew: boolean): string
function checkFirmware(ByVal path As String, ByVal onlynew As Boolean) As String
string checkFirmware(string path, bool onlynew)
String checkFirmware(String path, boolean onlynew)
async Task<string> checkFirmware(string path, bool onlynew)
checkFirmware(path, onlynew)
function checkFirmware($path, $onlynew)
async checkFirmware(path: string, onlynew: boolean): Promise<string>
async checkFirmware(path, onlynew)
string checkFirmware(string path, bool onlynew)
string checkFirmware(string path, bool onlynew)
YModuIe target checkFirmware path onlynew

This method is useful to test if the module needs to be updated. It is possible to pass a directory as
argument instead of a file. In this case, this method returns the path of the most recent appropriate
. byn file. If the parameter onl ynew s true, the function discards firmwares that are older or equal to
the installed firmware.

p
Parameters :
path the path of a byn file or a directory that contains byn files
onlynew returns only files that are strictly newer

Returns :
the path of the byn file to use or a empty string if no byn files matches the requirement

On failure, throws an exception or returns a string that start with "error:".

www.yoctopuce.com 217

23. High-level API Reference

module - clearCache() YModule

Invalidates the cache.

[is |function clearCache()
m void clearCache()
-(void) clearCache
clearCache()

procedure clearCache()
void clearCache()

void clearCache()
clearCache()

[php_|function clearCache()
async clearCache(): Promise<void>
async clearCache()

Invalidates the cache of the module attributes. Forces the next call to get_xxx() or loadxxx() to use
values that come from the device.

218 www.yoctopuce.com

23. High-level API Reference

module - describe() YModule

Returns a descriptive text that identifies the module.

| is |function describe()

string describe()
-(NSString*) describe

string describe(): string
function describe() As String
string describe()

String describe()
describe()

function describe()

async describe(): Promise<string>
async describe()

The text may include either the logical name or the serial number of the module.

Returns :
a string that describes the module

www.yoctopuce.com 219

23. High-level API Reference

module -~ download() YModule

Downloads the specified built-in file and returns a binary buffer with its content.

[is |function download(pathname)
string download(string pathname)

-(NSMutableData*) download : (NSString*) pathname
TByteArray download(pathname: string): TByteArray
[vb_[function download(ByVal pathname As String) As Byte
byte[] download(string pathname)

byte[] download(String pathname)

async Task<byte[]> download(string pathname)
download(pathname)

function download($pathname)

async download(pathname: string): Promise<Uint8Array>
async download(pathname)

byte[] download(string pathname)

string download(string pathname)

YModule target download pathname

s N
Parameters :
pathname name of the new file to load

Returns :
a binary buffer with the file content

On failure, throws an exception or returns YAPI _| NVALI D_STRI NG

220 www.yoctopuce.com

module - functionBaseType()

23. High-level API Reference

YModule

Retrieves the base type of the nth function on the module.

function functionBaseType(functionindex)

string functionBaseType(int functionindex)

string functionBaseType(functionindex: integer): string

function functionBaseType(ByVal functionindex As Integer) As String
string functionBaseType(int functionindex)

String functionBaseType(int functionindex)

functionBaseType(functionindex)

function functionBaseType($functionindex)
async functionBaseType(functionindex: number): Promise<string>

async functionBaseType(functionindex)

For instance, the base type of all measuring functions is "Sensor".

Ve

Parameters :

function.

Returns :
a string corresponding to the base type of the function

On failure, throws an exception or returns an empty string.

functionindex the index of the function for which the information is desired, starting at O for the first

www.yoctopuce.com

221

23. High-level API Reference

module - functionCount() YModule

Returns the number of functions (beside the "module" interface) available on the module.

[is |function functionCount()

m int functionCount()

-(int) functionCount

integer functionCount(): integer

[vb_|function functionCount() As Integer
int functionCount()

int functionCount()

| ey |functionCount()

[php_|function functionCount()

async functionCount(): Promise<number>
async functionCount()

Returns :
the number of functions on the module

On failure, throws an exception or returns a negative error code.

222 www.yoctopuce.com

module - functionld()

23. High-level API Reference

YModule

Retrieves the hardware identifier of the nth function on the module.

function functionld(functionindex)

string functionld(int functionIindex)

-(NSString*) functionld : (int) functionindex

string functionld(functionindex: integer): string

function functionld(ByVal functionindex As Integer) As String
string functionld(int functionIindex)

String functionld(int functionindex)

functionld(functionindex)

[php_|function functionld($functionindex)

async functionld(functionindex: number): Promise<string>

async functionld(functionindex)

Ve

Parameters :

function.

Returns :

On failure, throws an exception or returns an empty string.

functionindex the index of the function for which the information is desired, starting at O for the first

a string corresponding to the unambiguous hardware identifier of the requested module function

www.yoctopuce.com

223

23. High-level API Reference

module - functionName() YModule

Retrieves the logical name of the nth function on the module.

function functionName(functionindex)

string functionName(int functionindex)

-(NSString*) functionName : (int) functionindex

string functionName(functionindex: integer): string
function functionName(ByVal functionindex As Integer) As String
string functionName(int functionindex)

String functionName(int functionindex)

[ey |functionName(functionindex)

[php_|function functionName($functionindex)

async functionName(functionindex: number): Promise<string>

async functionName(functionindex)

Parameters :
functionindex the index of the function for which the information is desired, starting at O for the first
function.
Returns :

a string corresponding to the logical name of the requested module function

On failure, throws an exception or returns an empty string.

224 www.yoctopuce.com

23. High-level API Reference

module - functionType() YModule

Retrieves the type of the nth function on the module.

function functionType(functionindex)

string functionType(int functionindex)

string functionType(functionindex: integer): string

function functionType(ByVal functionindex As Integer) As String
string functionType(int functionindex)

String functionType(int functionindex)

functionType(functionindex)

function functionType($functionindex)

async functionType(functionindex: number): Promise<string>

async functionType(functionindex)

Ve

Parameters :
functionindex the index of the function for which the information is desired, starting at O for the first
function.
Returns :

a string corresponding to the type of the function

On failure, throws an exception or returns an empty string.

www.yoctopuce.com 225

23. High-level API Reference

module - functionValue() YModule

Retrieves the advertised value of the nth function on the module.

[is |function functionValue(functionindex)

string functionValue(int functionindex)

-(NSString*) functionValue : (int) functionindex

string functionValue(functionindex: integer): string
function functionValue(ByVal functionindex As Integer) As String
string functionValue(int functionindex)

String functionValue(int functionindex)

[ey |functionValue(functionindex)

[php_|function functionValue($functionindex)

async functionValue(functionindex: number): Promise<string>

async functionValue(functionindex)

Parameters :
functionindex the index of the function for which the information is desired, starting at O for the first
function.
Returns :

a short string (up to 6 characters) corresponding to the advertised value of the requested module function

On failure, throws an exception or returns an empty string.

226 www.yoctopuce.com

23. High-level API Reference

module - get_allSettings() YModule
module - allSettings()

Returns all the settings and uploaded files of the module.

function get_allSettings()

string get_allSettings()
-(NSMutableData*) allSettings

TByteArray get_allSettings(): TByteArray
function get_allSettings() As Byte

byte[] get_allSettings()

byte[] get_allSettings()

async Task<byte[]> get_allSettings()
get_allSettings()

function get_allSettings()

async get_allSettings(): Promise<Uint8Array>
async get_allSettings()

byte[] get_allSettings()

string get_allSettings()

YModule target get_allSettings

Useful to backup all the logical names, calibrations parameters, and uploaded files of a device.

Returns :
a binary buffer with all the settings.

On failure, throws an exception or returns an binary object of size 0.

www.yoctopuce.com 227

23. High-level API Reference

module - get_beacon() YModule
module - beacon()

Returns the state of the localization beacon.

[is |function get_beacon()
Y_BEACON_enum get_beacon()
-(Y_BEACON_enum) beacon
Integer get_beacon(): Integer

[vb [function get_beacon() As Integer
int get_beacon()

int get_beacon()

async Task<int> get_beacon()
get_beacon()

function get_beacon()

async get_beacon(): Promise<YModule_Beacon>
async get_beacon()

int get_beacon()

int get_beacon()

YModule target get_beacon

Returns :
either YModul e. BEACON _OFF or YMbdul e. BEACON _ON, according to the state of the localization
beacon

On failure, throws an exception or returns YModul e. BEACON_| NVALI D.

228 www.yoctopuce.com

23. High-level API Reference

module - get_errorMessage() YModule
module - errorMessage()

Returns the error message of the latest error with this module object.

function get_errorMessage()
string get_errorMessage()
-(NSString*) errorMessage

string get_errorMessage(): string
function get_errorMessage() As String
string get_errorMessage()

String get_errorMessage()
get_errorMessage()

function get_errorMessage()
get_errorMessage(): string
get_errorMessage()

This method is mostly useful when using the Yoctopuce library with exceptions disabled.

Returns :
a string corresponding to the latest error message that occurred while using this module object

www.yoctopuce.com 229

23. High-level API Reference

module - get_errorType() YModule
module - errorType()

Returns the numerical error code of the latest error with this module object.

function get_errorType()

YRETCODE get_errorType()
-(YRETCODE) errorType

YRETCODE get_errorType(): YRETCODE
function get_errorType() As YRETCODE
YRETCODE get_errorType()

int get_errorType()

get_errorType()

function get_errorType()
get_errorType(): number
get_errorType()

This method is mostly useful when using the Yoctopuce library with exceptions disabled.

Returns :
a number corresponding to the code of the latest error that occurred while using this module object

230 www.yoctopuce.com

module - get_firmwareRelease()
module - firmwareRelease()

23. High-level API Reference

YModule

Returns the version of the firmware embedded in the module.

function get_firmwareRelease()

string get_firmwareRelease()

-(NSString*) firmwareRelease

string get_firmwareRelease(): string
function get_firmwareRelease() As String
string get_firmwareRelease()

String get_firmwareRelease()

async Task<string> get_firmwareRelease()
get_firmwareRelease()

function get_firmwareRelease()

async get_firmwareRelease(): Promise<string>
async get_firmwareRelease()

string get_firmwareRelease()

string get_firmwareRelease()

YModule target get_firmwareRelease

Returns :
a string corresponding to the version of the firmware embedded in the module

On failure, throws an exception or returns YModul e. FI RWMARERELEASE | NVALI D.

www.yoctopuce.com

231

23. High-level API Reference

module - get_functionlds()
module - functionlds()

YModule

Retrieve all hardware identifier that match the type passed in argument.

[is |function get_functionlds(funType)

cpp |vector<string> get_functionlds(string funType)
-(NSMutableArray*) functionlds : (NSString*) funType
TStringArray get_functionlds(funType: string): TStringArray
[vb_[function get_functionlds(ByVal funType As String) As List
List<string> get_functionlds(string funType)
[java | ArrayList<String> get_functionlids(String funType)
async Task<List<string>> get_functionlds(string funType)
get_functionlds(funType)
function get_functionlds($funType)
async get_functionlds(funType: string): Promise<string]]
async get_functionlds(funType)
[dnp_|string[] get_functionlds(string funType)

vector<string> get_functionlds(string funType)
YModule target get_functionlds funType

Parameters :
funType The type of function (Relay, LightSensor, Voltage,...)

Returns :
an array of strings.

232

www.yoctopuce.com

23. High-level API Reference

module - get_hardwareld() YModule
module - hardwareld()

Returns the unique hardware identifier of the module.

function get_hardwareld()

string get_hardwareld()
-(NSString*) hardwareld

function get_hardwareld() As String
string get_hardwareld()

String get_hardwareld()
get_hardwareld()

function get_hardwareld()

async get_hardwareld(): Promise<string>
async get_hardwareld()

string get_hardwareld()

string get_hardwareld()

string get_hardwareld(): string

async Task<string> get_hardwareld()

YModule target get_hardwareld

The unigue hardware identifier is made of the device serial number followed by string “.module".

Returns :
a string that uniquely identifies the module

www.yoctopuce.com 233

23. High-level API Reference

module - get_icon2d()
module -icon2d()

YModule

Returns the icon of the module.

[is |function get_icon2d()

string get_icon2d()
-(NSMutableData*) icon2d

TByteArray get_icon2d(): TByteArray
[vb_[function get_icon2d() As Byte

byte[] get_icon2d()

byte[] get_icon2d()

async Task<byte[]> get_icon2d()
get_icon2d()

function get_icon2d()

async get_icon2d(): Promise<Uint8Array>
async get_icon2d()

byte[] get_icon2d()

string get_icon2d()

YModule target get_icon2d

The icon is a PNG image and does not exceeds 1536 bytes.

Returns :

a binary buffer with module icon, in png format. On failure, throws an exception or returns

YAPI | NVALI D_STRI NG

234

www.yoctopuce.com

module - get_lastLogs()
module - lastLogs()

23. High-level API Reference

YModule

Returns a string with last logs of the module.

function get_lastLogs()

string get_lastLogs()

-(NSString*) lastLogs

string get_lastLogs(): string
function get_lastLogs() As String
string get_lastLogs()

String get_lastLogs()

async Task<string> get_lastLogs()
get_lastLogs()

function get_lastLogs()

async get_lastLogs(): Promise<string>
async get_lastLogs()

string get_lastLogs()

string get_lastLogs()

YModule target get_lastLogs

This method return only logs that are still in the module.

Returns :

a string with last logs of the module. On failure,

YAPI | NVALI D_STRI NG

throws an exception or returns

www.yoctopuce.com

235

23. High-level API Reference

module - get_logicalName()
module - logicalName()

YModule

Returns the logical name of the module.

| is |function get_logicalName()

string get_logicalName()

-(NSString*) logicalName

string get_logicalName(): string

[vb_|function get_logicalName() As String
string get_logicalName()

String get_logicalName()

async Task<string> get_logicalName()
get_logicalName()

function get_logicalName()

async get_logicalName(): Promise<string>
async get_logicalName()

string get_logicalName()

string get_logicalName()

YModule target get_logicalName

Returns :
a string corresponding to the logical name of the module

On failure, throws an exception or returns YMbdul e. LOG CALNAME | NVALI D.

236

www.yoctopuce.com

module - get_luminosity()
module - luminosity()

23. High-level API Reference

YModule

Returns the luminosity of the module informative LEDs (from 0O to 100).

function get_luminosity()

m int get_luminosity()

-(int) luminosity

Longlnt get_luminosity(): Longint
function get_luminosity() As Integer
int get_luminosity()

int get_luminosity()

async Task<int> get_luminosity()
get_luminosity()

function get_luminosity()

async get_luminosity(): Promise<number>
async get_luminosity()

int get_luminosity()

int get_luminosity()

YModule target get_luminosity

Returns :

an integer corresponding to the luminosity of the module informative LEDs (from 0 to 100)

On failure, throws an exception or returns YModul e. LUM NOSI TY_I NVALI D.

www.yoctopuce.com

237

23. High-level API Reference

module - get_parentHub() YModule
module - parentHub()

Returns the serial number of the YoctoHub on which this module is connected.

| is |function get_parentHub()

string get_parentHub()

-(NSString*) parentHub

string get_parentHub(): string

| vb_[function get_parentHub() As String
string get_parentHub()

String get_parentHub()

async Task<string> get_parentHub()
get_parentHub()

function get_parentHub()

async get_parentHub(): Promise<string>
async get_parentHub()

string get_parentHub()

string get_parentHub()

YModule target get_parentHub

If the module is connected by USB, or if the module is the root YoctoHub, an empty string is returned.

Returns :
a string with the serial number of the YoctoHub or an empty string

238 www.yoctopuce.com

module - get_persistentSettings()
module - persistentSettings()

23. High-level API Reference

YModule

Returns the current state of persistent module settings.

function get_persistentSettings()

Y_PERSISTENTSETTINGS_enum get_persistentSettings()
-(Y_PERSISTENTSETTINGS_enum) persistentSettings
Integer get_persistentSettings(): Integer

function get_persistentSettings() As Integer

int get_persistentSettings()

int get_persistentSettings()

async Task<int> get_persistentSettings()
get_persistentSettings()

function get_persistentSettings()

async get_persistentSettings(): Promise<YModule_PersistentSettings>
async get_persistentSettings()

int get_persistentSettings()

int get_persistentSettings()

YModule target get_persistentSettings

Returns :
YModul e. PERSI STENTSETTI NGS_SAVED

module settings

a value among YModul e. PERSI STENTSETTI NGS_ LOADED,

YModul e. PERSI STENTSETTI NGS_MODI FI ED corresponding to the current state of persistent

On failure, throws an exception or returns YModul e. PERSI STENTSETTI NGS_| NVALI D.

and

www.yoctopuce.com

239

23. High-level API Reference

module - get_productld()
module - productld()

YModule

Returns the USB device identifier of the module.

| is |function get_productid()

int get_productld()

-(int) productld

Longlint get_productld(): Longint
| vb_[function get_productld() As Integer
int get_productld()

int get_productid()

async Task<int> get_productld()
get_productld()

function get_productld()

async get_productld(): Promise<number>
async get_productld()

int get_productid()

int get_productld()

YModule target get_productld

Returns :
an integer corresponding to the USB device identifier of the module

On failure, throws an exception or returns YModul e. PRODUCTI D_I NVALI D.

240

www.yoctopuce.com

module - get_productName()
module - productName()

23. High-level API Reference

YModule

Returns the commercial name of the module, as set by the factory.

function get_productName()

string get_productName()

-(NSString*) productName

string get_productName(): string
function get_productName() As String
string get_productName()

String get_productName()

async Task<string> get_productName()
get_productName()

function get_productName()

async get_productName(): Promise<string>
async get_productName()

string get_productName()

string get_productName()

YModule target get_productName

Returns :
a string corresponding to the commercial name of the module, as set by the factory

On failure, throws an exception or returns YMbdul e. PRODUCTNAME | NVALI D.

www.yoctopuce.com

241

23. High-level API Reference

module - get_productRelease() YModule
module - productRelease()

Returns the release number of the module hardware, preprogrammed at the factory.

| is |function get_productRelease()

int get_productRelease()

-(int) productRelease

Longint get_productRelease(): Longint

| vb_|function get_productRelease() As Integer
int get_productRelease()

int get_productRelease()

async Task<int> get_productRelease()
get_productRelease()

function get_productRelease()

async get_productRelease(): Promise<number>
async get_productRelease()

int get_productRelease()

int get_productRelease()

YModule target get_productRelease

The original hardware release returns value 1, revision B returns value 2, etc.

Returns :
an integer corresponding to the release number of the module hardware, preprogrammed at the factory

On failure, throws an exception or returns YMbdul e. PRODUCTRELEASE | NVALI D.

242 www.yoctopuce.com

23. High-level API Reference

module - get_rebootCountdown() YModule
module - rebootCountdown()

Returns the remaining number of seconds before the module restarts, or zero when no reboot has
been scheduled.

function get_rebootCountdown()

int get_rebootCountdown()

-(int) rebootCountdown

LongInt get_rebootCountdown(): LongInt
function get_rebootCountdown() As Integer
int get_rebootCountdown()

int get_rebootCountdown()

async Task<int> get_rebootCountdown()
get_rebootCountdown()

function get_rebootCountdown()

async get_rebootCountdown(): Promise<number>
async get_rebootCountdown()

int get_rebootCountdown()

int get_rebootCountdown()

YModule target get_rebootCountdown

Returns :

an integer corresponding to the remaining number of seconds before the module restarts, or zero when no
reboot has been scheduled

On failure, throws an exception or returns YModul e. REBOOTCOUNTDOAN | NVALI D.

www.yoctopuce.com 243

23. High-level API Reference

module - get_serialNumber()
module - serialNumber()

YModule

Returns the serial number of the module, as set by the factory.

| is |function get_serialNumber()

string get_serialNumber()

-(NSString*) serialNumber

string get_serialNumber(): string

[vb [function get_serialNumber() As String
string get_serialNumber()

String get_serialNumber()

async Task<string> get_serialNumber()
get_serialNumber()

function get_serialNumber()

async get_serialNumber(): Promise<string>
async get_serialNumber()

string get_serialNumber()

string get_serialNumber()

YModule target get_serialNumber

Returns :

a string corresponding to the serial number of the module, as set by the factory

On failure, throws an exception or returns YModul e. SERI ALNUVBER _| NVALI D.

244

www.yoctopuce.com

23. High-level API Reference

module - get_subDevices() YModule
module - subDevices()

Returns a list of all the modules that are plugged into the current module.

function get_subDevices()

m vector<string> get_subDevices()

-(NSMutableArray*) subDevices

TStringArray get_subDevices(): TStringArray
function get_subDevices() As List
List<string> get_subDevices()
ArrayList<String> get_subDevices()

async Task<List<string>> get_subDevices()
get_subDevices()

function get_subDevices()

async get_subDevices(): Promise<string][]
async get_subDevices()

string[] get_subDevices()

vector<string> get_subDevices()

YModule target get_subDevices

This method only makes sense when called for a YoctoHub/VirtualHub. Otherwise, an empty array will
be returned.

Returns :
an array of strings containing the sub modules.

www.yoctopuce.com 245

23. High-level API Reference

module - get_upTime() YModule
module - upTime()

Returns the number of milliseconds spent since the module was powered on.

[is |function get_upTime()

s64 get_upTime()

-(s64) upTime

int64 get_upTime(): int64

[vb_[function get_upTime() As Long
long get_upTime()

long get_upTime()

async Task<long> get_upTime()
get_upTime()

function get_upTime()

async get_upTime(): Promise<number>
async get_upTime()

long get_upTime()

s64 get_upTime()

YModule target get_upTime

Returns :
an integer corresponding to the number of milliseconds spent since the module was powered on

On failure, throws an exception or returns YMbdul e. UPTI ME_I NVALI D.

246 www.yoctopuce.com

23. High-level API Reference

module - get_url() YModule
module - url()

Returns the URL used to access the module.

function get_url()

string get_url()

-(NSString*) url

string get_url(): string
function get_url() As String
string get_url()

String get_url()

async Task<string> get_url()
get_url()

function get_url()

async get_url(): Promise<string>
async get_url()

string get_url()

string get_url()

YModule target get_url

If the module is connected by USB, the string ‘usb’ is returned.

Returns :
a string with the URL of the module.

www.yoctopuce.com 247

23. High-level API Reference

module - get_usbCurrent() YModule
module - usbCurrent()

Returns the current consumed by the module on the USB bus, in milli-amps.

| is |function get_usbCurrent()

int get_usbCurrent()

-(int) usbCurrent

Longlint get_usbCurrent(): Longint

[vb |function get_usbCurrent() As Integer
int get_usbCurrent()

int get_usbCurrent()

async Task<int> get_usbCurrent()
get_usbCurrent()

function get_usbCurrent()

async get_usbCurrent(): Promise<number>
async get_usbCurrent()

int get_usbCurrent()

int get_usbCurrent()

YModule target get_usbCurrent

Returns :
an integer corresponding to the current consumed by the module on the USB bus, in milli-amps

On failure, throws an exception or returns YMbdul e. USBCURRENT _I NVALI D.

248 www.yoctopuce.com

23. High-level API Reference

module - get_userData() YModule
module - userData()

Returns the value of the userData attribute, as previously stored using method set _user Dat a.

function get_userData()

cpp |void * get_userData()
-(id) userData
Tobject get_userData(): Tobject
function get_userData() As Object
object get_userData()
Object get_userData()
get_userData()
function get_userData()
async get_userData(): Promise<object|null>
async get_userData()

This attribute is never touched directly by the API, and is at disposal of the caller to store a context.

Returns :
the object stored previously by the caller.

www.yoctopuce.com 249

23. High-level API Reference

module - get_userVar()
module - userVar()

YModule

Returns the value previously stored in this attribute.

function get_userVar()

int get_userVar()

-(int) uservar

Longlnt get_userVar(): Longint
function get_userVar() As Integer
int get_userVar()

int get_userVar()

async Task<int> get_userVvar()
get_userVar()

function get_userVar()

async get_userVar(): Promise<number>
async get_userVvar()

int get_userVar()

int get_userVar()

YModule target get_userVar

On startup and after a device reboot, the value is always reset to zero.

Returns :
an integer corresponding to the value previously stored in this attribute

On failure, throws an exception or returns YModul e. USERVAR | NVALI D.

250

www.yoctopuce.com

module - hasFunction()

23. High-level API Reference

YModule

Tests if the device includes a specific function.

[is_|function hasFunction(funcid)

bool hasFunction(string funcld)

-(bool) hasFunction : (NSString*) funcld

boolean hasFunction(funcld: string): boolean

function hasFunction(ByVal funcld As String) As Boolean
bool hasFunction(string funcld)

boolean hasFunction(String funcld)

async Task<bool> hasFunction(string funcid)
hasFunction(funcid)

function hasFunction($funcld)

async hasFunction(funcld: string): Promise<boolean>
async hasFunction(funcld)

bool hasFunction(string funcld)

bool hasFunction(string funcld)

[cmd | YModule target hasFunction funcld

This method takes a function identifier and returns a boolean.

p
Parameters :
funcld the requested function identifier

Returns :
true if the device has the function identifier

www.yoctopuce.com

251

23. High-level API Reference

module - isOnline() YModule

Checks if the module is currently reachable, without raising any error.

function isOnline()

bool isOnline()

-(BOOL) isOnline

boolean isOnline(): boolean

| vb_[function isOnline() As Boolean
bool isOnline()

boolean isOnline()

isOnline()

function isOnline()

async isOnline(): Promise<boolean>
async isOnline()

bool isOnline()

bool isOnline()

If there are valid cached values for the module, that have not yet expired, the device is considered
reachable. No exception is raised if there is an error while trying to contact the requested module.

Returns :
t r ue if the module can be reached, and f al se otherwise

252 www.yoctopuce.com

23. High-level API Reference

module - isOnline_async() YModule

Checks if the module is currently reachable, without raising any error.

[is |function isOnline_async(callback, context)

If there are valid cached values for the module, that have not yet expired, the device is considered
reachable. No exception is raised if there is an error while trying to contact the requested module.

This asynchronous version exists only in JavaScript. It uses a callback instead of a return value in order
to avoid blocking Firefox JavaScript VM that does not implement context switching during blocking 1/0
calls.

Ve

Parameters :

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving module object and the boolean result

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

www.yoctopuce.com 253

23. High-level API Reference

module - load()

YModule

Preloads the module cache with a specified validity duration.

[is |function load(msValidity)
YRETCODE load(int msValidity)
-(YRETCODE) load : (u64) msValidity

[pas | YRETCODE load(msValidity: u64): YRETCODE
function load(ByVal msValidity As Long) As YRETCODE

YRETCODE load(ulong msValidity)
int load(long msValidity)

load(msValidity)

[php_|function load($msValidity)

async load(msValidity: number): Promise<number>

async load(msValidity)

By default, whenever accessing a device, all module attributes are kept in cache for the standard
duration (5 ms). This method can be used to temporarily mark the cache as valid for a longer period, in

order to reduce network traffic for instance.

Ve

Parameters :

milliseconds

Returns :
YAPI . SUCCESS when the call succeeds.

msValidity an integer corresponding to the validity attributed to the loaded module parameters, in

On failure, throws an exception or returns a negative error code.

254

www.yoctopuce.com

23. High-level API Reference

module - load_async() YModule

Preloads the module cache with a specified validity duration (asynchronous version).
[is |function load_async(msValidity, callback, context)

By default, whenever accessing a device, all module attributes are kept in cache for the standard
duration (5 ms). This method can be used to temporarily mark the cache as valid for a longer period, in
order to reduce network traffic for instance.

This asynchronous version exists only in JavaScript. It uses a callback instead of a return value in order
to avoid blocking Firefox JavaScript VM that does not implement context switching during blocking 1/10
calls. See the documentation section on asynchronous JavaScript calls for more details.

Parameters :
msValidity an integer corresponding to the validity of the loaded module parameters, in milliseconds

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving module object and the error code (or

YAPI . SUCCESS)
context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

www.yoctopuce.com 255

23. High-level API Reference

module - log() YModule

Adds a text message to the device logs.

[is |function log(text)

int log(string text)

-(int) log : (NSString*) text

Longlnt log(text: string): LongInt
function log(ByVal text As String) As Integer
int log(string text)

int log(String text)

async Task<int> log(string text)

log(text)

function log($text)

async log(text: string): Promise<number>
async log(text)

int log(string text)

int log(string text)

YModule target log text

This function is useful in particular to trace the execution of HTTP callbacks. If a newline is desired after
the message, it must be included in the string.

Parameters :
text the string to append to the logs.

Returns :
YAPI . SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

256 www.yoctopuce.com

23. High-level API Reference

module - nextModule() YModule

Continues the module enumeration started using yFi r st Modul e() .

function nextModule()

YModule * nextModule()

-(nullable YModule*) nextModule
TYModule nextModule(): TYModule
function nextModule() As YModule
YModule nextModule()

YModule nextModule()

YModule nextModule()
nextModule()

function nextModule()
nextModule(): YModule | null
nextModule()

Caution: You can't make any assumption about the returned modules order. If you want to find a
specific module, use Modul e. f i ndMbdul e() and a hardwarelD or a logical name.

Returns :
a pointer to a YModul e object, corresponding to the next module found, or a nul | pointer if there are no

more modules to enumerate.

www.yoctopuce.com 257

23. High-level API Reference

module - reboot()

YModule

Schedules a simple module reboot after the given number of seconds.

[is |function reboot(secBeforeReboot)

m int reboot(int secBeforeReboot)

-(int) reboot : (int) secBeforeReboot

Longint reboot(secBeforeReboot: Longint): Longint
function reboot(ByVal secBeforeReboot As Integer) As Integer
int reboot(int secBeforeReboot)

int reboot(int secBeforeReboot)

async Task<int> reboot(int secBeforeReboot)
reboot(secBeforeReboot)

function reboot($secBeforeReboot)

async reboot(secBeforeReboot: number): Promise<number>
async reboot(secBeforeReboot)

int reboot(int secBeforeReboot)

int reboot(int secBeforeReboot)

YModule target reboot secBeforeReboot

p
Parameters :
secBeforeReboot number of seconds before rebooting

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

258

www.yoctopuce.com

23. High-level API Reference

module - registerBeaconCallback() YModule

Register a callback function, to be called when the localization beacon of the module has been
changed.

function registerBeaconCallback(callback)
int registerBeaconCallback(YModuleBeaconCallback callback)

-(int) registerBeaconCallback : (YModuleBeaconCallback _Nullable) callback

Longint registerBeaconCallback(callback: TYModuleBeaconCallback): Longint

function registerBeaconCallback(ByVal callback As YModuleBeaconCallback) As Integer
int registerBeaconCallback(BeaconCallback callback)

int registerBeaconCallback(BeaconCallback callback)

async Task<int> registerBeaconCallback(BeaconCallback callback)
registerBeaconCallback(callback)

function registerBeaconCallback($callback)
async registerBeaconCallback(callback: YModuleBeaconCallback | null): Promise<number>

async registerBeaconCallback(callback)

The callback function should take two arguments: the YModule object of which the beacon has
changed, and an integer describing the new beacon state.

Parameters :
callback The callback function to call, or nul | to unregister a

www.yoctopuce.com 259

23. High-level API Reference

module - registerConfigChangeCallback() YModule

Register a callback function, to be called when a persistent settings in a device configuration has
been changed (e.g.

function registerConfigChangeCallback(callback)

int registerConfigChangeCallback(YModuleConfigChangeCallback callback)

-(int) registerConfigChangeCallback : (YModuleConfigChangeCallback _Nullable) callback
Longint registerConfigChangeCallback(callback: TYModuleConfigChangeCallback): Longint

vb | function registerConfigChangeCallback(ByVal callback As YModuleConfigChangeCallback) As
Integer

int registerConfigChangeCallback(ConfigChangeCallback callback)
int registerConfigChangeCallback(ConfigChangeCallback callback)
async Task<int> registerConfigChangeCallback(ConfigChangeCallback callback)

registerConfigChangeCallback(callback)
| php_|function registerConfigChangeCallback($callback)

ts |async registerConfigChangeCallback(callback: YModuleConfigChangeCallback | null):
Promise<number>

async registerConfigChangeCallback(callback)

change of unit, etc).

Parameters :
callback a procedure taking a YModule parameter, or nul |

260 www.yoctopuce.com

23. High-level API Reference

module - registerLogCallback() YModule

Registers a device log callback function.

function registerLogCallback(callback)
int registerLogCallback(YModuleLogCallback callback)
-(int) registerLogCallback : (YModuleLogCallback _Nullable) callback

Longlnt registerLogCallback(callback: TYModuleLogCallback): Longint
function registerLogCallback(ByVal callback As YModuleLogCallback) As Integer
int registerLogCallback(LogCallback callback)

int registerLogCallback(LogCallback callback)
async Task<int> registerLogCallback(LogCallback callback)

registerLogCallback(callback)
function registerLogCallback($callback)
async registerLogCallback(callback: YModuleLogCallback | null): Promise<number>

async registerLogCallback(callback)

This callback will be called each time that a module sends a new log message. Mostly useful to debug
a Yoctopuce module.

Parameters :

callback the callback function to call, or a null pointer. The callback function should take two arguments:
the module object that emitted the log message, and the character string containing the log.

www.yoctopuce.com 261

23. High-level API Reference

module - revertFromFlash() YModule

Reloads the settings stored in the nonvolatile memory, as when the module is powered on.

function revertFromFlash()

m int revertFromFlash()

-(int) revertFromFlash

Longlnt revertFromFlash(): Longint
[vb_[function revertFromFlash() As Integer
int revertFromFlash()

int revertFromFlash()

async Task<int> revertFromFlash()
revertFromFlash()

function revertFromFlash()

async revertFromFlash(): Promise<number>
async revertFromFlash()

int revertFromFlash()

int revertFromFlash()

YModule target revertFromFlash

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

262 www.yoctopuce.com

23. High-level API Reference

module - saveToFlash() YModule

Saves current settings in the nonvolatile memory of the module.

function saveToFlash()

int saveToFlash()

-(int) saveToFlash

LonglInt saveToFlash(): Longint
function saveToFlash() As Integer
int saveToFlash()

int saveToFlash()

async Task<int> saveToFlash()
saveToFlash()

function saveToFlash()

async saveToFlash(): Promise<number>
async saveToFlash()

int saveToFlash()

int saveToFlash()

YModule target saveToFlash

Warning: the number of allowed save operations during a module life is limited (about 100000 cycles).
Do not call this function within a loop.

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 263

23. High-level API Reference

module - set_allSettings() YModule
module - setAllSettings()

Restores all the settings of the device.

[is |function set_allSettings(settings)

int set_allSettings(string settings)

-(int) setAllSettings : (NSData*) settings

Longlnt set_allSettings(settings: TByteArray): Longint
procedure set_allSettings(ByVal settings As Byte()

int set_allSettings(byte[] settings)

int set_allSettings(byte[] settings)

async Task<int> set_allSettings(byte[] settings)
set_allSettings(settings)

function set_allSettings($settings)

async set_allSettings(settings: Uint8Array): Promise<number>
async set_allSettings(settings)

int set_allSettings(byte[] settings)

int set_allSettings(string settings)

YModule target set_allSettings settings

Useful to restore all the logical nhames and calibrations parameters of a module from a
backup.Remember to call the saveToFl ash() method of the module if the modifications must be
kept.

p
Parameters :
settings a binary buffer with all the settings.

Returns :
YAPI| . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

264 www.yoctopuce.com

23. High-level API Reference

module - set_allSettingsAndFiles() YModule
module - setAllSettingsAndFiles()

Restores all the settings and uploaded files to the module.

function set_allSettingsAndFiles(settings)

int set_allSettingsAndFiles(string settings)

-(int) setAllSettingsAndFiles : (NSData*) settings

Longint set_allSettingsAndFiles(settings: TByteArray): LongInt
procedure set_allSettingsAndFiles(ByVal settings As Byte()

int set_allSettingsAndFiles(byte[] settings)

int set_allSettingsAndFiles(byte[] settings)

async Task<int> set_allSettingsAndFiles(byte[] settings)
set_allSettingsAndFiles(settings)

function set_allSettingsAndFiles($settings)

async set_allSettingsAndFiles(settings: Uint8Array): Promise<number>

async set_allSettingsAndFiles(settings)
int set_allSettingsAndFiles(byte[] settings)

int set_allSettingsAndFiles(string settings)

YModule target set_allSettingsAndFiles settings

This method is useful to restore all the logical names and calibrations parameters, uploaded files etc. of
a device from a backup. Remember to call the saveToFl ash() method of the module if the
modifications must be kept.

p
Parameters :
settings a binary buffer with all the settings.

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 265

23. High-level API Reference

module - set_beacon() YModule
module - setBeacon()

Turns on or off the module localization beacon.

[is |function set_beacon(newval)

int set_beacon(Y_BEACON_enum newval)

-(int) setBeacon : (Y_BEACON_enum) newval

integer set_beacon(newval: Integer): integer
function set_beacon(ByVal newval As Integer) As Integer
int set_beacon(int newval)

int set_beacon(int newval)

async Task<int> set_beacon(int newval)

set_beacon(newval)

function set_beacon($newval)

async set_beacon(newval: YModule_Beacon): Promise<number>
async set_beacon(newval)

int set_beacon(int newval)

int set_beacon(int newval)

YModule target set_beacon newval

Parameters :
newval either YMbdul e. BEACON_OFF or YModul e. BEACON_ON

Returns :
YAPI . SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

266 www.yoctopuce.com

23. High-level API Reference

module - set_logicalName() YModule
module - setLogicalName()

Changes the logical name of the module.

function set_logicalName(newval)

int set_logicalName(string newval)
-(int) setLogicalName : (NSString*) newval

integer set_logicalName(newval: string): integer

function set_logicalName(ByVal newval As String) As Integer
int set_logicalName(string newval)

int set_logicalName(String newval)

async Task<int> set_logicalName(string newval)
set_logicalName(newval)

function set_logicalName($newval)

async set_logicalName(newval: string): Promise<number>
async set_logicalName(newval)

int set_logicalName(string newval)

int set_logicalName(string newval)

YModule target set_logicalName newval

You can use yCheckLogi cal Name() prior to this call to make sure that your parameter is valid.
Remember to call the saveToFl ash() method of the module if the modification must be kept.

p
Parameters :
newval a string corresponding to the logical name of the module

Returns :
YAPI . SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 267

23. High-level API Reference

module - set_luminosity()
module - setLuminosity()

YModule

Changes the luminosity of the module informative leds.

[is |function set_luminosity(newval)

int set_luminosity(int newval)

-(int) setLuminosity : (int) newval

integer set_luminosity(newval: Longint): integer
function set_luminosity(ByVal newval As Integer) As Integer
int set_luminosity(int newval)

int set_luminosity(int newval)

async Task<int> set_luminosity(int newval)
set_luminosity(newval)

function set_luminosity($newval)

async set_luminosity(newval: number): Promise<number>
async set_luminosity(newval)

int set_luminosity(int newval)

int set_luminosity(int newval)

YModule target set_luminosity newval

The parameter is a value between 0 and 100. Remember to call the saveToFl ash() method of the

modaule if the modification must be kept.

Parameters :
newval an integer corresponding to the luminosity of the module informative leds

Returns :
YAPI . SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

268

www.yoctopuce.com

23. High-level API Reference

module - set_userData() YModule
module - setUserData()

Stores a user context provided as argument in the userData attribute of the function.

function set_userData(data)

m void set_userData(void * data)

-(void) setUserData : (id) data

set_userData(data: Tobject)

procedure set_userData(ByVal data As Object)
void set_userData(object data)

void set_userData(Object data)

set_userData(data)

function set_userData($data)

async set_userData(data: object|null): Promise<void>

async set_userData(data)

This attribute is never touched by the API, and is at disposal of the caller to store a context.

Parameters :
data any kind of object to be stored

www.yoctopuce.com 269

23. High-level API Reference

module - set_userVar() YModule
module - setUserVar()

Stores a 32 bit value in the device RAM.

[is |function set_userVar(newval)
int set_userVar(int newval)
-(int) setUserVar : (int) newval

integer set_userVar(newval: Longlnt): integer
| vb_[function set_userVar(ByVal newval As Integer) As Integer

int set_userVar(int newval)

int set_userVar(int newval)

async Task<int> set_userVar(int newval)

set_userVar(newval)

function set_userVar($newval)

async set_userVar(newval: number): Promise<number>
async set_userVar(newval)

int set_userVar(int newval)

int set_userVar(int newval)

YModule target set_userVar newval

This attribute is at programmer disposal, should he need to store a state variable. On startup and after
a device reboot, the value is always reset to zero.

Parameters :
newval an integer

Returns :
YAPI . SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

270 www.yoctopuce.com

23. High-level API Reference

module - triggerConfigChangeCallback()

YModule

Triggers a configuration change callback, to check if they are supported or not.

function triggerConfigChangeCallback()

int triggerConfigChangeCallback()

-(int) triggerConfigChangeCallback

Longlnt triggerConfigChangeCallback(): Longint
function triggerConfigChangeCallback() As Integer
int triggerConfigChangeCallback()

int triggerConfigChangeCallback()

async Task<int> triggerConfigChangeCallback()
triggerConfigChangeCallback()

function triggerConfigChangeCallback()

async triggerConfigChangeCallback(): Promise<number>
async triggerConfigChangeCallback()

int triggerConfigChangeCallback()

int triggerConfigChangeCallback()

YModule target triggerConfigChangeCallback

www.yoctopuce.com

271

23. High-level API Reference

module - triggerFirmwareUpdate()

YModule

Schedules a module reboot into special firmware update mode.

[is |function triggerFirmwareUpdate(secBeforeReboot)

m int triggerFirmwareUpdate(int secBeforeReboot)

-(int) triggerFirmwareUpdate : (int) secBeforeReboot

Longint triggerFirmwareUpdate(secBeforeReboot: Longint): Longint

function triggerFirmwareUpdate(ByVal secBeforeReboot As Integer) As Integer
int triggerFirmwareUpdate(int secBeforeReboot)

int triggerFirmwareUpdate(int secBeforeReboot)

async Task<int> triggerFirmwareUpdate(int secBeforeReboot)

[py |triggerFirmwareUpdate(secBeforeReboot)

function triggerFirmwareUpdate($secBeforeReboot)

async triggerFirmwareUpdate(secBeforeReboot: number): Promise<number>
async triggerFirmwareUpdate(secBeforeReboot)

int triggerFirmwareUpdate(int secBeforeReboot)

int triggerFirmwareUpdate(int secBeforeReboot)

YModule target triggerFirmwareUpdate secBeforeReboot

Parameters :
secBeforeReboot number of seconds before rebooting

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

272

www.yoctopuce.com

23. High-level API Reference

module - updateFirmware() YModule

Prepares a firmware update of the module.

function updateFirmware(path)

YFirmwareUpdate updateFirmware(string path)

-(YFirmwareUpdate*) updateFirmware : (NSString*) path
TYFirmwareUpdate updateFirmware(path: string): TYFirmwareUpdate

function updateFirmware(ByVal path As String) As YFirmwareUpdate
YFirmwareUpdate updateFirmware(string path)

YFirmwareUpdate updateFirmware(String path)

async Task<YFirmwareUpdate> updateFirmware(string path)
updateFirmware(path)

function updateFirmware($path)

async updateFirmware(path: string): Promise<YFirmwareUpdate>
async updateFirmware(path)

YFirmwareUpdateProxy updateFirmware(string path)
YFirmwareUpdateProxy* updateFirmware(string path)

YModule target updateFirmware path

This method returns a YFi r mvar eUpdat e object which handles the firmware update process.

Ve

Parameters :
path the path of the . byn file to use.

Returns :
a YFi r mnvar eUpdat e object or NULL on error.

www.yoctopuce.com 273

23. High-level API Reference

module - updateFirmwareEx()

YModule

Prepares a firmware update of the module.

| is |function updateFirmwareEx(path, force)

YFirmwareUpdate updateFirmwareEx(string path, bool force)

-(YFirmwareUpdate*) updateFirmwareEx : (NSString*) path
: (bool) force

TYFirmwareUpdate updateFirmwareEx(path: string, force: boolean): TYFirmwareUpdate

| vb [function updateFirmwareEx(ByVal path As String,
ByVal force As Boolean) As YFirmwareUpdate

YFirmwareUpdate updateFirmwareEx(string path, bool force)
YFirmwareUpdate updateFirmwareEx(String path, boolean force)
async Task<YFirmwareUpdate> updateFirmwareEx(string path, bool force)
updateFirmwareEx(path, force)
[php_|function updateFirmwareEx($path, $force)
async updateFirmwareEx(path: string, force: boolean): Promise<YFirmwareUpdate>
async updateFirmwareEx(path, force)
YFirmwareUpdateProxy updateFirmwareEx(string path, bool force)
YFirmwareUpdateProxy* updateFirmwareEx(string path,

bool force)

YModuIe target updateFirmwareEx path force

This method returns a YFi r mvar eUpdat e object which handles the firmware update process.

Parameters :
path the path of the . byn file to use.

force true to force the firmware update even if some prerequisites appear not to be met

Returns :
a YFi r mnvar eUpdat e object or NULL on error.

274 www.yoctopuce.com

23. High-level API Reference

module - wait_async() YModule

Waits for all pending asynchronous commands on the module to complete, and invoke the user-
provided callback function.

function wait_async(callback, context)
[ts |wait_async(callback: Function, context: object)

[es |wait_async(callback, context)

The callback function can therefore freely issue synchronous or asynchronous commands, without
risking to block the JavaScript VM.

Ve

Parameters :

callback callback function that is invoked when all pending commands on the module are completed. The
callback function receives two arguments: the caller-specific context object and the receiving
function object.

context caller-specific object that is passed as-is to the callback function

Returns :
nothing.

www.yoctopuce.com 275

23. High-level API Reference
23.3. Class YRelay

Relay control interface, available for instance in the Yocto-LatchedRelay, the Yocto-MaxiPowerRelay,
the Yocto-PowerRelay-V3 or the Yocto-Relay

The YRel ay class allows you to drive a Yoctopuce relay or optocoupled output. It can be used to
simply switch the output on or off, but also to automatically generate short pulses of determined
duration. On devices with two output for each relay (double throw), the two outputs are named A and B,
with output A corresponding to the idle position (normally closed) and the output B corresponding to the
active state (normally open).

In order to use the functions described here, you should include:

es |in HTML: <script src="../../liblyocto_relay.js"></script>
in node.js: require('yoctolib-es2017/yocto_relay.js");

<script type="text/javascript' src="yocto_relay.js"></script>
#include "yocto_relay.h"

#import "yocto_relay.h"

uses yocto_relay;

yocto_relay.vb

yocto_relay.cs

import com.yoctopuce.YoctoAPI.YRelay;

import com.yoctopuce.YoctoAPI.YRelay;

from yocto_relay import *

m require_once('yocto_relay.php’);

ts |in HTML: import { YRelay } from "../../dist/esm/yocto_relay.js’;
in Node.js: import { YRelay } from 'yoctolib-cjs/yocto_relay.js';

import YoctoProxyAPL.YRelayProxy
#include "yocto_relay_proxy.h"
YRelay.vi

import YoctoProxyAPl.YRelayProxy

Global functions
YRelay.FindRelay(func)

Retrieves a relay for a given identifier.
YRelay.FindRelayInContext(yctx, func)

Retrieves a relay for a given identifier in a YAPI context.
YRelay.FirstRelay()

Starts the enumeration of relays currently accessible.
YRelay.FirstRelaylnContext(yctx)

Starts the enumeration of relays currently accessible.
YRelay.GetSimilarFunctions()

Enumerates all functions of type Relay available on the devices currently reachable by the library, and returns
their unique hardware ID.

YRel ay properties
relay - AdvertisedValue [read-only]
Short string representing the current state of the function.
relay - FriendlyName [read-only]
Global identifier of the function in the format MODULE_NAME. FUNCTI ON_NANE.

relay - Functionld [read-only]

276 www.yoctopuce.com

#YRelay.FindRelay
#YRelay.FindRelayInContext
#YRelay.FirstRelay
#YRelay.FirstRelayInContext
#YRelay.GetSimilarFunctions
#YRelay.^AdvertisedValue
#YRelay.^AdvertisedValue
#YRelay.^AdvertisedValue
#YRelay.^FriendlyName
#YRelay.^FriendlyName
#YRelay.^FriendlyName
#YRelay.^FunctionId
#YRelay.^FunctionId
#YRelay.^FunctionId

23. High-level API Reference

Hardware identifier of the relay, without reference to the module.

relay - Hardwareld [read-only]
Unique hardware identifier of the function in the form SERI AL. FUNCTI ONI D.

relay - IsOnline [read-only]
Checks if the function is currently reachable.
relay — LogicalName [writable]
Logical name of the function.
relay - MaxTimeOnStateA [writable]
Maximum time (ms) allowed for the relay to stay in state A before automatically switching back in to B state.

relay - MaxTimeOnStateB [writable]

The maximum time (ms) allowed for the relay to stay in state B before automatically switching back in to A
state.

relay - SerialNumber [read-only]

Serial number of the module, as set by the factory.
relay - State [writable]

State of the relays (A for the idle position, B for the active position).
relay - StateAtPowerOn [writable]

State of the relays at device startup (A for the idle position, B for the active position, UNCHANGED to leave
the relay state as is).

YRel ay methods

relay - clearCache()

Invalidates the cache.
relay - delayedPulse(ms_delay, ms_duration)

Schedules a pulse.
relay — describe()

Returns a short text that describes unambiguously the instance of the relay in the form

TYPE(NAVE) =SERI AL. FUNCTI ONI D.
relay - get_advertisedValue()

Returns the current value of the relay (no more than 6 characters).
relay - get_countdown()

Returns the number of milliseconds remaining before a pulse (delayedPulse() call) When there is no
scheduled pulse, returns zero.

relay - get_errorMessage()
Returns the error message of the latest error with the relay.
relay - get_errorType()
Returns the numerical error code of the latest error with the relay.
relay - get_friendlyName()
Returns a global identifier of the relay in the format MODULE_NAME. FUNCTI ON_NAIVE.
relay - get_functionDescriptor()
Returns a unique identifier of type YFUN_DESCR corresponding to the function.
relay - get_functionld()
Returns the hardware identifier of the relay, without reference to the module.
relay —get_hardwareld()
Returns the unique hardware identifier of the relay in the form SERI AL. FUNCTI ONI D.

relay - get_logicalName()
Returns the logical name of the relay.

www.yoctopuce.com 277

#YRelay.^HardwareId
#YRelay.^HardwareId
#YRelay.^HardwareId
#YRelay.^IsOnline
#YRelay.^IsOnline
#YRelay.^IsOnline
#YRelay.^LogicalName
#YRelay.^LogicalName
#YRelay.^LogicalName
#YRelay.^MaxTimeOnStateA
#YRelay.^MaxTimeOnStateA
#YRelay.^MaxTimeOnStateA
#YRelay.^MaxTimeOnStateB
#YRelay.^MaxTimeOnStateB
#YRelay.^MaxTimeOnStateB
#YRelay.^SerialNumber
#YRelay.^SerialNumber
#YRelay.^SerialNumber
#YRelay.^State
#YRelay.^State
#YRelay.^State
#YRelay.^StateAtPowerOn
#YRelay.^StateAtPowerOn
#YRelay.^StateAtPowerOn
#YRelay.clearCache
#YRelay.clearCache
#YRelay.clearCache
#YRelay.delayedPulse
#YRelay.delayedPulse
#YRelay.delayedPulse
#YRelay.describe
#YRelay.describe
#YRelay.describe
#YRelay.get_advertisedValue
#YRelay.get_advertisedValue
#YRelay.get_advertisedValue
#YRelay.get_countdown
#YRelay.get_countdown
#YRelay.get_countdown
#YRelay.get_errorMessage
#YRelay.get_errorMessage
#YRelay.get_errorMessage
#YRelay.get_errorType
#YRelay.get_errorType
#YRelay.get_errorType
#YRelay.get_friendlyName
#YRelay.get_friendlyName
#YRelay.get_friendlyName
#YRelay.get_functionDescriptor
#YRelay.get_functionDescriptor
#YRelay.get_functionDescriptor
#YRelay.get_functionId
#YRelay.get_functionId
#YRelay.get_functionId
#YRelay.get_hardwareId
#YRelay.get_hardwareId
#YRelay.get_hardwareId
#YRelay.get_logicalName
#YRelay.get_logicalName
#YRelay.get_logicalName

23. High-level API Reference

relay - get_maxTimeOnStateA()

Returns the maximum time (ms) allowed for the relay to stay in state A before automatically switching back in
to B state.

relay — get_maxTimeOnStateB()

Retourne the maximum time (ms) allowed for the relay to stay in state B before automatically switching back in
to A state.

relay - get_module()
Gets the YMbdul e object for the device on which the function is located.

relay - get_module_async(callback, context)

Gets the YMbdul e object for the device on which the function is located (asynchronous version).
relay - get_output()

Returns the output state of the relays, when used as a simple switch (single throw).

relay - get_pulseTimer()

Returns the number of milliseconds remaining before the relays is returned to idle position (state A), during a
measured pulse generation.

relay - get_serialNumber()
Returns the serial number of the module, as set by the factory.
relay - get_state()
Returns the state of the relays (A for the idle position, B for the active position).

relay - get_stateAtPowerOn()

Returns the state of the relays at device startup (A for the idle position, B for the active position,
UNCHANGED to leave the relay state as is).

relay - get_userData()
Returns the value of the userData attribute, as previously stored using method set _user Dat a.
relay - isOnline()
Checks if the relay is currently reachable, without raising any error.
relay - isOnline_async(callback, context)
Checks if the relay is currently reachable, without raising any error (asynchronous version).
relay - isReadOnly()
Test if the function is readOnly.
relay - load(msValidity)
Preloads the relay cache with a specified validity duration.

relay - loadAttribute(attrName)

Returns the current value of a single function attribute, as a text string, as quickly as possible but without using
the cached value.

relay - load_async(msValidity, callback, context)

Preloads the relay cache with a specified validity duration (asynchronous version).
relay - muteValueCallbacks()

Disables the propagation of every new advertised value to the parent hub.
relay - nextRelay()

Continues the enumeration of relays started using yFi r st Rel ay() .

relay - pulse(ms_duration)

Sets the relay to output B (active) for a specified duration, then brings it automatically back to output A (idle
state).

relay - registerValueCallback(callback)
Registers the callback function that is invoked on every change of advertised value.

relay - set_logicalName(newval)

278 www.yoctopuce.com

#YRelay.get_maxTimeOnStateA
#YRelay.get_maxTimeOnStateA
#YRelay.get_maxTimeOnStateA
#YRelay.get_maxTimeOnStateB
#YRelay.get_maxTimeOnStateB
#YRelay.get_maxTimeOnStateB
#YRelay.get_module
#YRelay.get_module
#YRelay.get_module
#YRelay.get_module_async
#YRelay.get_module_async
#YRelay.get_module_async
#YRelay.get_output
#YRelay.get_output
#YRelay.get_output
#YRelay.get_pulseTimer
#YRelay.get_pulseTimer
#YRelay.get_pulseTimer
#YRelay.get_serialNumber
#YRelay.get_serialNumber
#YRelay.get_serialNumber
#YRelay.get_state
#YRelay.get_state
#YRelay.get_state
#YRelay.get_stateAtPowerOn
#YRelay.get_stateAtPowerOn
#YRelay.get_stateAtPowerOn
#YRelay.get_userData
#YRelay.get_userData
#YRelay.get_userData
#YRelay.isOnline
#YRelay.isOnline
#YRelay.isOnline
#YRelay.isOnline_async
#YRelay.isOnline_async
#YRelay.isOnline_async
#YRelay.isReadOnly
#YRelay.isReadOnly
#YRelay.isReadOnly
#YRelay.load
#YRelay.load
#YRelay.load
#YRelay.loadAttribute
#YRelay.loadAttribute
#YRelay.loadAttribute
#YRelay.load_async
#YRelay.load_async
#YRelay.load_async
#YRelay.muteValueCallbacks
#YRelay.muteValueCallbacks
#YRelay.muteValueCallbacks
#YRelay.nextRelay
#YRelay.nextRelay
#YRelay.nextRelay
#YRelay.pulse
#YRelay.pulse
#YRelay.pulse
#YRelay.registerValueCallback
#YRelay.registerValueCallback
#YRelay.registerValueCallback
#YRelay.set_logicalName
#YRelay.set_logicalName
#YRelay.set_logicalName

23. High-level API Reference

Changes the logical name of the relay.

relay - set_maxTimeOnStateA(newval)

Changes the maximum time (ms) allowed for the relay to stay in state A before automatically switching back in
to B state.

relay - set_maxTimeOnStateB(newval)

Changes the maximum time (ms) allowed for the relay to stay in state B before automatically switching back in
to A state.

relay - set_output(newval)
Changes the output state of the relays, when used as a simple switch (single throw).

relay - set_state(newval)
Changes the state of the relays (A for the idle position, B for the active position).

relay - set_stateAtPowerOn(newval)

Changes the state of the relays at device startup (A for the idle position, B for the active position,
UNCHANGED to leave the relay state as is).

relay - set_userData(data)
Stores a user context provided as argument in the userData attribute of the function.
relay -toggle()
Switch the relay to the opposite state.
relay - unmuteValueCallbacks()
Re-enables the propagation of every new advertised value to the parent hub.
relay - wait_async(callback, context)

Waits for all pending asynchronous commands on the module to complete, and invoke the user-provided
callback function.

www.yoctopuce.com 279

#YRelay.set_maxTimeOnStateA
#YRelay.set_maxTimeOnStateA
#YRelay.set_maxTimeOnStateA
#YRelay.set_maxTimeOnStateB
#YRelay.set_maxTimeOnStateB
#YRelay.set_maxTimeOnStateB
#YRelay.set_output
#YRelay.set_output
#YRelay.set_output
#YRelay.set_state
#YRelay.set_state
#YRelay.set_state
#YRelay.set_stateAtPowerOn
#YRelay.set_stateAtPowerOn
#YRelay.set_stateAtPowerOn
#YRelay.set_userData
#YRelay.set_userData
#YRelay.set_userData
#YRelay.toggle
#YRelay.toggle
#YRelay.toggle
#YRelay.unmuteValueCallbacks
#YRelay.unmuteValueCallbacks
#YRelay.unmuteValueCallbacks
#YRelay.wait_async
#YRelay.wait_async
#YRelay.wait_async

23. High-level API Reference

YRelay.FindRelay()
YRelay.FindRelay()

YRelay

Retrieves a relay for a given identifier.

function yFindRelay(func)

YRelay* FindRelay(string func)

+(YRelay*) FindRelay : (NSString*) func
TYRelay yFindRelay(func: string): TYRelay
function FindRelay(ByVal func As String) As YRelay
static YRelay FindRelay(string func)

static YRelay FindRelay(String func)

static YRelay FindRelay(string func)
FindRelay(func)

function FindRelay($func)

static FindRelay(func: string): YRelay
static FindRelay(func)

static YRelayProxy FindRelay(string func)
static YRelayProxy * FindRelay(string func)

The identifier can be specified using several formats:

¢ FunctionLogicalName
ModuleSerialNumber.Functionldentifier
ModuleSerialNumber.FunctionLogicalName
ModuleLogicalName.Functionldentifier
ModuleLogicalName.FunctionLogicalName

This function does not require that the relay is online at the time it is invoked. The returned object is
nevertheless valid. Use the method YRel ay. i sOnl i ne() to test if the relay is indeed online at a
given time. In case of ambiguity when looking for a relay by logical name, no error is notified: the first
instance found is returned. The search is performed first by hardware name, then by logical name.

If a call to this object's is_online() method returns FALSE although you are certain that the matching
device is plugged, make sure that you did call registerHub() at application initialization time.

Parameters :

Returns :
a YRel ay object allowing you to drive the relay.

func a string that uniquely characterizes the relay, for instance YLTCHRL1. r el ay 1.

280

www.yoctopuce.com

23. High-level API Reference

YRelay.FindRelaylnContext() YRelay
YRelay.FindRelaylnContext()

Retrieves a relay for a given identifier in a YAPI context.

static YRelay FindRelayInContext(YAPIContext yctx, String func)
static YRelay FindRelayInContext(YAPIContext yctx, string func)
static FindRelayInContext(yctx: YAPIContext, func: string): YRelay

static FindRelayInContext(yctx, func)

The identifier can be specified using several formats:

FunctionLogicalName
ModuleSerialNumber.Functionldentifier
ModuleSerialNumber.FunctionLogicalName
ModuleLogicalName.Functionldentifier
ModuleLogicalName.FunctionLogicalName

This function does not require that the relay is online at the time it is invoked. The returned object is
nevertheless valid. Use the method YRel ay. i sOnl i ne() to test if the relay is indeed online at a
given time. In case of ambiguity when looking for a relay by logical name, no error is notified: the first
instance found is returned. The search is performed first by hardware name, then by logical name.

Parameters :
yctx a YAPI context
func a string that uniquely characterizes the relay, for instance YLTCHRL1. r el ay 1.

Returns :
a YRel ay object allowing you to drive the relay.

www.yoctopuce.com 281

23. High-level API Reference

YRelay.FirstRelay()
YRelay.FirstRelay()

YRelay

Starts the enumeration of relays currently accessible.

function yFirstRelay()

YRelay * FirstRelay()
+(YRelay*) FirstRelay

TYRelay yFirstRelay(): TYRelay
function FirstRelay() As YRelay
static YRelay FirstRelay()

static YRelay FirstRelay()

static YRelay FirstRelay/()
FirstRelay()

function FirstRelay()

static FirstRelay(): YRelay | null
static FirstRelay()

Use the method YRel ay. next Rel ay() to iterate on next relays.

Returns :

a pointer to a YRel ay object, corresponding to the first relay currently online, or a nul | pointer if there

are none.

282

www.yoctopuce.com

23. High-level API Reference

YRelay.FirstRelaylnContext() YRelay
YRelay.FirstRelaylnContext()

Starts the enumeration of relays currently accessible.

static YRelay FirstRelayInContext(YAPIContext yctx)
static YRelay FirstRelaylnContext(YAPIContext yctx)
static FirstRelaylnContext(yctx: YAPIContext): YRelay | null

static FirstRelaylnContext(yctx)

Use the method YRel ay. next Rel ay() to iterate on next relays.

Vs

Parameters :
yctx a YAPI context.

Returns :

a pointer to a YRel ay object, corresponding to the first relay currently online, or a nul | pointer if there
are none.

www.yoctopuce.com 283

23. High-level API Reference

YRelay.GetSimilarFunctions() YRelay
YRelay.GetSimilarFunctions()

Enumerates all functions of type Relay available on the devices currently reachable by the library,
and returns their unique hardware ID.

static new string[] GetSimilarFunctions()
static vector<string> GetSimilarFunctions()

Each of these IDs can be provided as argument to the method YRel ay. Fi ndRel ay to obtain an
object that can control the corresponding device.

Returns :
an array of strings, each string containing the unique hardwareld of a device function currently connected.

284 www.yoctopuce.com

23. High-level API Reference

relay - AdvertisedValue YRelay

Short string representing the current state of the function.

string AdvertisedValue

www.yoctopuce.com 285

23. High-level API Reference

relay —» FriendlyName YRelay

Global identifier of the function in the format MODULE_NAME. FUNCTI ON_NAME.

string FriendlyName

The returned string uses the logical names of the module and of the function if they are defined,
otherwise the serial number of the module and the hardware identifier of the function (for example:
MyCust omNane. r el ayl)

286 www.yoctopuce.com

23. High-level API Reference

relay - Functionld YRelay

Hardware identifier of the relay, without reference to the module.

string Functionld

For example r el ay1l

www.yoctopuce.com 287

23. High-level API Reference

relay - Hardwareld YRelay

Unique hardware identifier of the function in the form SERI AL. FUNCTI ONI D.

string Hardwareld

The unique hardware identifier is composed of the device serial number and of the hardware identifier
of the function (for example RELAYLOL- 123456. r el ayl).

288 www.yoctopuce.com

23. High-level API Reference

relay - I1sOnline YRelay

Checks if the function is currently reachable.

bool IsOnline

If there is a cached value for the function in cache, that has not yet expired, the device is considered
reachable. No exception is raised if there is an error while trying to contact the device hosting the
function.

www.yoctopuce.com 289

23. High-level API Reference

relay - LogicalName YRelay

Logical name of the function.

string LogicalName

Writable. You can use yCheckLogi cal Name() prior to this call to make sure that your parameter is
valid. Remember to call the saveToFl ash() method of the module if the modification must be kept.

290 www.yoctopuce.com

23. High-level API Reference

relay - MaxTimeOnStateA YRelay

Maximum time (ms) allowed for the relay to stay in state A before automatically switching back in to
B state.

long MaxTimeOnStateA

Zero means no time limit.

Writable. Use zero for no time limit. Remember to call the saveToFl ash() method of the module if
the modification must be kept.

www.yoctopuce.com 291

23. High-level API Reference

relay - MaxTimeOnStateB YRelay

The maximum time (ms) allowed for the relay to stay in state B before automatically switching back
in to A state.

long MaxTimeOnStateB

Zero means no time limit.

Writable. Use zero for no time limit. Remember to call the saveToFl ash() method of the module if
the modification must be kept.

292 www.yoctopuce.com

23. High-level API Reference

relay - SerialNumber YRelay

Serial number of the module, as set by the factory.

string SerialNumber

www.yoctopuce.com 293

23. High-level API Reference

relay - State YRelay

State of the relays (A for the idle position, B for the active position).
int State

Writable.

294 www.yoctopuce.com

23. High-level API Reference

relay - StateAtPowerOn YRelay

State of the relays at device startup (A for the idle position, B for the active position, UNCHANGED
to leave the relay state as is).

int StateAtPowerOn

Writable. Remember to call the matching module saveToFl ash() method, otherwise this call will
have no effect.

www.yoctopuce.com 295

23. High-level API Reference

relay - clearCache() YRelay

Invalidates the cache.

[is |function clearCache()
m void clearCache()
-(void) clearCache
clearCache()

procedure clearCache()
void clearCache()

void clearCache()
clearCache()

[php_|function clearCache()
async clearCache(): Promise<void>
async clearCache()

Invalidates the cache of the relay attributes. Forces the next call to get_xxx() or loadxxx() to use values
that come from the device.

296 www.yoctopuce.com

23. High-level API Reference

relay — delayedPulse() YRelay
Schedules a pulse.
function delayedPulse(ms_delay, ms_duration)
int delayedPulse(int ms_delay, int ms_duration)
-(int) delayedPulse : (int) ms_delay
: (int) ms_duration
integer delayedPulse(ms_delay: Longint, ms_duration: Longint): integer
function delayedPulse(ByVal ms_delay As Integer,
ByVal ms_duration As Integer) As Integer
int delayedPulse(int ms_delay, int ms_duration)
int delayedPulse(int ms_delay, int ms_duration)
async Task<int> delayedPulse(int ms_delay, int ms_duration)
delayedPulse(ms_delay, ms_duration)
function delayedPulse($ms_delay, $ms_duration)
async delayedPulse(ms_delay: number, ms_duration: number): Promise<number>
async delayedPulse(ms_delay, ms_duration)
int delayedPulse(int ms_delay, int ms_duration)
int delayedPulse(int ms_delay, int ms_duration)
| cmd | YRelay target delayedPulse ms_delay ms_duration
Parameters :
ms_delay waiting time before the pulse, in milliseconds
ms_duration pulse duration, in milliseconds
Returns :
YAPI . SUCCESS if the call succeeds.
On failure, throws an exception or returns a negative error code.
www.yoctopuce.com 297

23. High-level API Reference

relay — describe() YRelay

Returns a short text that describes unambiguously the instance of the relay in the form
TYPE(NAMVE) =SERI AL. FUNCTI ONI D.

[Js |function describe()

string describe()
-(NSString*) describe

string describe(): string

| vb_[function describe() As String
string describe()

String describe()

describe()

[php_|function describe()

async describe(): Promise<string>
async describe()

More precisely, TYPE is the type of the function, NAME it the name used for the first access to the
function, SERI AL is the serial number of the module if the module is connected or " unr esol ved",
and FUNCTI ONI D is the hardware identifier of the function if the module is connected. For example,
this method returns Rel ay(MyCust onNane. r el ayl) =RELAYLOL- 123456. rel ayl if the
module is already connected or Rel ay(BadCust oneNane. r el ayl) =unr esol ved if the module
has not yet been connected. This method does not trigger any USB or TCP transaction and can
therefore be used in a debugger.

Returns :
a string that describes the relay (ex:

Rel ay(MyCust omName. rel ayl) =RELAYLO1- 123456.rel ayl)

298 www.yoctopuce.com

relay - get_advertisedValue()
relay - advertisedValue()

23. High-level API Reference

YRelay

Returns the current value of the relay (no more than 6 characters).

function get_advertisedValue()

string get_advertisedValue()

-(NSString*) advertisedValue

string get_advertisedValue(): string
function get_advertisedValue() As String
string get_advertisedValue()

String get_advertisedValue()

async Task<string> get_advertisedValue()
get_advertisedValue()

function get_advertisedValue()

async get_advertisedValue(): Promise<string>
async get_advertisedValue()

string get_advertisedValue()

string get_advertisedValue()

YRelay target get_advertisedValue

Returns :

a string corresponding to the current value of the relay (no more than 6 characters).

On failure, throws an exception or returns YRel ay. ADVERTI SEDVALUE_| NVALI D.

www.yoctopuce.com

299

23. High-level API Reference

relay - get_countdown() YRelay
relay - countdown()

Returns the number of milliseconds remaining before a pulse (delayedPulse() call) When there is no
scheduled pulse, returns zero.

function get_countdown()

s64 get_countdown()

-(s64) countdown

int64 get_countdown(): int64
function get_countdown() As Long
long get_countdown()

long get_countdown()

async Task<long> get_countdown()
get_countdown()

[php_|function get_countdown()

async get_countdown(): Promise<number>
async get_countdown()

long get_countdown()

s64 get_countdown()

YRelay target get_countdown

Returns :
an integer corresponding to the number of milliseconds remaining before a pulse (delayedPulse() call) When
there is no scheduled pulse, returns zero

On failure, throws an exception or returns YRel ay. COUNTDOAN | NVALI D.

300 www.yoctopuce.com

23. High-level API Reference

relay - get_errorMessage() YRelay
relay — errorMessage()

Returns the error message of the latest error with the relay.

function get_errorMessage()
string get_errorMessage()
-(NSString*) errorMessage

string get_errorMessage(): string
function get_errorMessage() As String
string get_errorMessage()

String get_errorMessage()
get_errorMessage()

function get_errorMessage()
get_errorMessage(): string
get_errorMessage()

This method is mostly useful when using the Yoctopuce library with exceptions disabled.

Returns :
a string corresponding to the latest error message that occured while using the relay object

www.yoctopuce.com 301

23. High-level API Reference

relay - get_errorType()
relay —errorType()

YRelay

Returns the numerical error code of the latest error with the relay.

function get_errorType()

YRETCODE get_errorType()
-(YRETCODE) errorType

YRETCODE get_errorType(): YRETCODE
function get_errorType() As YRETCODE
YRETCODE get_errorType()

int get_errorType()

get_errorType()

function get_errorType()
get_errorType(): number
get_errorType()

This method is mostly useful when using the Yoctopuce library with exceptions disabled.

Returns :

a number corresponding to the code of the latest error that occurred while using the relay object

302

www.yoctopuce.com

23. High-level API Reference

relay - get_friendlyName() YRelay
relay - friendlyName()

Returns a global identifier of the relay in the format MODULE_NAME. FUNCTI ON_NAME.

function get_friendlyName()

string get_friendlyName()

-(NSString*) friendlyName

string get_friendlyName()

String get_friendlyName()
get_friendlyName()

function get_friendlyName()

async get_friendlyName(): Promise<string>
async get_friendlyName()

string get_friendlyName()

string get_friendlyName()

The returned string uses the logical names of the module and of the relay if they are defined, otherwise

the serial number of the module and the hardware identifier of the relay (for example:
MyCust omNane. r el ayl)

Returns :
a string that uniquely identifies the relay using logical names (ex: MyCust onNane. r el ay1)

On failure, throws an exception or returns YRel ay. FRI ENDLYNAME | NVALI D.

www.yoctopuce.com 303

23. High-level API Reference

relay - get_functionDescriptor() YRelay
relay - functionDescriptor()

Returns a unique identifier of type YFUN_DESCR corresponding to the function.

function get_functionDescriptor()
YFUN_DESCR get_functionDescriptor()

-(YFUN_DESCR) functionDescriptor

YFUN_DESCR get_functionDescriptor(): YFUN_DESCR
function get_functionDescriptor() As YFUN_DESCR
YFUN_DESCR get_functionDescriptor()

String get_functionDescriptor()
get_functionDescriptor()

function get_functionDescriptor()

async get_functionDescriptor(): Promise<string>

async get_functionDescriptor()

This identifier can be used to test if two instances of YFunct i on reference the same physical function
on the same physical device.

Ve

Returns :
an identifier of type YFUN_DESCR

If the function has never been contacted, the returned value is
Y$CLASSNAMES. FUNCTI ONDESCRI PTOR_I NVALI D.

304 www.yoctopuce.com

relay - get_functionld()
relay - functionld()

23. High-level API Reference

YRelay

Returns the hardware identifier of the relay, without reference to the module.

function get_functionld()

string get_functionld()
-(NSString*) functionld

function get_functionld() As String
string get_functionld()

String get_functionld()
get_functionld()

function get_functionld()

async get_functionld(): Promise<string>
async get_functionld()

string get_functionld()

string get_functionld()

For example r el ayl

Returns :
a string that identifies the relay (ex: r el ay 1)

On failure, throws an exception or returns YRel ay. FUNCTI ONI D_| NVALI D.

www.yoctopuce.com

305

23. High-level API Reference

relay - get_hardwareld() YRelay
relay — hardwareld()

Returns the unique hardware identifier of the relay in the form SERI AL. FUNCTI ONI D.

function get_hardwareld()

string get_hardwareld()
-(NSString*) hardwareld

[vb_|function get_hardwareld() As String
string get_hardwareld()

String get_hardwareld()
get_hardwareld()

[php_|function get_hardwareld()

async get_hardwareld(): Promise<string>
async get_hardwareld()

string get_hardwareld()

string get_hardwareld()

The unique hardware identifier is composed of the device serial number and of the hardware identifier
of the relay (for example RELAYLOL- 123456. r el ay1).

Returns :
a string that uniquely identifies the relay (ex: RELAYLOL- 123456. r el ay1)

On failure, throws an exception or returns YRel ay. HARDWAREI D | NVALI D.

306 www.yoctopuce.com

23. High-level API Reference

relay - get_logicalName() YRelay
relay - logicalName()
Returns the logical name of the relay.

function get_logicalName()
string get_logicalName()
-(NSString*) logicalName
string get_logicalName(): string
function get_logicalName() As String
string get_logicalName()
String get_logicalName()
async Task<string> get_logicalName()
get_logicalName()
function get_logicalName()
async get_logicalName(): Promise<string>
async get_logicalName()
string get_logicalName()
string get_logicalName()
YRelay target get_logicalName

Returns :

a string corresponding to the logical name of the relay.

On failure, throws an exception or returns YRel ay. LOG CALNAME | NVALI D.

www.yoctopuce.com 307

23. High-level API Reference

relay - get_maxTimeOnStateA() YRelay
relay - maxTimeOnStateA()

Returns the maximum time (ms) allowed for the relay to stay in state A before automatically
switching back in to B state.

function get_maxTimeOnStateA()

s64 get_maxTimeOnStateA()

-(s64) maxTimeOnStateA

int64 get_maxTimeOnStateA(): int64
function get_maxTimeOnStateA() As Long
long get_maxTimeOnStateA()

long get_maxTimeOnStateA()

async Task<long> get_maxTimeOnStateA()
get_maxTimeOnStateA()

function get_maxTimeOnStateA()

async get_maxTimeOnStateA(): Promise<number>
async get_maxTimeOnStateA()

long get_maxTimeOnStateA()

s64 get_maxTimeOnStateA()

YRelay target get_maxTimeOnStateA

Zero means no time limit.

Returns :
an integer corresponding to the maximum time (ms) allowed for the relay to stay in state A before
automatically switching back in to B state

On failure, throws an exception or returns YRel ay. MAXTI MEONSTATEA | NVALI D.

308 www.yoctopuce.com

23. High-level API Reference

relay - get_maxTimeOnStateB() YRelay
relay - maxTimeOnStateB()

Retourne the maximum time (ms) allowed for the relay to stay in state B before automatically
switching back in to A state.

function get_maxTimeOnStateB()

s64 get_maxTimeOnStateB()

-(s64) maxTimeOnStateB

int64 get_maxTimeOnStateB(): int64
function get_maxTimeOnStateB() As Long
long get_maxTimeOnStateB()

long get_maxTimeOnStateB()

async Task<long> get_maxTimeOnStateB()
get_maxTimeOnStateB()

function get_maxTimeOnStateB()

async get_maxTimeOnStateB(): Promise<number>
async get_maxTimeOnStateB()

long get_maxTimeOnStateB()

s64 get_maxTimeOnStateB()

YRelay target get_maxTimeOnStateB

Zero means no time limit.

Returns :
an integer

On failure, throws an exception or returns YRel ay. MAXTI MEONSTATEB | NVALI D.

www.yoctopuce.com 309

23. High-level API Reference

relay - get_module() YRelay
relay - module()

Gets the YMbdul e object for the device on which the function is located.

function get_module()

YModule * get_module()
-(YModule*) module

TYModule get_module(): TYModule
function get_module() As YModule
YModule get_module()

YModule get_module()
get_module()

function get_module()

async get_module(): Promise<YModule>
async get_module()

YModuleProxy get_module()
YModuleProxy * get_module()

If the function cannot be located on any module, the returned instance of YModul e is not shown as on-
line.

Returns :
an instance of YModul e

310 www.yoctopuce.com

23. High-level API Reference

relay — get_module_async() YRelay
relay - module_async()

Gets the YMbdul e object for the device on which the function is located (asynchronous version).

function get_module_async(callback, context)

If the function cannot be located on any module, the returned YMbdul e object does not show as on-
line.

This asynchronous version exists only in JavaScript. It uses a callback instead of a return value in order
to avoid blocking Firefox JavaScript VM that does not implement context switching during blocking 1/0
calls. See the documentation section on asynchronous JavasSript calls for more details.

Parameters :

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving function object and the requested
YModul e object

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

www.yoctopuce.com 311

23. High-level API Reference

relay - get_output() YRelay
relay - output()

Returns the output state of the relays, when used as a simple switch (single throw).

[is |function get_output()
Y_OUTPUT_enum get_output()
-(Y_OUTPUT_enum) output
Integer get_output(): Integer

| vb_[function get_output() As Integer
int get_output()

int get_output()

async Task<int> get_output()
get_output()

function get_output()

async get_output(): Promise<YRelay Output>
async get_output()

int get_output()

int get_output()

YRelay target get_output

Returns :
either YRel ay. OUTPUT_OFF or YRel ay. OUTPUT_ON, according to the output state of the relays,
when used as a simple switch (single throw)

On failure, throws an exception or returns YRel ay. OUTPUT_| NVALI D.

312 www.yoctopuce.com

23. High-level API Reference

relay - get_pulseTimer() YRelay
relay — pulseTimer()

Returns the number of milliseconds remaining before the relays is returned to idle position (state A),
during a measured pulse generation.

function get_pulseTimer()

s64 get_pulseTimer()

-(s64) pulseTimer

int64 get_pulseTimer(): int64
function get_pulseTimer() As Long
long get_pulseTimer()

long get_pulseTimer()

async Task<long> get_pulseTimer()
get_pulseTimer()

function get_pulseTimer()

async get_pulseTimer(): Promise<number>
async get_pulseTimer()

long get_pulseTimer()

s64 get_pulseTimer()

YRelay target get_pulseTimer

When there is no ongoing pulse, returns zero.

Returns :
an integer corresponding to the number of milliseconds remaining before the relays is returned to idle
position (state A), during a measured pulse generation

On failure, throws an exception or returns YRel ay. PULSETI MER | NVALI D.

www.yoctopuce.com 313

23. High-level API Reference

relay — get_serialNumber()
relay - serialNumber()

YRelay

Returns the serial number of the module, as set by the factory.

| is |function get_serialNumber()

string get_serialNumber()

-(NSString*) serialNumber

string get_serialNumber(): string

[vb [function get_serialNumber() As String
string get_serialNumber()

String get_serialNumber()

async Task<string> get_serialNumber()
get_serialNumber()

function get_serialNumber()

async get_serialNumber(): Promise<string>
async get_serialNumber()

string get_serialNumber()

string get_serialNumber()

YRelay target get_serialNumber

Returns :
a string corresponding to the serial number of the module, as set by the factory.

On failure, throws an exception or returns YFunction.SERIALNUMBER_INVALID.

314

www.yoctopuce.com

23. High-level API Reference

relay - get_state() YRelay
relay - state()

Returns the state of the relays (A for the idle position, B for the active position).

function get_state()
Y_STATE_enum get_state()
-(Y_STATE_enum) state
Integer get_state(): Integer
function get_state() As Integer
int get_state()

int get_state()

async Task<int> get_state()
get_state()

function get_state()

async get_state(): Promise<YRelay_State>
async get_state()

int get_state()

int get_state()

YRelay target get_state

Ve

Returns :
either YRel ay. STATE_A or YRel ay. STATE_B, according to the state of the relays (A for the idle
position, B for the active position)

On failure, throws an exception or returns YRel ay. STATE_| NVALI D.

www.yoctopuce.com 315

23. High-level API Reference

relay - get_stateAtPowerOn()
relay - stateAtPowerOn()

YRelay

Returns the state of the relays at device startup (A for the idle position, B for the active position,

UNCHANGED to leave the relay state as is).

function get_stateAtPowerOn()

Y _STATEATPOWERON_enum get_stateAtPowerOn()
-(Y_STATEATPOWERON_enum) stateAtPowerOn

Integer get_stateAtPowerOn(): Integer
function get_stateAtPowerOn() As Integer
int get_stateAtPowerOn()

int get_stateAtPowerOn()

async Task<int> get_stateAtPowerOn()
get_stateAtPowerOn()

function get_stateAtPowerOn()

async get_stateAtPowerOn(): Promise<YRelay_StateAtPowerOn>
async get_stateAtPowerOn()

int get_stateAtPowerOn()

int get_stateAtPowerOn()

YRelay target get_stateAtPowerOn

Returns :

a value among YRel ay. STATEATPONERON UNCHANGED, YRel ay. STATEATPOVNERON_A and
YRel ay. STATEATPONERON_B corresponding to the state of the relays at device startup (A for the idle
position, B for the active position, UNCHANGED to leave the relay state as is)

On failure, throws an exception or returns YRel ay. STATEATPOANERON_| NVALI D.

316

www.yoctopuce.com

23. High-level API Reference

relay - get_userData() YRelay
relay - userData()

Returns the value of the userData attribute, as previously stored using method set _user Dat a.

function get_userData()

cpp |void * get_userData()
-(id) userData
Tobject get_userData(): Tobject
function get_userData() As Object
object get_userData()
Object get_userData()
get_userData()
function get_userData()
async get_userData(): Promise<object|null>
async get_userData()

This attribute is never touched directly by the API, and is at disposal of the caller to store a context.

Returns :
the object stored previously by the caller.

www.yoctopuce.com 317

23. High-level API Reference

relay —isOnline() YRelay

Checks if the relay is currently reachable, without raising any error.

function isOnline()

bool isOnline()

-(BOOL) isOnline

boolean isOnline(): boolean

| vb_[function isOnline() As Boolean
bool isOnline()

boolean isOnline()

isOnline()

function isOnline()

async isOnline(): Promise<boolean>
async isOnline()

bool isOnline()

bool isOnline()

If there is a cached value for the relay in cache, that has not yet expired, the device is considered
reachable. No exception is raised if there is an error while trying to contact the device hosting the relay.

Returns :
t r ue if the relay can be reached, and f al se otherwise

318 www.yoctopuce.com

23. High-level API Reference

relay —isOnline_async() YRelay

Checks if the relay is currently reachable, without raising any error (asynchronous version).

[is |function isOnline_async(callback, context)

If there is a cached value for the relay in cache, that has not yet expired, the device is considered
reachable. No exception is raised if there is an error while trying to contact the device hosting the
requested function.

This asynchronous version exists only in Javascript. It uses a callback instead of a return value in order
to avoid blocking the Javascript virtual machine.

Ve

Parameters :

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving function object and the boolean result

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

www.yoctopuce.com 319

23. High-level API Reference

relay —isReadOnly() YRelay

Test if the function is readOnly.

bool isReadOnly()

-(bool) isReadOnly

boolean isReadOnly(): boolean

| vb_|function isReadOnly() As Boolean
bool isReadOnly()

boolean isReadOnly()

async Task<bool> isReadOnly()
isReadOnly()

[php_|function isReadOnly()

async isReadOnly(): Promise<boolean>
async isReadOnly()

bool isReadOnly()

bool isReadOnly()

YRelay target isReadOnly

Return t r ue if the function is write protected or that the function is not available.

Returns :
t r ue if the function is readOnly or not online.

320 www.yoctopuce.com

23. High-level API Reference

relay - load() YRelay

Preloads the relay cache with a specified validity duration.

[is |function load(msValidity)
YRETCODE load(int msValidity)
-(YRETCODE) load : (u64) msValidity

[pas | YRETCODE load(msValidity: u64): YRETCODE
function load(ByVal msValidity As Long) As YRETCODE

YRETCODE load(ulong msValidity)
int load(long msValidity)

load(msValidity)

function load($msValidity)

async load(msValidity: number): Promise<number>

async load(msValidity)

By default, whenever accessing a device, all function attributes are kept in cache for the standard
duration (5 ms). This method can be used to temporarily mark the cache as valid for a longer period, in
order to reduce network traffic for instance.

Ve

Parameters :

msValidity an integer corresponding to the validity attributed to the loaded function parameters, in
milliseconds

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 321

23. High-level API Reference

relay —loadAttribute() YRelay

Returns the current value of a single function attribute, as a text string, as quickly as possible but
without using the cached value.

function loadAttribute(attrName)

string loadAttribute(string attrName)

-(NSString*) loadAttribute : (NSString*) attrName

string loadAttribute(attrName: string): string

function loadAttribute(ByVal attrName As String) As String
string loadAttribute(string attrName)

String loadAttribute(String attrName)

async Task<string> loadAttribute(string attrName)
loadAttribute(attrName)

[php_|function loadAttribute($attrName)

async loadAttribute(attrName: string): Promise<string>
async loadAttribute(attrName)

string loadAttribute(string attrName)

string loadAttribute(string attrName)

Parameters :
attrName the name of the requested attribute

Returns :
a string with the value of the the attribute

On failure, throws an exception or returns an empty string.

322 www.yoctopuce.com

23. High-level API Reference

relay - load_async() YRelay

Preloads the relay cache with a specified validity duration (asynchronous version).
[is |function load_async(msValidity, callback, context)

By default, whenever accessing a device, all function attributes are kept in cache for the standard
duration (5 ms). This method can be used to temporarily mark the cache as valid for a longer period, in
order to reduce network traffic for instance.

This asynchronous version exists only in JavaScript. It uses a callback instead of a return value in order
to avoid blocking the JavaScript virtual machine.

Parameters :
msValidity an integer corresponding to the validity of the loaded function parameters, in milliseconds

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving function object and the error code
(or YAPI . SUCCESS)

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

www.yoctopuce.com 323

23. High-level API Reference

relay - muteValueCallbacks()

YRelay

Disables the propagation of every new advertised value to the parent hub.

| is |function muteValueCallbacks()

int muteValueCallbacks()

-(int) muteValueCallbacks

LongInt muteValueCallbacks(): Longint

[vb_[function muteValueCallbacks() As Integer
int muteValueCallbacks()

int muteValueCallbacks()

async Task<int> muteValueCallbacks()
muteValueCallbacks()

function muteValueCallbacks()

async muteValueCallbacks(): Promise<number>
async muteValueCallbacks()

int muteValueCallbacks()

int muteValueCallbacks()

YRelay target muteValueCallbacks

You can use this function to save bandwidth and CPU on computers with limited resources, or to
prevent unwanted invocations of the HTTP callback. Remember to call the saveToF| ash() method

of the module if the modification must be kept.

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

324

www.yoctopuce.com

23. High-level API Reference

relay - nextRelay() YRelay

Continues the enumeration of relays started using yFi r st Rel ay() .

function nextRelay/()

YRelay * nextRelay()

-(nullable YRelay*) nextRelay
TYRelay nextRelay(): TYRelay
function nextRelay() As YRelay
YRelay nextRelay()

YRelay nextRelay()

YRelay nextRelay()
nextRelay()

function nextRelay()
nextRelay(): YRelay | null
nextRelay()

Caution: You can't make any assumption about the returned relays order. If you want to find a specific a
relay, use Rel ay. fi ndRel ay() and a hardwarelD or a logical name.

Returns :
a pointer to a YRel ay object, corresponding to a relay currently online, or a nul | pointer if there are no
more relays to enumerate.

www.yoctopuce.com 325

23. High-level API Reference

relay - pulse() YRelay

Sets the relay to output B (active) for a specified duration, then brings it automatically back to output
A (idle state).

function pulse(ms_duration)

int pulse(int ms_duration)

-(int) pulse : (int) ms_duration

integer pulse(ms_duration: Longlnt): integer
function pulse(ByVal ms_duration As Integer) As Integer
int pulse(int ms_duration)

int pulse(int ms_duration)

async Task<int> pulse(int ms_duration)

pulse(ms_duration)

[php_|function pulse($ms_duration)

async pulse(ms_duration: number): Promise<number>
async pulse(ms_duration)

int pulse(int ms_duration)

int pulse(int ms_duration)

[cmi | YRelay target pulse ms_duration

Ve

Parameters :
ms_duration pulse duration, in milliseconds

Returns :
YAPI . SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

326 www.yoctopuce.com

23. High-level API Reference

relay - registerValueCallback() YRelay

Registers the callback function that is invoked on every change of advertised value.

function registerValueCallback(callback)

int registerValueCallback(YRelayValueCallback callback)

-(int) registerValueCallback : (YRelayValueCallback _Nullable) callback

Longint registerValueCallback(callback: TYRelayValueCallback): Longint

function registerValueCallback(ByVal callback As YRelayValueCallback) As Integer
int registerValueCallback(ValueCallback callback)

int registerValueCallback(UpdateCallback callback)

async Task<int> registerValueCallback(ValueCallback callback)
registerValueCallback(callback)

function registerValueCallback($callback)
async registerValueCallback(callback: YRelayValueCallback | null): Promise<number>

async registerValueCallback(callback)

The callback is invoked only during the execution of yS| eep or yHandl eEvent s. This provides
control over the time when the callback is triggered. For good responsiveness, remember to call one of
these two functions periodically. To unregister a callback, pass a null pointer as argument.

Parameters :

callback the callback function to call, or a null pointer. The callback function should take two arguments:
the function object of which the value has changed, and the character string describing the new
advertised value.

www.yoctopuce.com 327

23. High-level API Reference

relay - set_logicalName() YRelay
relay - setLogicalName()

Changes the logical name of the relay.

[is |function set_logicalName(newval)

int set_logicalName(string newval)

-(int) setLogicalName : (NSString*) newval

integer set_logicalName(newval: string): integer

| vb_[function set_logicalName(ByVal newval As String) As Integer
int set_logicalName(string newval)

int set_logicalName(String newval)

async Task<int> set_logicalName(string newval)
set_logicalName(newval)

function set_logicalName($newval)

async set_logicalName(newval: string): Promise<number>
async set_logicalName(newval)

int set_logicalName(string newval)

int set_logicalName(string newval)

YRelay target set_logicalName newval

You can use yCheckLogi cal Name() prior to this call to make sure that your parameter is valid.
Remember to call the saveToFl ash() method of the module if the modification must be kept.

p
Parameters :
newval a string corresponding to the logical name of the relay.

Returns :
YAPI . SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

328 www.yoctopuce.com

23. High-level API Reference

relay - set_maxTimeOnStateA() YRelay
relay - setMaxTimeOnStateA()

Changes the maximum time (ms) allowed for the relay to stay in state A before automatically
switching back in to B state.

function set_maxTimeOnStateA(newval)

[cpp_|int set_maxTimeOnStateA(s64 newval)

-(int) setMaxTimeOnStateA : (s64) newval

integer set_maxTimeOnStateA(newval: int64): integer

function set_maxTimeOnStateA(ByVal newval As Long) As Integer
int set_maxTimeOnStateA(long newval)

int set_maxTimeOnStateA(long newval)

async Task<int> set_maxTimeOnStateA(long newval)
set_maxTimeOnStateA(newval)

function set_maxTimeOnStateA($newval)

async set_maxTimeOnStateA(newval: number): Promise<number>
async set_maxTimeOnStateA(newval)

int set_maxTimeOnStateA(long newval)

int set_maxTimeOnStateA(s64 newval)

YRelay target set_maxTimeOnStateA newval

Use zero for no time limit. Remember to call the saveToFl ash() method of the module if the
modification must be kept.

p
Parameters :

newval an integer corresponding to the maximum time (ms) allowed for the relay to stay in state A before
automatically switching back in to B state

Returns :
YAPI . SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 329

23. High-level API Reference

relay - set_maxTimeOnStateB|() YRelay
relay - setMaxTimeOnStateB()

Changes the maximum time (ms) allowed for the relay to stay in state B before automatically
switching back in to A state.

function set_maxTimeOnStateB(newval)

| cpp_|int set_maxTimeOnStateB(s64 newval)

-(int) setMaxTimeOnStateB : (s64) newval

integer set_maxTimeOnStateB(newval: int64): integer
function set_maxTimeOnStateB(ByVal newval As Long) As Integer

int set_maxTimeOnStateB(long newval)

int set_maxTimeOnStateB(long newval)

async Task<int> set_maxTimeOnStateB(long newval)
set_maxTimeOnStateB(newval)

[php_|function set_maxTimeOnStateB($newval)

async set_maxTimeOnStateB(newval: number): Promise<number>
async set_maxTimeOnStateB(newval)

int set_maxTimeOnStateB(long newval)

int set_maxTimeOnStateB(s64 newval)

YRelay target set_maxTimeOnStateB newval

Use zero for no time limit. Remember to call the saveToFl ash() method of the module if the
modification must be kept.

p
Parameters :

newval an integer corresponding to the maximum time (ms) allowed for the relay to stay in state B before
automatically switching back in to A state

Returns :
YAPI . SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

330 www.yoctopuce.com

23. High-level API Reference

relay - set_output() YRelay
relay - setOutput()

Changes the output state of the relays, when used as a simple switch (single throw).

function set_output(newval)

int set_output(Y_OUTPUT_enum newval)

-(int) setOutput : (Y_OUTPUT_enum) newval

integer set_output(newval: Integer): integer

function set_output(ByVal newval As Integer) As Integer
int set_output(int newval)

int set_output(int newval)

async Task<int> set_output(int newval)

set_output(newval)

function set_output($newval)

async set_output(newval: YRelay_Output): Promise<number>
async set_output(newval)

int set_output(int newval)

int set_output(int newval)

YRelay target set_output newval

Ve

Parameters :

newval either YRel ay. OQUTPUT_OFF or YRel ay. QUTPUT_ON, according to the output state of the
relays, when used as a simple switch (single throw)

Returns :
YAPI . SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 331

23. High-level API Reference

relay - set_state() YRelay
relay - setState()

Changes the state of the relays (A for the idle position, B for the active position).

function set_state(newval)

int set_state(Y_STATE_enum newval)

-(int) setState : (Y_STATE_enum) newval

integer set_state(newval: Integer): integer
function set_state(ByVal newval As Integer) As Integer
int set_state(int newval)

int set_state(int newval)

async Task<int> set_state(int newval)

set_state(newval)

function set_state($newval)

async set_state(newval: YRelay_State): Promise<number>
async set_state(newval)

int set_state(int newval)

int set_state(int newval)

YRelay target set_state newval

Parameters :

newval either YRel ay. STATE_Aor YRel ay. STATE_B, according to the state of the relays (A for
the idle position, B for the active position)

Returns :
YAPI . SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

332 www.yoctopuce.com

23. High-level API Reference

relay - set_stateAtPowerOn() YRelay
relay - setStateAtPowerOn()

Changes the state of the relays at device startup (A for the idle position, B for the active position,
UNCHANGED to leave the relay state as is).

function set_stateAtPowerOn(newval)

int set_stateAtPowerOn(Y_STATEATPOWERON_enum newval)
-(int) setStateAtPowerOn : (Y_STATEATPOWERON_enum) newval

integer set_stateAtPowerOn(newval: Integer): integer
function set_stateAtPowerOn(ByVal newval As Integer) As Integer

int set_stateAtPowerOn(int newval)

int set_stateAtPowerOn(int newval)

async Task<int> set_stateAtPowerOn(int newval)

set_stateAtPowerOn(newval)

function set_stateAtPowerOn($newval)

async set_stateAtPowerOn(newval: YRelay_StateAtPowerOn): Promise<number>
async set_stateAtPowerOn(newval)

int set_stateAtPowerOn(int newval)

int set_stateAtPowerOn(int newval)

YRelay target set_stateAtPowerOn newval

Remember to call the matching module saveToFl ash() method, otherwise this call will have no
effect.

p
Parameters :

newval a value among YRel ay. STATEATPOWERON_UNCHANGED,
YRel ay. STATEATPONERON_A and YRel ay. STATEATPONERON B corresponding to

the state of the relays at device startup (A for the idle position, B for the active position,
UNCHANGED to leave the relay state as is)

Returns :
YAPI . SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 333

23. High-level API Reference

relay - set_userData() YRelay
relay - setUserData()

Stores a user context provided as argument in the userData attribute of the function.

| is |function set_userData(data)
m void set_userData(void * data)
-(void) setUserData : (id) data
set_userData(data: Tobject)

procedure set_userData(ByVal data As Object)

void set_userData(object data)

void set_userData(Object data)
set_userData(data)

function set_userData($data)

async set_userData(data: object|null): Promise<void>

async set_userData(data)

This attribute is never touched by the API, and is at disposal of the caller to store a context.

Parameters :
data any kind of object to be stored

334 www.yoctopuce.com

relay - toggle()

23. High-level API Reference

YRelay

Switch the relay to the opposite state.

function toggle()
inttoggle()

-(int) toggle

Longlnt toggle(): Longint
function toggle() As Integer
inttoggle()

int toggle()

async Task<int> toggle()
toggle()

function toggle()

async toggle(): Promise<number>
async toggle()

int toggle()

inttoggle()

YRelay target toggle

Returns :
YAPI . SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com

335

23. High-level API Reference

relay - unmuteValueCallbacks() YRelay

Re-enables the propagation of every new advertised value to the parent hub.

[is |function unmuteValueCallbacks()

int unmuteValueCallbacks()

-(int) unmuteValueCallbacks

LongInt unmuteValueCallbacks(): Longint

[vb_|function unmuteValueCallbacks() As Integer
int unmuteValueCallbacks()

int unmuteValueCallbacks()
async Task<int> unmuteValueCallbacks()
unmuteValueCallbacks()

function unmuteValueCallbacks()

async unmuteValueCallbacks(): Promise<number>
async unmuteValueCallbacks()

int unmuteValueCallbacks()

int unmuteValueCallbacks()

YRelay target unmuteValueCallbacks

This function reverts the effect of a previous call to mut eVal ueCal | backs() . Remember to call the
saveToFl ash() method of the module if the modification must be kept.

Returns :
YAPI . SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

336 www.yoctopuce.com

23. High-level API Reference

relay - wait_async() YRelay

Waits for all pending asynchronous commands on the module to complete, and invoke the user-
provided callback function.

function wait_async(callback, context)
[ts |wait_async(callback: Function, context: object)

[es |wait_async(callback, context)

The callback function can therefore freely issue synchronous or asynchronous commands, without
risking to block the JavaScript VM.

Ve

Parameters :

callback callback function that is invoked when all pending commands on the module are completed. The
callback function receives two arguments: the caller-specific context object and the receiving
function object.

context caller-specific object that is passed as-is to the callback function

Returns :
nothing.

www.yoctopuce.com 337

338 www.yoctopuce.com

24. Troubleshooting
24.1. Where to start?

If it is the first time that you use a Yoctopuce module and you do not really know where to start, have
a look at the Yoctopuce blog. There is a section dedicated to beginners *.

24.2. Programming examples don't seem to work

Most of Yoctopuce API programming examples are command line programs and require some
parameters to work properly. You have to start them from your operating system command prompt,
or configure your IDE to run them with the proper parameters. 2.

24.3. Linux and USB

To work correctly under Linux, the the library needs to have write access to all the Yoctopuce USB
peripherals. However, by default under Linux, USB privileges of the non-root users are limited to read
access. To avoid having to run the VirtualHub as root, you need to create a new udev rule to
authorize one or several users to have write access to the Yoctopuce peripherals.

To add a new udev rule to your installation, you must add a file with a name following the "#4#-
arbitraryName.rules" format, in the "/etc/udev/rules.d" directory. When the system is
starting, udev reads all the files with a ".rules" extension in this directory, respecting the
alphabetical order (for example, the "51-custom.rules" file is interpreted AFTER the "50-
udev-default.rules"file).

The "50-udev-default" file contains the system default udev rules. To modify the default
behavior, you therefore need to create a file with a name that starts with a number larger than 50,
that will override the system default rules. Note that to add a rule, you need a root access on the
system.

In the udev_conf directory of the VirtualHub for Linux® archive, there are two rule examples which
you can use as a basis.

1'see: http://www.yoctopuce.com/EN/blog_by_categories/for-the-beginners

see: http://www.yoctopuce.com/EN/article/about-programming-examples
3 http://www.yoctopuce.com/FR/virtualhub.php

www.yoctopuce.com 339

24. Troubleshooting

Example 1: 51-yoctopuce.rules

This rule provides all the users with read and write access to the Yoctopuce USB peripherals. Access
rights for all other peripherals are not modified. If this scenario suits you, you only need to copy the
"51-yoctopuce all.rules"file intothe "/etc/udev/rules.d" directory and to restart your
system.

udev rules to allow write access to all users
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0666"

Example 2: 51-yoctopuce_group.rules

This rule authorizes the "yoctogroup" group to have read and write access to Yoctopuce USB
peripherals. Access rights for all other peripherals are not modified. If this scenario suits you, you
only need to copy the "51-yoctopuce group.rules" file into the "/etc/udev/rules.d"
directory and restart your system.

udev rules to allow write access to all users of "yoctogroup"
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0664", GROUP="yoctogroup"

24.4. ARM Platforms: HF and EL

There are two main flavors of executable on ARM: HF (Hard Float) binaries, and EL (EABI Little
Endian) binaries. These two families are not compatible at all. The compatibility of a given ARM
platform with of one of these two families depends on the hardware and on the OS build. ArmHL and
ArmEL compatibility problems are quite difficult to detect. Most of the time, the OS itself is unable to
make a difference between an HF and an EL executable and will return meaningless messages
when you try to use the wrong type of binary.

All pre-compiled Yoctopuce binaries are provided in both formats, as two separate ArmHF et ArmEL
executables. If you do not know what family your ARM platform belongs to, just try one executable
from each family.

24.5. Powered module but invisible for the OS

If your Yocto-Relay is connected by USB, if its blue led is on, but if the operating system cannot see
the module, check that you are using a true USB cable with data wires, and not a charging cable.
Charging cables have only power wires.

24.6. Another process named xxx is already using yAPI

If when initializing the Yoctopuce API, you obtain the "Another process named xxx is already using
yAPI" error message, it means that another application is already using Yoctopuce USB modules. On
a single machine only one process can access Yoctopuce modules by USB at a time. You can easily
work around this limitation by using a VirtualHub and the network mode .

24.7. Disconnections, erratic behavior

If you Yocto-Relay behaves erratically and/or disconnects itself from the USB bus without apparent
reason, check that it is correctly powered. Avoid cables with a length above 2 meters. If needed,
insert a powered USB hub ° €.

4 see: http://www.yoctopuce.com/EN/article/error-message-another-process-is-already-using-yapi

see: http://www.yoctopuce.com/EN/article/usb-cables-size-matters
see: http://www.yoctopuce.com/EN/article/how-many-usb-devices-can-you-connect

340 www.yoctopuce.com

24. Troubleshooting

24.8. Registering a VirtualHub disconnect an other one

If, when performing a call to RegisterHub() with an VirtualHub address, an other previously registered
VirtualHub disconnects, make sure the machine running theses VirtualHubs don't have the same
Hostname. Same Hostname can happen very easily when the operating system is installed from a
monolithic image, Raspberry-Pl are the best example. The Yoctopuce API uses serial numbers to
communicate with devices and VirtualHub serial number are created on the fly based the hostname
of the machine running the VirtualHub.

24.9. Dropped commands

If, after sending a bunch of commands to a Yoctopuce device, you are under the impression that the
last ones have been ignored, typical example is a quick and dirty program meant to configure a
device, make sure you used a YAPI.FreeAPI() at the end of the program. Commands are sent to
Yoctopuce modules asynchronously thanks to a background thread. When the main program
terminates, that thread is killed no matter if some command are left to be sent. However API.FreeAPI
() will wait until there is no more commands to send before freeing the API resources and returning.

24.10. Damaged device

Yoctopuce strives to reduce the production of electronic waste. If you believe that your Yocto-Relay
is not working anymore, start by contacting Yoctopuce support by e-mail to diagnose the failure.
Even if you know that the device was damaged by mistake, Yoctopuce engineers might be able to
repair it, and thus avoid creating electronic waste.

Waste Electrical and Electronic Equipment (WEEE) If you really want to get rid of
your Yocto-Relay, do not throw it away in a trash bin but bring it to your local WEEE
recycling point. In this way, it will be disposed properly by a specialized WEEE recycling
center.

www.yoctopuce.com 341

342 www.yoctopuce.com

25. Characteristics

You can find below a summary of the main technical characteristics of your Yocto-Relay module.

Product ID RELAYLO1
Hardware release’ Rev. B
USB connector micro-B
Width 20 mm
Length 45 mm
Weight 749
Channels 2
Max switching power 60 W
Operate time 5 ms (max)
Release time 7 ms (max)
Max working voltage 60V DC
Max working voltage (AC) 50V r.m.s.
Protection class, according to IEC 61140 class Il
USB isolation, dielectric strength (1 min.) 0.25 kV
Normal operating temperature 5..40°C
Extended operating temperaturet -30...85 °C
RoHS compliance RoHS Il (2011/65/UE+2015/863)
USB Vendor ID 0x24EQ
USB Device ID 0x000C
Suggested enclosure YoctoBox-Short-Thick-Black
Harmonized tariff code 9032.9000
Made in Switzerland

T These specifications are for the current hardware revision. Specifications for earlier revisions may
differ.

* The extended temperature range is defined based on components specifications and has been
tested during a limited duration (1h). When using the device in harsh environments for a long period
of time, we strongly advise to run extensive tests before going to production.

www.yoctopuce.com 343

25. Characteristics

45

— 1550 15.50 =
b -l: Is1l@ O)rame
Z |m| = 2 C[D
[\lll |: D] =
l 5 b 0
= B0l s °m o = []
@ 7 - <= O QD '
o b-) © 3 c Q| =
S 3 2| O] BB b <=2 3| 8= @ ‘=
8| || s= “3@©§wmﬁz§m:>@ SE2 L
o o4 @ of mgsXm | D=
YL%@ [@J@L’ uuuuuuu O ==
~e 4 oK | @
| s o_¢
K = @ == @y
@ 2.50 B
MAX @ 45 | -
=
o
@l m—ﬁ@—m
fd=C PP e 1 N\ /1 IEI

All dimensions are in mm
Toutes les dimensions sont en mm

A4

Yocto-Relay

Scale

Echelle

344

www.yoctopuce.com

	Table of contents
	1. Introduction
	1.1. Safety Information
	1.2. Environmental conditions

	2. Presentation
	2.1. Common elements
	2.2. Specific elements
	2.3. Functional isolation
	2.4. Optional accessories

	3. First steps
	3.1. Prerequisites
	3.2. Testing USB connectivity
	3.3. Localization
	3.4. Test of the module
	3.5. Configuration

	4. Assembly and connections
	4.1. Fixing
	4.2. Assembly examples
	4.3. Electro-magnetic relays and coils
	4.4. USB power distribution

	5. Programming, general concepts
	5.1. Programming paradigm
	5.2. The Yocto-Relay module
	5.3. Module
	5.4. Relay
	5.5. What interface: Native, DLL or Service ?
	5.6. Programming, where to start?

	6. Using the Yocto-Relay in command line
	6.1. Installing
	6.2. Use: general description
	6.3. Control of the Relay function
	6.4. Control of the module part
	6.5. Limitations

	7. Using the Yocto-Relay with Python
	7.1. Source files
	7.2. Dynamic library
	7.3. Control of the Relay function
	7.4. Control of the module part
	7.5. Error handling

	8. Using Yocto-Relay with C++
	8.1. Control of the Relay function
	8.2. Control of the module part
	8.3. Error handling
	8.4. Integration variants for the C++ Yoctopuce library

	9. Using Yocto-Relay with C#
	9.1. Installation
	9.2. Using the Yoctopuce API in a Visual C# project
	9.3. Control of the Relay function
	9.4. Control of the module part
	9.5. Error handling

	10. Using the Yocto-Relay with LabVIEW
	10.1. Architecture
	10.2. Compatibility
	10.3. Installation
	10.4. Presentation of Yoctopuce VIs
	10.5. Functioning and use of VIs
	10.6. Using
	10.7. Managing the data logger
	10.8. Function list
	10.9. A word on performances
	10.10. A full example of a LabVIEW program
	10.11. Differences from other Yoctopuce APIs

	11. Using the Yocto-Relay with Java
	11.1. Getting ready
	11.2. Control of the Relay function
	11.3. Control of the module part
	11.4. Error handling

	12. Using the Yocto-Relay with Android
	12.1. Native access and VirtualHub
	12.2. Getting ready
	12.3. Compatibility
	12.4. Activating the USB port under Android
	12.5. Control of the Relay function
	12.6. Control of the module part
	12.7. Error handling

	13. Using Yocto-Relay with TypeScript
	13.1. Using the Yoctopuce library for TypeScript
	13.2. Refresher on asynchronous I/O in JavaScript
	13.3. Control of the Relay function
	13.4. Control of the module part
	13.5. Error handling

	14. Using Yocto-Relay with JavaScript / EcmaScript
	14.1. Blocking I/O versus Asynchronous I/O in JavaScript
	14.2. Using Yoctopuce library for JavaScript / EcmaScript 2017
	14.3. Control of the Relay function
	14.4. Control of the module part
	14.5. Error handling

	15. Using Yocto-Relay with PHP
	15.1. Getting ready
	15.2. Control of the Relay function
	15.3. Control of the module part
	15.4. HTTP callback API and NAT filters
	15.5. Error handling

	16. Using Yocto-Relay with Visual Basic .NET
	16.1. Installation
	16.2. Using the Yoctopuce API in a Visual Basic project
	16.3. Control of the Relay function
	16.4. Control of the module part
	16.5. Error handling

	17. Using Yocto-Relay with Delphi
	17.1. Preparation
	17.2. Control of the Relay function
	17.3. Control of the module part
	17.4. Error handling

	18. Using the Yocto-Relay with Universal Windows Platform
	18.1. Blocking and asynchronous functions
	18.2. Installation
	18.3. Using the Yoctopuce API in a Visual Studio project
	18.4. Control of the Relay function
	18.5. A real example
	18.6. Control of the module part
	18.7. Error handling

	19. Using Yocto-Relay with Objective-C
	19.1. Control of the Relay function
	19.2. Control of the module part
	19.3. Error handling

	20. Using with unsupported languages
	20.1. Command line
	20.2. .NET Assembly
	20.3. VirtualHub and HTTP GET
	20.4. Using dynamic libraries
	20.5. Porting the high level library

	21. Advanced programming
	21.1. Event programming

	22. Firmware Update
	22.1. The VirtualHub or the YoctoHub
	22.2. The command line library
	22.3. The Android application Yocto-Firmware
	22.4. Updating the firmware with the programming library
	22.5. The "update" mode

	23. High-level API Reference
	23.1. Class YAPI
	23.2. Class YModule
	23.3. Class YRelay

	24. Troubleshooting
	24.1. Where to start?
	24.2. Programming examples don't seem to work
	24.3. Linux and USB
	24.4. ARM Platforms: HF and EL
	24.5. Powered module but invisible for the OS
	24.6. Another process named xxx is already using yAPI
	24.7. Disconnections, erratic behavior
	24.8.
	24.9. Dropped commands
	24.10. Damaged device

	25. Characteristics

