Yocto-MaxiRelay, User's guide

Table of contents

L INTrOAUCTION oo 1
I o =T =T [1] PP 1
1.2. OPONAI BCCESSONES ...eteiiieeiiiitiit e e ettt e e e sttt e e e e s et et e e e e s antteeeaaesaanneaeeaeeesanntaeeeaaesannreeas 3
2. PreSENtAtiON ..o 5
2.1. COMIMON ElEMENTS ...ttt e e et e e e e s sk b r e e e e e e snbe et e e e s annnreeaeeeas 5
2.2. SPECITIC BIEMENTS ..ottt e et r e e e et e e e aaaaa e e e e e e e e e e anaaa 6
S IS STPS s 9
0 I o o 1172 (o] [P ERPR SRR 9
3.2. TeSt Of the MOAUIE ..ot e e e e e e e e e e e eeees 9
G TG T @] oo U = 11T o S PEURURR SR 10
4. Assembly and CONNECTIONS ..o 13
O (1T PP 13
4.2. ASSEMDBIY EXAMPIES ...oiiiiiiiiiiii e 14
4.3. Electro-magnetic relays and COIIScuviiiiiiiiiiiiii e 14
4.4, USB power diStriDULIONooiiiie et e s r e e e e e e e e e eaeas 15
5. Programming, general CONCEPLS ..o 17
5.1. Programming ParadigMccoiiiiiiiiiiiiiiiiiii e s s e e arrrraaaaaaaaaaas 17
5.2. The Yocto-MaxiRelay MOUUIE ... 19
5.3. Module CONTIOl INTEITACE uuiiiiiiiiiiiiiee et e e e e e e e e e e e e e e s e e e e e e nnnes 19
5.4. Relay funcClion INtEIACEoooiii e e e e eeeeeeaeeeas 20
5.5. What interface: Native, DLL OF SEIVICE 2uuiiiiiiiiiiiiiee et 21
5.6. Programming, Where t0 STArt?ccoooiiiiiiiiiiiiiieceeee e e e e e e e e e e e e e e ee s 24
6. Using the Yocto-MaxiRelay in command line ..., 25
0 I [1S = T o P PPPPPUPT RS 25
6.2. Use: general deSCrIPLIONcoiiiiiiiiieiie e e e e e e e e e e e s s e e s e e ee e e e e e e aaaaaaaeeaeesaeas 25
6.3. Control of the Relay fUNCHONooovii i 26
6.4. Control of the MOAUIE PAITuiiiiiiiiieieee e e e e e e e e e e e e e e s 26
TR T I T 7= L1 [o LS PR SURPRRTN 27

7. Using Yocto-MaxiRelay with JavaScript / EcmaScript ..., 29

7.1. Blocking 1/0 versus Asynchronous /O in JAVASCIIPEoovoviiiiieiiiiiiiiee e 29

7.2. Using Yoctopuce library for JavaScript / EcmaScript 2017cccooocciviiiiiiieiiiieeeeeeeeeeee e 30
7.3. Control of the Relay fUNCHIONuuiiieiiciiiicicceeee e e e e e e e e e e nnees 32
7.4. Control of the MOdUIE PArt ... e e e e e e aaaaeas 34
AT = (o Tl = T To |11 T TP 37
8. Using Yocto-MaxiRelay With PHPccoooie e 39
o TR I CT= 11 o I == T YRR 39
8.2. Control of the Relay fUNCLIONuiiieiiiiiiicicceeee e e e e e e e e e e e e nnnes 39
8.3. Control of the MOdUIE PAIt ... e e e e aaaaaeas 41
8.4. HTTP callback APl and NAT filtErS ..o 44
o IR =t ¢ o gl gt T oo | 1o [P PPPPPPRI 47
9. Using Yocto-MaxiRelay With CH+ ... 49
9.1. Control of the Relay fUNCHIONuiiiiiiiiiiiiiecceee e e e e e e e e e e enees 49
9.2. Control of the MOdUIE PArt ... e e e e aaaaaeas 51
LS RS B = (o Tl o= T o | [T T PRSP 54
9.4. Integration variants for the C++ Yoctopuce librarycccccooiiiiiiiiiiiieeeee e, 54
10. Using Yocto-MaxiRelay with Objective-C ..., 57
10.1. Control of the Relay fUNCHON ..ot e 57
10.2. Control of the MOAUIE PArtoooiviii i 59
O TR T = ¢ (o] g o = Vo | T o TP URPTOPPRRRR 61
11. Using Yocto-MaxiRelay with Visual Basic .NET ..., 63
I O [S = 4o o OO PP PO PP PPPPPOUPPPPPP 63
11.2. Using the Yoctopuce API in a Visual BasiC ProjECtcccvvviieeeeeiiiiiiiiiieccvieenieeeeeeeees 63
11.3. Control of the Relay fUNCHON ... 64
11.4. Control of the MOAUIE PAIT ..o e e e eee e e e 65
(ST =1 g (o] g F= Vg o [T T PP TP TTRPPP 68
12. Using Yocto-MaxiRelay With C# ..., 69
I R [S 1| = 14 o] IO PP O PP PPPPOUPPPPPT 69
12.2. Using the Yoctopuce APl in a Visual C# Projectccoooiviiiiiiiciiciiiiiieieiereer e e e e 69
12.3. Control of the Relay fUNCHONooiiiiii e 70
12.4. Control of the MOdUIE PArtccooiiiiiie e e e e e e e e e e e eaaaaee 72
02 T =1 (o] g =V o {11 Vo PRSP 74
13. Using Yocto-MaxiRelay with Delphi ..., 77
IR B0 R = (=T o =T = 11T o RSP 77
13.2. Control of the Relay fUNCHONooi i 77
13.3. Control of the MOAUIE PArtoooiiiiiiiii e 79
IR B S = (o] g =V o {11 T PRSP 81
14. Using the Yocto-MaxiRelay with Python ..., 83
14,0, SOUICE FIES ettt e ettt e e e e e bbb e e e e e s e bbb e e e e e e e anbbeeeaaeas 83
14.2. DYNAMIC IIDFAIY .ttt ettt e e e s ettt e e e e s e bbb e e e e e s aantbneeaaaas 83
14.3. Control of the Relay fUNCHON ... 83
14.4. Control of the MOAUIE PAtoovviiiiiiiii e 85
I T = (o] g =V o {17V PP 87
15. Using the Yocto-MaxiRelay with Java ... 89
ST I €T 1] T N =TT | TP UPPROPTPRRPP 89

15.2. Control of the Relay fUNCHON ... 89

15.3. Control of the MOAUIE PAIT ..o 91

TR S = (o] g =V o [T T RS 93
16. Using the Yocto-MaxiRelay with Android ..., 95
16.1. Native access and VirtualHUD ... 95
ST €T 1] T N =TT | PP PEPRRPRRPR 95
16.3. COMPALIDIITY e e e e e 95
16.4. Activating the USB port under ANAroidcoooveeeeieiiiiiiiiie e e e 96
16.5. Control of the Relay fUNCHON ... 98
16.6. Control of the MOAUIE PArtcoeviiiiiiiii e e 100
ST = g (o] g o = Lo | T o TSP RRPRSORPPSRRN 105
17. Advanced programming ... 107
A I AV = o o o] o To | =T 1011 T PSS 107
18. FIrmware UPAate ... 109
18.1. The VirtualHub or the YOCIOHUDeeiiiii e 109
18.2. The command lIN€ IBFAry ... 109
18.3. The Android application YOCIO-FIMMWAIEc.ceviiiiiiiiiiiieeiiiiiiee e 109
18.4. Updating the firmware with the programming librarycccccccooiiiieiiees s 110
18.5. The "UPdate” MOTEcccciiiiieiee e e e e e e e e e aaaaaeeeeeesseeanannnnns 112
19. Using with unsupported 1anguages ..., 113
19.1. ComMMANG lINE ...eeiiiiiiiitt e 113
19.2. VirtualHub and HTTP GET ..o e e e e e e e e e eeaaens 113
19.3. UsiNg dyNamiC DFAriESoeiiiiiiiiiiiiee e e e e e e e e e e e e e e e e s e e s ennnneeees 115
19.4. Porting the high level lIDrarycooooiiii e 118
20. High-level APl REEIENCE ... 119
20.1. General fUNCLIONS ...ttt e e e e e e e e e e e e e e e e e e e s s e e e s s sennnnnns 120
20.2. Module CONtrol INTEITACE uiieiiiiiiiiiie et e e e 148
20.3. Relay fUNCLON INEITACE ueiiiiiiiiieiiir e e e et e e e e e e e e e e s e e e s e e nnnnes 211
21. TroubleShOOtiNg ..o, 257
210, LINUX BN USB ..ttt ettt e ekttt e e e e s eabb et e e e e s sbbbe e e e e e e anbeneeaeeaanes 257
21.2. ARM Platforms: HF @nd ELcc.uuiiiiiiiiieeceeeee et 258
21.3. Powered module but invisible for the OS ... 258
21.4. Another process named xxx is already USING YAPI ... 258
21.5. Disconnections, erratic DENAVIOroocuiiiiiiiiiii e 258
P A 1T = (o T - TP PPT TP 258
22. CRAlACTEIISTICS ..ot 259
[1= o] 1 o1 AP PPPPTPRPPPPR 261

1. Introduction

The Yocto-MaxiRelay module is a 69x58mm module which allows you to control relays by USB.
These relays can commute up to 57VDC and 6A. This allows you to pilot numerous small
equipments by acting directly on their DC power supply.

The Yocto-MaxiRelay module

Yoctopuce thanks you for buying this Yocto-MaxiRelay and sincerely hopes that you will be satisfied
with it. The Yoctopuce engineers have put a large amount of effort to ensure that your Yocto-
MaxiRelay is easy to install anywhere and easy to drive from a maximum of programming languages.
If you are nevertheless disappointed with this module, do not hesitate to contact Yoctopuce support'.

By design, all Yoctopuce modules are driven the same way. Therefore, user's guides for all the
modules of the range are very similar. If you have already carefully read through the user's guide of
another Yoctopuce module, you can jump directly to the description of the module functions.

1.1. Prerequisites

In order to use your Yocto-MaxiRelay module, you should have the following items at hand.

1 support@yoctopuce.com

www.yoctopuce.com

1. Introduction

A computer

Yoctopuce modules are intended to be driven by a computer (or possibly an embedded
microprocessor). You will write the control software yourself, according to your needs, using the
information provided in this manual.

Yoctopuce provides software libraries to drive its modules for the following operating systems:
Windows, Mac OS X, Linux, and Android. Yoctopuce modules do not require installing any specific
system driver, as they leverage the standard HID driver? provided with every operating system.

Windows versions currently supported are: Windows XP, Windows 2003, Windows Vista, Windows
7, Windows 8 and Windows 10. Both 32 bit and 64 bit versions are supported. Yoctopuce is
frequently testing its modules on Windows 7 and Windows 10.

Mac OS X versions currently supported are: 10.9 (Maverick), 10.10 (Yosemite), 10.11 (El Capitan)
and 10.12 (Sierra). Yoctopuce is frequently testing its modules on Mac OS X 10.11.

Linux kernels currently supported are the 2.6 branch, the 3.0 branch and the 4.0 branch. Other
versions of the Linux kernel, and even other UNIX variants, are very likely to work as well, as Linux
support is implemented through the standard libusb API. Yoctopuce is frequently testing its modules
on Linux kernel 3.19.

Android versions currently supported are: Android 3.1 and later. Moreover, it is necessary for the

tablet or phone to support the Host USB mode. Yoctopuce is frequently testing its modules on
Android 4.x on a Nexus 7 and a Samsung Galaxy S3 with the Java for Android library.

A USB cable, type A-micro B

USB connectors exist in three sizes: the "standard" size that you probably use to connect your
printer, the very common mini size to connect small devices, and finally the micro size often used to
connect mobile phones, as long as they do not exhibit an apple logo. All USB modules manufactured

by Yoctopuce use micro size connectors.

-
7 i
T § 0

The most common USB 2 connectors: A, B, Mini B, Micro A, Micro B.3

D

[o<]
=1 [§
0

(=[]]

To connect your Yocto-MaxiRelay module to a computer, you need a USB cable of type A-micro B.
The price of this cable may vary a lot depending on the source, look for it under the name USB A to
micro B Data cable. Make sure not to buy a simple USB charging cable without data connectivity.
The correct type of cable is available on the Yoctopuce shop.

2The HID driver is the one that takes care of the mouse, the keyboard, etc.
3 Although they existed for some time, Mini A connectors are not available anymore http://www.usb.org/developers/
Deprecation_Announcement_052507.pdf

2 www.yoctopuce.com

1. Introduction

You must plug in your Yocto-MaxiRelay module with a USB cable of type A - micro B.

If you insert a USB hub between the computer and the Yocto-MaxiRelay module, make sure to take
into account the USB current limits. If you do not, be prepared to face unstable behaviors and
unpredictable failures. You can find more details on this topic in the chapter about assembly and
connections.

1.2. Optional accessories

The accessories below are not necessary to use the Yocto-MaxiRelay module but might be useful
depending on your project. These are mostly common products that you can buy from your favorite
hacking store. To save you the tedious job of looking for them, most of them are also available on the
Yoctopuce shop.

Screws and spacers

In order to mount the Yocto-MaxiRelay module, you can put small screws in the 3mm assembly
holes, with a screw head no larger than 8mm. The best way is to use threaded spacers, which you
can then mount wherever you want. You can find more details on this topic in the chapter about
assembly and connections.

Micro-USB hub

If you intend to put several Yoctopuce modules in a very small space, you can connect them directly
to a micro-USB hub. Yoctopuce builds a USB hub particularly small for this purpose (down to
20mmx36mm), on which you can directly solder a USB cable instead of using a USB plug. For more
details, see the micro-USB hub information sheet.

YoctoHub-Ethernet, YoctoHub-Wireless and YoctoHub-GSM

You can add network connectivity to your Yocto-MaxiRelay, thanks to the YoctoHub-Ethernet, the
YoctoHub-Wireless and the YoctoHub-GSM which provides repectiveley Ethernet, WiFi and GSM
connectivity. All of them can drive up to three devices and behave exactly like a regular computer
running a VirtualHub.

Solid copper ribbon cable

If you wish to solder the Yocto-MaxiRelay module directly to a micro-USB hub to save on the space
used by USB cables, consider using solid copper ribbon cable: it is much easier to solder. In any
case, you will need cable with 4 wires with 1.27mm pitch.

www.yoctopuce.com 3

www.yoctopuce.com

2. Presentation

ZIZIZIZIZIZIZIC]

©

1: USB socket 4: State led for relay 1
2: Yocto-button 5: State led for relay 2
3: Yocto-led 6: Relay 1 terminal

7: Relay 2 terminal

2.1. Common elements

All Yocto-modules share a number of common functionalities.

USB connector

Yoctopuce modules all come with a micro-B USB socket. The corresponding cables are not the most
common, but the sockets are the smallest available.

Warning: the USB connector is simply soldered in surface and can be pulled out if the USB plug acts
as a lever. In this case, if the tracks stayed in position, the connector can be soldered back with a
good iron and using flux to avoid bridges. Alternatively, you can solder a USB cable directly in the
1.27mm-spaced holes near the connector.

Yocto-button

The Yocto-button has two functionalities. First, it can activate the Yocto-beacon mode (see below
under Yocto-led). Second, if you plug in a Yocto-module while keeping this button pressed, you can

www.yoctopuce.com

2. Presentation

then reprogram its firmware with a new version. Note that there is a simpler Ul-based method to
update the firmware, but this one works even in case of severely damaged firmware.

Yocto-led

Normally, the Yocto-led is used to indicate that the module is working smoothly. The Yocto-led then
emits a low blue light which varies slowly, mimicking breathing. The Yocto-led stops breathing when
the module is not communicating any more, as for instance when powered by a USB hub which is
disconnected from any active computer.

When you press the Yocto-button, the Yocto-led switches to Yocto-beacon mode. It starts flashing
faster with a stronger light, in order to facilitate the localization of a module when you have several
identical ones. It is indeed possible to trigger off the Yocto-beacon by software, as it is possible to
detect by software that a Yocto-beacon is on.

The Yocto-led has a third functionality, which is less pleasant: when the internal software which
controls the module encounters a fatal error, the Yocto-led starts emitting an SOS in morse . If this
happens, unplug and re-plug the module. If it happens again, check that the module contains the
latest version of the firmware, and, if it is the case, contact Yoctopuce support?.

Current sensor

Each Yocto-module is able to measure its own current consumption on the USB bus. Current supply
on a USB bus being quite critical, this functionality can be of great help. You can only view the
current consumption of a module by software.

Serial number

Each Yocto-module has a unique serial number assigned to it at the factory. For Yocto-MaxiRelay
modules, this number starts with HIBPWER1. The module can be software driven using this serial
number. The serial number cannot be modified.

Logical name

The logical name is similar to the serial number: it is a supposedly unique character string which
allows you to reference your module by software. However, in the opposite of the serial number, the
logical name can be modified at will. The benefit is to enable you to build several copies of the same
project without needing to modify the driving software. You only need to program the same logical
name in each copy. Warning: the behavior of a project becomes unpredictable when it contains
several modules with the same logical name and when the driving software tries to access one of
these modules through its logical name. When leaving the factory, modules do not have an assigned
logical name. It is yours to define.

2.2. Specific elements

Screw terminal

The eight relays embedded in the Yocto-MaxiRelay module function as simple commutators. It
means that when they are at rest (state A), the commanded circuit is open; when the relay is active
(state B), the circuit is closed.

1 short-short-short long-long-long short-short-short
support@yoctopuce.com

6 www.yoctopuce.com

2. Presentation

B 888.0

=
R R |

oO O

1
cca
(= =]

O &

@o

Relay wiring inside the module.

Leds indicating the active output

Right in front of the relays, there is a group of eight green leds which indicate which relay is active.
By default, the light of these leds is rather strong, but you can change their luminosity by software.

www.yoctopuce.com 7

www.yoctopuce.com

3. First steps

When reading this chapter, your Yocto-MaxiRelay should be connected to your computer, which
should have recognized it. It is time to make it work.

Go to the Yoctopuce web site and download the Virtual Hub software'. It is available for Windows,
Linux, and Mac OS X. Normally, the Virtual Hub software serves as an abstraction layer for
languages which cannot access the hardware layers of your computer. However, it also offers a
succinct interface to configure your modules and to test their basic functions. You access this
interface with a simple web browser?. Start the Virtual Hub software in a command line, open your
preferred web browser and enter the URL http://127.0.0.1:4444. The list of the Yoctopuce modules
connected to your computer is displayed.

Serial Logical Name Description
VIRTHUBO-7d1a86fk VirtualHub
APWER1-03059 Yocto-MaxiRelay

Module list as displayed in your web bowser.

3.1. Localization

You can then physically localize each of the displayed modules by clicking on the beacon button.
This puts the Yocto-led of the corresponding module in Yocto-beacon mode. It starts flashing, which
allows you to easily localize it. The second effect is to display a little blue circle on the screen. You
obtain the same behavior when pressing the Yocto-button of the module.

3.2. Test of the module

The first item to check is that your module is working well: click on the serial number corresponding
to your module. This displays a window summarizing the properties of your Yocto-MaxiRelay.

T www.yoctopuce.com/EN/virtualhub.php
2 The interface is tested on Chrome, FireFox, Safari, Edge et IE 11.

www.yoctopuce.com

3. First steps

[—_—
height 250V / 6A (max 1500W) relays. This
device might draw up to 350 mA from USB

Kernel

Serial # HIBPWER1-03059

Product name: Yocto-MaxiRelay

Logical name:

Productrelease: 1

Firmware: 6262

Consumption: 24 mA

Beacon: Inactive (tum on)
Luminosity: 50%

Actuators

State of relay 1: A
State of relay 3: A
State of relay 5: A
State of relay 7: A

8] State ofrelay2: A
State of relay 4: A
State of relay 6: A
8) State of relay 8: A

Misc

Open APl browser (pop-up)
Get user manual from yoctopuce.com

Properties of the Yocto-MaxiRelay module.

This window allows you, among other things, to test the relays with the switch to A / switch to B
buttons. There is a characteristic clicking when a relay is working. Moreover, the led corresponding to
the active output lights up. Notice that the module consumption varies according to the active
outputs.

3.3. Configuration

When, in the module list, you click on the configure button corresponding to your module, the
configuration window is displayed.

IS R 03e0|
Edit parameters for device HIBPWER1-03059, and click on the Save
button.
Serial # HIBPWER1-03059
Product name: Yocto-MaxiRelay
Firmware: 6262 (ugrade)
Logical name: | |
Luminosity: \'\ (signal leds only)
Device functions

Each function of the device has a physical name and a logical name
You can change the logical name using the rename button.

HISPWER1-03059 relay1/
HISPWER1-03058 relay2 /
HISPWER1-03059 relay3/
HISPWER1-03059 relayd /
HISPWER1-03059 relay5 /
HISPWER1-03059.relay6 /
HISPWER1-03059.relay7 /
HISPWER1-03059.relays /

[cancel|

Yocto-MaxiRelay module configuration.

Firmware

The module firmware can easily be updated with the help of the interface. To do so, you must
beforehand have the adequate firmware on your local disk. Firmware destined for Yoctopuce
modules are available as .byn files and can be downloaded from the Yoctopuce web site.

To update a firmware, simply click on the upgrade button on the configuration window and follow the
instructions. If the update fails for one reason or another, unplug and re-plug the module and start
the update process again. This solves the issue in most cases. If the module was unplugged while it
was being reprogrammed, it does probably not work anymore and is not listed in the interface.

10 www.yoctopuce.com

3. First steps

However, it is always possible to reprogram the module correctly by using the Virtual Hub software 3
in command line “.

Logical name of the module

The logical name is a name that you choose, which allows you to access your module, in the same
way a file name allows you to access its content. A logical name has a maximum length of 19
characters. Authorized characters are A..7Z, a..z, 0..9, , and -. If you assign the same logical name
to two modules connected to the same computer and you try to access one of them through this
logical name, behavior is undetermined: you have no way of knowing which of the two modules
answers.

Luminosity

This parameter allows you to act on the maximal intensity of the leds of the module. This enables
you, if necessary, to make it a little more discreet, while limiting its power consumption. Note that this
parameter acts on all the signposting leds of the module, including the Yocto-led. If you connect a
module and no led turns on, it may mean that its luminosity was set to zero.

Logical names of functions

Each Yoctopuce module has a serial number and a logical name. In the same way, each function on
each Yoctopuce module has a hardware name and a logical name, the latter can be freely chosen by
the user. Using logical names for functions provides a greater flexibility when programming modules.

The only functions of the Yocto-MaxiRelay module correspond to its embedded relays, with hardware
names "relay1" to "relay8".

3 www.yoctopuce.com/EN/virtualhub.php
4 More information available in the virtual hub documentation

www.yoctopuce.com 11

12

www.yoctopuce.com

4. Assembly and connections

This chapter provides important information regarding the use of the Yocto-MaxiRelay module in
real-world situations. Make sure to read it carefully before going too far into your project if you want
to avoid pitfalls.

4.1. Fixing

While developing your project, you can simply let the module hang at the end of its cable. Check only
that it does not come in contact with any conducting material (such as your tools). When your project
is almost at an end, you need to find a way for your modules to stop moving around.

Examples of assembly on supports

The Yocto-MaxiRelay module contains 3mm assembly holes. You can use these holes for screws.
The screw head diameter must not be larger than 8mm or they will damage the module circuits.
Make sure that the lower surface of the module is not in contact with the support. We recommend
using spacers, but other methods are possible. Nothing prevents you from fixing the module with a
glue gun; it will not be good-looking, but it will hold.

www.yoctopuce.com 13

4. Assembly and connections

4.2. Assembly examples

If you obtained this Yocto-MaxiRelay module, it is probably because you know exactly what you
intend to do with it. You can nevertheless find below a few wiring examples, among the simplest.

Pilot a light bulb with your Yocto-MaxiRelay module.

VI ——

e

Ul

Pilot two light bulbs with your Yocto-MaxiRelay module.

4.3. Electro-magnetic relays and coils

Some devices that you may wish to control with your Yocto-MaxiRelay module contain large coils. It
is in particular the case for electric motors and transformers. This may cause trouble because of the
auto-induction generated when current goes through a coil. A very high voltage briefly appears at the
ends of a coil when when one brutally cuts the current passing through it. This high voltage can
create an electric arc where the circuit was cut, in our case inside the relay soldered on the module.
This electric arc can eat away the relay connections, leading to premature aging.

Therefore, we advise against controlling electric motors or transformers with an electro-magnetic
relay, be it a Yocto-MaxiRelay module, or any other command system based on this technology.

It is possible to limit this phenomenon by inserting a TVS diode in parallel with the device containing
the coil. These diodes are blocking below a specified voltage, and conductive beyond. So if you
clamp one of theses diode on your inductive load, this will short cut voltage peaks. You only have to
choose a diode with the right clamping voltage for your application. If you wish to know more, Tyco
published an application note about this .

1 Relay contact life, Application note, Tyco electronics, http://relays.te.com/appnotes/app_pdfs/13c3236.pdf

14 www.yoctopuce.com

4. Assembly and connections

T e

Controlling an electric motor with a relay, using a protecting diode.

4.4. USB power distribution

Although USB means Universal Serial BUS, USB devices are not physically organized as a flat bus
but as a tree, using point-to-point connections. This has consequences on power distribution: to
make it simple, every USB port must supply power to all devices directly or indirectly connected to it.
And USB puts some limits.

In theory, a USB port provides 100mA, and may provide up to 500mA if available and requested by
the device. In the case of a hub without external power supply, 100mA are available for the hub itself,
and the hub should distribute no more than 100mA to each of its ports. This is it, and this is not
much. In particular, it means that in theory. it is not possible to connect USB devices through two
cascaded hubs without external power supply. In order to cascade hubs, it is necessary to use self-
powered USB hubs, that provide a full 500mA to each subport.

In practice, USB would not have been as successful if it was really so picky about power distribution.
As it happens, most USB hub manufacturers have been doing savings by not implementing current
limitation on ports: they simply connect the computer power supply to every port, and declare
themselves as self-powered hub even when they are taking all their power from the USB bus (in
order to prevent any power consumption check in the operating system). This looks a bit dirty, but
given the fact that computer USB ports are usually well protected by a hardware current limitation
around 2000mA, it actually works in every day life, and seldom makes hardware damage.

What you should remember: if you connect Yoctopuce modules through one, or more, USB hub
without external power supply, you have no safe-guard and you depend entirely on your computer
manufacturer attention to provide as much current as possible on the USB ports, and to detect
overloads before they lead to problems or to hardware damages. When modules are not provided
enough current, they may work erratically and create unpredictable bugs. If you want to prevent any
risk, do not cascade hubs without external power supply, and do not connect peripherals requiring
more than 100mA behind a bus-powered hub.

In order to help controlling and planning overall power consumption for your project, all Yoctopuce
modules include a built-in current sensor that tells (with 5mA precision) the consumption of the
module on the USB bus.

www.yoctopuce.com 15

16

www.yoctopuce.com

5. Programming, general concepts

The Yoctopuce API was designed to be at the same time simple to use and sufficiently generic for
the concepts used to be valid for all the modules in the Yoctopuce range, and this in all the available
programming languages. Therefore, when you have understood how to drive your Yocto-MaxiRelay
with your favorite programming language, learning to use another module, even with a different
language, will most likely take you only a minimum of time.

5.1. Programming paradigm

The Yoctopuce API is object oriented. However, for simplicity's sake, only the basics of object
programming were used. Even if you are not familiar with object programming, it is unlikely that this
will be a hinderance for using Yoctopuce products. Note that you will never need to allocate or
deallocate an object linked to the Yoctopuce API: it is automatically managed.

There is one class per Yoctopuce function type. The name of these classes always starts with a Y
followed by the name of the function, for example YTemperature, YRelay, YPressure, etc.. There is
also a YModule class, dedicated to managing the modules themselves, and finally there is the static
YAPI class, that supervises the global workings of the APl and manages low level communications.

Low level handling) Module handling . Feature handling

Y Temperature

B | | YModule |

YRelay

o
[YPressure |
-

]

[Y Xxx

Structure of the Yoctopuce API.

The YSensor class

Each Yoctopuce sensor function has its dedicated class: YTemperature to measure the temperature,
YVoltage to measure a voltage, YRelay to drive a relay, etc. However there is a special class that
can do more: YSensor.

www.yoctopuce.com 17

5. Programming, general concepts

The YSensor class is the parent class for all Yoctopuce sensors, and can provide access to any
sensor, regardless of its type. It includes methods to access all common functions. This makes it
easier to create applications that use many different sensors. Moreover, if you create an application
based on YSensor, it will work with all Yoctopuce sensors, even those which do no yet exist.

Programmation

In the Yoctopuce API, priority was put on the ease of access to the module functions by offering the
possibility to make abstractions of the modules implementing them. Therefore, it is quite possible to
work with a set of functions without ever knowing exactly which module are hosting them at the
hardware level. This tremendously simplifies programming projects with a large number of modules.

From the programming stand point, your Yocto-MaxiRelay is viewed as a module hosting a given
number of functions. In the API, these functions are objects which can be found independently, in
several ways.

Access to the functions of a module

Access by logical name

Each function can be assigned an arbitrary and persistent logical name: this logical name is stored in
the flash memory of the module, even if this module is disconnected. An object corresponding to an
Xxx function to which a logical name has been assigned can then be directly found with this logical
name and the YXxx.FindXxx method. Note however that a logical name must be unique among all
the connected modules.

Access by enumeration
You can enumerate all the functions of the same type on all the connected modules with the help of
the classic enumeration functions FirstXxx and nextXxxx available for each YXxx class.

Access by hardware name

Each module function has a hardware name, assigned at the factory and which cannot be modified.
The functions of a module can also be found directly with this hardware name and the YXxx.FindXxx
function of the corresponding class.

Difference between Find and First

The YXxx.FindXxxx and YXxx.FirstXxxx methods do not work exactly the same way. If there is no
available module, YXxx.FirstXxxx returns a null value. On the opposite, even if there is no
corresponding module, YXxx.FindXxxx returns a valid object, which is not online but which could
become so if the corresponding module is later connected.

Function handling

When the object corresponding to a function is found, its methods are available in a classic way.
Note that most of these subfunctions require the module hosting the function to be connected in
order to be handled. This is generally not guaranteed, as a USB module can be disconnected after
the control software has started. The isOnline method, available in all the classes, is then very
helpful.

Access to the modules

Even if it is perfectly possible to build a complete project while making a total abstraction of which
function is hosted on which module, the modules themselves are also accessible from the API. In
fact, they can be handled in a way quite similar to the functions. They are assigned a serial number
at the factory which allows you to find the corresponding object with YModule.Find(). You can also
assign arbitrary logical names to the modules to make finding them easier. Finally, the YModule
class contains the YModule.FirstModule() and nextModule() enumeration methods allowing you to list
the connected modules.

18 www.yoctopuce.com

5. Programming, general concepts

Functions/Module interaction

From the API standpoint, the modules and their functions are strongly uncorrelated by design.
Nevertheless, the API provides the possibility to go from one to the other. Thus, the get module()
method, available for each function class, allows you to find the object corresponding to the module
hosting this function. Inversely, the YModule class provides several methods allowing you to
enumerate the functions available on a module.

5.2. The Yocto-MaxiRelay module

The Yocto-MaxiRelay module provides eight instances of the Relay function, corresponding to the
eight relays present on the module.

module : Module

relay1

attribute
productName
serialNumber
logicalName
productId
productRelease
firmwareRelease
persistentSettings
luminosity
beacon
upTime
usbCurrent
rebootCountdown
uservar

: Relay
relay2 :
relay3 :
relay4 :
relay5 :
relay6 :
relay7 :
relay8 :

Relay
Relay
Relay
Relay
Relay
Relay
Relay

attribute
logicalName
advertisedValue
state
stateAtPowerOn
maxTimeOnStateA
maxTimeOnStateB
output
pulseTimer
delayedPulseTimer
countdown

type modifiable ?

String read-only
String read-only
String modifiable
Hexadecimal number read-only
Hexadecimal number read-only
String read-only
Enumerated modifiable
0..100% modifiable
On/Off modifiable
Time read-only
Used current (mA) read-only
Integer modifiable
Integer modifiable
type modifiable ?

String modifiable

String modifiable

A/B modifiable

Enumerated modifiable

Time modifiable

Time modifiable

On/Off modifiable

Time modifiable

Aggregate modifiable

Time read-only

5.3. Module control interface

This interface is identical for all Yoctopuce USB modules. It can be used to control the module global
parameters, and to enumerate the functions provided by each module.

productName

Character string containing the commercial name of the module, as set by the factory.

www.yoctopuce.com

19

5. Programming, general concepts

serialNumber

Character string containing the serial number, unique and programmed at the factory. For a Yocto-
MaxiRelay module, this serial number always starts with HIBPWER1. You can use the serial number
to access a given module by software.

logicalName

Character string containing the logical name of the module, initially empty. This attribute can be
modified at will by the user. Once initialized to an non-empty value, it can be used to access a given
module. If two modules with the same logical name are in the same project, there is no way to
determine which one answers when one tries accessing by logical name. The logical name is limited
to 19 characters among A..7,a..z,0..9, ,and -.

productid
USB device identifier of the module, preprogrammed to 32 at the factory.

productRelease
Release number of the module hardware, preprogrammed at the factory.

firmwareRelease
Release version of the embedded firmware, changes each time the embedded software is updated.

persistentSettings

State of persistent module settings: loaded from flash memory, modified by the user or saved to flash
memory.

luminosity

Lighting strength of the informative leds (e.g. the Yocto-Led) contained in the module. It is an integer
value which varies between 0 (leds turned off) and 100 (maximum led intensity). The default value is
50. To change the strength of the module leds, or to turn them off completely, you only need to
change this value.

beacon

Activity of the localization beacon of the module.

upTime
Time elapsed since the last time the module was powered on.

usbCurrent
Current consumed by the module on the USB bus, in milli-amps.

rebootCountdown
Countdown to use for triggering a reboot of the module.

userVar
32bit integer variable available for user storage.

5.4. Relay function interface

The Yoctopuce application programming interface allows you to switch the relay state. This change is
not persistent: the relay will automatically return to its idle position whenever power is lost or if the
module is restarted. The library can also generate automatically short pulses of determined duration.
On devices with two output for each relay (double throw), the two outputs are named A and B, with

20 www.yoctopuce.com

5. Programming, general concepts

output A corresponding to the idle position (at power off) and the output B corresponding to the active
state. If you prefer the alternate default state, simply switch your cables on the board.

logicalName

Character string containing the logical name of the relay, initially empty. This attribute can be
modified at will by the user. Once initialized to an non-empty value, it can be used to access the relay
directly. If two relays with the same logical name are used in the same project, there is no way to
determine which one answers when one tries accessing by logical name. The logical name is limited
to 19 characters among A..7,a..z,0..9, ,and -.

advertisedValue

Short character string summarizing the current state of the relay, that will be automatically advertised
up to the parent hub. For a relay, the advertised value is the the relays state (A for the idle position, B
for the active position).

state

Active output of the relays: A for the idle position, B for the active position.

stateAtPowerOn

Active output of the relays at device power on: A for the idle position, B for the active position,
UNCHANGED to leave the relay as is.

maxTimeOnStateA

Maximum time (ms) allowed for relays to stay in state A before automatically switching back in to B
state. Zéro means no maximum time.

maxTimeOnStateB

Maximum time (ms) allowed for relays to stay in state B before automatically switching back in to A
state. Zéro means no maximum time.

output
Output state of the relays, when used as a simple switch (single throw).

pulseTimer

Time during which the relays should be kept in state B (active) before returning automatically to state
A (idle state). Any explicit state change issued afterwards will cancel the automated switch.
delayedPulseTimer

Delayed pulse parameters.

countdown
Waiting delay before next pulse (delayed pulse case).

5.5. What interface: Native, DLL or Service ?

There are several methods to control you Yoctopuce module by software.

Native control

In this case, the software driving your project is compiled directly with a library which provides control
of the modules. Objectively, it is the simplest and most elegant solution for the end user. The end
user then only needs to plug the USB cable and run your software for everything to work.
Unfortunately, this method is not always available or even possible.

www.yoctopuce.com 21

5. Programming, general concepts

application

native
library

i -

The application uses the native library to control the locally connected module

Native control by DLL

Here, the main part of the code controlling the modules is located in a DLL. The software is compiled
with a small library which provides control of the DLL. It is the fastest method to code module support
in a given language. Indeed, the "useful" part of the control code is located in the DLL which is the
same for all languages: the effort to support a new language is limited to coding the small library
which controls the DLL. From the end user stand point, there are few differences: one must simply
make sure that the DLL is installed on the end user's computer at the same time as the main
software.

()

application

DLL interface

ofi ") -

The application uses the DLL to natively control the locally connected module

Control by service

Some languages do simply not allow you to easily gain access to the hardware layers of the
machine. It is the case for Javascript, for instance. To deal with this case, Yoctopuce provides a
solution in the form of a small piece of software called VirtualHub. It can access the modules, and
your application only needs to use a library which offers all necessary functions to control the
modules via this VirtualHub. The end users will have to start the VirtualHub before running the
project control software itself, unless they decide to install the hub as a service/deamon, in which
case the VirtualHub starts automatically when the machine starts up.

T www.yoctopuce.com/EN/virtualhub.php

22 www.yoctopuce.com

5. Programming, general concepts

application

hub library

virtual hub

ofill) -«

The application connects itself to the VirtualHub to gain access to the module

The service control method comes with a non-negligible advantage: the application does not need to
run on the machine on which the modules are connected. The application can very well be located
on another machine which connects itself to the service to drive the modules. Moreover, the native
libraries and DLL mentioned above are also able to connect themselves remotely to one or several
machines running VirtualHub.

application
native

When a VirtualHub is used, the control application does not need to reside on the same machine as the module.

s A (
pplication
application hub library
virtual hub
8 J -
ofi”]

library

application

DLL interface

Whatever the selected programming language and the control paradigm used, programming itself
stays strictly identical. From one language to another, functions bear exactly the same name, and
have the same parameters. The only differences are linked to the constraints of the languages

themselves.

Language Native Native with DLL Virtual hub

C++ v
Objective-C v
Delphi -
Python -
VisualBasic .Net -
C# .Net -
EcmaScript / JavaScript -
PHP -
Java -
Java for Android v
Command line

PR TR

v
Support methods for different languages

NN

www.yoctopuce.com

23

5. Programming, general concepts

Limitations of the Yoctopuce libraries

Natives et DLL libraries have a technical limitation. On the same computer, you cannot concurrently
run several applications accessing Yoctopuce devices directly. If you want to run several projects on
the same computer, make sure your control applications use Yoctopuce devices through a
VirtualHub software. The modification is ftrivial: it is just a matter of parameter change in the
yRegisterHub () call.

5.6. Programming, where to start?

At this point of the user's guide, you should know the main theoretical points of your Yocto-
MaxiRelay. It is now time to practice. You must download the Yoctopuce library for your favorite
programming language from the Yoctopuce web site?. Then skip directly to the chapter
corresponding to the chosen programming language.

All the examples described in this guide are available in the programming libraries. For some
languages, the libraries also include some complete graphical applications, with their source code.

When you have mastered the basic programming of your module, you can turn to the chapter on
advanced programming that describes some techniques that will help you make the most of your
Yocto-MaxiRelay.

2 http://www.yoctopuce.com/EN/libraries.php

24 www.yoctopuce.com

6. Using the Yocto-MaxiRelay in command line

When you want to perform a punctual operation on your Yocto-MaxiRelay, such as reading a value,
assigning a logical name, and so on, you can obviously use the Virtual Hub, but there is a simpler,
faster, and more efficient method: the command line API.

The command line API is a set of executables, one by type of functionality offered by the range of
Yoctopuce products. These executables are provided pre-compiled for all the Yoctopuce officially
supported platforms/OS. Naturally, the executable sources are also provided'.

6.1. Installing

Download the command line API%. You do not need to run any setup, simply copy the executables
corresponding to your platform/OS in a directory of your choice. You may add this directory to your
PATH variable to be able to access these executables from anywhere. You are all set, you only need
to connect your Yocto-MaxiRelay, open a shell, and start working by typing for example:

YRelay any set ouput ON

To use the command API on Linux, you need either have root privileges or to define an udev rule for
your system. See the Troubleshooting chapter for more details.

6.2. Use: general description

All the command line API executables work on the same principle. They must be called the following
way

Executable [options] [target] command [parameter]

[options] manage the global workings of the commands, they allow you, for instance, to pilot a
module remotely through the network, or to force the module to save its configuration after executing
the command.

[target] is the name of the module or of the function to which the command applies. Some very
generic commands do not need a target. You can also use the aliases "any" and "all", or a list of
names separated by comas without space.

Tt you want to recompile the command line API, you also need the C++ API.
2 http://www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com 25

6. Using the Yocto-MaxiRelay in command line

command is the command you want to run. Almost all the functions available in the classic
programming APls are available as commands. You need to respect neither the case nor the
underlined characters in the command name.

[parameters] logically are the parameters needed by the command.

At any time, the command line API executables can provide a rather detailed help. Use for instance:

executable

to know the list of available commands for a given command line APl executable, or even:

executable command /help

to obtain a detailed description of the parameters of a command.

6.3. Control of the Relay function

To control the Relay function of your Yocto-MaxiRelay, you need the YRelay executable file.

For instance, you can launch:
YRelay any set ouput ON

This example uses the "any" target to indicate that we want to work on the first Relay function found
among all those available on the connected Yoctopuce modules when running. This prevents you
from having to know the exact names of your function and of your module.

But you can use logical names as well, as long as you have configured them beforehand. Let us
imagine a Yocto-MaxiRelay module with the HISPWER1-123456 serial number which you have
called "MyModule", and its relay1 function which you have renamed "MyFunction". The five following
calls are strictly equivalent (as long as MyFunction is defined only once, to avoid any ambiguity).

YRelay HI8PWER1-123456.relayl describe
YRelay HI8PWER1-123456.MyFunction describe
YRelay MyModule.relayl describe

YRelay MyModule.MyFunction describe

YRelay MyFunction describe

To work on all the Relay functions at the same time, use the "all" target.

YRelay all describe

For more details on the possibilities of the YRelay executable, use:

YRelay /help

6.4. Control of the module part

Each module can be controlled in a similar way with the help of the YModule executable. For
example, to obtain the list of all the connected modules, use:
YModule inventory

You can also use the following command to obtain an even more detailed list of the connected
modules:

26 www.yoctopuce.com

6. Using the Yocto-MaxiRelay in command line

YModule all describe

Each xxx property of the module can be obtained thanks to a command of the get xxxx () type,
and the properties which are not read only can be modified with the set xxx () command. For
example:

YModule HI8PWER1-12346 set logicalName MonPremierModule

YModule HI8PWER1-12346 get logicalName

Changing the settings of the module

When you want to change the settings of a module, simply use the corresponding set xxx
command. However, this change happens only in the module RAM: if the module restarts, the
changes are lost. To store them permanently, you must tell the module to save its current
configuration in its nonvolatile memory. To do so, use the saveToFlash command. Inversely, it is
possible to force the module to forget its current settings by using the revertFromFlash method.
For example:

YModule HI8PWER1-12346 set logicalName MonPremierModule
YModule HI8PWER1-12346 saveToFlash

Note that you can do the same thing in a single command with the —s option.

YModule -s HI8PWER1-12346 set logicalName MonPremierModule

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

6.5. Limitations

The command line API has the same limitation than the other APlIs: there can be only one application
at a given time which can access the modules natively. By default, the command line API works in
native mode.

You can easily work around this limitation by using a Virtual Hub: run the VirtualHub® on the
concerned machine, and use the executables of the command line API with the —r option. For
example, if you use:

YModule inventory

you obtain a list of the modules connected by USB, using a native access. If another command which
accesses the modules natively is already running, this does not work. But if you run a Virtual Hub,
and you give your command in the form:

YModule -r 127.0.0.1 inventory

it works because the command is not executed natively anymore, but through the Virtual Hub. Note
that the Virtual Hub counts as a native application.

3 http://www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 27

28

www.yoctopuce.com

7. Using Yocto-MaxiRelay with JavaScript /
EcmaScript

EcmaScript is the official nhame of the standardized version of the web-oriented programming
language commonly referred to as JavaScript. This Yoctopuce library take advantages of advanced
features introduced in EcmaScript 2017. It has therefore been named Library for JavaScript/
EcmaScript 2017 to differentiate it from the previous Library for JavaScript, now deprecated in favor
of this new version.

This library provides access to Yoctopuce devices for modern JavaScript engines. It can be used
within a browser as well as with Node.js. The library will automatically detect upon initialization
whether the runtime environment is a browser or a Node.js virtual machine, and use the most
appropriate system libraries accordingly.

Asynchronous communication with the devices is handled across the whole library using Promise
objects, leveraging the new EcmaScript 2017 async / await non-blocking syntax for asynchronous
I/O (see below). This syntax is now available out-of-the-box in most Javascript engines. No
transpilation is needed: no Babel, no jspm, just plain Javascript. Here is your favorite engines
minimum version needed to run this code. All of them are officially released at the time we write this
document.

* Node.js v7.6 and later

+ Firefox 52

Opera 42 (incl. Android version)
Chrome 55 (incl. Android version)
Safari 10.1 (incl. iOS version)
Android WebView 55

+ Google V8 Javascript engine v5.5

If you need backward-compatibility with older releases, you can always run Babel to transpile your
code and the library to older standards, as described a few paragraphs below.

We don't suggest using jspm 0.17 anymore since that tool is still in Beta after 18 month, and
having to use an extra tool to implement our library is pointless now that async / await are part of
the standard.

7.1. Blocking I/O versus Asynchronous /O in JavaScript

JavaScript is single-threaded by design. That means, if a program is actively waiting for the result of
a network-based operation such as reading from a sensor, the whole program is blocked. In browser
environments, this can even completely freeze the user interface. For this reason, the use of blocking

www.yoctopuce.com 29

7. Using Yocto-MaxiRelay with JavaScript / EcmaScript

I/0 in JavaScript is strongly discouraged nowadays, and blocking network APIs are getting
deprecated everywhere.

Instead of using parallel threads, JavaScript relies on asynchronous I/O to handle operations with a
possible long timeout: whenever a long I/O call needs to be performed, it is only triggered and but
then the code execution flow is terminated. The JavaScript engine is therefore free to handle other
pending tasks, such as Ul. Whenever the pending I/O call is completed, the system invokes a
callback function with the result of the I/O call to resume execution of the original execution flow.

When used with plain callback functions, as pervasive in Node.js libraries, asynchronous 1/O tend to
produce code with poor readability, as the execution flow is broken into many disconnected callback
functions. Fortunately, new methods have emerged recently to improve that situation. In particular,
the use of Promise objects to abstract and work with asynchronous tasks helps a lot. Any function
that makes a long 1/O operation can return a Promise, which can be used by the caller to chain
subsequent operations in the same flow. Promises are part of EcmaScript 2015 standard.

Promise objects are good, but what makes them even better is the new async / await keywords to
handle asynchronous I/O:

+ a function declared async will automatically encapsulate its result as a Promise

« within an async function, any function call prefixed with by await will chain the Promise
returned by the function with a promise to resume execution of the caller

+ any exception during the execution of an async function will automatically invoke the Promise
failure continuation

Long story made short, async and await make it possible to write EcmaScript code with all benefits of
asynchronous 1/O, but without breaking the code flow. It is almost like multi-threaded execution,
except that control switch between pending tasks only happens at places where the await keyword
appears.

We have therefore chosen to write our new EcmaScript library using Promises and async functions,
so that you can use the friendly await syntax. To keep it easy to remember, all public methods of
the EcmaScript library are async, i.e. return a Promise object, except:

* GetTickCount (), because returning a time stamp asynchronously does not make sense...

* FindModule (), FirstModule (), nextModule (), ... because device detection and
enumeration always work on internal device lists handled in background, and does not require
immediate asynchronous |/O.

7.2. Using Yoctopuce library for JavaScript / EcmaScript 2017

JavaScript is one of those languages which do not generally allow you to directly access the
hardware layers of your computer. Therefore the library can only be used to access network-enabled
devices (connected through a YoctoHub), or USB devices accessible through Yoctopuce TCP/IP to
USB gateway, named VirtualHub.

Go to the Yoctopuce web site and download the following items:

« The Javascript / EcmaScript 2017 programming library’
+ The VirtualHub software? for Windows, Mac OS X or Linux, depending on your OS

Extract the library files in a folder of your choice, you will find many of examples in it. Connect your
modules and start the VirtualHub software. You do not need to install any driver.

Using the official Yoctopuce library for node.js

Start by installing the latest Node.js version (v7.6 or later) on your system. It is very easy. You can
download it from the official web site: http://nodejs.org. Make sure to install it fully, including npm, and
add it to the system path.

T www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com/EN/virtualhub.php

30 www.yoctopuce.com

7. Using Yocto-MaxiRelay with JavaScript / EcmaScript

To give it a try, go into one of the example directory (for instance example_nodejs/Doc-Inventory).
You will see that it include an application description file (package.json) and a source file (demo.js).
To download and setup the libraries needed by this example, just run:

npm install

Once done, you can start the example file using:

node demo.js

Using a local copy of the Yoctopuce library with node.js

If for some reason you need to make changes to the Yoctopuce library, you can easily configure your
project to use the local copy in the 1ib/ subdirectory rather than the official npm package. In order
to do so, simply type the following command in your project directory:

npm link ../../lib

Using the Yoctopuce library within a browser (HTML)

For HTML examples, it is even simpler: there is nothing to install. Each example is a single HTML file
that you can open in a browser to try it. In this context, loading the Yoctopuce library is no different
from any standard HTML script include tag.

Using the Yoctoluce library on older JavaScript engines

If you need to run this library on older JavaScript engines, you can use Babel® to transpile your code
and the library into older JavaScript standards. To install Babel with typical settings, simply use:

npm instal -g babel-cli
npm instal babel-preset-env

You would typically ask Babel to put the transpiled files in another directory, named compat for
instance. Your files and all files of the Yoctopuce library should be transpiled, as follow:

babel --presets env demo.js --out-dir compat/
babel --presets env ../../lib --out-dir compat/

Although this approach is based on node.js toolchain, it actually works as well for transpiling
JavaScript files for use in a browser. The only thing that you cannot do so easily is transpiling
JavaScript code embedded directly in an HTML page. You have to use an external script file for
using EcmaScript 2017 syntax with Babel.

Babel has many smart features, such as a watch mode that will automatically refresh transpiled files
whenever the source file is changed, but this is beyond the scope of this note. You will find more in
Babel documentation.

Backward-compatibility with the old JavaScript library

This new library is not fully backward-compatible with the old JavaScript library, because there is no
way to transparently map the old blocking API to the new asynchronous APIl. The method names
however are the same, and old synchronous code can easily be made asynchronous just by adding
the proper awa it keywords before the method calls. For instance, simply replace:

beaconState = module.get beacon() ;

by

3 hitp://babeljs.io

www.yoctopuce.com 31

7. Using Yocto-MaxiRelay with JavaScript / EcmaScript

beaconState = await module.get beacon() ;

Apart from a few exceptions, most XXX async redundant methods have been removed as well, as
they would have introduced confusion on the proper way of handling asynchronous behaviors. It is
however very simple to get an async method to invoke a callback upon completion, using the
returned Promise object. For instance, you can replace:

module.get beacon async(callback, myContext) ;

by

module.get beacon () .then (function(res) { callback(myContext, module, res); });

In some cases, it might be desirable to get a sensor value using a method identical to the old
synchronous methods (without using Promises), even if it returns a slightly outdated cached value
since I/O is not possible. For this purpose, the EcmaScript library introduce new classes called
synchronous proxies. A synchronous proxy is an object that mirrors the most recent state of the
connected class, but can be read using regular synchronous function calls. For instance, instead of
writing:

async function logInfo (module)

{
console.log('Name: '+await module.get logicalName ());
console.log('Beacon: '+await module.get beacon());

logInfo (myModule) ;
you can use:

function logInfoProxy (moduleSyncProxy)

{
console.log('Name: '+moduleProxy.get logicalName());
console.log('Beacon: '+moduleProxy.get beacon());

}

logInfoSync (await myModule.get syncProxy());

You can also rewrite this last asynchronous call as:

myModule.get syncProxy () .then (logInfoProxy);

7.3. Control of the Relay function

A few lines of code are enough to use a Yocto-MaxiRelay. Here is the skeleton of a JavaScript code
snhipplet to use the Relay function.

import { YAPI, YErrorMsg, YRelay } from 'yoctolib-es';

to ~e th u
ce, C ugn

await YAPI.RegistérHub('127.0.0.1');
var relay = YRelay.FindRelay ("HI8PWER1-123456.relayl");

1T he module 1s onl

if (await relay.isOnline())

{

}

Let us look at these lines in more details.

32 www.yoctopuce.com

7. Using Yocto-MaxiRelay with JavaScript / EcmaScript

YAPI and YRelay Import

These two import provide access to functions allowing you to manage Yoctopuce modules. YAPT is
always needed, YRelay. js is necessary to manage modules containing a relay, such as Yocto-
MaxiRelay. Other imports can be useful in other cases, such as YModule which can let you
enumerate any type of Yoctopuce device.

YAPI.RegisterHub

The RegisterHub method allows you to indicate on which machine the Yoctopuce modules are
located, more precisely on which machine the VirtualHub software is running. In our case, the
127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port used by
Yoctopuce). You can very well modify this address, and enter the address of another machine on
which the VirtualHub software is running, or of a YoctoHub. If the host cannot be reached, this
function will trigger an exception.

YRelay.FindRelay

The FindRelay method allows you to find a relay from the serial number of the module on which it
resides and from its function name. You can also use logical names, as long as you have initialized
them. Let us imagine a Yocto-MaxiRelay module with serial number HISPWER1-123456 which you
have named "MyModule", and for which you have given the relay1 function the name "MyFunction".
The following five calls are strictly equivalent, as long as "MyFunction" is defined only once.

relay = YRelay.FindRelay ("HI8PWER1-123456.relayl"
relay = YRelay.FindRelay ("HI8PWER1-123456.MaFonction")
relay = YRelay.FindRelay ("MonModule.relayl"

relay = YRelay.FindRelay ("MonModule.MaFonction")

relay = YRelay.FindRelay("MaFonction")

YRelay.FindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by FindRelay allows you to know if the
corresponding module is present and in working order.

set_state

The set state () method of the objet returned by YRelay.FindRelay switches the relay
position to one of its two outputs. The two possible parameter values are YRelay.STATE A for
output A, and YRelay.STATE B for output B.

A real example

Open a command window (a terminal, a shell...) and go into the directory example_node/Doc-
GettingStarted-Yocto-MaxiRelay within Yoctopuce EcmaScript library. In there, you will find a
subdirectory src with the sample code below, which uses the functions explained above, but this
time used with all side materials needed to make it work nicely as a small demo.

If your Yocto-MaxiRelay is not connected on the host running the browser, replace in the example
the address 127.0.0.1 by the IP address of the host on which the Yocto-MaxiRelay is connected
and where you run the VirtualHub.

UNABLE TO INCLUDE
http://172.17.17.77/tu/projects/yoctorelay-8hipower/public/examples/ecmascript/node.js

As explained at the beginning of this chapter, you need to have Node.js and jspm installed to try this
example. When done, you can type the following two commands to automatically download and
install the dependencies for building this example:

npm install
jspm install

www.yoctopuce.com 33

7. Using Yocto-MaxiRelay with JavaScript / EcmaScript

You can the start the sample code within Node.js using the following command, replacing the [...] by
the arguments that you want to pass to the demo code:

jspm run src/demo.js [...]

Same example, but this time running in a browser

If you want to see how to use the library within a browser, switch to the directory example_html/
Doc-GettingStarted-Yocto-MaxiRelay. You will find there a subdirectory src as well with a very
similar source code (below), but with a few changes compared to the Node.js version since it has to
interact through an HTML page rather than through the JavaScript console.

UNABLE TO INCLUDE
http://172.17.17.77/tu/projects/yoctorelay-8hipower/public/examples//ecmascript/
helloworld.js

At the root of this example you will also find a file demo.html which contains the Ul elements for the
demo code.

UNABLE TO INCLUDE
http://[172.17.17.77/tu/projects/yoctorelay-8hipower/public/examples/ecmascript/
helloworld.html

As above, the two following commands will download and install all dependencies for building this
example:

npm install
jspm install

You can now publish this directory on a Web server to test the example through a web browser. In
order to let the loader find its files, you will have to point the baseURL parameter in jspm.browser.js
file to the path within the web server root to reach the demo project. For instance, if you open the
example using URL http://127.0.0.1/EcmaScript/example_htmil/Doc-GettingStarted-Yocto-
MaxiRelay/demo.html then the beginning of your jspm.browser.js file should look like:

SystemJS.config({
baseURL: "/EcmaScript/example html/Doc-GettingStarted-Yocto-MaxiRelay/",
}

If you prefer to open the demo code as a local file rather than through a web server, or if you would
like the example to load as a single JavaScript file rather than as dynamically loaded modules, you
can build it with the command:

jspm build --minify src/demo.js demo-sfx.]js
This will create a single JavaScript file named demo-sfx.js in the root directory of the project, that
can be included directly in the HTML file instead of the 6 script lines:

<script src='demo-sfx.js'></script>
Once your project is built in this way, the example can be opened by a browser directly from the local

disk.

7.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

34 www.yoctopuce.com

7. Using Yocto-MaxiRelay with JavaScript / EcmaScript

import { YAPI, YErrorMsg, YModule } from 'yoctolib-es';

async function startDemo (args)

{
await YAPI.LogUnhandledPromiseRejections();

Setup the API to

the Virtua

use

let errmsg = new YErrorMsg();

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
return;

'/ Select the relay to 1

/ >]ect - y to use
let module = YModule.FindModule (args[0]);
if (await module.isOnline ()) {

if (args.length > 1) {

if (args[1l] == 'ON') {
await module.set beacon (YModule.BEACON ON) ;
} else {

await module.set beacon (YModule.BEACON OFF) ;
}
}

console.log('serial: '+tawait module.get serialNumber());

console.log('logical name: '+await module.get logicalName());

console.log('luminosity: '+await module.get luminosity()+'%');

console.log('beacon: '+ (await module.get beacon () ==YModule.BEACON ON
?2'ON':'OFF"'")),

console.log('upTime: 'tparselnt (await module.get upTime()/1000)+' sec');

console.log('USB current: '+tawait module.get usbCurrent()+' mA');

console.log('logs:");

(

console.log (await module.get lastLogs());
} else {
console.log("Module not connected (check identification and USB cable)\n");

}
await YAPI.FreeAPI ()

}

if (process.argv.length < 3) {

console.log("usage: jspm run src/demo.js <serial or logicalname> [ON | OFF]");
} else {

startDemo (process.argv.slice (process.argv.length - 3));

}

Each property xxx of the module can be read thanks to a method of type get xxxx(), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-es';

async function startDemo (args)

{
await YAPI.LogUnhandledPromiseRejections();

'/ Setup the API to

the Vi

1se ne

let errmsg = new YErrorMsg();

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
return;

Se

// Select the relay to use
let module = YModule.FindModule (args[0]);
if (await module.isOnline()) {

www.yoctopuce.com 35

7. Using Yocto-MaxiRelay with JavaScript / EcmaScript

if (args.length > 1) {

var newname = args[l];
if (l!await YAPI.CheckLogicalName (newname)) {
console.log("Invalid name (" + newname + ")");

process.exit (1) ;

}
await module.set logicalName (newname) ;
await module.saveToFlash() ;

}

console.log('Current name: '+await module.get logicalName());
} else {
console.log("Module not connected (check identification and USB cable)\n");

}
await YAPI.FreeAPI ()

}

if (process.argv.length < 3) {

console.log ("usage: jspm run src/demo.js <serial> [newLogicalName]") ;
} else {

startDemo (process.argv.slice(process.argv.length - 3));

}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.FirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

import { YAPI, YModule, YErrorMsg } from 'yoctolib-es';

async function startDemo ()

{
await YAPI.LogUnhandledPromiseRejections () ;
await YAPI.DisableExceptions();

o

uo the API to use the Virti

COo use tn

let errmsg = new YErrorMsg() ;

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
console.log('Cannot contact VirtualHub on 127.0.0.1");
return;

}

refresh () ;

}

async function refresh()
{
try {
let errmsg = new YErrorMsg();
await YAPI.UpdateDevicelist (errmsg) ;

let module = YModule.FirstModule () ;
while (module) {
let line = await module.get serialNumber () ;
line += '(' + (await module.get productName()) + ')';
console.log(line);
module = module.nextModule () ;
}
setTimeout (refresh, 500);
} catch(e) {
console.log(e);
}
}

try {
startDemo () ;

} catch(e) {
console.log(e);

36 www.yoctopuce.com

7. Using Yocto-MaxiRelay with JavaScript / EcmaScript

7.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

+ If your code catches the exception and handles it, everything goes well.

* If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPT.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected
bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPT SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 37

38

www.yoctopuce.com

8. Using Yocto-MaxiRelay with PHP

PHP is, like Javascript, an atypical language when interfacing with hardware is at stakes.
Nevertheless, using PHP with Yoctopuce modules provides you with the opportunity to very easily
create web sites which are able to interact with their physical environment, and this is not available to
every web server. This technique has a direct application in home automation: a few Yoctopuce
modules, a PHP server, and you can interact with your home from anywhere on the planet, as long
as you have an internet connection.

PHP is one of those languages which do not allow you to directly access the hardware layers of your
computer. Therefore you need to run a virtual hub on the machine on which your modules are
connected.

To start your tests with PHP, you need a PHP 5.3 (or more) server', preferably locally on you
machine. If you wish to use the PHP server of your internet provider, it is possible, but you will

probably need to configure your ADSL router for it to accept and forward TCP request on the 4444
port.

8.1. Getting ready

Go to the Yoctopuce web site and download the following items:

+ The PHP programming library?
+ The VirtualHub software® for Windows, Mac OS X, or Linux, depending on your OS

Decompress the library files in a folder of your choice accessible to your web server, connect your

modules, run the VirtualHub software, and you are ready to start your first tests. You do not need to
install any driver.

8.2. Control of the Relay function

A few lines of code are enough to use a Yocto-MaxiRelay. Here is the skeleton of a PHP code
snipplet to use the Relay function.

include ('yocto api.php');
include ('yocto relay.php');

A couple of free PHP servers: easyPHP for Windows, MAMP for Mac OS X.
www.yoctopuce.com/EN/libraries.php
3 www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 39

8. Using Yocto-MaxiRelay with PHP

et access 1e VirtualHukb

yRegisterEub('httb://127.0.0.1:4444?',$errmsg);
Srelay = yFindRelay ("HI8PWER1-123456.relayl");

heck that the modiile is online o0 handle hot-pliia

if (relay->isOnline())

{
}

Let's look at these lines in more details.

yocto_api.php and yocto_relay.php

These two PHP includes provides access to the functions allowing you to manage Yoctopuce
modules. yocto api.php must always be included, yocto relay.php is necessary to
manage modules containing a relay, such as Yocto-MaxiRelay.

yRegisterHub

The yRegisterHub function allows you to indicate on which machine the Yoctopuce modules are
located, more precisely on which machine the VirtualHub software is running. In our case, the
127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port used by
Yoctopuce). You can very well modify this address, and enter the address of another machine on
which the VirtualHub software is running.

yFindRelay

The yFindRelay function allows you to find a relay from the serial number of the module on which
it resides and from its function name. You can use logical names as well, as long as you have
initialized them. Let us imagine a Yocto-MaxiRelay module with serial number HISPWER1-123456
which you have named "MyModule", and for which you have given the relay1 function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

Srelay = yFindRelay ("HI8PWER1-123456.relayl");
Srelay = yFindRelay ("HI8PWER1-123456.MyFunction") ;
Srelay = yFindRelay ("MyModule.relayl");

Srelay = yFindRelay ("MyModule.MyFunction") ;

Srelay = yFindRelay ("MyFunction");

yFindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by yFindRelay allows you to know if the
corresponding module is present and in working order.

set_state

The set state () method of the objet returned by yFindRelay switches the relay position to
one of its two outputs. The two possible parameter values are Y STATE A for output A, and
Y STATE B for output B.

A real example

Open your preferred text editor*, copy the code sample below, save it with the Yoctopuce library files
in a location which is accessible to you web server, then use your preferred web browser to access
this page. The code is also provided in the directory Examples/Doc-GettingStarted-Yocto-
MaxiRelay of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

4 you do not have a text editor, use Notepad rather than Microsoft Word.

40 www.yoctopuce.com

8. Using Yocto-MaxiRelay with PHP

<HTML>

<HEAD>

<TITLE>Hello World</TITLE>

</HEAD>

<BODY>

<FORM method='get'>

<?php
include ('yocto_api.php');
include ('yocto relay.php');

Use explicit error handling rather than exceptions
// U i t 1 g th h Dt
yDisableExceptions () ;

// Setup the API to use the VirtualHub on local machine
if (yRegisterHub ('http://127.0.0.1:4444/"',$errmsg) != YAPI SUCCESS)
die ("Cannot contact VirtualHub on 127.0.0.1");

@S$serial = $ GET['serial'l;
Srelay = Array();

if ($serial == "'")
{ // wuse any connected module suitable for the demo

Srelay[l] = yFirstRelay();
if (is_null(Srelay[1l])) die("No module connected (check USB cable)");
$serial = Srelay[l]->module()->get serialnumber();
}
for ($i=1;$i<=8;$i++) Srelay[$i] = yFindRelay ("S$serial.relay$i");

if (!Srelay[l]->isOnline())
die ("Module not connected (check serial and USB cable)");

Print ("Module to use: <input name='serial' value='$serial'>
");

// Drive the selected module
for ($i=1;$i<=8;S$i++)
if (isset($ GET["state$i"]))
$state = $ GET["state$i"];
if ($state=='ON') Srelay[$i]->set_output (Y_OUTPUT_ON) ;
else Srelay[$i]->set output (Y OUTPUT OFF);

{

}

// display very primitive UI
for (Si=1;S$i<=8;S$i++)
{ S$state = Srelayl[$i]l->get output();
SON =''; SOFF ='"';
if (Srelay([$i]l->get output () ==Y OUTPUT ON) SON='checked'; else SOFF='checked';
Print ("Relay $i: <input type='radio' $ON name='state$i' value='ON'>ON");
Print ("<input type='radio' $OFF name='state$i' value='OFF'>OFF
\n");
}

?>

<input type='submit'>
</FORM>
</BODY>
</HTML>

8.3. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

<HTML>

<HEAD>

<TITLE>Module Control</TITLE>

</HEAD>

<BODY>

<FORM method='get'>

<?php
include ('yocto api.php');
// Use explicit error handling rather than exceptions
yDisableExceptions () ;

www.yoctopuce.com 41

8. Using Yocto-MaxiRelay with PHP

// Setup the API to use the VirtualHub on local machine
if (yRegisterHub (' http //127.0.0.1: 4444/’,$errmsg) != YAPI SUCCESS) {
die ("Cannot contact VirtualHub on 127.0.0.1 : ".Serrmsg);

}

@Sserial = $ GET['serial'l];
if ($serial = ") {

$module = yFlndModule "$ser1al) 7
if (!Smodule->isOnline()) {
die ("Module not connected (check serial and USB cable)");
}
} else {

7 connected modiile c171itable for the demc
/ connectea module sulitable 1Ior thne demo

$module = yFlrstModule()

f (Smodule) { v 1b
Smodule = $module >nextModule () ;
}
if (is_null (Smodule)) {
die ("No module connected (check USB cable)");
} else {
$serial = S$module->get serialnumber ();

}
}

Print ("Module to use: <input name='serial' value='$serial'>
");

if (isset($ GET['beacon'])) {
if ($ GET['beacon']=='ON")
$module->set beacon (Y BEACON ON) ;
else

$module->set beacon (Y BEACON OFF) ;
}
printf ('serial: %s
', Smodule->get serialNumber());
printf ('logical name: $s
', Smodule->get logicalName ());
printf ('luminosity: %s
', Smodule->get luminosity());
print ('beacon: ");
if ($module->get beacon() == Y BEACON ON) {
printf ("<input type='radio' name='beacon' value='ON' checked>ON ") ;
printf ("<input type='radio' name='beacon' value='OFF'>OFF
");
} else {
printf ("<input type='radio' name='beacon' wvalue='ON'>ON ");
printf ("<input type='radio' name='beacon' value='OFF' checked>OFF
");
}
printf ('upTime: %$s sec
',intVal ($module->get upTime ()/1000));
printf ('USB current: $smA
', $Smodule->get usbCurrent());
printf ('logs:
<pre>%s</pre>', Smodule->get lastLogs());
yFreeAPI () ;
?>
<input type='submit' value='refresh'>
</FORM>
</BODY>
</HTML>

Each property xxx of the module can be read thanks to a method of type get xxxx (), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

<HTML>

<HEAD>

<TITLE>save settings</TITLE>
<BODY>

<FORM method='get'>

<?php

42 www.yoctopuce.com

8. Using Yocto-MaxiRelay with PHP

include ('yocto api.php');

'/ Use explicit error handling rather than exceptions

yDisableExceptions () ;

the API -t

se the Vir b on local m

if (yRegisterHub ('http://127.0.0.1:4444/',Serrmsq)
die ("Cannot contact VirtualHub on 127.0.0.1");

b

}

@Sserial = $ GET['serial'l;
if ($serial != ''") {

Smodule

if (!Smodule->isOnline()) {
die ("Module not connected (check serial and USB cable)");
}
} else {
// or use any connected module suitable for the demo
Smodule = yFirstModule() ;
if (Smodule) { // skip VirtualHub

Smodule = Smodule->nextModule () ;
}
if(is null (Smodule)) {
dZe("No module connected (check USB cable)");
} else {
$serial = S$module->get serialnumber () ;
}
}

Print ("Module to use: <input name='serial' value='S$serial'>
");

if (isset($ GET['newname'])) {
Snewname = $ GET['newname'];
if (!yCheckLogicalName ($Snewname))
die('Invalid name') ;
Smodule->set logicalName ($newname) ;
Smodule->saveToFlash () ;
}

printf ("Current name: %$s
", Smodule->get logicalName ()) ;

print ("New name: <input name='newname' value='' maxlength=19>
");

yFreeAPI () ;
?>
<input type='submit'>
</FORM>
</BODY>
</HTML>

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure

you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a

short example listing the connected modules.

<HTML>
<HEAD>
<TITLE>inventory</TITLE>
</HEAD>
<BODY>
<Hl1>Device list</H1>
<TT>
<?php
include ('yocto api.php');
yRegisterHub ("http://127.0.0.1:4444/");
Smodule = yFirstModule () ;
while (!is_null (S$module)) {
printf("%$s (%s)
", Smodule->get serialNumber (),
$module—>qet7productName());

www.yoctopuce.com

43

8. Using Yocto-MaxiRelay with PHP

Smodule=$module->nextModule () ;
}
yFreeAPI () ;
?>
</TT>
</BODY>
</HTML>

8.4. HTTP callback APl and NAT filters

The PHP library is able to work in a specific mode called HTTP callback Yocto-API. With this mode,
you can control Yoctopuce devices installed behind a NAT filter, such as a DSL router for example,
and this without needing to open a port. The typical application is to control Yoctopuce devices,
located on a private network, from a public web site.

The NAT filter: advantages and disadvantages

A DSL router which translates network addresses (NAT) works somewhat like a private phone
switchboard (a PBX): internal extensions can call each other and call the outside; but seen from the
outside, there is only one official phone number, that of the switchboard itself. You cannot reach the
internal extensions from the outside.

Www.mysite_com 192.168.0.1

(64.136.20.37)

192.168.0.101

46.14.51.32 192.168.0.102

Typical DSL configuration: LAN machines are isolated from the outside by the DSL router

Transposed to the network, we have the following: appliances connected to your home automation
network can communicate with one another using a local IP address (of the 192.168.xxx.yyy type),
and contact Internet servers through their public address. However, seen from the outside, you have
only one official IP address, assigned to the DSL router only, and you cannot reach your network
appliances directly from the outside. It is rather restrictive, but it is a relatively efficient protection
against intrusions.

0O0O00O o S

response 8

Responses from request from LAN machines are routed.

44 www.yoctopuce.com

8. Using Yocto-MaxiRelay with PHP

L >l) m

But requests from the outside are blocked.

Seeing Internet without being seen provides an enormous security advantage. However, this signifies
that you cannot, a priori, set up your own web server at home to control a home automation
installation from the outside. A solution to this problem, advised by numerous home automation
system dealers, consists in providing outside visibility to your home automation server itself, by
adding a routing rule in the NAT configuration of the DSL router. The issue of this solution is that it
exposes the home automation server to external attacks.

The HTTP callback API solves this issue without having to modify the DSL router configuration. The
module control script is located on an external site, and it is the VirtualHub which is in charge of
calling it a regular intervals.

VirtualHub

yoctocontrol.php

request
B < S
00O00O (o) —

response ——emm

The HTTP callback API uses the VirtualHub which initiates the requests.

Configuration

The callback API thus uses the VirtualHub as a gateway. All the communications are initiated by the
VirtualHub. They are thus outgoing communications and therefore perfectly authorized by the DSL
router.

You must configure the VirtualHub so that it calls the PHP script on a regular basis. To do so:

1. Launch a VirtualHub

2. Access its interface, usually 127.0.0.1:4444

3. Click on the configure button of the line corresponding to the VirtualHub itself
4. Click on the edit button of the Outgoing callbacks section

Serial Logical Mame Description Action
I 11a8&fb0 VirtualHub (configure) (view log fike) -

Yocto-PowerRelay (configure) (viewlog file) (lbescon)
T Yocto-Temperature (configure) (viewlog file) ((beacon)
A | [Show device functions |

Click on the "configure" button on the first line

www.yoctopuce.com 45

8. Using Yocto-MaxiRelay with PHP

Edit parameters for VIRTHUBO-7d1a86f009, and click on the Save

button.

Serial # VIRTHUBO-7d1a86fb09
Product name: VirtualHub

Software version: 10789

Logical name:

Incoming connections

Authentication to read information from the devices:
Authentication to make changes to the devices:

Outgoing callbacks

Callback URL: octoHub (edit)
Delay between callbacks: min: 3[s] max 600 [s]

|'Save| [Cancel'\

Click on the "edit" button of the "Outgoing callbacks" section

This WirtualHub can post the advertised values of all devices on a specific URL on a
regular basis. If you wish to use this feature, choose the callbhack type follow the steps
below carefully.

1. Specifythe Type of callback vou want to use) Yiocto-AP| callback 'l

Yoctopuce devices can be controled through remote PHP scripts. That Yocio-AFY caliback
protocal is designed so it can pass trough MAT filters without opening ports. See your
device user manual, PHP programming section for more details.

2. Specifythe URL to use for reporting values. HTTPS protocol s not vet supported.

Callback URL: htlp:/ﬂwww rysite.compyoctotesthoctocantrol php \

3. If your callback reguires authentication, enter credentials here. Digest authentication iz
recommended, but Basic authentication works as well

Username: wocto |
Password CITTTIIT |

4. Setup the desired freguency of notifications:

Mo less than 3 \semmna hetween two notification
But notify after i) \semmnam any case

5. Press on the Test button to check your parameters.

6. When everything works, press on the OK hutton

[test] [ok] [cancel)

And select "Yocto-API callback”.

You then only need to define the URL of the PHP script and, if need be, the user name and
password to access this URL. Supported authentication methods are basic and digest. The second
method is safer than the first one because it does not allow transfer of the password on the network.

Usage

From the programmer standpoint, the only difference is at the level of the yRegisterHub function call.

Instead of using an IP address, you must use the callback string (or http://callback which is
equivalent).

include ("yocto_ api.php");
yRegisterHub ("callback") ;

The remainder of the code stays strictly identical. On the VirtualHub interface, at the bottom of the
configuration window for the HTTP callback API , there is a button allowing you to test the call to the
PHP script.

Be aware that the PHP script controlling the modules remotely through the HTTP callback API can
be called only by the VirtualHub. Indeed, it requires the information posted by the VirtualHub to
function. To code a web site which controls Yoctopuce modules interactively, you must create a user
interface which stores in a file or in a database the actions to be performed on the Yoctopuce
modules. These actions are then read and run by the control script.

46 www.yoctopuce.com

8. Using Yocto-MaxiRelay with PHP

Common issues

For the HTTP callback API to work, the PHP option allow_url fopen must be set. Some web site
hosts do not set it by default. The problem then manifests itself with the following error:

error: URL file-access is disabled in the server configuration

To set this option, you must create, in the repertory where the control PHP script is located, an .htaccess
file containing the following line:

php flag "allow url fopen" "On"

Depending on the security policies of the host, it is sometimes impossible to authorize this option at
the root of the web site, or even to install PHP scripts receiving data from a POST HTTP. In this
case, place the PHP script in a subdirectory.

Limitations

This method that allows you to go through NAT filters cheaply has nevertheless a price.
Communications being initiated by the VirtualHub at a more or less regular interval, reaction time to
an event is clearly longer than if the Yoctopuce modules were driven directly. You can configure the
reaction time in the specific window of the VirtualHub, but it is at least of a few seconds in the best
case.

The HTTP callback Yocto-API mode is currently available in PHP and Node.JS only.

8.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

+ If your code catches the exception and handles it, everything goes well.

» If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPT.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected

www.yoctopuce.com 47

8. Using Yocto-MaxiRelay with PHP

bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPT SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

48 www.yoctopuce.com

9. Using Yocto-MaxiRelay with C++

C++ is not the simplest language to master. However, if you take care to limit yourself to its essential
functionalities, this language can very well be used for short programs quickly coded, and it has the
advantage of being easily ported from one operating system to another. Under Windows, all the
examples and the project models are tested with Microsoft Visual Studio 2010 Express, freely
available on the Microsoft web site’. Under Mac OS X, all the examples and project models are
tested with XCode 4, available on the App Store. Moreover, under Max OS X and under Linux, you
can compile the examples using a command line with GCC using the provided GNUmakefile. In
the same manner under Windows, a Makefile allows you to compile examples using a command
line, fully knowing the compilation and linking arguments.

Yoctopuce C++ libraries? are integrally provided as source files. A section of the low-level library is
written in pure C, but you should not need to interact directly with it: everything was done to ensure
the simplest possible interaction from C++. The library is naturally also available as binary files, so
that you can link it directly if you prefer.

You will soon notice that the C++ API defines many functions which return objects. You do not need
to deallocate these objects yourself, the API does it automatically at the end of the application.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface. You will find in the last section of this chapter all the information
needed to create a wholly new project linked with the Yoctopuce libraries.

9.1. Control of the Relay function

A few lines of code are enough to use a Yocto-MaxiRelay. Here is the skeleton of a C++ code
snipplet to use the Relay function.

#include "yocto api.h"
#include "yocto relay.h"

[oocl
String errmsg;
YRelay *relay;

et access our device conne«

yRegisterHub ("usb", errmsg);
relay = yFindRelay ("HI8PWER1-123456.relayl");

1 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express
www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com

49

9. Using Yocto-MaxiRelay with C++

Hot —bD easv: 1118 ~heck tha the de 3

if(re;ay—>i50nlinek))

{
}

Let's look at these lines in more details.

yocto_api.h et yocto_relay.h

These two include files provide access to the functions allowing you to manage Yoctopuce modules.
yocto api.h must always be used, yocto relay.h is necessary to manage modules
containing a relay, such as Yocto-MaxiRelay.

yRegisterHub

The yRegisterHub function initializes the Yoctopuce API and indicates where the modules should
be looked for. When used with the parameter "usb", it will use the modules locally connected to the
computer running the library. If the initialization does not succeed, this function returns a value
different from YAPI SUCCESS and errmsg contains the error message.

yFindRelay

The yFindRelay function allows you to find a relay from the serial number of the module on which
it resides and from its function name. You can use logical names as well, as long as you have
initialized them. Let us imagine a Yocto-MaxiRelay module with serial nhumber HISPWER1-123456
which you have named "MyModule", and for which you have given the relay1 function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

YRelay *relay
YRelay *relay
YRelay *relay
YRelay *relay
YRelay *relay

yFindRelay ("HI8PWER1-123456.relayl");
yFindRelay ("HI8PWER1-123456.MyFunction") ;
yFindRelay ("MyModule.relayl") ;

yFindRelay ("MyModule.MyFunction") ;
yFindRelay ("MyFunction") ;

yFindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by yFindRelay allows you to know if the
corresponding module is present and in working order.

set_state

The set state () method of the objet returned by yFindRelay switches the relay position to
one of its two outputs. The two possible parameter values are Y STATE A for output A, and
Y STATE B for output B.

A real example

Launch your C++ environment and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-MaxiRelay of the Yoctopuce library. If you prefer to work with
your favorite text editor, open the file main. cpp, and type make to build the example when you are
done.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

#include "yocto api.h"
#include "yocto relay.h"
#include <iostream>
#include <ctype.h>
#include <stdlib.h>

using namespace std;

50 www.yoctopuce.com

9. Using Yocto-MaxiRelay with C++

static void usage (const char* execname)
{

cout << "usage:" << endl;

cout << execname << " serial number> <channel> [ON | OFF]" << endl;

cout << execname << " <logical name> <channel>[ON | OFF]" << endl;

cout << execname << " any <channel> [ON | OFF] (use any discovered device)" <<
endl;

cout << "Example" << endl;

cout << execname << " any 2 ON" << endl;

exit (1) ;

}

int main(int argc, const char * argv[])
{

string errmsg;

string target;

string channel;

YRelay *relay;

string state;

if (argc < 3) usage(argv[0]);

target = (string) argv[l];
channel = (string) argv[2];
state = (string) argv[3];

// Setup the API to use local USB devices

if (yRegisterHub ("usb", errmsg) != YAPI SUCCESS) {
cerr << "RegisterHub error: " << errmsg << endl;
return 1;

}

if (target == "any") {
relay = vyFirstRelay();
if (relay==NULL) {
cout << "No module connected (check USB cable)" << endl;
return 1;
}
target = relay->get module () ->get serialNumber () ;

}

cout << "Using " << target << endl;

relay = vyFindRelay((string)target + ".relay" + channel);
if (relay->isOnline()) {
relay->set state(state == "ON" ? Y STATE B : Y STATE A);
} else {
cout << "Module not connected (check identification and USB cable)" << endl;
}
return 0;

9.2. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#include <iostream>
#include <stdlib.h>

#include "yocto api.h"
using namespace std;

static void usage (const char *exe)
{
cout << "usage:
exit (1) ;
}

" << exe << " <serial or logical name> [ON/OFF]" << endl;

www.yoctopuce.com 51

9. Using Yocto-MaxiRelay with C++

int main(int argc, const char * argv[])

{

string errmsg;

Sot

e AF

if (yRegisterHub ("usb", errmsg) != YAPI SUCCESS) ({
cerr << "RegisterHub error: " << errmsg << endl;
return 1;

}

if (argc < 2)
usage (argv[0]) ;

YModule *module = yFindModule (argv([l]); // use serial or logica
if (module->isOnline()) {
if (argc > 2) {
if (string(argv[2]) == "ON")
module->set beacon (Y BEACON ON) ;
else

module->set beacon (Y BEACON_ OFF) ;
}

cout << "serial: " << module->get serialNumber () << endl;
cout << "logical name: " << module->get logicalName () << endl;
cout << "luminosity: " << module->get luminosity () << endl;
cout << "beacon: "y
if (module->get beacon() == Y BEACON_ON)
cout << "ON" << endl;
else
cout << "OFF" << endl;
cout << "upTime: " << module->get upTime() / 1000 << " sec" << endl;
cout << "USB current: " << module->get usbCurrent () << " mA" << endl;
cout << "Logs:" << endl << module->get lastLogs() << endl;
} else {
cout << argv[l] << " not connected (check identification and USB cable)"
<< endl;
}
yFreeAPI();
return O;

Each property xxx of the module can be read thanks to a method of type get xxxx(), and
properties which are not read-only can be modified with the help of the set xxx () method. For

more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below

allows you to modify the logical name of a module.

#include <iostream>
#include <stdlib.h>

#include "yocto api.h"
using namespace std;

static void usage (const char *exe)

{

cerr << "usage: " << exe << " <serial> <newLogicalName>" <<
exit (1) ;
}

int main(int argc, const char * argv[])

{

string errmsg;

endl;

52

www.yoctopuce.com

9. Using Yocto-MaxiRelay with C++

// Setup the API to use local USB devices

if (yRegisterHub ("usb", errmsg) != YAPI SUCCESS) ({
cerr << "RegisterHub error: " << errmsg << endl;
return 1;

}

if (argc < 2)
usage (argv[0]) ;

YModule *module = yFindModule (argv[1l]); // use seric o C ne
if (module->isOnline()) {
if (argc >= 3) {
string newname = argv[2];
if (!yCheckLogicalName (newname)) {
cerr << "Invalid name (" << newname << ")" << endl;
usage (argv[0]) ;
}
module->set logicalName (newname) ;
module->saveToFlash () ;
}
cout << "Current name: " << module->get logicalName () << endl;
} else {
cout << argv[l] << " not connected (check identification and USB cable)"
<< endl;
}
yFreeAPI () ;
return 0;

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

#include <iostream>
#include "yocto api.h"
using namespace std;

int main(int argc, const char * argvl[])
{
string errmsg;

se Local Usb aevices

"usb", errmsg) != YAPI SUCCESS) ({

Setup the API
Set h AP]

if (YAPI: :RegisterHub (

cerr << "RegisterHub error: " << errmsg << endl;
return 1;

}

cout << "Device list: " << endl;

YModule *module = YModule::FirstModule() ;

while (module != NULL) {
cout << module->get serialNumber () << " ";
cout << module->get productName () << endl;
module = module->nextModule () ;

}

yFreeAPI () ;

return 0;

www.yoctopuce.com 53

9. Using Yocto-MaxiRelay with C++

9.3. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPT.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected
bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPT SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

9.4. Integration variants for the C++ Yoctopuce library

Depending on your needs and on your preferences, you can integrate the library into your projects in
several distinct manners. This section explains how to implement the different options.

Integration in source format
Integrating all the sources of the library into your projects has several advantages:

* |t guaranties the respect of the compilation conventions of your project (32/64 bits, inclusion of
debugging symbols, unicode or ASCII characters, etc.);

+ It facilitates debugging if you are looking for the cause of a problem linked to the Yoctopuce
library;

+ It reduces the dependencies on third party components, for example in the case where you
would need to recompile this project for another architecture in many years;

* It does not require the installation of a dynamic library specific to Yoctopuce on the final
system, everything is in the executable.

54 www.yoctopuce.com

9. Using Yocto-MaxiRelay with C++

To integrate the source code, the easiest way is to simply include the Sources directory of your
Yoctopuce library into your IncludePath, and to add all the files of this directory (including the sub-
directory yapi) to your project.

For your project to build correctly, you need to link with your project the prerequisite system libraries,
that is:

* For Windows: the libraries are added automatically
* For Mac OS X: I10Kit.framework and CoreFoundation.framework
* For Linux: libm, libpthread, libusb1.0, and libstdc++

Integration as a static library

Integration of the Yoctopuce library as a static library is a simpler manner to build a small executable
which uses Yoctopuce modules. You can quickly compile the program with a single command. You
do not need to install a dynamic library specific to Yoctopuce, everything is in the executable.

To integrate the static Yoctopuce library to your project, you must include the Sources directory of
the Yoctopuce library into your IncludePath, and add the sub-directory Binaries/...
corresponding to your operating system into your libPath.

Then, for you project to build correctly, you need to link with your project the Yoctopuce library and
the prerequisite system libraries:

* For Windows: yocto-static.lib
* For Mac OS X: libyocto-static.a, IOKit.framework, and CoreFoundation.framework
* For Linux: libyocto-static.a, libm, libpthread, libusb1.0, and libstdc++.

Note, under Linux, if you wish to compile in command line with GCC, it is generally advisable to link
system libraries as dynamic libraries, rather than as static ones. To mix static and dynamic libraries
on the same command line, you must pass the following arguments:

gcc (...) -Wl,-Bstatic -lyocto-static -Wl,-Bdynamic -1m -lpthread -lusb-1.0 -lstdc++

Integration as a dynamic library

Integration of the Yoctopuce library as a dynamic library allows you to produce an executable smaller
than with the two previous methods, and to possibly update this library, if a patch reveals itself
necessary, without needing to recompile the source code of the application. On the other hand, it is
an integration mode which systematically requires you to copy the dynamic library on the target
machine where the application will run (yocto.dll for Windows, libyocto.s0.1.0.1 for Mac OS X and
Linux).

To integrate the dynamic Yoctopuce library to your project, you must include the Sources directory
of the Yoctopuce library into your IncludePath, and add the sub-directory Binaries/...
corresponding to your operating system into your LibPath.

Then, for you project to build correctly, you need to link with your project the dynamic Yoctopuce
library and the prerequisite system libraries:

» For Windows: yocto.lib
* For Mac OS X: libyocto, I0OKit.framework, and CoreFoundation.framework
* For Linux: libyocto, libm, libpthread, libusb1.0, and libstdc++.

With GCC, the command line to compile is simply:

gcc (...) —-lyocto -1lm -lpthread -lusb-1.0 -lstdc++

www.yoctopuce.com 55

56

www.yoctopuce.com

10. Using Yocto-MaxiRelay with Objective-C

Objective-C is language of choice for programming on Mac OS X, due to its integration with the
Cocoa framework. In order to use the Objective-C library, you need XCode version 4.2 (earlier
versions will not work), available freely when you run Lion. If you are still under Snow Leopard, you
need to be registered as Apple developer to be able to download XCode 4.2. The Yoctopuce library
is ARC compatible. You can therefore implement your projects either using the traditional retain /
release method, or using the Automatic Reference Counting.

Yoctopuce Objective-C libraries’ are integrally provided as source files. A section of the low-level
library is written in pure C, but you should not need to interact directly with it: everything was done to
ensure the simplest possible interaction from Objective-C.

You will soon notice that the Objective-C API defines many functions which return objects. You do
not need to deallocate these objects yourself, the APl does it automatically at the end of the
application.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface. You can find on Yoctopuce blog a detailed example? with video
shots showing how to integrate the library into your projects.

10.1. Control of the Relay function

Launch Xcode 4.2 and open the corresponding sample project provided in the directory Examples/
Doc-GettingStarted-Yocto-MaxiRelay of the Yoctopuce library.

#import <Foundation/Foundation.h>
#import "yocto api.h"
#import "yocto relay.h"

static void usage (const char* execname)
{
NSLog (@"usage:") ;
NSLog (@" %s serial number> <channel> [ON | OFF]",execname) ;
NSLog (@" %s <logical name> <channel>[ON | OFF]",execname) ;
NSLog (@" %s any <channel> [ON | OFF] (use any discovered device)",execname) ;
NSLog (@"Example") ;
NSLog (@" %s any 2 ON",execname) ;
exit (1)

1 www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com/EN/article/new-objective-c-library-for-mac-os-x

www.yoctopuce.com 57

10. Using Yocto-MaxiRelay with Objective-C

int main(int argc, const char * argv[])
{

NSError *error;

if (argc < 3) usage(argv[0]);

@autoreleasepool {

YRelay *relay;

NSString *target = [NSString stringWithUTF8String:argv[1l]];
NSString *channel = [NSString stringWithUTF8String:argv[2]];
NSString *state = [NSString stringWithUTF8String:argv[3]];
if ([YAPI RegisterHub:Q@"usb": &error] != YAPI SUCCESS) {
NSLog (@"RegisterHub error: %@", [error localizedDescription]);
return 1;

if ([target isEqualToString:@"any"]) {

relay = [YRelay FirstRelay];

if (relay==NULL) {
NSLog (@"No module connected (check USB cable)");
return 1;

}
target = [[relay module] serialNumber];

}

NSLog (@"Using %Q",target) ;
relay = [YRelay FindRelay: [NSString stringWithFormat:Q@"$Q@.relay%@",target,channel]

if ([relay isOnline]) {
if ([state isEqualToString:@"ON"])
[relay set state:Y STATE B];
else
[relay set state:Y STATE A];
} else {
NSLog (@"Module not connected (check identification and USB cable)\n");
}
}

return 0;

There are only a few really important lines in this example. We will look at them in details.

yocto_api.h et yocto_relay.h

These two import files provide access to the functions allowing you to manage Yoctopuce modules.
yocto api.h must always be used, yocto relay.h is necessary to manage modules
containing a relay, such as Yocto-MaxiRelay.

[YAPI RegisterHub]

The [YAPI RegisterHub] function initializes the Yoctopuce API and indicates where the
modules should be looked for. When used with the parameter @"usb", it will use the modules
locally connected to the computer running the library. If the initialization does not succeed, this
function returns a value different from YAPTI SUCCESS and errmsg contains the error message.

[Relay FindRelay]

The [Relay FindRelay] function allows you to find a relay from the serial number of the module
on which it resides and from its function name. You can use logical names as well, as long as you
have initialized them. Let us imagine a Yocto-MaxiRelay module with serial number
HISBPWER1-123456 which you have named "MyModule", and for which you have given the relay1
function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

YRelay *relay = [Relay FindRelay:Q@"HI8PWER1-123456.relayl"];

58 www.yoctopuce.com

10. Using Yocto-MaxiRelay with Objective-C

YRelay *relay =
YRelay *relay =
YRelay *relay =
YRelay *relay

Relay FindRelay:@"HI8PWER1-123456.MyFunction"];
Relay FindRelay:@"MyModule.relayl"];

Relay FindRelay:@"MyModule.MyFunction"];

Relay FindRelay:@"MyFunction"];

[
[
[
[

[Relay FindRelay] returns an object which you can then use at will to control the relay.

isOnline

The 1sOnline method of the object returned by [Relay FindRelay] allows you to know if the
corresponding module is present and in working order.

set_state

The set state () method of the objet returned by YRelay.FindRelay switches the relay
position to one of its two outputs. The two possible parameter values are YRelay.STATE A for
output A, and YRelay.STATE B for output B.

10.2. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#import <Foundation/Foundation.h>
#import "yocto api.h"

static void usage (const char *exe)

{
NSLog (@"usage: %s <serial or logical name> [ON/OFF]\n", exe);
exit (1) ;

}

int main (int argc, const char * argv[])
{

NSError *error;

Qautoreleasepool {
// Setup the API to use local USB de ces
if ([YAPI RegisterHub:Q@"usb": &error] != YAPI SUCCESS) ({
NSLog (@"RegisterHub error: %$@", [error localizedDescriptionl]);

return 1;

}
if (argc < 2)
usage (argv[0]) ;

NSString *serial or name = [NSString stringWithUTF8String:argv[1]];
// use serial or logical 1 e
YModule *module = [YModule FindModule:serial or name];
if ([module isOnline]) {
if (argc > 2) {
if (strcmp(argv[2], "ON") == 0)
[module setBeacon:Y BEACON_ ON];
else

[module setBeacon:Y BEACON OFF];
}

NSLog (@"serial: %@\n", [module serialNumber]) ;
NSLog (@"logical name: %@\n", [module logicalName]) ;
NSLog (@"luminosity: %d\n", [module luminosity]);
NSLog (@"beacon: W) g
if ([module beacon] == Y BEACON_ON)

NSLog (@"ON\n") ;
else

NSLog (@"OFF\n") ;
NSLog (@"upTime: %1d sec\n", [module upTime] / 1000);
NSLog (@"USB current: %d mA\n", [module usbCurrent]) ;
NSLog (@"logs: %@\n", [module get lastLogs]);

} else {

NSLog (@"%@ not connected (check identification and USB cable)\n",
serial or name);

}
[YAPI FreeAPI];

}

return 0;

www.yoctopuce.com 59

10. Using Yocto-MaxiRelay with Objective-C

Each property xxx of the module can be read thanks to a method of type get xxxx, and
properties which are not read-only can be modified with the help of the set xxx: method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx: function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash method. The short example below
allows you to modify the logical name of a module.

#import <Foundation/Foundation.h>
#import "yocto api.h"

static void usage (const char *exe)

{
NSLog (@"usage: %s <serial> <newLogicalName>\n", exe);
exit (1) ;

}

int main (int argc, const char * argvl[])

{

NSError *error;

Qautoreleasepool {

p the Arl C use local Uob Qevice

!= YAPI SUCCESS) ({

if ([YAPI RegisterHub:@"usb" :&error]
NSLog (@"RegisterHub error: %@", [error localizedDescription]);
return 1;

}

if (argc < 2)
usage (argv[0]) ;

NSString *serial or name = [NSString stringWithUTF8String:argv[1]];

sSe serial or l10o0gicads ime

YModule *module = [YModule FindModule:serial or name];

if (module.isOnline) {
if (argc >= 3) {
NSString *newname = [NSString stringWithUTF8String:argv[2]];
if (![YAPI CheckLogicalName:newname]) {
NSLog (@"Invalid name (%Q@)\n", newname) ;
usage (argv[0]) ;
}
module.logicalName = newname;
[module saveToFlash];
}
NSLog (@"Current name: %@\n", module.logicalName) ;
} else {
NSLog (@"%@ not connected (check identification and USB cable)\n",
serial or name);
}
[YAPI FreeAPI];
}

return O;

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash function only 100000 times in the life of the module. Make sure you
do not call this function within a loop.

60

www.yoctopuce.com

10. Using Yocto-MaxiRelay with Objective-C

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

#import <Foundation/Foundation.h>
#import "yocto api.h"

int main (int argc, const char * argvl[])
{

NSError *error;

@autoreleasepool {
if ([YAPI RegisterHub:@"usb" :&error] != YAPI SUCCESS) ({

NSLog (@"RegisterHub error: %Q@\n", [error localizedDescription]) ;

return 1;

}

NSLog (@"Device list:\n");

YModule *module = [YModule FirstModule];

while (module != nil) {
NSLog (@"%@ %@", module.serialNumber, module.productName) ;
module = [module nextModule];

}
[YAPI FreeAPI];

}

return 0;

}

10.3. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

+ If your code catches the exception and handles it, everything goes well.

* If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPT.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a

www.yoctopuce.com 61

10. Using Yocto-MaxiRelay with Objective-C

get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected
bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPT SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

62 www.yoctopuce.com

11. Using Yocto-MaxiRelay with Visual Basic .NET

VisualBasic has long been the most favored entrance path to the Microsoft world. Therefore, we had
to provide our library for this language, even if the new trend is shifting to C#. All the examples and
the project models are tested with Microsoft VisualBasic 2010 Express, freely available on the
Microsoft web site’.

11.1. Installation

Download the Visual Basic Yoctopuce library from the Yoctopuce web site?. There is no setup
program, simply copy the content of the zip file into the directory of your choice. You mostly need the
content of the Sources directory. The other directories contain the documentation and a few
sample programs. All sample projects are Visual Basic 2010, projects, if you are using a previous
version, you may have to recreate the projects structure from scratch.

11.2. Using the Yoctopuce API in a Visual Basic project

The Visual Basic.NET Yoctopuce library is composed of a DLL and of source files in Visual Basic.
The DLL is not a.NET DLL, but a classic DLL, written in C, which manages the low level
communications with the modules®. The source files in Visual Basic manage the high level part of the
API. Therefore, your need both this DLL and the .vb files of the sources directory to create a
project managing Yoctopuce modules.

Configuring a Visual Basic project

The following indications are provided for Visual Studio Express 2010, but the process is similar for
other versions. Start by creating your project. Then, on the Solution Explorer panel, right click on your
project, and select "Add" and then "Add an existing item".

A file selection window opens. Select the yocto api.vb file and the files corresponding to the
functions of the Yoctopuce modules that your project is going to manage. If in doubt, select all the
files.

You then have the choice between simply adding these files to your project, or to add them as links
(the Add button is in fact a scroll-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply keeps a link on the original files. We
recommend you to use links, which makes updates of the library much easier.

1 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-basic-express
www.yoctopuce.com/EN/libraries.php
The sources of this DLL are available in the C++ API

www.yoctopuce.com 63

11. Using Yocto-MaxiRelay with Visual Basic .NET

Then add in the same manner the yapi.d11 DLL, located in the Sources/d11 directory*. Then,
from the Solution Explorer window, right click on the DLL, select Properties and in the Properties
panel, set the Copy to output folder to always. You are now ready to use your Yoctopuce modules
from Visual Studio.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

11.3. Control of the Relay function

A few lines of code are enough to use a Yocto-MaxiRelay. Here is the skeleton of a Visual Basic
code snipplet to use the Relay function.

[...]
Dim errmsg As String errmsg
Dim relay As YRelay

yRegisterHub ("usb", errmsg)
relay = yFindRelay ("HI8PWER1-123456.relayl"

RE Hot-plug S easy: UsSt cneckKk tnat tne aev

If (relay.iéOnline()) Then

End If
Let's look at these lines in more details.

yRegisterHub

The yRegisterHub function initializes the Yoctopuce API and indicates where the modules should
be looked for. When used with the parameter "usb", it will use the modules locally connected to the
computer running the library. If the initialization does not succeed, this function returns a value
different from YAPI SUCCESS and errmsg contains the error message.

yFindRelay

The yFindRelay function allows you to find a relay from the serial number of the module on which
it resides and from its function name. You can use logical names as well, as long as you have
initialized them. Let us imagine a Yocto-MaxiRelay module with serial number HISPWER1-123456
which you have named "MyModule", and for which you have given the relay? function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

relay = yFindRelay ("HI8BPWER1-123456.relayl"
relay = yFindRelay ("HI8PWER1-123456.MyFunction")
relay = yFindRelay ("MyModule.relayl")

relay = yFindRelay ("MyModule.MyFunction")

relay = yFindRelay ("MyFunction")

yFindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by yFindRelay allows you to know if the
corresponding module is present and in working order.

set_state

The set state () method of the objet returned by yFindRelay switches the relay position to
one of its two outputs. The two possible parameter values are Y STATE A for output A, and
Y STATE B for output B.

4 Remember to change the filter of the selection window, otherwise the DLL will not show.

64 www.yoctopuce.com

11. Using Yocto-MaxiRelay with Visual Basic .NET

A real example

Launch Microsoft VisualBasic and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-MaxiRelay of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

Module Modulel

Private Sub Usage()
Dim execname As String = System.AppDomain.CurrentDomain.FriendlyName
Console.WritelLine ("Usage:")
Console.WriteLine (execname + " <serial number> <channel> [ON | OFF]")
Console.WriteLine (execname + " <logical name> <channel> [ON | OFF]")
Console.Writeline (execname + " any <channel> [ON | OFF]1")

Console.WritelLine ("Example:"
Console.Writeline (execname + " any 1 [ON | OFF 1")
System.Threading.Thread.Sleep (2500)
End
End Sub
Sub Main ()
Dim argv () As String = System.Environment.GetCommandLineArgs ()

wn

Dim errmsg As String =
Dim target, channel As String
Dim relay As YRelay
Dim state As String

If argv.Length < 3 Then Usage ()

target = argv(l)
channel = argv(2)
state = argv(3) .ToUpper

REM Setup the API to use local USB devices

If (yRegisterHub ("usb", errmsg) <> YAPI SUCCESS) Then
Console.WriteLine ("RegisterHub error: " + errmsgq)
End

End If

If target = "any" Then

relay = yFirstRelay ()
If relay Is Nothing Then
Console.WriteLine ("No module connected (check USB cable) ")

End
End If
target = relay.get module () .get serialNumber ()
End If
Console.WriteLine ("using " + target)

relay = yFindRelay(target + ".relay" + channel)

If (relay.isOnline()) Then
If state = "ON" Then
relay.set output (Y OUTPUT ON)
Else
relay.set output (Y OUTPUT OFF)
End If
Else
Console.WritelLine ("Module not connected (check identification and USB cable)")
End If
End Sub
End Module

11.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

www.yoctopuce.com 65

11. Using Yocto-MaxiRelay with Visual Basic .NET

Imports System.IO
Imports System.Environment

Module Modulel

Sub usage ()
Console.WriteLine ("usage: demo <serial or logical name> [ON/OFF]")
End

End Sub

Sub Main ()
Dim argv () As String = System.Environment.GetCommandLineArgs ()
Dim errmsg As String = ""
Dim m As ymodule

If (yRegisterHub ("usb", errmsg) <> YAPI SUCCESS) Then
Console.WritelLine ("RegisterHub error:" + errmsg)
End

End If

If argv.Length < 2 Then usage ()

m = yFindModule (argv (1))

If (m.isOnline()) Then

If argv.Length > 2 Then

If argv(2) = "ON" Then m.set beacon (Y BEACON ON)

If argv(2) = "OFF" Then m.set beacon (Y BEACON_ OFF)
End If
Console.WriteLine ("serial: " + m.get serialNumber ())
Console.WriteLine("logical name: " + m.get logicalName ())
Console.WriteLine ("luminosity: " + Str(m.get luminosity()))
Console.Write ("beacon: ")
If (m.get beacon() = Y BEACON ON) Then

Console.WriteLine ("ON")
Else

Console.WriteLine ("OFF")
End If
Console.WriteLine ("upTime: " + Str(m.get upTime () / 1000) + " sec")
Console.WriteLine ("USB current: " + Str(m.get usbCurrent()) + " mA")
Console.WriteLine ("Logs:")

(

Console.WriteLine
Else
Console.WritelLine(argv(l) + " not connected (check identification and USB cable)")
End If
yFreeAPI ()
End Sub

m.get lastLogs())

End Module

Each property xxx of the module can be read thanks to a method of type get xxxx(), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

Module Modulel

Sub usage ()
Console.WriteLine ("usage: demo <serial or logical name> <new logical name>")
End

End Sub

Sub Main ()

66 www.yoctopuce.com

11. Using Yocto-MaxiRelay with Visual Basic .NET

Dim argv () As String = System.Environment.GetCommandLineArgs ()
Dim errmsg As String = ""

Dim newname As String

Dim m As YModule

If (argv.Length <> 3) Then usage ()

REM Setup the API to use local USB devices

If yRegisterHub ("usb", errmsg) <> YAPI SUCCESS Then
Console.WriteLine ("RegisterHub error: " + errmsqg)
End

End If

m = yFindModule (argv(l))
If m.isOnline () Then

newname = argv(2)

If (Not yCheckLogicalName (newname)) Then
Console.WritelLine ("Invalid name (" + newname + ")")
End

End If

m.set logicalName (newname)
m.saveToFlash () REM d 10t f S
Console.Write("Module: serial= " + m.get serialNumber)
Console.Write(" / name= " + m.get logicalName ())
Else
Console.Write ("not connected (check identification and USB cable")
End If
yFreeAPI ()

Jo not foraget this
Jo not forget this

End Sub

End Module

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not Nothing. Below a
short example listing the connected modules.

Module Modulel

Sub Main ()
Dim M As ymodule
Dim errmsg As String = ""

Setup the APT

c n
o 10

0 use local USB devices

REM
KoM uocc C

If yRegisterHub("usb", errmsg) <> YAPI SUCCESS Then
Console.WriteLine ("RegisterHub error: " + errmsg)
End

End If

Console.WriteLine ("Device list")

M = yFirstModule ()

While M IsNot Nothing
Console.WriteLine (M.get serialNumber () + " (" + M.get productName() + ")")
M = M.nextModule ()

End While

yFreeAPI ()

End Sub

End Module

www.yoctopuce.com 67

11. Using Yocto-MaxiRelay with Visual Basic .NET

11.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPT.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected
bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPT SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

68 www.yoctopuce.com

12. Using Yocto-MaxiRelay with C#

C# (pronounced C-Sharp) is an object-oriented programming language promoted by Microsoft, it is
somewhat similar to Java. Like Visual-Basic and Delphi, it allows you to create Windows applications
quite easily. All the examples and the project models are tested with Microsoft C# 2010 Express,
freely available on the Microsoft web site’.

12.1. Installation

Download the Visual C# Yoctopuce library from the Yoctopuce web site?. There is no setup program,
simply copy the content of the zip file into the directory of your choice. You mostly need the content
of the Sources directory. The other directories contain the documentation and a few sample
programs. All sample projects are Visual C# 2010, projects, if you are using a previous version, you
may have to recreate the projects structure from scratch.

12.2. Using the Yoctopuce API in a Visual C# project

The Visual C#NET Yoctopuce library is composed of a DLL and of source files in Visual C#. The
DLL is not a .NET DLL, but a classic DLL, written in C, which manages the low level communications
with the modules®. The source files in Visual C# manage the high level part of the API. Therefore,
your need both this DLL and the .cs files of the sources directory to create a project managing
Yoctopuce modules.

Configuring a Visual C# project

The following indications are provided for Visual Studio Express 2010, but the process is similar for
other versions. Start by creating your project. Then, on the Solution Explorer panel, right click on your
project, and select "Add" and then "Add an existing item".

A file selection window opens. Select the yocto api.cs file and the files corresponding to the
functions of the Yoctopuce modules that your project is going to manage. If in doubt, select all the
files.

You then have the choice between simply adding these files to your project, or to add them as links
(the Add button is in fact a scroll-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply keeps a link on the original files. We
recommend you to use links, which makes updates of the library much easier.

1 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-csharp-express
www.yoctopuce.com/EN/libraries.php
3 The sources of this DLL are available in the C++ API

www.yoctopuce.com 69

12. Using Yocto-MaxiRelay with C#

Then add in the same manner the yapi.d11 DLL, located in the Sources/d11 directory*. Then,
from the Solution Explorer window, right click on the DLL, select Properties and in the Properties
panel, set the Copy to output folder to always. You are now ready to use your Yoctopuce modules
from Visual Studio.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

12.3. Control of the Relay function

A few lines of code are enough to use a Yocto-MaxiRelay. Here is the skeleton of a C# code snipplet
to use the Relay function.

[oooll
string errmsg ="";
YRelay relay;

YAPI.RegisterHub ("usb", errmsg);
relay = YRelay.FindRelay ("HI8PWER1-123456.relayl");

if (reléy.isOnlinek)f
{ Use relay.set state();

}

Let's look at these lines in more details.

YAPIL.RegisterHub

The YAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPTI . SUCCESS and errmsg contains the error message.

YRelay.FindRelay

The YRelay.FindRelay function allows you to find a relay from the serial number of the module
on which it resides and from its function name. You can use logical names as well, as long as you
have initialized them. Let us imagine a Yocto-MaxiRelay module with serial number
HIBPWER1-123456 which you have named "MyModule", and for which you have given the relay1
function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

relay = YRelay.FindRelay ("HI8PWER1-123456.relayl");
relay = YRelay.FindRelay ("HI8PWER1-123456.MyFunction") ;
relay = YRelay.FindRelay ("MyModule.relayl");

relay = YRelay.FindRelay ("MyModule.MyFunction") ;

relay = YRelay.FindRelay ("MyFunction") ;

YRelay.FindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by YRelay.FindRelay allows you to know if
the corresponding module is present and in working order.

set_state

The set state () method of the objet returned by YRelay.FindRelay switches the relay
position to one of its two outputs. The two possible parameter values are YRelay.STATE A for
output A, and YRelay.STATE B for output B.

4 Remember to change the filter of the selection window, otherwise the DLL will not show.

70 www.yoctopuce.com

12. Using Yocto-MaxiRelay with C#

A real example

Launch Microsoft Visual C# and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-MaxiRelay of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl
{
class Program
{
static void usage ()
{ string execname System.AppDomain.CurrentDomain.FriendlyName;

"Usage:")

Console.WriteLine (g

Console.WritelLine (execname + " <serial number> <channel> [ON | OFF]");
Console.WriteLine (execname + " <logical name> <channel> [ON | OFF]");
Console.WritelLine (execname + " any <channel> [ON | OFF 1");
Console.WriteLine ("Example:") ;

Console.WritelLine (execname + " any 2 ON");
System.Threading.Thread.Sleep (2500) ;

Environment.Exit (0) ;

}

static void Main(string[] args)
{

string errmsg = "";

string target;

YRelay relay;

string state;

string channel;

if (args.Length < 3) usage();

target = args[0].ToUpper();
channel = args[l];
state = args[2].ToUpper () ;
if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS)
{
Console.WritelLine ("RegisterHub error: " + errmsg);

Environment.Exit (0) ;

}

if (target == "ANY")
{
relay = YRelay.FirstRelay();
if (relay == null)
{
Console.WritelLine ("No module connected (check USB cable) ");
Environment.Exit (0) ;
}
target = relay.get module () .get serialNumber () ;

}

Console.WriteLine ("using " + target);
relay = YRelay.FindRelay (target + ".relay"+channel);

if (relay.isOnline())
{
if (state == "ON")
relay.set output (YRelay.OUTPUT ON) ;
else
relay.set output (YRelay.OUTPUT OFF) ;
}

else Console.WriteLine ("Module not connected (check identification and USB cable)");

www.yoctopuce.com 71

12. Using Yocto-MaxiRelay with C#

12.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl
{
class Program
{
static void usage()

{

string execname = System.AppDomain.CurrentDomain.FriendlyName;
Console.WriteLine ("Usage:") ;
Console.WriteLine (execname + " <serial or logical name> [ON/OFF]");

System.Threading.Thread.Sleep (2500) ;
Environment.Exit (0) ;

}

static void Main(string[] args)

{
YModule m;
string errmsg = "";

if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS) {
Console.WriteLine ("RegisterHub error: " + errmsqg);
Environment.Exit (0) ;

}

if (args.Length < 1) usage () ;

m = YModule.FindModule (args[0]); // use serial or logical name
if (m.isOnline()) {
if (args.Length >= 2) {
if (args[l].ToUpper() == "ON") {

m.set beacon (YModule.BEACON ON) ;
}
if (args[l].ToUpper () == "OFF") {
m.set beacon (YModule.BEACON OFF) ;
}
}

Console.WriteLine ("serial: " + m.get serialNumber ());
Console.WriteLine("logical name: " + m.get logicalName());
Console.WriteLine ("luminosity: " + m.get luminosity().ToString()):;
Console.Write ("beacon: WY 2
if (m.get beacon() == YModule.BEACON_ ON)
Console.WriteLine ("ON") ;
else
Console.WriteLine ("OFE") ;
Console.WriteLine ("upTime: " + (m.get upTime() / 1000).ToString() + " sec");
Console.WriteLine ("USB current: " + m.get usbCurrent().ToString() + " mA");

Console.WriteLine ("Logs:\r\n" + m.get lastLogs());

} else {

Console.WriteLine (args[0] + " not connected (check identification and USB cable)");

}
YAPI.FreeAPI () ;
}
}
}

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set xxx()

method. For more details regarding the used functions, refer to the API chapters.

72

www.yoctopuce.com

12. Using Yocto-MaxiRelay with C#

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl
{
class Program
{
static void usage ()
{
string execname = System.AppDomain.CurrentDomain.FriendlyName;
Console.WriteLine ("Usage:");
Console.WriteLine ("usage: demo <serial or logical name> <new logical name>");
System.Threading.Thread.Sleep(2500);
Environment.Exit (0) ;

}

static void Main(string[] args)
{

YModule m;

string errmsg = "";

string newname;

if (args.Length != 2) usage():;
if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS) ({
Console.WritelLine ("RegisterHub error: " + errmsqg);

Environment.Exit (0) ;

}
m = YModule.FindModule (args([0]); // use serial or logical name

if (m.isOnline()) {

newname = args[l];
if (!YAPI.CheckLogicalName (newname)) {
Console.WriteLine ("Invalid name (" + newname + ")");

Environment.Exit (0) ;

}

m.set logicalName (newname) ;
m.saveToFlash(); // do not

foraget tF}

orget tnis

Console.Write ("Module: serial= " + m.get serialNumber());
Console.WriteLine (" / name= " + m.get logicalName());
} else {

Console.Write ("not connected (check identification and USB cable");

}
YAPI.FreeAPI();

}
}
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

www.yoctopuce.com 73

12. Using Yocto-MaxiRelay with C#

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl
{ class Program
{ static void Main(string[] args)
{ YModule m;
string errmsg = ""

if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS) ({
Console.WritelLine ("RegisterHub error: " + errmsqg);
Environment.Exit (0) ;

}

Console.WriteLine ("Device list");

m = YModule.FirstModule () ;

while (m != null) {
Console.WritelLine (m.get serialNumber () + " (" + m.get productName() + ")");
m = m.nextModule () ;

}

YAPI.FreeAPI () ;

12.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

+ If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

» Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return

74 www.yoctopuce.com

12. Using Yocto-MaxiRelay with C#

values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected
bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPTI SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 75

76

www.yoctopuce.com

13. Using Yocto-MaxiRelay with Delphi

Delphi is a descendent of Turbo-Pascal. Originally, Delphi was produced by Borland, Embarcadero
now edits it. The strength of this language resides in its ease of use, as anyone with some notions of
the Pascal language can develop a Windows application in next to no time. Its only disadvantage is
to cost something’.

Delphi libraries are provided not as VCL components, but directly as source files. These files are
compatible with most Delphi versions.?

To keep them simple, all the examples provided in this documentation are console applications.
Obviously, the libraries work in a strictly identical way with VCL applications.

You will soon notice that the Delphi APl defines many functions which return objects. You do not
need to deallocate these objects yourself, the API does it automatically at the end of the application.

13.1. Preparation

Go to the Yoctopuce web site and download the Yoctopuce Delphi libraries®. Uncompress everythin?
in a directory of your choice, add the subdirectory sources in the list of directories of Delphi libraries.

By default, the Yoctopuce Delphi library uses the yapi.dll DLL, all the applications you will create with
Delphi must have access to this DLL. The simplest way to ensure this is to make sure yapi.dll is
located in the same directory as the executable file of your application.

13.2. Control of the Relay function

Launch your Delphi environment, copy the yapi.dll DLL in a directory, create a new console
application in the same directory, and copy-paste the piece of code below:

program helloworld;
{SAPPTYPE CONSOLE}
uses

SysUtils,

yocto_ api,

yocto relay;

1 Actually, Borland provided free versions (for personal use) of Delphi 2006 and 2007. Look for them on the Internet, you
may still be able to download them.

2 Delphi libraries are regularly tested with Delphi 5 and Delphi XE2.

3 www.yoctopuce.com/EN/libraries.php

4 Use the Tools / Environment options menu.

www.yoctopuce.com 77

13. Using Yocto-MaxiRelay with Delphi

procedure usage () ;

var
execname:string;
begin
execname := ExtractFileName (paramstr (0));
WriteLn ('Usage:'");
Writeln (execname + ' <serial number> <channel> [ON | OFF]');
Writeln (execname + ' <logical name> <channel> [ON | OFF 1"'");
Writeln (execname + ' any <channel> [ON | OFF]1'");
WritelLn ('Example:");
Writeln (execname + ' any 2 ON');
sleep (2500) ;
halt;
end;
var
errmsg, target, state, channel:string;

relay:TYRelay;
m : TYModule;

begin
if (paramcount<3) then usage();

target = UpperCase (paramstr(l));
channel := paramstr(2);
state := UpperCase (paramstr (3)) ;

if (YRegisterHub('usb', errmsg) <> YAPI SUCCESS) then
begin
writeln ('RegisterHub error: ' + errmsg);
halt;
end;

if (target='ANY') then

begin
relay := YFirstRelay();
if (relay =nil) then
begin
writeln ('No module connected (check USB cable)');
halt;
end;
m := relay.get module();
target := m. get serialNumber();
end;
Writeln('using ' + target);
relay := YFindRelay(target + '.relay'+channel);
if (relay.isOnline()) then
begin
if (state = 'ON') then relay.set output (Y OUTPUT_ ON)
else relay.set output (Y OUTPUT OFF);
end

else writeln('Module not connected (check identification and USB cable)');

end.

There are only a few really important lines in this sample example. We will look at them in details.

yocto_api and yocto_relay

These two units provide access to the functions allowing you to manage Yoctopuce modules.
yocto api must always be used, yocto relay is necessary to manage modules containing a
relay, such as Yocto-MaxiRelay.

yRegisterHub

The yRegisterHub function initializes the Yoctopuce API and specifies where the modules should
be looked for. When used with the parameter 'usb', it will use the modules locally connected to the
computer running the library. If the initialization does not succeed, this function returns a value
different from YAPI SUCCESS and errmsg contains the error message.

78 www.yoctopuce.com

13. Using Yocto-MaxiRelay with Delphi

yFindRelay

The yFindRelay function allows you to find a relay from the serial number of the module on which
it resides and from its function name. You can also use logical names, as long as you have initialized
them. Let us imagine a Yocto-MaxiRelay module with serial number HISPWER1-123456 which you
have named "MyModule", and for which you have given the relay1 function the name "MyFunction".
The following five calls are strictly equivalent, as long as "MyFunction" is defined only once.

relay := yFindRelay ("HI8PWER1-123456.relayl");
relay := yFindRelay ("HI8PWER1-123456.MyFunction");
relay := yFindRelay ("MyModule.relayl");
relay := yFindRelay ("MyModule.MyFunction");

('

relay := yFindRelay ("MyFunction");

yFindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by yFindRelay allows you to know if the
corresponding module is present and in working order.

set_state

The set state () method of the objet returned by yFindRelay switches the relay position to
one of its two outputs. The two possible parameter values are Y STATE A for output A, and
Y STATE B for output B.

13.3. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

program modulecontrol;
{SAPPTYPE CONSOLE}
uses

SysUtils,

yocto api;

const
serial = 'HI8PWER1-123456'; // use serial

procedure refresh (module:Tymodule) ;

begin
if (module.isOnline()) then
begin
Writeln('"');
Writeln('Serial : ' + module.get serialNumber());
Writeln('Logical name : ' + module.get logicalName ());
+

Writeln ('Luminosity g U

Write ('Beacon sV g

if (module.get beacon ()=Y BEACON ON) then Writeln('on')
else Writeln('off'");

intToStr (module.get luminosity()));

Writeln ('uptime : ' + intToStr (module.get upTime() div 1000)+'s');
Writeln ('USB current : ' + intToStr (module.get usbCurrent())+'mA');
Writeln ('Logs ")
Writeln (module.get lastloqs(ﬂ
Writeln (')
Writeln (' refresh / b:beacon ON / space : beacon off');

end

else Writeln('Module not connected (check identification and USB cable)');

end;

procedure beacon (module:Tymodule;state:integer) ;
begin
module.set beacon (state);
refresh (module) ;
end;

var

www.yoctopuce.com 79

13. Using Yocto-MaxiRelay with Delphi

module : TYModule;

c : char;
errmsg : string;

begin
VAN the API to use local USB devices

if yRegisterHub('usb', errmsg)<>YAPI SUCCESS then

begin
Write ('RegisterHub error: '+errmsgqg);
exit;

end;

module := yFindModule (serial);

refresh (module) ;

repeat
read(c) ;
case c of
'r': refresh (module) ;
'b': beacon(module,Y BEACON ON) ;
' ': beacon(module,Y BEACON OFF) ;

end;
until ¢ = 'x';
yFreeAPI () ;

end.

Each property xxx of the module can be read thanks to a method of type get xxxx(), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

program savesettings;
{SAPPTYPE CONSOLE}
uses

SysUtils,

yocto api;

const

serial = 'HI8PWER1-123456'; // use serial number or logical name
var

module : TYModule;

errmsg : string;

newname : string;

begin
// the API to use local U devices

errmsg) <>YAPI SUCCESS then

rHub ('usb

if yReqiste

begin
Write ('RegisterHub error: '+errmsgqg);
exit;
end;
module := yFindModule (serial);
if (not (module.isOnline)) then
begin
writeln ('Module not connected (check identification and USB cable)');
exit;
end;
Writeln ('Current logical name : '4module.get logicalName ()) ;

Write ('Enter new name : ') ;
Readln (newname) ;
if (not (yCheckLogicalName (newname))) then
begin
Writeln('invalid logical name');

80 www.yoctopuce.com

13. Using Yocto-MaxiRelay with Delphi

exit;
end;
module.set logicalName (newname) ;
module.saveToFlash () ;
yFreeAPI () ;
Writeln('logical name is now : '+module.get logicalName());
end.

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not nil. Below a short
example listing the connected modules.

program inventory;
{$APPTYPE CONSOLE}
uses

SysUtils,

yocto api;

var
module : TYModule;

errmsg : string;
begin
if yRegisterHub('usb', errmsg)<>YAPI SUCCESS then
begin
Write ('RegisterHub error: '+errmsgqg);
exit;
end;

Writeln('Device list');

module := yFirstModule();

while module<>nil do

begin
Writeln(module.get serialNumber ()+' ('+module.get productName ()+')");
module := module.nextModule () ;

end;
yFreeAPI () ;
end.

13.4. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

www.yoctopuce.com 81

13. Using Yocto-MaxiRelay with Delphi

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected
bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPT SUCCESS if everything went well, and a different error code in case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

82 www.yoctopuce.com

14. Using the Yocto-MaxiRelay with Python

Python is an interpreted object oriented language developed by Guido van Rossum. Among its
advantages is the fact that it is free, and the fact that it is available for most platforms, Windows as
well as UNIX. It is an ideal language to write small scripts on a napkin. The Yoctopuce library is
compatible with Python 2.6+ and 3+. It works under Windows, Mac OS X, and Linux, Intel as well as
ARM. The library was tested with Python 2.6 and Python 3.2. Python interpreters are available on the
Python web site’.

14.1. Source files

The Yoctopuce library classes? for Python that you will use are provided as source files. Copy all the
content of the Sources directory in the directory of your choice and add this directory to the
PYTHONPATH environment variable. If you use an IDE to program in Python, refer to its
documentation to configure it so that it automatically finds the API source files.

14.2. Dynamic library

A section of the low-level library is written in C, but you should not need to interact directly with it: it is
provided as a DLL under Windows, as a .so files under UNIX, and as a .dylib file under Mac OS X.
Everything was done to ensure the simplest possible interaction from Python: the distinct versions of
the dynamic library corresponding to the distinct operating systems and architectures are stored in
the cdll directory. The API automatically loads the correct file during its initialization. You should not
have to worry about it.

If you ever need to recompile the dynamic library, its complete source code is located in the
Yoctopuce C++ library.

In order to keep them simple, all the examples provided in this documentation are console

applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

14.3. Control of the Relay function

A few lines of code are enough to use a Yocto-MaxiRelay. Here is the skeleton of a Python code
snipplet to use the Relay function.

1 http://www.python.org/download/
www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com 83

14. Using the Yocto-MaxiRelay with Python

[oool

errmsg=YRefParam ()

#Get access to your device, connected locally on USB for instance

YAPI.RegisterHub("usb”,errmsg)
relay = YRelay.FindRelay ("HI8PWER1-123456.relayl")

if re;ay.isOnline():

#Use relay.set state()

[oocl

Let's look at these lines in more details.

YAPIL.RegisterHub

The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPT . SUCCESS and errmsg contains the error message.

YRelay.FindRelay

The YRelay.FindRelay function allows you to find a relay from the serial number of the module
on which it resides and from its function name. You can use logical names as well, as long as you
have initialized them. Let us imagine a Yocto-MaxiRelay module with serial number
HIBPWER1-123456 which you have named "MyModule", and for which you have given the relay1
function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

relay = YRelay.FindRelay ("HI8PWER1-123456.relayl")
relay = YRelay.FindRelay ("HI8PWER1-123456.MyFunction")
relay = YRelay.FindRelay ("MyModule.relayl")

relay = YRelay.FindRelay ("MyModule.MyFunction")

relay = YRelay.FindRelay ("MyFunction")

YRelay.FindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by YRelay.FindRelay allows you to know if
the corresponding module is present and in working order.

set_state

The set state () method of the objet returned by YRelay.FindRelay switches the relay
position to one of its two outputs. The two possible parameter values are YRelay.STATE A for
output A, and YRelay.STATE B for output B.

A real example

Launch Python and open the corresponding sample script provided in the directory Examples/Doc-
GettingStarted-Yocto-MaxiRelay of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

7

import os, sys

from yoctoiépi import *
from yocto relay import *

def usage():
scriptname = os.path.basename (sys.argv[0]
print ("Usage:")

84 www.yoctopuce.com

14. Using the Yocto-MaxiRelay with Python

print (scriptname + ' <serial number> <channel> [
print (scriptname + ' <logical name> <channel> [
print (scriptname + ' any <channel> [ON | OFF]'")
print ('Example: ")
print (scriptname + ' any 2 ON')
sys.exit ()

def die(msqg) :

sys.exit (msg + ' (check USB cable)"')

if len(sys.argv) < 3:

usage ()

target = sys.argv[l].upper ()
channel sys.argv[2]
state sys.argv[3].upper ()

Setup API to use
errmsg YRefParam()
if YAPI.RegisterHub ("usb", errmsg) YAPTI.SUCCESS:

sys.exit("init error" + errmsg.value)

+he 779 Jot7r1 —~
the USB devices

if target 'ANY':
retreive any Relay t 1 find its
relay YRelay.FirstRelay ()
if relay is None:
die ('No module connected')
m relay.get module ()
target m.get serialNumber ()

serial i#

print ('using ' + target)
relay YRelay.FindRelay (target +

'.relay' + channel)
if not (relay.isOnline()):
die ('device not connected')

if relay.isOnline () :
if state 'ON':
relay.set output (YRelay.OUTPUT_ ON)
else:
relay.set output (YRelay.OUTPUT OFF)

else:
die ('Module not connected')

14.4. Control of the module part

Each module can be controlled in a similar manner, you

can find below a simple sample program

displaying the main parameters of the module and enabling you to activate the localization beacon.

from yocto api import *

def usage():

sys.exit ("usage: demo <serial or logical name> [ON/OFF]")
errmsg = YRefParam()
if YAPI.RegisterHub ("usb", errmsg) != YAPI.SUCCESS:
sys.exit ("RegisterHub error: " + str(errmsqg))
if len(sys.argv) < 2:
usage ()
m = YModule.FindModule (sys.argv[1l]) # # use serial or logical name

if m.isOnline () :
if len(sys.argv) > 2:
if sys.argv[2].upper ()

"ON™ :

www.yoctopuce.com

85

14. Using the Yocto-MaxiRelay with Python

m.set beacon (YModule.BEACON ON)
if sys.argv[2].upper() == "OFF":
m.set beacon (YModule.BEACON OFF)

print("serial: " + m.get serialNumber ())
print ("logical name: " + m.get logicalName ()
print ("luminosity: " + str(m.get luminosity()))
if m.get beacon() == YModule.BEACON ON:
print ("beacon: ON")
else:
print ("beacon: OFFE")
print ("upTime: " + str(m.get upTime() / 1000) + " sec")
print ("USB current: " + str(m.get usbCurrent()) + " mA")
print ("logs:\n" + m.get lastLogs())
else:

print(sys.argv([1l] + " not connected (check identification and USB cable)")
YAPI.FreeAPI ()

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

o

import os, sys

from yocto api import *

def usage():
sys.exit ("usage: demo <serial or logical name> <new logical name>")

if len(sys.argv) != 3:
usage ()

errmsg = YRefParam()

if YAPI.RegisterHub ("usb", errmsg) != YAPI.SUCCESS:
sys.exit ("RegisterHub error: " + str(errmsg))

m = YModule.FindModule (sys.argv[1l]) # use serial or logical name
if m.isOnline () :

newname = sys.argv[2]
if not YAPI.CheckLogicalName (newname) :
sys.exit ("Invalid name (" + newname + ")")
m.set logicalName (newname)
m.saveToFlash () # do not forget this
print ("Module: serial= " + m.get serialNumber() + " / name= " + m.get logicalName ())
else:

sys.exit ("not connected (check identification and USB cable")
YAPI.FreeAPI ()

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

86 www.yoctopuce.com

14. Using the Yocto-MaxiRelay with Python

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

/

import os, sys

from yocto api import *
errmsg = YRefParam()

if YAPi.RegisterHub("usb”, errmsg) != YAPI.SUCCESS:
sys.exit ("init error" + str(errmsg))

print ('Device list')

module = YModule.FirstModule ()

while module is not None:
print (module.get serialNumber() + ' (' + module.get productName() + ')')
module = module.nextModule ()

YAPI.FreeAPI ()

14.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPT .DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state() method returns a Y STATE INVALID value, a
get currentValue method returns a Y CURRENTVALUE INVALID value, and so on. In any
case, the returned value is of the expected type and is not a null pointer which would risk crashing
your program. At worst, if you display the value without testing it, it will be outside the expected
bounds for the returned value. In the case of functions which do not normally return information, the
return value is YAPI SUCCESS if everything went well, and a different error code in case of failure.

www.yoctopuce.com 87

14. Using the Yocto-MaxiRelay with Python

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the

errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

88

www.yoctopuce.com

15. Using the Yocto-MaxiRelay with Java

Java is an object oriented language created by Sun Microsystem. Beside being free, its main
strength is its portability. Unfortunately, this portability has an excruciating price. In Java, hardware
abstraction is so high that it is almost impossible to work directly with the hardware. Therefore, the
Yoctopuce API does not support native mode in regular Java. The Java API needs a Virtual Hub to
communicate with Yoctopuce devices.

15.1. Getting ready

Go to the Yoctopuce web site and download the following items:

+ The Java programming library®
+ The VirtualHub software? for Windows, Mac OS X or Linux, depending on your OS

The library is available as source files as well as a jar file. Decompress the library files in a folder of
your choice, connect your modules, run the VirtualHub software, and you are ready to start your first
tests. You do not need to install any driver.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

15.2. Control of the Relay function

A few lines of code are enough to use a Yocto-MaxiRelay. Here is the skeleton of a Java code
snippet to use the Relay function.

ool

of ~cess to vour evice connecte A vV
T3 ’ nn 1 locally

YAPI.RegisterHub("127.0.0.1");
relay = YRelay.FindRelay ("HI8PWER1-123456.relayl");

Hot-p 5 s easv: S eck ths o o =y s online

if (reléy.isOnlinek))

{

1 www.yoctopuce.com/EN/libraries.php
www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 89

15. Using the Yocto-MaxiRelay with Java

}
[oool

Let us look at these lines in more details.

YAPIL.RegisterHub

The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the Virtual Hub able to see the devices. If the
initialization does not succeed, an exception is thrown.

YRelay.FindRelay

The YRelay.FindRelay function allows you to find a relay from the serial number of the module
on which it resides and from its function name. You can use logical names as well, as long as you
have initialized them. Let us imagine a Yocto-MaxiRelay module with serial number
HISBPWER1-123456 which you have named "MyModule", and for which you have given the relay1
function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

relay = YRelay.FindRelay ("HI8PWER1-123456.relayl")
relay = YRelay.FindRelay ("HI8PWER1-123456.MyFunction")
relay = YRelay.FindRelay ("MyModule.relayl")

relay = YRelay.FindRelay ("MyModule.MyFunction")

relay = YRelay.FindRelay ("MyFunction")

YRelay.FindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by YRelay.FindRelay allows you to know if
the corresponding module is present and in working order.

set_state

The set state () method of the objet returned by YRelay.FindRelay switches the relay
position to one of its two outputs. The two possible parameter values are YRelay.STATE A for
output A, and YRelay.STATE B for output B.

A real example

Launch you Java environment and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-MaxiRelay of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

import com.yoctopuce.YoctoAPI.*;
public class Demo {

public static void main(String[] args) {
try {

// setup the API to use local VirtualHub
YAPI.RegisterHub ("127.0.0.1");
} catch (YAPI Exception ex) {
System.out.println ("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage () + ")");
System.out.println ("Ensure that the VirtualHub application is running");
System.exit (1) ;
}

String serial = "";
if (args.length > 0) {
serial = args[0];

} else {
YRelay tmp = YRelay.FirstRelay();
if (tmp == null) {

90 www.yoctopuce.com

15. Using the Yocto-MaxiRelay with Java

System.out.println ("No module connected (check USB cable)");
System.exit (1) ;

}

try {
serial = tmp.module () .get serialNumber () ;

} catch (YAPI Exception ex) {
System.out.println ("No module connected (check USB cable)");
System.exit (1) ;

}

System.out.println("We will use");

try {

System.out.println("Switch on all output");

for (int channel = 1; channel < 9; channel++) {
YRelay relay = YRelay.FindRelay(serial + ".relay" + channel);
relay.set output (YRelay.OUTPUT ON) ;
YAPI.Sleep (100) ;

}

YAPI.Sleep(500) ;

System.out.println ("Switch off all output");

for (int channel = 1; channel < 9; channel++) {
YRelay relay = YRelay.FindRelay(serial + ".relay" + channel);
relay.set output (YRelay.OUTPUT OFF) ;
YAPI.Sleep (100) ;

}

} catch (YAPI Exception ex) ({
System.out.println("Module not connected (check identification and USB cable)"

}

YAPI.FreeAPI () ;

15.3. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

import com.yoctopuce.YoctoAPI.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class Demo {

public static void main (String[] args)
{
try {
// setup the API to use loc
YAPI.RegisterHub ("127.0.0.1
} catch (YAPI Exception ex) {
System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage () + ")");
System.out.println ("Ensure that the VirtualHub application is running");
System.exit (1) ;

1o VirtualHub

a
v

')

}

System.out.println ("usage: demo [serial or logical name] [ON/OFF]");

YModule module;

if (args.length == 0) {
module = YModule.FirstModule () ;
if (module == null) {

System.out.println ("No module connected (check USB cable)");
System.exit (1) ;
}
} else {
module = YModule.FindModule (args[0]);

or logical name

}

www.yoctopuce.com 91

15. Using the Yocto-MaxiRelay with Java

try {
if (args.length > 1) {
if (args[l].equalsIgnoreCase ("ON")) {
module.setBeacon (YModule.BEACON ON) ;
} else {
module.setBeacon (YModule.BEACON_ OFF) ;
}
}
System.out.println("serial: " + module.get serialNumber());
System.out.println("logical name: " + module.get logicalName ())
System.out.println("luminosity: " + module.get luminosity()):;
if (module.get beacon() == YModule.BEACON ON) ({
System.out.println ("beacon: ON") ;
} else {
System.out.println ("beacon: OFF") ;
}
System.out.println ("upTime: " + module.get upTime() / 1000 + " sec");
System.out.println ("USB current: " + module.get usbCurrent() + " mA");

System.out.println("logs:\n" + module.get lastLogs());
} catch (YAPI Exception ex) {
System.out.println(args[l] + " not connected (check identification and USB
cable)");

}
YAPI.FreeAPI();

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

import com.yoctopuce.YoctoAPI.*;
public class Demo {

public static void main (String[] args)
{
try {
] API to use local Vi
YAPI.RegisterHub ("127.0.0.1");
} catch (YAPI Exception ex) {
System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage () + ")");
System.out.println ("Ensure that the VirtualHub application is running");

System.exit (1);

/ setup the

}

if (args.length != 2) {
System.out.println("usage: demo <serial or logical name> <new logical name>");
System.exit (1) ;

}

YModule m;
String newname;

m = YModule.FindModule (args[0]); // use serial or logical name
try {
newname = args([l];
if (!YAPI.CheckLogicalName (newname))
{
System.out.println("Invalid name (" + newname + ")");

System.exit (1) ;

92 www.yoctopuce.com

15. Using the Yocto-MaxiRelay with Java

}

m.set logicalName (newname) ;

m.sangoFlash(); // do not forget
System.out.println("Module: serial= " + m.get serialNumber ()) ;
System.out.println(" / name= " + m.get logicalName());
} catch (YAPI Exception ex) {
System.out.println("Module " + args[0] + "not connected (check identification

and USB cable)");
System.out.println(ex.getMessage()) ;
System.exit (1) ;
}

YAPI.FreeAPI () ;

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

import com.yoctopuce.YoctoAPI.*;
public class Demo {

public static void main(String[] args)
{
try {

setup the AFI TO use 10

L Virtualdub

YAPI.RegisterHub ("127.0.0.1");
} catch (YAPI Exception ex) {
System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage () + ")");
System.out.println ("Ensure that the VirtualHub application is running");
System.exit (1) ;
}

System.out.println("Device 1list");
YModule module = YModule.FirstModule () ;

while (module != null) {
try {
System.out.println (module.get serialNumber () + " (" +

module.get productName() + ")");
} catch (YAPI Exception ex) {
break;

}

module = module.nextModule () ;

}
YAPI.FreeAPI () ;

15.4. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

www.yoctopuce.com 93

15. Using the Yocto-MaxiRelay with Java

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software.

In the Java API, error handling is implemented with exceptions. Therefore you must catch and
handle correctly all exceptions that might be thrown by the API if you do not want your software to
crash as soon as you unplug a device.

94 www.yoctopuce.com

16. Using the Yocto-MaxiRelay with Android

To tell the truth, Android is not a programming language, it is an operating system developed by
Google for mobile appliances such as smart phones and tablets. But it so happens that under
Android everything is programmed with the same programming language: Java. Nevertheless, the
programming paradigms and the possibilities to access the hardware are slightly different from
classical Java, and this justifies a separate chapter on Android programming.

16.1. Native access and VirtualHub

In the opposite to the classical Java API, the Java for Android API can access USB modules natively.
However, as there is no VirtualHub running under Android, it is not possible to remotely control
Yoctopuce modules connected to a machine under Android. Naturally, the Java for Android API
remains perfectly able to connect itself to a VirtualHub running on another OS.

16.2. Getting ready

Go to the Yoctopuce web site and download the Java for Android programming library. The library is
available as source files, and also as a jar file. Connect your modules, decompress the library files in
the directory of your choice, and configure your Android programming environment so that it can find
them.

To keep them simple, all the examples provided in this documentation are snippets of Android
applications. You must integrate them in your own Android applications to make them work.
However, your can find complete applications in the examples provided with the Java for Android
library.

16.3. Compatibility

In an ideal world, you would only need to have a smart phone running under Android to be able to
make Yoctopuce modules work. Unfortunately, it is not quite so in the real world. A machine running
under Android must fulfil to a few requirements to be able to manage Yoctopuce USB modules
natively.

T www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com 95

16. Using the Yocto-MaxiRelay with Android

Android 4.x

Android 4.0 (api 14) and following are officially supported. Theoretically, support of USB host
functions since Android 3.1. But be aware that the Yoctopuce Java for Android API is regularly tested
only from Android 4 onwards.

USB host support

Naturally, not only must your machine have a USB port, this port must also be able to run in host
mode. In host mode, the machine literally takes control of the devices which are connected to it. The
USB ports of a desktop computer, for example, work in host mode. The opposite of the host mode is
the device mode. USB keys, for instance, work in device mode: they must be controlled by a host.
Some USB ports are able to work in both modes, they are OTG (On The Go) ports. It so happens
that many mobile devices can only work in device mode: they are designed to be connected to a
charger or a desktop computer, and nothing else. It is therefore highly recommended to pay careful
attention to the technical specifications of a product working under Android before hoping to make
Yoctopuce modules work with it.

Unfortunately, having a correct version of Android and USB ports working in host mode is not enough
to guaranty that Yoctopuce modules will work well under Android. Indeed, some manufacturers
configure their Android image so that devices other than keyboard and mass storage are ignored,
and this configuration is hard to detect. As things currently stand, the best way to know if a given
Android machine works with Yoctopuce modules consists in trying.

Supported hardware
The library is tested and validated on the following machines:

Samsung Galaxy S3
Samsung Galaxy Note 2
Google Nexus 5

Google Nexus 7

Acer Iconia Tab A200

Asus Tranformer Pad TF300T
Kurio 7

If your Android machine is not able to control Yoctopuce modules natively, you still have the
possibility to remotely control modules driven by a VirtualHub on another OS, or a YoctoHub 2.

16.4. Activating the USB port under Android

By default, Android does not allow an application to access the devices connected to the USB port.
To enable your application to interact with a Yoctopuce module directly connected on your tablet on a
USB port, a few additional steps are required. If you intend to interact only with modules connected
on another machine through the network, you can ignore this section.

In your AndroidManifest.xml, you must declare using the "USB Host" functionality by adding
the <uses-feature android:name="android.hardware.usb.host™ /> tag in the
manifest section.

<manifest ...>
<uses-feature android:name="android.hardware.usb.host" />;
</manifest>

When first accessing a Yoctopuce module, Android opens a window to inform the user that the
application is going to access the connected module. The user can deny or authorize access to the
device. If the user authorizes the access, the application can access the connected device as long as

2 Yoctohubs are a plug and play way to add network connectivity to your Yoctopuce devices. more info on http:/
www.yoctopuce.com/EN/products/category/extensions-and-networking

96 www.yoctopuce.com

16. Using the Yocto-MaxiRelay with Android

it stays connected. To enable the Yoctopuce library to correctly manage these authorizations, your
must provide a pointer on the application context by calling the EnableUSBHost method of the YAPI
class before the first USB access. This function takes as arguments an object of the
android.content.Context class (or of a subclass). As the Activity class is a subclass of
Context, it is simpler to call YAPT .EnableUSBHost (this) ; in the method onCreate of your
application. If the object passed as parameter is not of the correct type, a YAPI Exception
exception is generated.

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
try {

// Pass the application Context to the Yoctop
YAPI .EnableUSBHost (this) ;
} catch (YAPI Exception e) {
Log.e("Yocto",e.getLocalizedMessage());

}

Autorun

It is possible to register your application as a default application for a USB module. In this case, as
soon as a module is connected to the system, the application is automatically launched. You must
add <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"/> in the
section <intent-filter> of the main activity. The section <activity> must have a pointer to an XML file
containing the list of USB modules which can run the application.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

<uses-feature android:name="android.hardware.usb.host" />

<application ... >
<activity
android:name=".MainActivity" >

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<action android:name="android.hardware.usb.action.USB DEVICE ATTACHED" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

<meta-data
android:name="android.hardware.usb.action.USB DEVICE ATTACHED"
android:resource="@xml/device filter" />
</activity>
</application>

</manifest>

The XML file containing the list of modules allowed to run the application must be saved in the res/
xml directory. This file contains a list of USB vendorld and devicelD in decimal. The following
example runs the application as soon as a Yocto-Relay or a YoctoPowerRelay is connected. You can
find the vendorID and the devicelD of Yoctopuce modules in the characteristics section of the
documentation.

<?xml version="1.0" encoding="utf-8"?>

<resources>
<usb-device vendor-id="9440" product-id="12" />
<usb-device vendor-id="9440" product-id="13" />
</resources>

www.yoctopuce.com 97

16. Using the Yocto-MaxiRelay with Android

16.5. Control of the Relay function

A few lines of code are enough to use a Yocto-MaxiRelay. Here is the skeleton of a Java code
snippet to use the Relay function.

ool

Retrieving the obiect representing

YAPI.EnableUSBHost (this);
YAPI.RegisterHub ("usb") ;
relay = YRelay.FindRelay ("HI8PWER1-123456.relayl");

if (relkay.isOnlinei())i
{ //Use relay.set state()

}
[oool

Let us look at these lines in more details.

YAPI.EnableUSBHost

The YAPI.EnableUSBHost function initializes the API with the Context of the current application.
This function takes as argument an object of the android.content.Context class (or of a
subclass). If you intend to connect your application only to other machines through the network, this
function is facultative.

YAPIL.RegisterHub

The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the virtual hub able to see the devices. If the
string "usb" is passed as parameter, the AP| works with modules locally connected to the machine. If
the initialization does not succeed, an exception is thrown.

YRelay.FindRelay

The YRelay.FindRelay function allows you to find a relay from the serial number of the module
on which it resides and from its function name. You can use logical names as well, as long as you
have initialized them. Let us imagine a Yocto-MaxiRelay module with serial number
HIBPWER1-123456 which you have named "MyModule", and for which you have given the relay1
function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

relay = YRelay.FindRelay ("HI8PWER1-123456.relayl")
relay = YRelay.FindRelay ("HI8PWER1-123456.MyFunction")
relay = YRelay.FindRelay ("MyModule.relayl")

relay = YRelay.FindRelay ("MyModule.MyFunction")

relay = YRelay.FindRelay ("MyFunction")

YRelay.FindRelay returns an object which you can then use at will to control the relay.

isOnline

The isOnline () method of the object returned by YRelay.FindRelay allows you to know if
the corresponding module is present and in working order.

set_state

The set state () method of the objet returned by YRelay.FindRelay switches the relay
position to one of its two outputs. The two possible parameter values are YRelay.STATE A for
output A, and YRelay.STATE B for output B.

98 www.yoctopuce.com

16. Using the Yocto-MaxiRelay with Android

A real example

Launch you Java environment and open the corresponding sample project provided in the directory
Examples//Doc-Examples of the Yoctopuce library.

In this example, you can recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

package com.yoctopuce.doc examples;

import
import
import
import
import
import
import

import
import

import

public

android.app.Activity;

android.os.Bundle;

android.view.View;

android.widget.AdapterView;
android.widget.AdapterView.OnItemSelectedListener;
android.widget.ArrayAdapter;
android.widget.Spinner;

com.yoctopuce.YoctoAPI.YAPI;
com.yoctopuce.YoctoAPI.YAPI Exception;
com.yoctopuce.YoctoAPI.YRelay;

class GettingStarted Yocto MaxiRelay extends Activity implements

OnItemSelectedListener

{

private YRelay relay = null;
private ArrayAdapter<String> aa;

@Override
public void onCreate (Bundle savedInstanceState)

{

}

super.onCreate (savedInstanceState) ;

setContentView (R.layout.gettingstarted yocto maxirelay);

Spinner my spin = (Spinner) findViewById(R.id.spinnerl);

my spin.setOnItemSelectedListener (this);

aa = new ArrayAdapter<String>(this, android.R.layout.simple spinner item);
aa.setDropDownViewResource (android.R.layout.simple spinner dropdown item);
my spin.setAdapter (aa);

@Override
protected void onStart ()

{

}

super.onStart () ;

try {
aa.clear () ;
YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb");
YRelay r = YRelay.FirstRelay();
while (r != null) {
String hwid = r.get hardwareId();
aa.add (hwid) ;
r = r.nextRelay();
}
} catch (YAPI Exception e) {
e.printStackTrace () ;
}
// refre

aa.notifyDataSetChanged (

1 Spinner with

detected relay

’

@Override
protected void onStop ()

{

}

super.onStop () ;
YAPI.FreeAPI () ;

@Override
public void onItemSelected (AdapterView<?> parent, View view, int pos, long id)

{

String hwid = parent.getItemAtPosition (pos).toString();
relay = YRelay.FindRelay (hwid) ;

www.yoctopuce.com 99

16.

Using the Yocto-MaxiRelay with Android

@Override

public void onNothingSelected (AdapterView<?> arg0)
{

}

/** Called when the ~hes
public void setRelayOn (View view)

{

user tou

if (relay
try {

relay.set output (YRelay.OUTPUT ON) ;
} catch (YAPI Exception e) {

e.printStackTrace() ;

!'= null)

}
}

/** Called when the user touches
public void setRelayOff (View view)
{
if (relay != null)
try {
relay.set output (YRelay.OUTPUT OFF) ;
} catch (YAPI Exception e) {
e.printStackTrace () ;

}

16.6. Control of the module part

n State B */

/

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

package com.yoctopuce.doc examples;

import
import
import
import
import
import
import
import
import

android.app.Activity;
android.os.Bundle;
android.view.View;
android.widget.AdapterView;
android.
android.widget.ArrayAdapter;
android.widget.Spinner;
android.widget.Switch;
android.widget.TextView;

import
import
import

com.yoctopuce.YoctoAPI.YAPI;
com.yoctopuce.YoctoAPI.YAPI Exception;
com.yoctopuce.YoctoAPI.YModule;

public
{

class ModuleControl extends Activity implements

private ArrayAdapter<String> aa;
private YModule module null;

@Override
public void onCreate (Bundle savedInstanceState)
{
super.onCreate (savedInstanceState);
setContentView (R.layout.modulecontrol) ;
Spinner my spin (Spinner)
my spin.setOnItemSelectedListener (this);
aa new ArrayAdapter<String>(this,

widget.AdapterView.OnItemSelectedListener;

OnItemSelectedListener

findViewById(R.id.spinnerl);

android.R.layout.simple spinner item);

aa.setDropDownViewResource (android.R.layout.simple spinner dropdown item);

my spin.setAdapter (aa);
}

@Override
protected void onStart ()
{

super.onStart () ;

100

www.yoctopuce.com

16. Using the Yocto-MaxiRelay with Android

try {
aa.clear();
YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb");
YModule r = YModule.FirstModule () ;
while (r != null) {
String hwid = r.get hardwareId();
aa.add (hwid) ;
r = r.nextModule();
}
} catch (YAPI Exception e) {
e.printStackTrace () ;
}
// refresh Spinner with detected relay
aa.notifyDataSetChanged() ;
}

@Override
protected void onStop ()
{
super.onStop () ;
YAPI.FreeAPI();
}

private void DisplayModuleInfo ()
{
TextView field;

if (module == null)
return;

try {
field = (TextView) findViewById(R.id.serialfield);
field.setText (module.getSerialNumber ()) ;
field = (TextView) findViewById(R.id.logicalnamefield) ;
field.setText (module.getLogicalName ()) ;
field = (TextView) findViewById(R.id.luminosityfield);
field.setText (String.format ("$d%%", module.getLuminosity()));
field = (TextView) findViewById(R.id.uptimefield);
field.setText (module.getUpTime () / 1000 + " sec");
field = (TextView) findViewById(R.id.usbcurrentfield);
field.setText (module.getUsbCurrent () + " mA");
Switch sw = (Switch) findViewById(R.id.beaconswitch) ;
sw.setChecked (module.getBeacon () == YModule.BEACON ON) ;
field = (TextView) findViewById(R.id.logs);
field.setText (module.get lastLogs());

} catch (YAPI Exception e) {

e.prin
}
}

@Override
public void on

{
String hwi

tStackTrace () ;

ItemSelected (AdapterView<?> parent, View view, int pos,

d = parent.getlItemAtPosition (pos).toString();

module = YModule.FindModule (hwid) ;
DisplayModuleInfo() ;

}

@Override

public void onNothingSelected (AdapterView<?> arg0)

{
}

public void re
{

DisplayMod
}

public void to
{

if (module

return

boolean on

try {
if (on
mo
} else

freshInfo (View view)

uleInfo () ;

ggleBeacon (View view)

== null)

= ((Switch) view) .isChecked() ;

) |
dule.setBeacon (YModule.BEACON ON) ;

{

long id)

www.yoctopuce.com

101

16. Using the Yocto-MaxiRelay with Android

}
}

module.setBeacon (YModule.BEACON OFF) ;

}

catch (YAPI

Exception e) {

e.printStackTrace();

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set xxx()

method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.

The short example below allows you to modify the logical name of a module.

package com.yoctopuce.doc examples;

import and
import and
import and
import and
import and
import and
import and
import and
import and
import and

roid.app.Activity;
roid.os.Bundle;
roid.view.View;

roid.widget
roid.widget
roid.widget
roid.widget

.AdapterView;
.AdapterView.OnItemSelectedListener;
.ArrayAdapter;

.EditText;

roid.widget.
roid.widget.
roid.widget.

Spinner;
TextView;
Toast;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class SaveSettings extends Activity implements OnItemSelectedListener

{

private ArrayAdapter<String> aa;
private YModule module = null;

@Overr

ide

public void onCreate (Bundle savedInstanceState)

{

super.onCreate (savedInstanceState);
setContentView (R.layout.savesettings) ;

Spinner my spin = (Spinner) findViewById(R.id.spinnerl);

my spin.setOnItemSelectedListener (this);

aa

= new ArrayAdapter<String>(this,

android.R.layout.simple spinner item);

aa.setDropDownViewResource (android.R.layout.simple spinner dropdown item);
my spin.setAdapter (aa);

}

@Overr

ide

protected void onStart ()

{

super.onStart () ;

tr

}

v |

aa.clear();
YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb") ;

YModule r
while (r

= YModule.FirstModule() ;

!'= null) {

String hwid = r.get hardwareId();
aa.add (hwid) ;

r = Ik

}

.nextModule () ;

catch (YAPI Exception e) {
e.printStackTrace() ;

102

www.yoctopuce.com

16. Using the Yocto-MaxiRelay with Android

},,

inner with

aa.notifyDatéSetChanged();
}

@Override
protected void onStop ()
{
super.onStop () ;
YAPI.FreeAPI();
}

private void DisplayModuleInfo ()

{
TextView field;

if (module == null)
return;
try {
YAPI.UpdateDevicelList () ;// fixme
field = (TextView) findViewById(R.id.logicalnamefield);

field.setText (module.getLogicalName()) ;
} catch (YAPI Exception e) {
e.printStackTrace() ;
}
}

@Override
public void onItemSelected (AdapterView<?> parent, View view, int pos, long id)
{
String hwid = parent.getItemAtPosition (pos).toString();
module = YModule.FindModule (hwid) ;
DisplayModuleInfo () ;
}

@Override

public void onNothingSelected(AdapterView<?> arg0)
{

}

public void saveName (View view)

{

if (module == null)
return;
EditText edit = (EditText) findViewById(R.id.newname) ;
String newname = edit.getText () .toString();
try {
if (!YAPI.CheckLogicalName (newname)) {
Toast.makeText (getApplicationContext (), "Invalid name (" + newname + ")"
Toast.LENGTH LONG) .show () ;
return;

}
module.set logicalName (newname) ;
module.saveToFlash(); // do not forget this
edit.setText ("");

} catch (YAPI Exception ex) {
ex.printStackTrace() ;

}
DisplayModuleInfo () ;

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()

www.yoctopuce.com 103

16. Using the Yocto-MaxiRelay with Android

function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

package com.yoctopuce.doc examples;

import
import
import
import
import
import

import
import
import

public
{

android.
android.
android.
android.
android.
android.

com.yoct
com.yoct
com.yoct

app.Activity;
os.Bundle;
util.TypedValue;
view.View;
widget.LinearLayout;
widget.TextView;

opuce.YoctoAPI.YAPI;
opuce.YoctoAPI.YAPI Exception;
opuce.YoctoAPI.YModule;

class Inventory extends Activity

@Override
public void onCreate (Bundle savedInstanceState)

{

}

super.o
setCont

nCreate (savedInstanceState) ;
entView (R.layout.inventory) ;

public void refreshInventory (View view)

{

}

LinearL
layout.

try {
YAP
YMo
whi

}
} catch

e.p
}

@Override
protected void onStart ()

{

}

super.o
try {
YAP
YAP
} catch
e.p
}

refresh

@Override
protected void onStop ()

{

ayout layout = (LinearLayout) findViewById(R.id.inventoryList) ;
removeAllViews () ;
I.UpdateDevicelList () ;

dule module = YModule.FirstModule () ;
le (module !'= null) {
String line = module.get serialNumber() + "

TextView tx = new TextView (this);
tx.setText (line) ;

tx.setTextSize (TypedValue.COMPLEX UNIT SP,
layout.addView (tx) ;

module = module.nextModule () ;

(YAPI Exception e) {
rintStackTrace () ;

nStart () ;

I.EnableUSBHost (this) ;

I.RegisterHub ("usb") ;
(YAPI Exception e) {

rintStackTrace () ;

Inventory (null);

super.onStop () ;
YAPI.FreeAPI();

(" + module.get productName () +

20) 7

104

www.yoctopuce.com

16. Using the Yocto-MaxiRelay with Android

16.7. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to i1sOnline and which
could crash the software.

In the Java API for Android, error handling is implemented with exceptions. Therefore you must catch
and handle correctly all exceptions that might be thrown by the API if you do not want your software
to crash soon as you unplug a device.

www.yoctopuce.com 105

106 www.yoctopuce.com

17. Advanced programming

The preceding chapters have introduced, in each available language, the basic programming
functions which can be used with your Yocto-MaxiRelay module. This chapter presents in a more
generic manner a more advanced use of your module. Examples are provided in the language which
is the most popular among Yoctopuce customers, that is C#. Nevertheless, you can find complete
examples illustrating the concepts presented here in the programming libraries of each language.

To remain as concise as possible, examples provided in this chapter do not perform any error
handling. Do not copy them "as is" in a production application.

17.1. Event programming

The methods to manage Yoctopuce modules which we presented to you in preceding chapters were
polling functions, consisting in permanently asking the API if something had changed. While easy to
understand, this programming technique is not the most efficient, nor the most reactive. Therefore,
the Yoctopuce programming APl also provides an event programming model. This technique
consists in asking the API to signal by itself the important changes as soon as they are detected.
Each time a key parameter is modified, the API calls a callback function which you have defined in
advance.

Detecting module arrival and departure

Hot-plug management is important when you work with USB modules because, sooner or later, you
will have to connect or disconnect a module when your application is running. The API is designed to
manage module unexpected arrival or departure in a transparent way. But your application must take
this into account if it wants to avoid pretending to use a disconnected module.

Event programming is particularly useful to detect module connection/disconnection. Indeed, it is
simpler to be told of new connections rather than to have to permanently list the connected modules
to deduce which ones just arrived and which ones left. To be warned as soon as a module is
connected, you need three pieces of code.

The callback
The callback is the function which is called each time a new Yoctopuce module is connected. It takes
as parameter the relevant module.

static void deviceArrival (YModule m)

{

Console.WritelLine ("New module : " + m.get serialNumber());

}

www.yoctopuce.com 107

17. Advanced programming

Initialization
You must then tell the API that it must call the callback when a new module is connected.

YAPI.RegisterDeviceArrivalCallback (deviceArrival) ;

Note that if modules are already connected when the callback is registered, the callback is called for
each of the already connected modules.

Triggering callbacks

A classis issue of callback programming is that these callbacks can be triggered at any time,
including at times when the main program is not ready to receive them. This can have undesired side
effects, such as dead-locks and other race conditions. Therefore, in the Yoctopuce API, module
arrival/departure callbacks are called only when the UpdateDeviceList () function is running.
You only need to call UpdateDeviceList () at regular intervals from a timer or from a specific
thread to precisely control when the calls to these callbacks happen:

/ waiting loop managing calll
while (true)
{

YAPI.UpdateDevicelList (ref errmsqg)

YAPi;élééﬁ(SéO;rréf‘érfﬁsé)g
}
In a similar way, it is possible to have a callback when a module is disconnected. You can find a

complete example implemented in your favorite programming language in the Examples/Prog-
EventBased directory of the corresponding library.

Be aware that in most programming languages, callbacks must be global procedures, and not
methods. If you wish for the callback to call the method of an object, define your callback as a global
procedure which then calls your method.

108 www.yoctopuce.com

18. Firmware Update

There are multiples way to update the firmware of a Yoctopuce module..

18.1. The VirtualHub or the YoctoHub

It is possible to update the firmware directly from the web interface of the VirtualHub or the
YoctoHub. The configuration panel of the module has an "upgrade" button to start a wizard that will
guide you through the firmware update procedure.

In case the firmware update fails for any reason, and the module does no start anymore, simply
unplug the module then plug it back while maintaining the Yocto-button down. The module will boot
in "firmware update" mode and will appear in the VirtualHub interface below the module list.

18.2. The command line library

All the command line tools can update Yoctopuce modules thanks to the downloadAndUpdate
command. The module selection mechanism works like for a traditional command. The [target] is the
name of the module that you want to update. You can also use the "any" or "all" aliases, or even a
name list, where the names are separated by commas, without spaces.

Executable [options] [target] command [parameters]

The following example updates all the Yoctopuce modules connected by USB.

YModule all downloadAndUpdate
ok: Yocto-PowerRelay RELAYHI1-266C8 (rev=15430) is up to date.
ok: 0 / 0 hubs in 0.000000s.
ok: 0 / 0 shields in 0.000000s.
ok: 1 / 1 devices in 0.130000s 0.130000s per device.
ok: All devices are now up to date.

18.3. The Android application Yocto-Firmware

You can update your module firmware from your Android phone or tablet with the Yocto-Firmware
application. This application lists all the Yoctopuce modules connected by USB and checks if a more
recent firmware is available on www.yoctopuce.com. If a more recent firmware is available, you can

www.yoctopuce.com 109

18. Firmware Update

update the module. The application is responsible for downloading and installing the new firmware
while preserving the module parameters.

Please note: while the firmware is being updated, the module restarts several times. Android
interprets a USB device reboot as a disconnection and reconnection of the USB device and asks the
authorization to use the USB port again. The user must click on OK for the update process to end
successfully.

18.4. Updating the firmware with the programming library

If you need to integrate firmware updates in your application, the libraries offer you an API to update
your modules.

Saving and restoring parameters

The get allSettings () method returns a binary buffer enabling you to save a module
persistent parameters. This function is very useful to save the network configuration of a YoctoHub
for example.

YWireless wireless = YWireless.FindWireless ("reference");
YModule m = wireless.get module () ;

byte[] default config = m.get allSettings();

saveFile ("default.bin", default config);

You can then apply these parameters to other modules with the set allSettings () method.

byte[] default config = loadFile("default.bin");
YModule m = YModule.FirstModule () ;
while (m != null) {
if (m.get productName () == "YoctoHub-Wireless") {
m.set allSettings (default config);

}
m = m.next ()

}

Finding the correct firmware

The first step to update a Yoctopuce module is to find which firmware you must use. The
checkFirmware (path, onlynew) method of the YModule object does exactly this. The
method checks that the firmware given as argument (path) is compatible with the module. If the
onlynew parameter is set, this method checks that the firmware is more recent than the version
currently used by the module. When the file is not compatible (or if the file is older than the installed
version), this method returns an empty string. In the opposite, if the file is valid, the method returns a
file access path.

The following piece of code checks that the c: \tmp\METEOMK1.17328.byn is compatible with
the module stored in the m variable .

YModule m = YModule.FirstModule () ;

\tmp\METEOMK1.17328.byn";

string path = "c:\\t

= m.checkFirmware (path, false);
) |
ne (

string newfirm
if (newfirm !=
Console.WriteLine

}

nn

"firmware " + newfirm + " is compatible");

" The JavaScript, Node.js, and PHP libraries do not yet allow you to update the modules. These functions will be available in
a next build.

110 www.yoctopuce.com

18. Firmware Update

The argument can be a directory (instead of a file). In this case, the method checks all the files of the
directory recursively and returns the most recent compatible firmware. The following piece of code
checks whether there is a more recent firmware in the c: \tmp\ directory.

YModule m = YModule.FirstModule () ;

string path = "c:\\tmp";
string newfirm = m.checkFirmware (path, true);
if (newfirm != "") {
Console.WritelLine ("firmware " + newfirm + " is compatible and newer");

}

You can also give the "www.yoctopuce.com" string as argument to check whether there is a more
recent published firmware on Yoctopuce's web site. In this case, the method returns the firmware
URL. You can use this URL to download the firmware on your disk or use this URL when updating
the firmware (see below). Obviously, this possibility works only if your machine is connected to
Internet.

YModule m = YModule.FirstModule () ;

string url = m.checkFirmware ("www.yoctopuce.con", true);

if (url != "") {
Console.WriteLine ("new firmware is available at " + url);
}
Updating the firmware

A firmware update can take several minutes. That is why the update process is run as a background
task and is driven by the user code thanks to the YFi rmwareUdpate class.

To update a Yoctopuce module, you must obtain an instance of the YFirmwareUdpate class with
the updateFirmware method of a YModule object. The only parameter of this method is the path
of the firmware that you want to install. This method does not immediately start the update, but
returns a YFirmwareUdpate object configured to update the module.

string newfirm = m.checkFirmware ("www.yoctopuce.com", true);

YFirmwareUpdate fw update = m.updateFirmware (newfirm);

The startUpdate () method starts the update as a background task. This background task
automatically takes care of

saving the module parameters

restarting the module in "update" mode

updating the firmware

starting the module with the new firmware version
restoring the parameters

aorwN -~

The get progress() and get progressMessage () methods enable you to follow the
progression of the update. get progress () returns the progression as a percentage (100 =
update complete). get progressMessage () returns a character string describing the current
operation (deleting, writing, rebooting, ...). If the get progress method returns a negative value,
the update process failed. In this case, the get progressMessage () returns an error message.

The following piece of code starts the update and displays the progress on the standard output.

YFirmwareUpdate fw update = m.updateFirmware (newfirm);

int status = fw update.startUpdate();
while (status < 100 && status >= 0) {

www.yoctopuce.com 111

18. Firmware Update

int newstatus = fw update.get progress();
if (newstatus != status) {
Console.WriteLine (status + "% "
+ fw update.get progressMessage());

}
YAPI.Sleep (500, ref errmsqg);
status = newstatus;

}

if (status < 0) {
Console.WritelLine ("Firmware Update failed: "
+ fw update.get progressMessage());
} else {
Console.WritelLine ("Firmware Updated Successfully!");

}

An Android characteristic

You can update a module firmware using the Android library. However, for modules connected by
USB, Android asks the user to authorize the application to access the USB port.

During firmware update, the module restarts several times. Android interprets a USB device reboot
as a disconnection and a reconnection to the USB port, and prevents all USB access as long as the
user has not closed the pop-up window. The use has to click on OK for the update process to
continue correctly. You cannot update a module connected by USB to an Android device
without having the user interacting with the device.

18.5. The "update” mode

If you want to erase all the parameters of a module or if your module does not start correctly
anymore, you can install a firmware from the "update" mode.

To force the module to work in "update” mode, disconnect it, wait a few seconds, and reconnect it
while maintaining the Yocto-button down. This will restart the module in "update" mode. This update
mode is protected against corruptions and is always available.

In this mode, the module is not detected by the YModule objects anymore. To obtain the list of
connected modules in "update" mode, you must use the YAPTI.GetAllBootLoaders () function.
This function returns a character string array with the serial numbers of the modules in "update"
mode.

List<string> allBootLoader = YAPI.GetAllBootLoaders();

The update process is identical to the standard case (see the preceding section), but you must
manually instantiate the YFirmwareUpdate object instead of calling
module.updateFirmware (). The constructor takes as argument three parameters: the module
serial number, the path of the firmware to be installed, and a byte array with the parameters to be
restored at the end of the update (or nul1l to restore default parameters).

YFirmwareUpdateupdate fw update;
fw_update = new YFirmwareUpdate (allBootLoader[0], newfirm, null);
int status = fw update.startUpdate();

112 www.yoctopuce.com

19. Using with unsupported languages

Yoctopuce modules can be driven from most common programming languages. New languages are
regularly added, depending on the interest expressed by Yoctopuce product users. Nevertheless,
some languages are not, and will never be, supported by Yoctopuce. There can be several reasons
for this: compilers which are not available anymore, unadapted environments, etc.

However, there are alternative methods to access Yoctopuce modules from an unsupported
programming language.

19.1. Command line

The easiest method to drive Yoctopuce modules from an unsupported programming language is to
use the command line API through system calls. The command line APl is in fact made of a group of
small executables which are easy to call. Their output is also easy to analyze. As most programming
languages allow you to make system calls, the issue is solved with a few lines of code.

However, if the command line API is the easiest solution, it is neither the fastest nor the most
efficient. For each call, the executable must initialize its own APl and make an inventory of USB
connected modules. This requires about one second per call.

19.2. VirtualHub and HTTP GET

The VirtualHub is available on almost all current platforms. It is generally used as a gateway to
provide access to Yoctopuce modules from languages which prevent direct access to hardware
layers of a computer (JavaScript, PHP, Java, ...).

In fact, the VirtualHub is a small web server able to route HTTP requests to Yoctopuce modules. This
means that if you can make an HTTP request from your programming language, you can drive
Yoctopuce modules, even if this language is not officially supported.

REST interface

At a low level, the modules are driven through a REST API. Thus, to control a module, you only need
to perform appropriate requests on the VirtualHub. By default, the VirtualHub HTTP port is 4444.

An important advantage of this technique is that preliminary tests are very easy to implement. You
only need a VirtualHub and a simple web browser. If you copy the following URL in your preferred
browser, while the VirtualHub is running, you obtain the list of the connected modules.

http://127.0.0.1:4444/api/services/whitePages.txt

www.yoctopuce.com 113

19. Using with unsupported languages

Note that the result is displayed as text, but if you request whitePages.xml, you obtain an XML result.
Likewise, whitePages.json allows you to obtain a JSON result. The htm/ extension even allows you to
display a rough interface where you can modify values in real time. The whole REST API is available
in these different formats.

Driving a module through the REST interface

Each Yoctopuce module has its own REST interface, available in several variants. Let us imagine a
Yocto-MaxiRelay with the HISPWER1-12345 serial number and the myModule logical name. The
following URL allows you to know the state of the module.

http://127.0.0.1:4444/bySerial /HI8PWER1-12345/api/module. txt

You can naturally also use the module logical name rather than its serial number.

http://127.0.0.1:4444/byName/myModule/api/module. txt
To retrieve the value of a module property, simply add the name of the property below module. For
example, if you want to know the signposting led luminosity, send the following request:
http://127.0.0.1:4444/bySerial /HI8PWER1-12345/api/module/luminosity
To change the value of a property, modify the corresponding attribute. Thus, to modify the luminosity,

send the following request:

http://127.0.0.1:4444/bySerial /HI8PWER1-12345/api/module?luminosity=100

Driving the module functions through the REST interface

The module functions can be manipulated in the same way. To know the state of the relay function,
build the following URL.:

http://127.0.0.1:4444/bySerial /HI8PWER1-12345/api/relay.txt

Note that if you can use logical names for the modules instead of their serial number, you cannot use
logical names for functions. Only hardware names are authorized to access functions.

You can retrieve a module function attribute in a way rather similar to that used with the modules. For
example:

http://127.0.0.1:4444/bySerial /HI8PWER1-12345/api/relay/logicalName

Rather logically, attributes can be modified in the same manner.

http://127.0.0.1:4444/bySerial /HI8PWER1-12345/api/relay?logicalName=myFunction

You can find the list of available attributes for your Yocto-MaxiRelay at the beginning of the
Programming chapter.

Accessing Yoctopuce data logger through the REST interface
This section only applies to devices with a built-in data logger.

The preview of all recorded data streams can be retrieved in JSON format using the following URL:

http://127.0.0.1:4444/bySerial /HI8PWER1-12345/datalLogger.json

Individual measures for any given stream can be obtained by appending the desired function
identifier as well as start time of the stream:

114 www.yoctopuce.com

19. Using with unsupported languages

http://127.0.0.1:4444/bySerial /HI8PWER1-12345/datalogger.json?id=relay

19.3. Using dynamic libraries

The low level Yoctopuce API is available under several formats of dynamic libraries written in C. The
sources are available with the C++ API. If you use one of these low level libraries, you do not need
the VirtualHub anymore.

Filename Platform
libyapi.dylib Max OS X
libyapi-amd64.so Linux Intel (64 bits)
libyapi-armel.so Linux ARM EL
libyapi-armhf.so Linux ARM HL
libyapi-i386.so Linux Intel (32 bits)
yapi64.dll Windows (64 bits)
yapi.dll Windows (32 bits)

These dynamic libraries contain all the functions necessary to completely rebuild the whole high level
APl in any language able to integrate these libraries. This chapter nevertheless restrains itself to
describing basic use of the modules.

Driving a module
The three essential functions of the low level API are the following:

int yapiInitAPI (int connection type, char *errmsg);
nt yapiUpdateDevicelList (int forceupdate, char *errmsg);
int yapiHTTPRequest (char *device, char *request, char* buffer,int buffsize,int *fullsize,

char *errmsgqg);

The yapilnitAPI function initializes the API and must be called once at the beginning of the program.
For a USB type connection, the connection_type parameter takes value 1. The errmsg parameter
must point to a 255 character buffer to retrieve a potential error message. This pointer can also point
to null. The function returns a negative integer in case of error, zero otherwise.

The yapiUpdateDeviceList manages the inventory of connected Yoctopuce modules. It must be
called at least once. To manage hot plug and detect potential newly connected modules, this function
must be called at regular intervals. The forceupdate parameter must take value 1 to force a hardware
scan. The errmsg parameter must point to a 255 character buffer to retrieve a potential error
message. This pointer can also point to null. The function returns a negative integer in case of error,
zero otherwise.

Finally, the yapiHTTPRequest function sends HTTP requests to the module REST API. The device
parameter contains the serial number or the logical name of the module which you want to reach.
The request parameter contains the full HTTP request (including terminal line breaks). buffer points
to a character buffer long enough to contain the answer. buffsize is the size of the buffer. fullsize is a
pointer to an integer to which will be assigned the actual size of the answer. The errmsg parameter
must point to a 255 character buffer to retrieve a potential error message. This pointer can also point
to null. The function returns a negative integer in case of error, zero otherwise.

The format of the requests is the same as the one described in the VirfualHub et HTTP GET section.
All the character strings used by the API are strings made of 8-bit characters: Unicode and UTF8 are
not supported.

The resutlt returned in the buffer variable respects the HTTP protocol. It therefore includes an HTTP
header. This header ends with two empty lines, that is a sequence of four ASCII characters 13, 10,
13, 10.

Here is a sample program written in pascal using the yapi.dll DLL to read and then update the
luminosity of a module.

www.yoctopuce.com 115

19. Using with unsupported languages

// D11 functions import

function vyapiInitAPI (mode:integer;
errmsg pansichar) :integer;cdecl;
external 'yapi.dll' name 'yapiInitAPI';

function vyapiUpdateDevicelist (force:integer;errmsg pansichar) :integer;cdecl;
external 'yapi.dll' name 'yapiUpdateDeviceList';

function yapiHTTPRequest (device:pansichar;url:pansichar; buffer:pansichar;

buffsize:integer;var fullsize:integer;

errmsg pansichar) :integer;cdecl;
external 'yapi.dll' name 'yapiHTTPRequest';
var
errmsgBuffer array [0..256] of ansichar;
dataBuffer array [0..1024] of ansichar;
errmsg, data pansichar;
fullsize,p integer;
const
serial = 'HI8PWER1-12345"';
getValue = 'GET /api/module/luminosity HTTP/1.1'#13#10#13#10;
setValue = 'GET /api/module?luminosity=100 HTTP/1.1'#13#10#13#10;
begin
errmsg @errmsgBuffer;
data := (@dataBuffer;
// API initialization
if (yapiInitAPI(1,errmsg)<0) then
begin
writeln (errmsqg) ;
halt;
end;
// forces a device inventory
if(yapiUpdateDevicelList (1,errmsg)<0) then
begin
writeln (errmsqg) ;
halt;
end;
// requests the module 1 inosity
if (yapiHTTPRequest (serial,getValue,data,sizeof (dataBuffer), fullsize,errmsg)<0) then
begin
writeln (errmsqg) ;
halt;
end;
// searches for the HTTP header end
P := pos (#13#10#13#10, data)
// displays the response minus the HTTP heade
writeln (copy(data,p+4,length(data)-p-3));
// changes the luminosity
if (yaleTTPRequest(serial,setValue,data,sizeof(dataBuffer),fullsize,errmsg)<0) then
begin
writeln (errmsg) ;
halt;
end;
end.

Module inventory

To perform an inventory of Yoctopuce modules, you need two functions from the dynamic library:

int yapiGetAllDevices (int *buffer,int maxsize,int *neededsize,char *errmsgqg);

int yapiGetDevicelInfo(int devdesc, yDeviceSt *infos,

char *errmsgqg);

The yapiGetAllDevices function retrieves the list of all connected modules as a list of handles. buffer
points to a 32-bit integer array which contains the returned handles. maxsize is the size in bytes of
the buffer. To neededsize is assigned the necessary size to store all the handles. From this, you can
deduce either the number of connected modules or that the input buffer is too small. The errmsg

116

www.yoctopuce.com

19. Using with unsupported languages

parameter must point to a 255 character buffer to retrieve a potential error message. This pointer can
also point to null. The function returns a negative integer in case of error, zero otherwise.

The yapiGetDevicelnfo function retrieves the information related to a module from its handle.
representing the module and which was obtained through
yapiGetAllDevices. infos points to a data structure in which the result is stored. This data structure

devdesc is a 32-bit

has the following format:

Name

vendorid
deviceid
devrelease
nbinbterfaces
manufacturer
productname
serial
logicalname
firmware
beacon

integer

Type
int
int
int
int
char(]
charf]
charf]
charf]
charf]
byte

Size
(bytes)
4
4
4
4
20
28
20
20
22
1

Description

Yoctopuce USB ID
Module USB ID
Module version

Number of USB interfaces used by the module

Yoctopuce (null terminated)
Model (null terminated)

Serial number (null terminated)
Logical name (null terminated)
Firmware version (null terminated)

Beacon state (0/1)

The errmsg parameter must point to a 255 character buffer to retrieve a potential error message.

Here is a sample program written in pascal using the yapi.dll DLL to list the connected modules.

device ¢ ~ri

type yDeviceSt

Nt i10n
ption

sty ~ture

acked record

vendorid : word;
deviceid elg
devrelease
nbinbterfaces
manufacturer [0..19] of ansichar;
productname [0..27] of ansichar;
serial [0..19] of ansichar;
logicalname [0..19] of ansichar;
firmware [0..21] of ansichar;
beacon
end;
function vyapiInitAPI (mode:integer;
errmsg : pansichar) :integer;cdecl;
external 'yapi.dll' name 'yapiInitAPI';
function yapiUpdateDevicelist (force:integer;errmsg : pansichar):

function

external

yapiGetAllDevices (buffer:point

'yvapi.dll'

name

@rf

maxsize:integer;
var neededsize:integer;

errmsg :
external

integer;

pansichar) :integer; cdecl;

'yvapi.dll' name

var infos:yDeviceSt;

errmsg : pansichar) :integer; cdecl;
external 'yapi.dll' name

6] of ansichar;

7] of integer; f 128 B

function apiGetDeviceInfo (d:

var
errmsgBuffer array [0..25
dataBuffer array [0..12
errmsg,data : pansichar;
neededsize, i integer;

devinfos yDeviceSt;

begin
errmsg = (@errmsgBuffer;
if (yapiInitAPI (1,errmsg)<0) then

begin
writeln (errmsqg) ;

integer;cdecl;

'yvapiUpdateDeviceList';

'yapiGetAllDevices';

'vapiGetDevicelInfo';

www.yoctopuce.com

117

19. Using with unsupported languages

halt;
end;

if(yapiUpdateDevicelist (1,errmsg)<0) then
begin
writeln (errmsg) ;
halt;

end;

loads all device handles

if yapiGetAllDevices (@dataBuffer,sizeof (dataBuffer),neededsize,errmsqg)<0 then
begin
writeln (errmsg) ;
halt;
end;

~ots detvice A7EE Eoemn ccsmlh IhemElle
JE L 1€V ce 11 rom 1C1 anaite

for 1i:=0 to neededsize div sizeof (integer)-1 do
begin
if (apiGetDeviceInfo (dataBuffer[i], devinfos, errmsg)<0) then
begin
writeln (errmsqg) ;
halt;
end;
writeln (pansichar (@devinfos.serial)+' ('+pansichar (@devinfos.productname)+')"');
end;

end.

VB6 and yapi.dli

Each entry point from the yapi.dll is duplicated. You will find one regular C-decl version and one
Visual Basic 6 compatible version, prefixed with vb6 .

19.4. Porting the high level library

As all the sources of the Yoctopuce API are fully provided, you can very well port the whole API in
the language of your choice. Note, however, that a large portion of the API source code is
automatically generated.

Therefore, it is not necessary for you to port the complete API. You only need to port the yocto api
file and one file corresponding to a function, for example yocto_relay. After a little additional work,
Yoctopuce is then able to generate all other files. Therefore, we highly recommend that you contact
Yoctopuce support before undertaking to port the Yoctopuce library in another language.
Collaborative work is advantageous to both parties.

118 www.yoctopuce.com

20. High-level API Reference

This chapter summarizes the high-level API functions to drive your Yocto-MaxiRelay. Syntax and
exact type names may vary from one language to another, but, unless otherwise stated, all the
functions are available in every language. For detailed information regarding the types of arguments
and return values for a given language, refer to the definition file for this language (yocto api.*
as well as the other yocto * files that define the function interfaces).

For languages which support exceptions, all of these functions throw exceptions in case of error by
default, rather than returning the documented error value for each function. This is by design, to
facilitate debugging. It is however possible to disable the use of exceptions using the
yDisableExceptions () function, in case you prefer to work with functions that return error
values.

This chapter does not repeat the programming concepts described earlier, in order to stay as concise
as possible. In case of doubt, do not hesitate to go back to the chapter describing in details all
configurable attributes.

www.yoctopuce.com 119

20. High-level API Reference

20.1. General functions

These general functions should be used to initialize and configure the Yoctopuce library. In most cases,
a simple call to function yRegi st er Hub() should be enough. The module-specific functions

yFind...() oryFirst... () should then be used to retrieve an object that provides interaction
with the module.

In order to use the functions described here, you should include:

<script type="text/javascript' src="yocto_api.js'></script>
nodej s | var yoctolib = require(‘yoctolib’);

var YAPI = yoctolib.YAPI;

var YModule = yoctolib.YModule;

#include "yocto_api.h"

#import "yocto_api.h"

uses yocto_api;

yocto_api.vb

yocto_api.cs

import com.yoctopuce.YoctoAPI.YModule;

import com.yoctopuce.YoctoAPI.YModule;

from yocto_api import *

php | require_once('yocto_api.php’);

es [in HTML: <script src="../../lib/lyocto_api.js"></script>
in node.js: require('yoctolib-es2017/yocto_api.js’);

Global functions
yCheckLogicalName(name)

Checks if a given string is valid as logical name for a module or a function.
yDisableExceptions()

Disables the use of exceptions to report runtime errors.
yEnableExceptions()

Re-enables the use of exceptions for runtime error handling.
yEnableUSBHost(osContext)

This function is used only on Android.
yFreeAPI()

Frees dynamically allocated memory blocks used by the Yoctopuce library.
yGetAPIVersion()

Returns the version identifier for the Yoctopuce library in use.
yGetTickCount()

Returns the current value of a monotone millisecond-based time counter.
yHandleEvents(errmsg)

Maintains the device-to-library communication channel.
yInitAPI(mode, errmsg)

Initializes the Yoctopuce programming library explicitly.
yPreregisterHub(url, errmsg)

Fault-tolerant alternative to RegisterHub().
yRegisterDeviceArrivalCallback(arrivalCallback)

Register a callback function, to be called each time a device is plugged.
yRegisterDeviceRemovalCallback(removalCallback)

Register a callback function, to be called each time a device is unplugged.

120 www.yoctopuce.com

20. High-level API Reference

yRegisterHub(url, errmsg)

Setup the Yoctopuce library to use modules connected on a given machine.
yRegisterHubDiscoveryCallback(hubDiscoveryCallback)

Register a callback function, to be called each time an Network Hub send an SSDP message.
yRegisterLogFunction(logfun)

Registers a log callback function.
ySelectArchitecture(arch)

Select the architecture or the library to be loaded to access to USB.
ySetDelegate(object)

(Objective-C only) Register an object that must follow the protocol YDevi ceHot Pl ug.
ySetTimeout(callback, ms_timeout, args)

Invoke the specified callback function after a given timeout.
ySetUSBPacketAckMs(pktAckDelay)

Enables the acknowledge of every USB packet received by the Yoctopuce library.
ySleep(ms_duration, errmsg)

Pauses the execution flow for a specified duration.
yTestHub(url, mstimeout, errmsg)

Test if the hub is reachable.
yTriggerHubDiscovery(errmsg)

Force a hub discovery, if a callback as been registered with yRegi st er Devi ceRenoval Cal | back it
will be called for each net work hub that will respond to the discovery.

yUnregisterHub(url)

Setup the Yoctopuce library to no more use modules connected on a previously registered machine with
RegisterHub.

yUpdateDeviceList(errmsg)

Triggers a (re)detection of connected Yoctopuce modules.
yUpdateDeviceList_async(callback, context)

Triggers a (re)detection of connected Yoctopuce modules.

www.yoctopuce.com 121

20. High-level API Reference

YAPI.CheckLogicalName() YAPI
yCheckLogicalName()

Checks if a given string is valid as logical name for a module or a function.

[is |function yCheckLogicalName(name)
[nodej s | function CheckLogicalName(name)

bool yCheckLogicalName(const string& name)
+(BOOL) CheckLogicalName :(NSString *) name

[pas|function yCheckLogicalName(name: string): boolean
[vb |function yCheckLogicalName(ByVal name As String) As Boolean
bool CheckLogicalName(string name)

boolean CheckLogicalName(String name)

bool CheckLogicalName(string name)

def CheckLogicalName(name)

[php | function yCheckLogicalName($name)

[es |function CheckLogicalName(name)

A valid logical name has a maximum of 19 characters, allamong A. . Z,a..z,0..9, ,and-. Ifyou
try to configure a logical name with an incorrect string, the invalid characters are ignored.

p
Parameters :
name a string containing the name to check.

Returns :
t r ue if the name is valid, f al se otherwise.

122 www.yoctopuce.com

20. High-level API Reference

YAPI.DisableExceptions() YAPI
yDisableExceptions()

Disables the use of exceptions to report runtime errors.

function yDisableExceptions()
function DisableExceptions()

[cpp | void yDisableExceptions()
+(void) DisableExceptions
procedure yDisableExceptions()
procedure yDisableExceptions()
[cs |void DisableExceptions()

def DisableExceptions()
function yDisableExceptions()
function DisableExceptions()

When exceptions are disabled, every function returns a specific error value which depends on its type
and which is documented in this reference manual.

www.yoctopuce.com 123

20. High-level API Reference

YAPI.EnableExceptions()
yEnableExceptions()

YAPI

Re-enables the use of exceptions for runtime error handling.

[is |function yEnableExceptions()
[nodej s | function EnableExceptions()

[cpp | void yEnableExceptions()
+(void) EnableExceptions
procedure yEnableExceptions()
procedure yEnableExceptions()
[cs |void EnableExceptions()

def EnableExceptions()

[php | function yEnableExceptions()
[es |function EnableExceptions()

Be aware than when exceptions are enabled, every function that fails triggers an exception. If the
exception is not caught by the user code, it either fires the debugger or aborts (i.e. crash) the program.

On failure, throws an exception or returns a negative error code.

124

www.yoctopuce.com

20. High-level API Reference

YAPI.EnableUSBHost() YAPI
yEnableUSBHost()

This function is used only on Android.
void EnableUSBHost(Object osContext)

Before calling yRegi st er Hub(" usb") you need to activate the USB host port of the system. This
function takes as argument, an object of class android.content.Context (or any subclass). It is not
necessary to call this function to reach modules through the network.

Parameters :
osContext an object of class android.content.Context (or any subclass).

www.yoctopuce.com 125

20. High-level API Reference

YAPI.FreeAPI()
yFreeAPI()

YAPI

Frees dynamically allocated memory blocks used by the Yoctopuce library.

function yFreeAPI()
[nodej s | function FreeAPI()
void yFreeAPI()
+(void) FreeAPI
procedure yFreeAPI()
procedure yFreeAPI()
[cs |void FreeAPI()
void FreeAPI()

[uw |void FreeAPI()

def FreeAPI()

[php_|function yFreeAPI()
function FreeAPI()

It is generally not required to call this function, unless you want to free all dynamically allocated memory
blocks in order to track a memory leak for instance. You should not call any other library function after

calling yFr eeAPI (), or your program will crash.

126

www.yoctopuce.com

20. High-level API Reference

YAPI.GetAPIVersion() YAPI
yGetAPIVersion()

Returns the version identifier for the Yoctopuce library in use.

function yGetAPIVersion()
function GetAPIVersion()

string yGetAPIVersion()
+(NSString*) GetAPIVersion
function yGetAPIVersion(): string
function yGetAPIVersion() As String
String GetAPIVersion()

String GetAPIVersion()

string GetAPIVersion()

def GetAPIVersion()

function yGetAPIVersion()
function GetAPIVersion()

The version is a string in the form " Maj or . M nor . Bui | d", for instance "1. 01. 5535". For
languages using an external DLL (for instance C#, VisualBasic or Delphi), the character string includes
as well the DLL version, for instance " 1. 01. 5535 (1. 01. 5439)".

If you want to verify in your code that the library version is compatible with the version that you have
used during development, verify that the major number is strictly equal and that the minor number is
greater or equal. The build number is not relevant with respect to the library compatibility.

Returns :
a character string describing the library version.

www.yoctopuce.com 127

20. High-level API Reference

YAPI.GetTickCount() YAPI
yGetTickCount()

Returns the current value of a monotone millisecond-based time counter.

[is |function yGetTickCount()
[nodej s | function GetTickCount()

u64 yGetTickCount()

+(u64) GetTickCount

[pas _|function yGetTickCount(): u64
[vb |function yGetTickCount() As Long
ulong GetTickCount()

long GetTickCount()

ulong GetTickCount()

def GetTickCount()

[php | function yGetTickCount()

[es |function GetTickCount()

This counter can be used to compute delays in relation with Yoctopuce devices, which also uses the
millisecond as timebase.

Returns :
a long integer corresponding to the millisecond counter.

128 www.yoctopuce.com

20. High-level API Reference

YAPI.HandleEvents() YAPI
yHandleEvents()

Maintains the device-to-library communication channel.

function yHandleEvents(errmsg)

function HandleEvents(errmsg)

YRETCODE yHandleEvents(string& errmsg)
+(YRETCODE) HandleEvents :(NSError*) errmsg
function yHandleEvents(var errmsg: string): integer
function yHandleEvents(ByRef errmsg As String) As YRETCODE
YRETCODE HandleEvents(ref string errmsg)

int HandleEvents()

async Task<int> HandleEvents()

def HandleEvents(errmsg=None)

function yHandleEvents(&$errmsg)

[es |function HandleEvents(errmsg)

If your program includes significant loops, you may want to include a call to this function to make sure
that the library takes care of the information pushed by the modules on the communication channels.
This is not strictly necessary, but it may improve the reactivity of the library for the following commands.

This function may signal an error in case there is a communication problem while contacting a module.

Parameters :
errmsg a string passed by reference to receive any error message.

Returns :
YAPI _ SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 129

20. High-level API Reference

YAPLInitAPI()
yInitAPI()

YAPI

Initializes the Yoctopuce programming library explicitly.

[is |function yInitAPI(mode, errmsg)

[nodej s | function InitAPI(mode, errmsg)

YRETCODE yInitAPI(int mode, string& errmsg)
+(YRETCODE) InitAPI :(int) mode :(NSError**) errmsg

[pas_|function yInitAPI(mode: integer, var errmsg: string): integer
[vb |function yInitAPI(ByVal mode As Integer, ByRef errmsg As String) As Integer
int InitAPI(int mode, ref string errmsg)

int InitAPI(int mode)

async Task<int> InitAPI(int mode)

def InitAPI(mode, errmsg=None)

[php | function yInitAPI($mode, &$errmsg)

[es |function InitAPI(mode, errmsg)

It is not strictly needed to call yl ni t API (), as the library is automatically initialized when calling

yRegi st er Hub() for the first time.

When Y_DETECT_NONE is used as detection node, you must explicitly use yRegi st er Hub() to
point the API to the VirtualHub on which your devices are connected before trying to access them.

Parameters :

errmsg a string passed by reference to receive any error message.

Returns :
YAPI _ SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

mode an integer corresponding to the type of automatic device detection to use. Possible values are
Y DETECT _NONE, Y DETECT USB,Y DETECT NET,andY DETECT ALL.

130

www.yoctopuce.com

20. High-level API Reference

YAPI.PreregisterHub()
yPreregisterHub()

YAPI

Fault-tolerant alternative to RegisterHub().

function yPreregisterHub(url, errmsg)
[nodej s | function PreregisterHub(url, errmsg)
YRETCODE yPreregisterHub(const string& url, string& errmsg)
+(YRETCODE) PreregisterHub :(NSString *) url :(NSError**) errmsg
function yPreregisterHub(url: string, var errmsg: string): integer
function yPreregisterHub(ByVal url As String,

ByRef errmsg As String) As Integer
int PreregisterHub(string url, ref string errmsg)
int PreregisterHub(String url)
async Task<int> PreregisterHub(string url)
def PreregisterHub(url, errmsg=None)
function yPreregisterHub($url, &$errmsg)
function PreregisterHub(url, errmsg)

This function has the same purpose and same arguments as Regi st er Hub() , but does not trigger
an error when the selected hub is not available at the time of the function call. This makes it possible to
register a network hub independently of the current connectivity, and to try to contact it only when a

device is actively needed.

Parameters :

errmsg a string passed by reference to receive any error message.

Returns :
YAPI _ SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

url a string containing either "usb","callback" or the root URL of the hub to monitor

www.yoctopuce.com

131

20. High-level API Reference

YAPI.RegisterDeviceArrivalCallback() YAPI
yRegisterDeviceArrivalCallback()

Register a callback function, to be called each time a device is plugged.

function yRegisterDeviceArrivalCallback(arrivalCallback)

[nodej s | function RegisterDeviceArrivalCallback(arrivalCallback)

void yRegisterDeviceArrivalCallback(yDeviceUpdateCallback arrivalCallback)
+(void) RegisterDeviceArrivalCallback :(yDeviceUpdateCallback) arrivalCallback
procedure yRegisterDeviceArrivalCallback(arrivalCallback: yDeviceUpdateFunc)
procedure yRegisterDeviceArrivalCallback(ByVal arrivalCallback As yDeviceUpdateFunc)
void RegisterDeviceArrivalCallback(yDeviceUpdateFunc arrivalCallback)

void RegisterDeviceArrivalCallback(DeviceArrivalCallback arrivalCallback)

[uw |void RegisterDeviceArrivalCallback(DeviceUpdateHandler arrivalCallback)

def RegisterDeviceArrivalCallback(arrivalCallback)

[php | function yRegisterDeviceArrivalCallback($arrivalCallback)

[es |function RegisterDeviceArrivalCallback(arrivalCallback)

This callback will be invoked while yUpdat eDevi ceLi st is running. You will have to call this function
on a regular basis.

Parameters :
arrivalCallback a procedure taking a YModul e parameter, or nul |

132 www.yoctopuce.com

20. High-level API Reference

YAPI.RegisterDeviceRemovalCallback() YAPI
yRegisterDeviceRemovalCallback()

Register a callback function, to be called each time a device is unplugged.

function yRegisterDeviceRemovalCallback(removalCallback)

function RegisterDeviceRemovalCallback(removalCallback)

m void yRegisterDeviceRemovalCallback(yDeviceUpdateCallback removalCallback)
+(void) RegisterDeviceRemovalCallback :(yDeviceUpdateCallback) removalCallback
procedure yRegisterDeviceRemovalCallback(removalCallback: yDeviceUpdateFunc)
procedure yRegisterDeviceRemovalCallback(ByVal removalCallback As yDeviceUpdateFunc)
void RegisterDeviceRemovalCallback(yDeviceUpdateFunc removalCallback)
void RegisterDeviceRemovalCallback(DeviceRemovalCallback removalCallback)
void RegisterDeviceRemovalCallback(DeviceUpdateHandler removalCallback)

def RegisterDeviceRemovalCallback(removalCallback)

function yRegisterDeviceRemovalCallback($removalCallback)

function RegisterDeviceRemovalCallback(removalCallback)

This callback will be invoked while yUpdat eDevi ceLi st is running. You will have to call this function
on a regular basis.

Parameters :

removalCallback a procedure taking a YMbdul e parameter, or nul |

www.yoctopuce.com 133

20. High-level API Reference

YAPI.RegisterHub() YAPI
yRegisterHub()

Setup the Yoctopuce library to use modules connected on a given machine.

[is |function yRegisterHub(url, errmsg)
[nodej s | function RegisterHub(url, errmsg)
YRETCODE yRegisterHub(const string& url, string& errmsg)
+(YRETCODE) RegisterHub :(NSString *) url :(NSError**) errmsg
function yRegisterHub(url: string, var errmsg: string): integer
[vb |function yRegisterHub(ByVal url As String,

ByRef errmsg As String) As Integer
int RegisterHub(string url, ref string errmsg)
int RegisterHub(String url)
async Task<int> RegisterHub(string url)
def RegisterHub(url, errmsg=None)
[php | function yRegisterHub($url, &$errmsg)
function RegisterHub(url, errmsg)

The parameter will determine how the API will work. Use the following values:

usb: When the usb keyword is used, the API will work with devices connected directly to the USB bus.
Some programming languages such a Javascript, PHP, and Java don't provide direct access to USB
hardware, so usb will not work with these. In this case, use a VirtualHub or a networked YoctoHub (see
below).

X.X.X.x or hostname: The API will use the devices connected to the host with the given IP address or
hostname. That host can be a regular computer running a VirtualHub, or a networked YoctoHub such
as YoctoHub-Ethernet or YoctoHub-Wireless. If you want to use the VirtualHub running on you local
computer, use the IP address 127.0.0.1.

callback: that keyword make the API run in "HTTP Callback" mode. This a special mode allowing to
take control of Yoctopuce devices through a NAT filter when using a VirtualHub or a networked
YoctoHub. You only need to configure your hub to call your server script on a regular basis. This mode
is currently available for PHP and Node.JS only.

Be aware that only one application can use direct USB access at a given time on a machine. Multiple
access would cause conflicts while trying to access the USB modules. In particular, this means that you
must stop the VirtualHub software before starting an application that uses direct USB access. The
workaround for this limitation is to setup the library to use the VirtualHub rather than direct USB access.

If access control has been activated on the hub, virtual or not, you want to reach, the URL parameter
should look like:

htt p:// usernanme: passwor d@ddr ess: port

You can call RegisterHub several times to connect to several machines.

-

Parameters :
url a string containing either "usb","callback" or the root URL of the hub to monitor
errmsg a string passed by reference to receive any error message.

Returns :
YAPI _ SUCCESS when the call succeeds.

134 www.yoctopuce.com

20. High-level API Reference

t On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 135

20. High-level API Reference

YAPI.RegisterHubDiscoveryCallback() YAPI
yRegisterHubDiscoveryCallback()

Register a callback function, to be called each time an Network Hub send an SSDP message.

void yRegisterHubDiscoveryCallback(YHubDiscoveryCallback hubDiscoveryCallback)
+(void) RegisterHubDiscoveryCallback : (YHubDiscoveryCallback) hubDiscoveryCallback
procedure yRegisterHubDiscoveryCallback(hubDiscoveryCallback: YHubDiscoveryCallback)

vb | procedure yRegisterHubDiscoveryCallback(ByVal hubDiscoveryCallback As
YHubDiscoveryCallback)

void RegisterHubDiscoveryCallback(YHubDiscoveryCallback hubDiscoveryCallback)
void RegisterHubDiscoveryCallback(HubDiscoveryCallback hubDiscoveryCallback)
async Task RegisterHubDiscoveryCallback(HubDiscoveryHandler hubDiscoveryCallback)
def RegisterHubDiscoveryCallback(hubDiscoveryCallback)

The callback has two string parameter, the first one contain the serial number of the hub and the
second contain the URL of the network hub (this URL can be passed to RegisterHub). This callback will
be invoked while yUpdateDeviceList is running. You will have to call this function on a regular basis.

Parameters :
hubDiscoveryCallback a procedure taking two string parameter, or null

136 www.yoctopuce.com

20. High-level API Reference

YAPI.RegisterLogFunction() YAPI
yRegisterLogFunction()

Registers a log callback function.

void yRegisterLogFunction(yLogFunction logfun)

+(void) RegisterLogFunction :(yLogCallback) logfun
procedure yRegisterLogFunction(logfun: yLogFunc)
procedure yRegisterLogFunction(ByVal logfun As yLogFunc)
void RegisterLogFunction(yLogFunc logfun)

[java |void RegisterLogFunction(LogCallback logfun)

[uw | void RegisterLogFunction(LogHandler logfun)

def RegisterLogFunction(logfun)

This callback will be called each time the API have something to say. Quite useful to debug the API.

Parameters :

logfun a procedure taking a string parameter, or nul |

www.yoctopuce.com 137

20. High-level API Reference

YAPI.SelectArchitecture() YAPI
ySelectArchitecture()

Select the architecture or the library to be loaded to access to USB.

def SelectArchitecture(arch)

By default, the Python library automatically detects the appropriate library to use. However, for Linux
ARM, it not possible to reliably distinguish between a Hard Float (armhf) and a Soft Float (armel) install.
For in this case, it is therefore recommended to manually select the proper architecture by calling
Sel ect Archi t ect ure() before any other call to the library.

p
Parameters :

arch A string containing the architecture to use. Possibles value are: "armhf" "arnel ",
"i386","x86_64""32bit", "64bit"

Returns :
nothing.

On failure, throws an exception.

138 www.yoctopuce.com

20. High-level API Reference

YAPI.SetDelegate() YAPI
ySetDelegate()

(Objective-C only) Register an object that must follow the protocol YDevi ceHot Pl ug.
+(void) SetDelegate :(id) object

The methods yDeviceArrival and yDeviceRemoval will be invoked while
yUpdat eDevi ceLi st is running. You will have to call this function on a regular basis.

Parameters :
object an object that must follow the protocol YAPI Del egat e, or ni |

www.yoctopuce.com 139

20. High-level API Reference

YAPI.SetTimeout() YAPI
ySetTimeout()

Invoke the specified callback function after a given timeout.

[is |function ySetTimeout(callback, ms_timeout, args)
[nodej s | function SetTimeout(callback, ms_timeout, arguments)
[es |function SetTimeout(callback, ms_timeout, args)

This function behaves more or less like Javascript set Ti meout , but during the waiting time, it will call
yHandl eEvent s and yUpdat eDevi celi st periodically, in order to keep the API up-to-date with

current devices.

Parameters :
callback

args

Returns :

ms_timeout an integer corresponding to the duration of the timeout, in milliseconds.

YAPI _SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

the function to call after the timeout occurs. On Microsoft Internet Explorer, the callback must
be provided as a string to be evaluated.

additional arguments to be passed to the callback function can be provided, if needed (not
supported on Microsoft Internet Explorer).

140

www.yoctopuce.com

20. High-level API Reference

YAPI.SetUSBPacketAckMs() YAPI
ySetUSBPacketAckMs()

Enables the acknowledge of every USB packet received by the Yoctopuce library.
void SetUSBPacketAckMs(int pktAckDelay)

This function allows the library to run on Android phones that tend to loose USB packets. By default,
this feature is disabled because it doubles the number of packets sent and slows down the API
considerably. Therefore, the acknowledge of incoming USB packets should only be enabled on phones
or tablets that loose USB packets. A delay of 50 milliseconds is generally enough. In case of doubt,
contact Yoctopuce support. To disable USB packets acknowledge, call this function with the value 0.
Note: this feature is only available on Android.

Parameters :
pktAckDelay then number of milliseconds before the module

www.yoctopuce.com 141

20. High-level API Reference

YAPI.Sleep() YAPI
ySleep()

Pauses the execution flow for a specified duration.

[is |function ySleep(ms_duration, errmsg)
[nodej s | function Sleep(ms_duration, errmsg)
YRETCODE ySleep(unsigned ms_duration, string& errmsg)

+(YRETCODE) Sleep :(unsigned) ms_duration :(NSError **) errmsg
[pas_|function ySleep(ms_duration: integer, var errmsg: string): integer
[vb |function ySleep(ByVal ms_duration As Integer,
ByRef errmsg As String) As Integer
int Sleep(int ms_duration, ref string errmsg)
int Sleep(long ms_duration)
async Task<int> Sleep(ulong ms_duration)
def Sleep(ms_duration, errmsg=None)
[php_|function ySleep($ms_duration, &$errmsg)
function Sleep(ms_duration, errmsg)

This function implements a passive waiting loop, meaning that it does not consume CPU cycles
significantly. The processor is left available for other threads and processes. During the pause, the
library nevertheless reads from time to time information from the Yoctopuce modules by calling
yHandl eEvent s(), in order to stay up-to-date.

This function may signal an error in case there is a communication problem while contacting a module.

Ve

Parameters :
ms_duration an integer corresponding to the duration of the pause, in milliseconds.
errmsg a string passed by reference to receive any error message.

Returns :

YAPI _ SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

142 www.yoctopuce.com

20. High-level API Reference

YAPI.TestHub()
yTestHub()

YAPI

Test if the hub is reachable.

YRETCODE yTestHub(const string& url, int mstimeout, string& errmsg)
+(YRETCODE) TestHub : (NSString*) url

: (int) mstimeout
: (NSError**) errmsg
[pas | function yTestHub(url: string,
mstimeout: integer,
var errmsg: string): integer
function yTestHub(ByVal url As String,
ByVal mstimeout As Integer,
ByRef errmsg As String) As Integer

int TestHub(string url, int mstimeout, ref string errmsg)
int TestHub(String url, int mstimeout)

async Task<int> TestHub(string url, uint mstimeout)
def TestHub(url, mstimeout, errmsg=None)

function yTestHub($url, $mstimeout, &$errmsg)

[es |function TestHub(url, mstimeout)

This method do not register the hub, it only test if the hub is usable. The url parameter follow the same
convention as the Regi st er Hub method. This method is useful to verify the authentication
parameters for a hub. It is possible to force this method to return after mstimeout milliseconds.

Ve

Parameters :

mstimeout the number of millisecond available to test the connection.
errmsg a string passed by reference to receive any error message.

Returns :
YAPI _SUCCESS when the call succeeds.

On failure returns a negative error code.

url a string containing either "usb","callback" or the root URL of the hub to monitor

www.yoctopuce.com

143

20. High-level API Reference

YAPI.TriggerHubDiscovery() YAPI
yTriggerHubDiscovery()

Force a hub discovery, if a <callback as been registered with

yRegi st er Devi ceRenoval Cal | back it will be called for each net work hub that will respond
to the discovery.

YRETCODE yTriggerHubDiscovery(string& errmsg)
+(YRETCODE) TriggerHubDiscovery : (NSError*) errmsg
function yTriggerHubDiscovery(var errmsg: string): integer

function yTriggerHubDiscovery(ByRef errmsg As String) As Integer
int TriggerHubDiscovery(ref string errmsg)

int TriggerHubDiscovery()

async Task<int> TriggerHubDiscovery()

def TriggerHubDiscovery(errmsg=None)

Parameters :
errmsg a string passed by reference to receive any error message.

Returns :

YAPI _SUCCESS when the call succeeds. On failure, throws an exception or returns a negative error
code.

144 www.yoctopuce.com

20. High-level API Reference

YAPI.UnregisterHub() YAPI
yUnregisterHub()

Setup the Yoctopuce library to no more use modules connected on a previously registered machine
with RegisterHub.

[is |function yUnregisterHub(url)
[nodej s | function UnregisterHub(url)

[cpp | void yUnregisterHub(const string& url)
+(void) UnregisterHub :(NSString *) url
procedure yUnregisterHub(url: string)
procedure yUnregisterHub(ByVal url As String)
[cs |void UnregisterHub(string url)

[java |void UnregisterHub(String url)

async Task UnregisterHub(string url)
def UnregisterHub(url)

function yUnregisterHub($url)

[es |function UnregisterHub(url)

Parameters :
url a string containing either "usb" or the

www.yoctopuce.com 145

20. High-level API Reference

YAPI.UpdateDeviceList() YAPI
yUpdateDeviceList()

Triggers a (re)detection of connected Yoctopuce modules.

[is |function yUpdateDeviceList(errmsg)

[nodej s | function UpdateDeviceList(errmsg)

YRETCODE yUpdateDeviceList(string& errmsg)
+(YRETCODE) UpdateDevicelList :(NSError**) errmsg
[pas |function yUpdateDeviceList(var errmsg: string): integer
function yUpdateDeviceList(ByRef errmsg As String) As YRETCODE
YRETCODE UpdateDeviceList(ref string errmsg)

int UpdateDeviceList()

async Task<int> UpdateDeviceList()

def UpdateDeviceList(errmsg=None)

[php | function yUpdateDeviceList(&$errmsg)

[es |function UpdateDeviceList(errmsg)

The library searches the machines or USB ports previously registered using yRegi st er Hub() , and
invokes any user-defined callback function in case a change in the list of connected devices is
detected.

This function can be called as frequently as desired to refresh the device list and to make the
application aware of hot-plug events.

Parameters :
errmsg a string passed by reference to receive any error message.

Returns :
YAPI _SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

146 www.yoctopuce.com

20. High-level API Reference

YAPI.UpdateDeviceList_async() YAPI
yUpdateDeviceList_async()

Triggers a (re)detection of connected Yoctopuce modules.

function yUpdateDeviceList_async(callback, context)
[nodej s | function UpdateDeviceList_async(callback, context)

The library searches the machines or USB ports previously registered using yRegi st er Hub() , and
invokes any user-defined callback function in case a change in the list of connected devices is
detected.

This function can be called as frequently as desired to refresh the device list and to make the
application aware of hot-plug events.

This asynchronous version exists only in Javascript. It uses a callback instead of a return value in order
to avoid blocking Firefox Javascript VM that does not implement context switching during blocking I/O
calls.

Parameters :
callback callback function that is invoked when the result is known. The callback function receives three

arguments: the caller-specific context object, the result code (YAPI _SUCCESS if the operation
completes successfully) and the error message.

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

www.yoctopuce.com 147

20. High-level API Reference

20.2. Module control interface

This interface is identical for all Yoctopuce USB modules. It can be used to control the module global
parameters, and to enumerate the functions provided by each module.

In order to use the functions described here, you should include:

<script type="text/javascript' src="yocto_api.js"></script>
nodej s | var yoctolib = require(‘yoctolib’);

var YAPI = yoctolib.YAPI;

var YModule = yoctolib.YModule;

#include "yocto_api.h"

#import "yocto_api.h"

uses yocto_api;

yocto_api.vb

yocto_api.cs

import com.yoctopuce.YoctoAPI.YModule;

import com.yoctopuce.YoctoAPl.YModule;

from yocto_api import *

m require_once('yocto_api.php");

es |in HTML: <script src="../../lib/yocto_api.js"></script>
in node.js: require('yoctolib-es2017/yocto_api.js’);

Global functions
yFindModule(func)

Allows you to find a module from its serial number or from its logical name.
yFindModulelnContext(yctx, func)

Retrieves a module for a given identifier in a YAPI context.
yFirstModule()

Starts the enumeration of modules currently accessible.

YModul e methods
module - checkFirmware(path, onlynew)

Tests whether the byn file is valid for this module.

module - clearCache()
Invalidates the cache.

module - describe()
Returns a descriptive text that identifies the module.

module - download(pathname)
Downloads the specified built-in file and returns a binary buffer with its content.

module - functionBaseType(functionindex)
Retrieves the base type of the nth function on the module.

module - functionCount()

Returns the number of functions (beside the "module" interface) available on the module.
module - functionld(functionindex)

Retrieves the hardware identifier of the nth function on the module.

module - functionName(functionindex)
Retrieves the logical name of the nth function on the module.

module - functionType(functionindex)
Retrieves the type of the nth function on the module.

module - functionValue(functionindex)

148 www.yoctopuce.com

20. High-level API Reference

Retrieves the advertised value of the nth function on the module.

module - get_allSettings()
Returns all the settings and uploaded files of the module.

module - get_beacon()
Returns the state of the localization beacon.

module - get_errorMessage()
Returns the error message of the latest error with this module object.

module - get_errorType()
Returns the numerical error code of the latest error with this module object.

module - get_firmwareRelease()
Returns the version of the firmware embedded in the module.

module - get_functionlds(funType)
Retrieve all hardware identifier that match the type passed in argument.

module - get_hardwareld()
Returns the unique hardware identifier of the module.

module - get_icon2d()
Returns the icon of the module.

module - get_lastLogs()
Returns a string with last logs of the module.

module - get_logicalName()
Returns the logical name of the module.

module - get_luminosity()
Returns the luminosity of the module informative leds (from 0 to 100).

module - get_parentHub()

Returns the serial number of the YoctoHub on which this module is connected.

module - get_persistentSettings()
Returns the current state of persistent module settings.

module - get_productld()
Returns the USB device identifier of the module.

module - get_productName()
Returns the commercial name of the module, as set by the factory.

module - get_productRelease()
Returns the hardware release version of the module.

module - get_rebootCountdown()

Returns the remaining number of seconds before the module restarts, or zero when no reboot has been

scheduled.
module - get_serialNumber()

Returns the serial number of the module, as set by the factory.
module - get_subDevices()

Returns a list of all the modules that are plugged into the current module.
module - get_upTime()

Returns the number of milliseconds spent since the module was powered on.
module - get_url()

Returns the URL used to access the module.
module - get_usbCurrent()

Returns the current consumed by the module on the USB bus, in milli-amps.

www.yoctopuce.com

149

20. High-level API Reference

module - get_userData()

Returns the value of the userData attribute, as previously stored using method set _user Dat a.

module - get_userVar()
Returns the value previously stored in this attribute.

module - hasFunction(funcid)
Tests if the device includes a specific function.

module -isOnline()
Checks if the module is currently reachable, without raising any error.

module -isOnline_async(callback, context)
Checks if the module is currently reachable, without raising any error.

module - load(msValidity)
Preloads the module cache with a specified validity duration.

module - load_async(msValidity, callback, context)

Preloads the module cache with a specified validity duration (asynchronous version).

module - log(text)
Adds a text message to the device logs.

module - nextModule()
Continues the module enumeration started using Y Fi r st Modul e() .

module - reboot(secBeforeReboot)
Schedules a simple module reboot after the given number of seconds.

module - registerLogCallback(callback)
Registers a device log callback function.

module - revertFromFlash()

Reloads the settings stored in the nonvolatile memory, as when the module is powered on.

module - saveToFlash()
Saves current settings in the nonvolatile memory of the module.

module - set_allSettings(settings)
Restores all the settings of the device.

module - set_allSettingsAndFiles(settings)
Restores all the settings and uploaded files to the module.

module - set_beacon(newval)
Turns on or off the module localization beacon.

module - set_logicalName(newval)
Changes the logical name of the module.

module - set_luminosity(newval)
Changes the luminosity of the module informative leds.

module - set_userData(data)

Stores a user context provided as argument in the userData attribute of the function.

module - set_userVar(newval)
Stores a 32 bit value in the device RAM.

module - triggerFirmwareUpdate(secBeforeReboot)
Schedules a module reboot into special firmware update mode.

module - updateFirmware(path)
Prepares a firmware update of the module.

module - updateFirmwareEx(path, force)

150

www.yoctopuce.com

20. High-level API Reference

Prepares a firmware update of the module.

module - wait_async(callback, context)

Waits for all pending asynchronous commands on the module to complete, and invoke the user-provided
callback function.

www.yoctopuce.com 151

20. High-level API Reference

YModule.FindModule() YModule
yFindModule()

Allows you to find a module from its serial number or from its logical name.

[is |function yFindModule(func)

[nodej s | function FindModule(func)

YModule* yFindModule(string func)
+(YModule*) FindModule : (NSString*) func
function yFindModule(func: string): TYModule
[vb |function yFindModule(ByVal func As String) As YModule
YModule FindModule(string func)

YModule FindModule(String func)

YModule FindModule(string func)

def FindModule(func)

[php | function yFindModule($func)

[es |function FindModule(func)

This function does not require that the module is online at the time it is invoked. The returned object is
nevertheless valid. Use the method YMbdul e. i sOnl i ne() to test if the module is indeed online at a
given time. In case of ambiguity when looking for a module by logical name, no error is notified: the first
instance found is returned. The search is performed first by hardware name, then by logical name.

Parameters :
func a string containing either the serial number or the logical name of the desired module

Returns :
a YMbdul e object allowing you to drive the module or get additional information on the module.

152 www.yoctopuce.com

20. High-level API Reference

YModule.FindModulelnContext() YModule
yFindModulelnContext()

Retrieves a module for a given identifier in a YAPI context.

YModule FindModulelnContext(YAPIContext yctx, String func)
YModule FindModulelnContext(YAPIContext yctx, string func)
function FindModulelnContext(yctx, func)

The identifier can be specified using several formats:

- FunctionLogicalName

- ModuleSerialNumber.Functionldentifier

- ModuleSerialNumber.FunctionLogicalName
- ModuleLogicalName.Functionldentifier

- ModuleLogicalName.FunctionLogicalName

This function does not require that the module is online at the time it is invoked. The returned object is
nevertheless valid. Use the method YModul e. i sOnl i ne() to test if the module is indeed online at a
given time. In case of ambiguity when looking for a module by logical name, no error is notified: the first
instance found is returned. The search is performed first by hardware name, then by logical name.

p
Parameters :

yctx a YAPI context

func a string that uniquely characterizes the module

Returns :
a YModul e object allowing you to drive the module.

www.yoctopuce.com 153

20. High-level API Reference

YModule.FirstModule() YModule
yFirstModule()

Starts the enumeration of modules currently accessible.

[is |function yFirstModule()
[nodej s | function FirstModule()

YModule* yFirstModule()
+(YModule*) FirstModule

[pas _|function yFirstModule(): TYModule
function yFirstModule() As YModule
YModule FirstModule()

YModule FirstModule()

YModule FirstModule()

def FirstModule()

[php | function yFirstModule()

[es |function FirstModule()

Use the method YMbdul e. next Modul e() to iterate on the next modules.

Returns :

a pointer to a YModul e object, corresponding to the first module currently online, or a nul | pointer if
there are none.

154 www.yoctopuce.com

20. High-level API Reference

module - checkFirmware()

YModule

Tests whether the byn file is valid for this module.

[is |function checkFirmware(path, onlynew)
[nodej s | function checkFirmware(path, onlynew)
string checkFirmware(string path, bool onlynew)
-(NSString*) checkFirmware : (NSString*) path
: (bool) onlynew
function checkFirmware(path: string, onlynew: boolean): string
function checkFirmware() As String
string checkFirmware(string path, bool onlynew)
String checkFirmware(String path, boolean onlynew)
async Task<string> checkFirmware(string path, bool onlynew)
def checkFirmware(path, onlynew)
function checkFirmware($path, $onlynew)
[es |function checkFirmware(path, onlynew)
[cmd | YModule target checkFirmware path onlynew

This method is useful to test if the module needs to be updated. It is possible to pass a directory as
argument instead of a file. In this case, this method returns the path of the most recent appropriate
. byn file. If the parameter onl ynew s true, the function discards firmwares that are older or equal to

the installed firmware.

Parameters :
path the path of a byn file or a directory that contains byn files
onlynew returns only files that are strictly newer

Returns :

the path of the byn file to use or a empty string if no byn files matches the requirement

On failure, throws an exception or returns a string that start with "error:".

www.yoctopuce.com

155

20. High-level API Reference

module - clearCache() YModule

Invalidates the cache.

[is |function clearCache()
[nodej s | function clearCache()

[cpp | void clearCache()
-(void) clearCache
procedure clearCache()
procedure clearCache()
void clearCache()

void clearCache()

def clearCache()

[php | function clearCache()

[es |function clearCache()

Invalidates the cache of the module attributes. Forces the next call to get_xxx() or loadxxx() to use
values that come from the device.

156 www.yoctopuce.com

20. High-level API Reference

module - describe() YModule

Returns a descriptive text that identifies the module.

[is |function describe()
function describe()

string describe()
-(NSString*) describe
function describe(): string
function describe() As String
string describe()

String describe()

def describe()

function describe()
function describe()

The text may include either the logical name or the serial number of the module.

Returns :
a string that describes the module

www.yoctopuce.com 157

20. High-level API Reference

module - download() YModule

Downloads the specified built-in file and returns a binary buffer with its content.

[is |function download(pathname)

[nodej s | function download(pathname)

string download(string pathname)
-(NSMutableData*) download : (NSString*) pathname
function download(pathname: string): TByteArray
function download() As Byte

byte[] download(string pathname)

byte[] download(String pathname)

async Task<byte[]> download(string pathname)
def download(pathname)

[php | function download($pathname)

["es |function download(pathname)

YModule target download pathname

s N

Parameters :
pathname name of the new file to load

Returns :
a binary buffer with the file content

On failure, throws an exception or returns YAPI _| NVALI D_STRI NG

158 www.yoctopuce.com

20. High-level API Reference

module - functionBaseType()

YModule

Retrieves the base type of the nth function on the module.

function functionBaseType(functionindex)

function functionBaseType(functionindex)

string functionBaseType(int functionindex)

function functionBaseType(functionindex: integer): string

function functionBaseType(ByVal functionindex As Integer) As String
string functionBaseType(int functionindex)

String functionBaseType(int functionindex)

def functionBaseType(functionindex)

function functionBaseType($functionindex)

function functionBaseType(functionindex)

For instance, the base type of all measuring functions is "Sensor".

Ve

Parameters :

function.

Returns :
a string corresponding to the base type of the function

On failure, throws an exception or returns an empty string.

functionindex the index of the function for which the information is desired, starting at O for the first

www.yoctopuce.com

159

20. High-level API Reference

module - functionCount() YModule

Returns the number of functions (beside the "module” interface) available on the module.

function functionCount()
[nodej s | function functionCount()

int functionCount()

-(int) functionCount
function functionCount(): integer
[vb |function functionCount() As Integer
int functionCount()

int functionCount()

def functionCount()

[php | function functionCount()

[es |function functionCount()

Returns :
the number of functions on the module

On failure, throws an exception or returns a negative error code.

160 www.yoctopuce.com

20. High-level API Reference

module - functionld() YModule

Retrieves the hardware identifier of the nth function on the module.

function functionld(functionindex)

function functionld(functionindex)

string functionld(int functionindex)

-(NSString*) functionld : (int) functionindex
function functionld(functionindex: integer): string
function functionld(ByVal functionindex As Integer) As String
string functionld(int functionindex)

String functionld(int functionindex)

def functionld(functionindex)

function functionld($functionindex)

function functionld(functionindex)

Ve

Parameters :
functionindex the index of the function for which the information is desired, starting at 0 for the first
function.
Returns :

a string corresponding to the unambiguous hardware identifier of the requested module function

On failure, throws an exception or returns an empty string.

www.yoctopuce.com 161

20. High-level API Reference

module - functionName() YModule

Retrieves the logical name of the nth function on the module.

[is |function functionName(functionindex)
[nodej s | function functionName(functionindex)

string functionName(int functionindex)

-(NSString*) functionName : (int) functionindex
function functionName(functionIindex: integer): string
function functionName(ByVal functionindex As Integer) As String
string functionName(int functionindex)

String functionName(int functionindex)

def functionName(functionindex)

[php | function functionName($functionindex)

[es |function functionName(functionindex)

Parameters :
functionindex the index of the function for which the information is desired, starting at O for the first
function.
Returns :

a string corresponding to the logical name of the requested module function

On failure, throws an exception or returns an empty string.

162 www.yoctopuce.com

20. High-level API Reference

module - functionType() YModule

Retrieves the type of the nth function on the module.

function functionType(functionindex)

function functionType(functionindex)

string functionType(int functionindex)

function functionType(functionindex: integer): string

function functionType(ByVal functionindex As Integer) As String
string functionType(int functionindex)

String functionType(int functionindex)

def functionType(functionindex)

function functionType($functionindex)

function functionType(functionindex)

Ve

Parameters :
functionindex the index of the function for which the information is desired, starting at O for the first
function.
Returns :

a string corresponding to the type of the function

On failure, throws an exception or returns an empty string.

www.yoctopuce.com 163

20. High-level API Reference

module - functionValue()

YModule

Retrieves the advertised value of the nth function on the module.

[is |function functionValue(functionindex)
[nodej s | function functionValue(functionindex)

string functionValue(int functionindex)

-(NSString*) functionValue : (int) functionindex
function functionValue(functionindex: integer): string
[vb |function functionValue(ByVal functionindex As Integer) As String
string functionValue(int functionindex)

String functionValue(int functionindex)

def functionValue(functionindex)

[php | function functionValue($functionindex)

[es |function functionValue(functionindex)

Parameters :

function.

Returns :

On failure, throws an exception or returns an empty string.

functionindex the index of the function for which the information is desired, starting at O for the first

a short string (up to 6 characters) corresponding to the advertised value of the requested module function

164

www.yoctopuce.com

20. High-level API Reference

module - get_allSettings() YModule
module - allSettings()

Returns all the settings and uploaded files of the module.

function get_allSettings()

function get_allSettings()

string get_allSettings()
-(NSMutableData*) allSettings
function get_allSettings(): TByteArray
function get_allSettings() As Byte
byte[] get_allSettings()

byte[] get_allSettings()

async Task<byte[]> get_allSettings()
def get_allSettings()

function get_allSettings()

function get_allSettings()

YModule target get_allSettings

Useful to backup all the logical names, calibrations parameters, and uploaded files of a device.

Returns :
a binary buffer with all the settings.

On failure, throws an exception or returns an binary object of size 0.

www.yoctopuce.com 165

20. High-level API Reference

module - get_beacon() YModule
module - beacon()

Returns the state of the localization beacon.

[is |function get_beacon()

function get_beacon()
Y_BEACON_enum get_beacon()
-(Y_BEACON_enum) beacon

[pas|function get_beacon(): Integer
function get_beacon() As Integer
int get_beacon()

int get_beacon()

async Task<int> get_beacon()
def get_beacon()

[php | function get_beacon()

[es |function get_beacon()

YModule target get_beacon

Returns :
either Y_BEACON_OFF or Y_BEACON_ON, according to the state of the localization beacon

On failure, throws an exception or returns Y_BEACON | NVALI D.

166 www.yoctopuce.com

20. High-level API Reference

module - get_errorMessage() YModule
module - errorMessage()

Returns the error message of the latest error with this module object.

function get_errorMessage()
function get_errorMessage()

string get_errorMessage()
-(NSString*) errorMessage

function get_errorMessage(): string
function get_errorMessage() As String
string get_errorMessage()

String get_errorMessage()

def get_errorMessage()

function get_errorMessage()
function get_errorMessage()

This method is mostly useful when using the Yoctopuce library with exceptions disabled.

Returns :
a string corresponding to the latest error message that occured while using this module object

www.yoctopuce.com 167

20. High-level API Reference

module - get_errorType() YModule
module - errorType()

Returns the numerical error code of the latest error with this module object.

function get_errorType()

function get_errorType()

YRETCODE get_errorType()

[pas_|function get_errorType(): YRETCODE

[vb |function get_errorType() As YRETCODE
YRETCODE get_errorType()

int get_errorType()

def get_errorType()

[_php_|function get_errorType()

function get_errorType()

This method is mostly useful when using the Yoctopuce library with exceptions disabled.

Returns :
a number corresponding to the code of the latest error that occurred while using this module object

168 www.yoctopuce.com

20. High-level API Reference

module - get_firmwareRelease()
module - firmwareRelease()

YModule

Returns the version of the firmware embedded in the module.

function get_firmwareRelease()

function get_firmwareRelease()

string get_firmwareRelease()
-(NSString*) firmwareRelease

function get_firmwareRelease(): string
function get_firmwareRelease() As String
string get_firmwareRelease()

String get_firmwareRelease()

async Task<string> get_firmwareRelease()
def get_firmwareRelease()

function get_firmwareRelease()

function get_firmwareRelease()

YModule target get_firmwareRelease

Returns :
a string corresponding to the version of the firmware embedded in the module

On failure, throws an exception or returns Y_FI RMAMRERELEASE | NVALI D.

www.yoctopuce.com

169

20. High-level API Reference

module - get_functionlds() YModule
module - functionlds()

Retrieve all hardware identifier that match the type passed in argument.

[is |function get_functionlds(funType)

[nodej s | function get_functionlds(funType)

[cpp | vector<string> get_functionlds(string funType)
-(NSMutableArray*) functionlds : (NSString*) funType

[pas|function get_functionlds(funType: string): TStringArray
[vb |function get_functionlds() As List

List<string> get_functionlds(string funType)

[java | ArrayList<String> get_functionlds(String funType)
async Task<List<string>> get_functionlds(string funType)
def get_functionlds(funType)

[php | function get_functionlds($funType)

[es |function get_functionlds(funType)

YModule target get_functionlds funType

r N

Parameters :
funType The type of function (Relay, LightSensor, Voltage,...)

Returns :
an array of strings.

170 www.yoctopuce.com

20. High-level API Reference

module - get_hardwareld() YModule
module - hardwareld()

Returns the unique hardware identifier of the module.

function get_hardwareld()

function get_hardwareld()

string get_hardwareld()
-(NSString*) hardwareld

function get_hardwareld() As String
string get_hardwareld()

String get_hardwareld()

def get_hardwareld()

function get_hardwareld()

function get_hardwareld()

The unigue hardware identifier is made of the device serial number followed by string ".module".

Returns :
a string that uniquely identifies the module

www.yoctopuce.com 171

20. High-level API Reference

module - get_icon2d() YModule
module -icon2d()

Returns the icon of the module.

[i's |function get_icon2d()
[nodej s | function get_icon2d()

string get_icon2d()
-(NSMutableData*) icon2d

[pas |function get_icon2d(): TByteArray
[vb |function get_icon2d() As Byte
byte[] get_icon2d()

byte[] get_icon2d()

async Task<byte[]> get_icon2d()
def get_icon2d()

[php | function get_icon2d()

[es |function get_icon2d()

YModule target get_icon2d

The icon is a PNG image and does not exceeds 1536 bytes.

Returns :
a binary buffer with module icon, in png format. On failure, throws an exception or returns
YAPI _| NVALI D_STRI NG

172 www.yoctopuce.com

20. High-level API Reference

module - get_lastLogs() YModule
module - lastLogs()

Returns a string with last logs of the module.

function get_lastLogs()

function get_lastLogs()

string get_lastLogs()
-(NSString*) lastLogs

function get_lastLogs(): string
function get_lastLogs() As String
string get_lastLogs()

String get_lastLogs()

async Task<string> get_lastLogs()
def get_lastLogs()

function get_lastLogs()

function get_lastLogs()

YModule target get_lastLogs

This method return only logs that are still in the module.

Returns :
a string with last logs of the module. On failure, throws an exception or returns
YAPI _| NVALI D_STRI NG

www.yoctopuce.com 173

20. High-level API Reference

module - get_logicalName()
module - logicalName()

YModule

Returns the logical name of the module.

[is |function get_logicalName()
[nodej s | function get_logicalName()

string get_logicalName()
-(NSString*) logicalName

[pas |function get_logicalName(): string

[vb |function get_logicalName() As String
string get_logicalName()

String get_logicalName()

async Task<string> get_logicalName()
def get_logicalName()

[php | function get_logicalName()

[es |function get_logicalName()

YModule target get_logicalName

Returns :
a string corresponding to the logical name of the module

On failure, throws an exception or returns Y_LOG CALNAME | NVALI D.

174

www.yoctopuce.com

20. High-level API Reference

module - get_luminosity() YModule
module - luminosity()

Returns the luminosity of the module informative leds (from 0 to 100).

function get_luminosity()

function get_luminosity()

int get_luminosity()

-(int) luminosity

[pas |function get_luminosity(): Longint
function get_luminosity() As Integer
int get_luminosity()

int get_luminosity()

async Task<int> get_luminosity()
def get_luminosity()

function get_luminosity()

function get_luminosity()
YModule target get_luminosity

Returns :
an integer corresponding to the luminosity of the module informative leds (from 0 to 100)

On failure, throws an exception or returns Y_LUM NOSI TY | NVALI D.

www.yoctopuce.com 175

20. High-level API Reference

module - get_parentHub() YModule
module - parentHub()

Returns the serial number of the YoctoHub on which this module is connected.

[is |function get_parentHub()
[nodej s | function get_parentHub()

string get_parentHub()
-(NSString*) parentHub

[pas |function get_parentHub(): string
[vb |function get_parentHub() As String
string get_parentHub()

String get_parentHub()

def get_parentHub()

[php | function get_parentHub()
YModule target get_parentHub

If the module is connected by USB, or if the module is the root YoctoHub, an empty string is returned.

Returns :
a string with the serial number of the YoctoHub or an empty string

176 www.yoctopuce.com

20. High-level API Reference

module - get_persistentSettings()
module - persistentSettings()

YModule

Returns the current state of persistent module settings.

function get_persistentSettings()

function get_persistentSettings()

Y _PERSISTENTSETTINGS_enum get_persistentSettings()
-(Y_PERSISTENTSETTINGS_enum) persistentSettings
function get_persistentSettings(): Integer

function get_persistentSettings() As Integer

int get_persistentSettings()

int get_persistentSettings()

async Task<int> get_persistentSettings()

def get_persistentSettings()

function get_persistentSettings()

function get_persistentSettings()

YModule target get_persistentSettings

Ve

Returns :

settings

a value among Y_PERSI STENTSETTI NGS_LOADED, Y_PERSI STENTSETTI NGS_SAVED and
Y PERSI STENTSETTI NGS_MODI FI ED corresponding to the current state of persistent module

On failure, throws an exception or returns Y_PERSI STENTSETTI NGS_| NVALI D.

www.yoctopuce.com

177

20. High-level API Reference

module - get_productld()
module - productld()

YModule

Returns the USB device identifier of the module.

[is |function get_productid()
[nodej s | function get_productld()

int get_productid()

-(int) productld

[pas_|function get_productid(): Longint
[vb |function get_productid() As Integer
int get_productid()

int get_productld()

async Task<int> get_productld()
def get_productld()

[php | function get_productid()

[es |function get_productid()
YModule target get_productld

Returns :
an integer corresponding to the USB device identifier of the module

On failure, throws an exception or returns Y_PRODUCTI D_| NVALI D.

178

www.yoctopuce.com

20. High-level API Reference

module - get_productName()
module - productName()

YModule

Returns the commercial name of the module, as set by the factory.

function get_productName()

function get_productName()

string get_productName()
-(NSString*) productName

function get_productName(): string
function get_productName() As String
string get_productName()

String get_productName()

async Task<string> get_productName()
def get_productName()

function get_productName()

function get_productName()

YModule target get_productName

Returns :
a string corresponding to the commercial name of the module, as set by the factory

On failure, throws an exception or returns Y_PRODUCTNAME | NVALI D.

www.yoctopuce.com

179

20. High-level API Reference

module - get_productRelease() YModule
module - productRelease()

Returns the hardware release version of the module.

[is |function get_productRelease()
[nodej s | function get_productRelease()

int get_productRelease()

-(int) productRelease

[pas_|function get_productRelease(): Longint
[vb |function get_productRelease() As Integer
int get_productRelease()

int get_productRelease()

async Task<int> get_productRelease()
def get_productRelease()

[php | function get_productRelease()

[es |function get_productRelease()
YModule target get_productRelease

Returns :
an integer corresponding to the hardware release version of the module

On failure, throws an exception or returns Y_PRODUCTRELEASE | NVALI D.

180 www.yoctopuce.com

20. High-level API Reference

module - get_rebootCountdown() YModule
module - rebootCountdown()

Returns the remaining number of seconds before the module restarts, or zero when no reboot has
been scheduled.

function get_rebootCountdown()

function get_rebootCountdown()

int get_rebootCountdown()

-(int) rebootCountdown

function get_rebootCountdown(): Longint
function get_rebootCountdown() As Integer
int get_rebootCountdown()

int get_rebootCountdown()

async Task<int> get_rebootCountdown()
def get_rebootCountdown()

function get_rebootCountdown()

function get_rebootCountdown()
YModule target get_rebootCountdown

Ve

Returns :
an integer corresponding to the remaining number of seconds before the module restarts, or zero when no
reboot has been scheduled

On failure, throws an exception or returns Y_REBOOTCOUNTDOAN_| NVALI D.

www.yoctopuce.com 181

20. High-level API Reference

module - get_serialNumber()
module - serialNumber()

YModule

Returns the serial number of the module, as set by the factory.

[is |function get_serialNumber()
[nodej s | function get_serialNumber()

string get_serialNumber()
-(NSString*) serialNumber

[pas|function get_serialNumber(): string

[vb |function get_serialNumber() As String
string get_serialNumber()

String get_serialNumber()

async Task<string> get_serialNumber()
def get_serialNumber()

[php | function get_serialNumber()

[es |function get_serialNumber()

YModule target get_serialNumber

Returns :
a string corresponding to the serial number of the module, as set by the factory

On failure, throws an exception or returns Y_SERI ALNUVBER | NVALI D.

182

www.yoctopuce.com

20. High-level API Reference

module - get_subDevices() YModule
module - subDevices()

Returns a list of all the modules that are plugged into the current module.

function get_subDevices()

function get_subDevices()

[cpp | vector<string> get_subDevices()
-(NSMutableArray*) subDevices
function get_subDevices(): TStringArray
function get_subDevices() As List
List<string> get_subDevices()
ArrayList<String> get_subDevices()
def get_subDevices()

function get_subDevices()
YModule target get_subDevices

This method only makes sense when called for a YoctoHub/VirtualHub. Otherwise, an empty array will
be returned.

Returns :
an array of strings containing the sub modules.

www.yoctopuce.com 183

20. High-level API Reference

module - get_upTime() YModule
module - upTime()

Returns the number of milliseconds spent since the module was powered on.

[is |function get_upTime()
[nodej s | function get_upTime()

s64 get_upTime()

-(s64) upTime

[pas |function get_upTime(): int64

[vb |function get_upTime() As Long
long get_upTime()

long get_upTime()

async Task<long> get_upTime()
def get_upTime()

[php | function get_upTime()

[es |function get_upTime()
YModule target get_upTime

Returns :
an integer corresponding to the number of milliseconds spent since the module was powered on

On failure, throws an exception or returns Y_UPTI ME_| NVALI D.

184 www.yoctopuce.com

20. High-level API Reference

module - get_url()
module - url()

YModule

Returns the URL used to access the module.

function get_url()
function get_url()

string get_url()
-(NSString*) url

function get_url(): string
function get_url() As String
string get_url()

String get_url()

def get_url()

function get_url()
YModule target get_url

If the module is connected by USB, the string ‘usb’ is returned.

Returns :
a string with the URL of the module.

www.yoctopuce.com

185

20. High-level API Reference

module - get_usbCurrent() YModule
module - usbCurrent()

Returns the current consumed by the module on the USB bus, in milli-amps.

[is |function get_usbCurrent()
[nodej s | function get_usbCurrent()

int get_usbCurrent()

-(int) usbCurrent

[pas |function get_ushCurrent(): LongInt
[vb |function get_ushCurrent() As Integer
int get_usbCurrent()

int get_usbCurrent()

async Task<int> get_usbCurrent()
def get_usbCurrent()

[php | function get_usbCurrent()

[es |function get_usbCurrent()
YModule target get_usbCurrent

Returns :
an integer corresponding to the current consumed by the module on the USB bus, in milli-amps

On failure, throws an exception or returns Y_USBCURRENT _| NVALI D.

186 www.yoctopuce.com

20. High-level API Reference

module - get_userData() YModule
module - userData()

Returns the value of the userData attribute, as previously stored using method set _user Dat a.

function get_userData()
function get_userData()
cpp | void * get_userData()
-(id) userData
function get_userData(): Tobject
function get_userData() As Object
object get_userData()
Object get_userData()
def get_userData()
function get_userData()
function get_userData()

This attribute is never touched directly by the API, and is at disposal of the caller to store a context.

Returns :
the object stored previously by the caller.

www.yoctopuce.com 187

20. High-level API Reference

module - get_userVar()
module - userVar()

YModule

Returns the value previously stored in this attribute.

function get_userVar()

function get_userVar()

int get_userVar()

-(int) userVar

[pas |function get_userVar(): Longint
[vb |function get_userVar() As Integer
int get_userVar()

int get_userVar()

async Task<int> get_userVar()
def get_userVar()

function get_userVar()

function get_userVar()
YModule target get_userVar

On startup and after a device reboot, the value is always reset to zero.

Returns :
an integer corresponding to the value previously stored in this attribute

On failure, throws an exception or returns Y_USERVAR_| NVALI D.

188

www.yoctopuce.com

20. High-level API Reference

module - hasFunction()

YModule

Tests if the device includes a specific function.

function hasFunction(funcid)

function hasFunction(funcld)

bool hasFunction(string funcld)

-(bool) hasFunction : (NSString*) funcld
function hasFunction(funcld: string): boolean
function hasFunction() As Boolean

bool hasFunction(string funcld)

boolean hasFunction(String funcid)

async Task<bool> hasFunction(string funcld)
def hasFunction(funcld)

function hasFunction($funcid)

[es |function hasFunction(funcld)
YModuIe target hasFunction funcld

This method takes a function identifier and returns a boolean.

Parameters :
funcld the requested function identifier

Returns :
true if the device has the function identifier

www.yoctopuce.com

189

20. High-level API Reference

module - isOnline() YModule

Checks if the module is currently reachable, without raising any error.

[is |function isOnline()
[nodej s | function isOnline()

bool isOnline()

-(BOOL) isOnline

[pas|function isOnline(): boolean
[vb |function isOnline() As Boolean
bool isOnline()

boolean isOnline()

def isOnline()

[php | function isOnline()

[es |function isOnline()

If there are valid cached values for the module, that have not yet expired, the device is considered
reachable. No exception is raised if there is an error while trying to contact the requested module.

Returns :
t r ue if the module can be reached, and f al se otherwise

190 www.yoctopuce.com

20. High-level API Reference

module - isOnline_async() YModule

Checks if the module is currently reachable, without raising any error.

function isOnline_async(callback, context)
[nodej s | function isOnline_async(callback, context)

If there are valid cached values for the module, that have not yet expired, the device is considered
reachable. No exception is raised if there is an error while trying to contact the requested module.

This asynchronous version exists only in Javascript. It uses a callback instead of a return value in order
to avoid blocking Firefox Javascript VM that does not implement context switching during blocking 1/0
calls.

~

Parameters :

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving module object and the boolean result

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

www.yoctopuce.com 191

20. High-level API Reference

module - load() YModule

Preloads the module cache with a specified validity duration.

[is |function load(msValidity)

[nodej s | function load(msValidity)

YRETCODE load(int msValidity)
-(YRETCODE) load : (int) msValidity
function load(msValidity: integer): YRETCODE
[vb |function load(ByVal msValidity As Integer) As YRETCODE
[cs | YRETCODE load(ulong msValidity)

int load(long msValidity)

def load(msValidity)

[php | function load($msValidity)

[es |function load(msValidity)

By default, whenever accessing a device, all module attributes are kept in cache for the standard
duration (5 ms). This method can be used to temporarily mark the cache as valid for a longer period, in
order to reduce network traffic for instance.

Parameters :

msValidity an integer corresponding to the validity attributed to the loaded module parameters, in
milliseconds

Returns :
YAPI _SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

192 www.yoctopuce.com

20. High-level API Reference

module - load_async() YModule

Preloads the module cache with a specified validity duration (asynchronous version).

[is |function load_async(msValidity, callback, context)
[nodej s | function load_async(msValidity, callback, context)

By default, whenever accessing a device, all module attributes are kept in cache for the standard
duration (5 ms). This method can be used to temporarily mark the cache as valid for a longer period, in
order to reduce network traffic for instance.

This asynchronous version exists only in Javascript. It uses a callback instead of a return value in order
to avoid blocking Firefox javascript VM that does not implement context switching during blocking I/O
calls. See the documentation section on asynchronous Javascript calls for more details.

p
Parameters :
msValidity an integer corresponding to the validity of the loaded module parameters, in milliseconds

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving module object and the error code

(or YAPI _SUCCESS)

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

www.yoctopuce.com 193

20. High-level API Reference

module - log() YModule

Adds a text message to the device logs.

[is |function log(text)
[nodej s | function log(text)

int log(string text)

-(int) log : (NSString*) text
function log(text: string): Longlint
[vb |function log() As Integer

int log(string text)

int log(String text)

async Task<int> log(string text)
def log(text)

[php | function log($text)

[es |function log(text)

YModule target log text

This function is useful in particular to trace the execution of HTTP callbacks. If a newline is desired after
the message, it must be included in the string.

Parameters :
text the string to append to the logs.

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

194 www.yoctopuce.com

20. High-level API Reference

module - nextModule() YModule

Continues the module enumeration started using yFi r st Modul e() .

function nextModule()

function nextModule()

YModule * nextModule()
-(YModule*) nextModule

function nextModule(): TYModule
function nextModule() As YModule
YModule nextModule()

YModule nextModule()

YModule nextModule()

def nextModule()

function nextModule()

function nextModule()

Returns :

a pointer to a YModul e object, corresponding to the next module found, or a nul | pointer if there are no
more modules to enumerate.

www.yoctopuce.com 195

20. High-level API Reference

module - reboot()

YModule

Schedules a simple module reboot after the given number of seconds.

[i's |function reboot(secBeforeReboot)
[nodej s | function reboot(secBeforeReboot)

int reboot(int secBeforeReboot)

-(int) reboot : (int) secBeforeReboot

[pas_|function reboot(secBeforeReboot: Longint): Longlnt
[vb |function reboot() As Integer

int reboot(int secBeforeReboot)

int reboot(int secBeforeReboot)

async Task<int> reboot(int secBeforeReboot)
def reboot(secBeforeReboot)

[php_|function reboot($secBeforeReboot)

[es |function reboot(secBeforeReboot)

YModule target reboot secBeforeReboot

p
Parameters :
secBeforeReboot number of seconds before rebooting

Returns :
YAPI _SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

196

www.yoctopuce.com

20. High-level API Reference

module - registerLogCallback() YModule

Registers a device log callback function.

void registerLogCallback(YModuleLogCallback callback)

-(void) registerLogCallback : (YModuleLogCallback) callback

function registerLogCallback(ByVal callback As YModuleLogCallback) As Integer
int registerLogCallback(LogCallback callback)

void registerLogCallback(LogCallback callback)

def registerLogCallback(callback)

This callback will be called each time that a module sends a new log message. Mostly useful to debug
a Yoctopuce module.

Parameters :

callback the callback function to call, or a null pointer. The callback function should take two arguments:
the module object that emitted the log message, and the character string containing the log.

www.yoctopuce.com 197

20. High-level API Reference

module - revertFromFlash() YModule

Reloads the settings stored in the nonvolatile memory, as when the module is powered on.

function revertFromFlash()
[nodej s | function revertFromFlash()

int revertFromFlash()

-(int) revertFromFlash
function revertFromFlash(): Longint
function revertFromFlash() As Integer
int revertFromFlash()

int revertFromFlash()

async Task<int> revertFromFlash()
def revertFromFlash()

[php | function revertFromFlash()

[es |function revertFromFlash()
YModule target revertFromFlash

Returns :
YAPI _SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

198 www.yoctopuce.com

20. High-level API Reference

module - saveToFlash() YModule

Saves current settings in the nonvolatile memory of the module.

function saveToFlash()

function saveToFlash()

int saveToFlash()

-(int) saveToFlash

function saveToFlash(): Longint
function saveToFlash() As Integer
int saveToFlash()

int saveToFlash()

async Task<int> saveToFlash()
def saveToFlash()

function saveToFlash()

function saveToFlash()
YModule target saveToFlash

Warning: the number of allowed save operations during a module life is limited (about 100000 cycles).
Do not call this function within a loop.

Returns :
YAPI _ SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 199

20. High-level API Reference

module - set_allSettings() YModule
module - setAllSettings()

Restores all the settings of the device.

[is_|function set_allSettings(settings)
[nodej s | function set_allSettings(settings)

int set_allSettings(string settings)

-(int) setAllSettings : (NSData*) settings
[pas |function set_allSettings(settings: TByteArray): Longlnt
procedure set_allSettings()

int set_allSettings()

int set_allSettings(byte[] settings)
async Task<int> set_allSettings()

def set_allSettings(settings)

[php | function set_allSettings($settings)

[es |function set_allSettings(settings)
YModule target set_allSettings settings

Useful to restore all the logical names and calibrations parameters of a module from a
backup.Remember to call the saveToFl ash() method of the module if the modifications must be
kept.

Ve

Parameters :
settings a binary buffer with all the settings.

Returns :
YAPI _ SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

200 www.yoctopuce.com

20. High-level API Reference

module - set_allSettingsAndFiles() YModule
module - setAllSettingsAndFiles()

Restores all the settings and uploaded files to the module.

function set_allSettingsAndFiles(settings)
function set_allSettingsAndFiles(settings)

int set_allSettingsAndFiles(string settings)

-(int) setAllSettingsAndFiles : (NSData*) settings
[pas |function set_allSettingsAndFiles(settings: TByteArray): Longlnt
procedure set_allSettingsAndFiles()

int set_allSettingsAndFiles()

int set_allSettingsAndFiles(byte[] settings)
async Task<int> set_allSettingsAndFiles()

def set_allSettingsAndFiles(settings)

function set_allSettingsAndFiles($settings)
function set_allSettingsAndFiles(settings)
YModule target set_allSettingsAndFiles settings

This method is useful to restore all the logical names and calibrations parameters, uploaded files etc. of
a device from a backup. Remember to call the saveToFl ash() method of the module if the
modifications must be kept.

Ve

Parameters :
settings a binary buffer with all the settings.

Returns :
YAPI _ SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 201

20. High-level API Reference

module - set_beacon()
module - setBeacon()

YModule

Turns on or off the module localization beacon.

[is |function set_beacon(newval)
[nodej s | function set_beacon(newval)

int set_beacon(Y_BEACON_enum newval)
-(int) setBeacon : (Y_BEACON_enum) newval
[pas |function set_beacon(newval: Integer): integer
[vb |function set_beacon(ByVal newval As Integer) As Integer
int set_beacon(int newval)

int set_beacon(int newval)

async Task<int> set_beacon(int newval)

def set_beacon(newval)

function set_beacon($newval)

[es |function set_beacon(newval)

YModule target set_beacon newval

Parameters :
newval either Y_BEACON_OFF or Y_BEACON_ON

Returns :
YAPI _ SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

202

www.yoctopuce.com

20. High-level API Reference

module - set_logicalName() YModule
module - setLogicalName()

Changes the logical name of the module.

function set_logicalName(newval)

function set_logicalName(newval)

int set_logicalName(const string& newval)

-(int) setLogicalName : (NSString*) newval

[pas |function set_logicalName(newval: string): integer
function set_logicalName(ByVal newval As String) As Integer
int set_logicalName(string newval)

int set_logicalName(String newval)

async Task<int> set_logicalName(string newval)
def set_logicalName(newval)

function set_logicalName($newval)

function set_logicalName(newval)

YModule target set_logicalName newval

You can use yCheckLogi cal Name() prior to this call to make sure that your parameter is valid.
Remember to call the saveToFl ash() method of the module if the modification must be kept.

Ve

Parameters :
newval a string corresponding to the logical name of the module

Returns :
YAPI _ SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 203

20. High-level API Reference

module - set_luminosity()
module - setLuminosity()

YModule

Changes the luminosity of the module informative leds.

[is |function set_luminosity(newval)

[nodej s | function set_luminosity(newval)

int set_luminosity(int newval)

-(int) setLuminosity : (int) newval

function set_luminosity(newval: Longint): integer
[vb |function set_luminosity(ByVal newval As Integer) As Integer
int set_luminosity(int newval)

int set_luminosity(int newval)

async Task<int> set_luminosity(int newval)

def set_luminosity(newval)

[php_|function set_luminosity($newval)

[es |function set_luminosity(newval)

YModule target set_luminosity newval

The parameter is a value between 0 and 100. Remember to call the saveToFl ash() method of the

module if the modification must be kept.

Parameters :
newval an integer corresponding to the luminosity of the module informative leds

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

204

www.yoctopuce.com

20. High-level API Reference

module - set_userData() YModule
module - setUserData()

Stores a user context provided as argument in the userData attribute of the function.

function set_userData(data)

function set_userData(data)

[cpp | void set_userData(void* data)

-(void) setUserData : (id) data
procedure set_userData(data: Tobject)
procedure set_userData(ByVal data As Object)
void set_userData(object data)

void set_userData(Object data)

def set_userData(data)

function set_userData($data)

function set_userData(data)

This attribute is never touched by the API, and is at disposal of the caller to store a context.

Parameters :
data any kind of object to be stored

www.yoctopuce.com 205

20. High-level API Reference

module - set_userVar() YModule
module - setUserVar()

Stores a 32 bit value in the device RAM.

[is |function set_userVar(newval)

[nodej s | function set_userVar(newval)

int set_userVar(int newval)

-(int) setUserVar : (int) newval

[pas_|function set_userVar(newval: Longlnt): integer
[vb |function set_userVar(ByVal newval As Integer) As Integer
int set_userVar(int newval)

int set_userVar(int newval)

async Task<int> set_userVar(int newval)

def set_userVar(newval)

function set_userVar($newval)

[es |function set_userVar(newval)

YModule target set_userVar newval

This attribute is at programmer disposal, should he need to store a state variable. On startup and after
a device reboot, the value is always reset to zero.

Parameters :
newval an integer

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

206 www.yoctopuce.com

20. High-level API Reference

module - triggerFirmwareUpdate()

YModule

Schedules a module reboot into special firmware update mode.

function triggerFirmwareUpdate(secBeforeReboot)

function triggerFirmwareUpdate(secBeforeReboot)

int triggerFirmwareUpdate(int secBeforeReboot)

-(int) triggerFirmwareUpdate : (int) secBeforeReboot
function triggerFirmwareUpdate(secBeforeReboot: Longint): Longint
function triggerFirmwareUpdate() As Integer

int triggerFirmwareUpdate(int secBeforeReboot)

int triggerFirmwareUpdate(int secBeforeReboot)

async Task<int> triggerFirmwareUpdate(int secBeforeReboot)
def triggerFirmwareUpdate(secBeforeReboot)

function triggerFirmwareUpdate($secBeforeReboot)

function triggerFirmwareUpdate(secBeforeReboot)

YModule target triggerFirmwareUpdate secBeforeReboot

Ve

Parameters :
secBeforeReboot number of seconds before rebooting

Returns :
YAPI _SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com

207

20. High-level API Reference

module - updateFirmware() YModule

Prepares a firmware update of the module.

[is |function updateFirmware(path)

[nodej s | function updateFirmware(path)

YFirmwareUpdate updateFirmware(string path)
-(YFirmwareUpdate*) updateFirmware : (NSString*) path

[pas_|function updateFirmware(path: string): TYFirmwareUpdate
function updateFirmware() As YFirmwareUpdate
YFirmwareUpdate updateFirmware(string path)
YFirmwareUpdate updateFirmware(String path)

async Task<YFirmwareUpdate> updateFirmware(string path)
def updateFirmware(path)

[php | function updateFirmware($path)

[es |function updateFirmware(path)

YModule target updateFirmware path

This method returns a YFi r mvar eUpdat e object which handles the firmware update process.

Parameters :
path the path of the . byn file to use.

Returns :
a YFi r mnvar eUpdat e object or NULL on error.

208 www.yoctopuce.com

20. High-level API Reference

module - updateFirmwareEx()

YModule

Prepares a firmware update of the module.

function updateFirmwareEx(path, force)
function updateFirmwareEx(path, force)
YFirmwareUpdate updateFirmwareEx(string path, bool force)
-(YFirmwareUpdate*) updateFirmwareEx : (NSString*) path
: (bool) force

function updateFirmwareEx(path: string, force: boolean): TYFirmwareUpdate
function updateFirmwareEx() As YFirmwareUpdate
YFirmwareUpdate updateFirmwareEx(string path, bool force)
YFirmwareUpdate updateFirmwareEx(String path, boolean force)
async Task<YFirmwareUpdate> updateFirmwareEx(string path,

bool force)
def updateFirmwareEx(path, force)
function updateFirmwareEx($path, $force)

function updateFirmwareEx(path, force)
YModule target updateFirmwareEx path force

This method returns a YFi r mvar eUpdat e object which handles the firmware update process.

Parameters :
path the path of the . byn file to use.

Returns :
a YFi r mnvar eUpdat e object or NULL on error.

force true to force the firmware update even if some prerequisites appear not to be met

www.yoctopuce.com

209

20. High-level API Reference

module - wait_async() YModule

Waits for all pending asynchronous commands on the module to complete, and invoke the user-
provided callback function.

[is |function wait_async(callback, context)
[nodej s | function wait_async(callback, context)
[es |function wait_async(callback, context)

The callback function can therefore freely issue synchronous or asynchronous commands, without
risking to block the Javascript VM.

Parameters :

callback callback function that is invoked when all pending commands on the module are completed. The
callback function receives two arguments: the caller-specific context object and the receiving
function object.

context caller-specific object that is passed as-is to the callback function

Returns :
nothing.

210 www.yoctopuce.com

20. High-level API Reference

20.3. Relay function interface

The Yoctopuce application programming interface allows you to switch the relay state. This change is
not persistent: the relay will automatically return to its idle position whenever power is lost or if the
module is restarted. The library can also generate automatically short pulses of determined duration.
On devices with two output for each relay (double throw), the two outputs are named A and B, with
output A corresponding to the idle position (at power off) and the output B corresponding to the active
state. If you prefer the alternate default state, simply switch your cables on the board.

In order to use the functions described here, you should include:

<script type="text/javascript' src="yocto_relay.js"></script>
nodej s | var yoctolib = require('yoctolib’);

var YRelay = yoctolib.YRelay;

#include "yocto_relay.h"

#import "yocto_relay.h"

uses yocto_relay;

yocto_relay.vb

yocto_relay.cs

import com.yoctopuce.YoctoAPl.YRelay;

import com.yoctopuce.YoctoAPI.YRelay;

from yocto_relay import *

php | require_once('yocto_relay.php’);

es |in HTML: <script src="../../lib/lyocto_relay.js"></script>
in node.js: require('yoctolib-es2017/yocto_relay.js");

Global functions
yFindRelay(func)

Retrieves a relay for a given identifier.
yFindRelayInContext(yctx, func)

Retrieves a relay for a given identifier in a YAPI context.
yFirstRelay()

Starts the enumeration of relays currently accessible.
yFirstRelaylnContext(yctx)

Starts the enumeration of relays currently accessible.

YRel ay methods

relay - clearCache()

Invalidates the cache.
relay - delayedPulse(ms_delay, ms_duration)

Schedules a pulse.
relay - describe()

Returns a short text that describes unambiguously the instance of the relay in the form

TYPE(NAVE) =SERI AL. FUNCTI ONI D.
relay - get_advertisedValue()

Returns the current value of the relay (no more than 6 characters).
relay - get_countdown()

Returns the number of milliseconds remaining before a pulse (delayedPulse() call) When there is no
scheduled pulse, returns zero.

relay - get_errorMessage()
Returns the error message of the latest error with the relay.

relay - get_errorType()

www.yoctopuce.com 211

20. High-level API Reference

Returns the numerical error code of the latest error with the relay.
relay - get_friendlyName()

Returns a global identifier of the relay in the format MODULE_NAME. FUNCTI ON_NAME.
relay - get_functionDescriptor()

Returns a unique identifier of type YFUN_DESCR corresponding to the function.
relay - get_functionld()

Returns the hardware identifier of the relay, without reference to the module.
relay - get_hardwareld()

Returns the unique hardware identifier of the relay in the form SERI AL. FUNCTI| ONI D.
relay - get_logicalName()

Returns the logical name of the relay.

relay - get_maxTimeOnStateA()

Retourne the maximum time (ms) allowed for $THEFUNCTIONSS to stay in state A before automatically
switching back in to B state.

relay - get_maxTimeOnStateB()

Retourne the maximum time (ms) allowed for $THEFUNCTIONSS$ to stay in state B before automatically
switching back in to A state.

relay - get_module()

Gets the YMbdul e object for the device on which the function is located.
relay - get_module_async(callback, context)

Gets the YMbdul e object for the device on which the function is located (asynchronous version).
relay - get_output()

Returns the output state of the relays, when used as a simple switch (single throw).

relay - get_pulseTimer()

Returns the number of milliseconds remaining before the relays is returned to idle position (state A), during a
measured pulse generation.

relay - get_state()
Returns the state of the relays (A for the idle position, B for the active position).
relay - get_stateAtPowerOn()

Returns the state of the relays at device startup (A for the idle position, B for the active position,
UNCHANGED for no change).

relay - get_userData()

Returns the value of the userData attribute, as previously stored using method set _user Dat a.
relay - isOnline()

Checks if the relay is currently reachable, without raising any error.

relay - isOnline_async(callback, context)
Checks if the relay is currently reachable, without raising any error (asynchronous version).

relay - load(msValidity)
Preloads the relay cache with a specified validity duration.
relay - loadAttribute(attrName)

Returns the current value of a single function attribute, as a text string, as quickly as possible but without using
the cached value.

relay - load_async(msValidity, callback, context)

Preloads the relay cache with a specified validity duration (asynchronous version).
relay - muteValueCallbacks()

Disables the propagation of every new advertised value to the parent hub.

212 www.yoctopuce.com

20. High-level API Reference

relay - nextRelay()
Continues the enumeration of relays started using yFi r st Rel ay() .

relay - pulse(ms_duration)

Sets the relay to output B (active) for a specified duration, then brings it automatically back to output A (idle
state).

relay - registerValueCallback(callback)
Registers the callback function that is invoked on every change of advertised value.

relay - set_logicalName(newval)
Changes the logical name of the relay.

relay - set_maxTimeOnStateA(newval)

Sets the maximum time (ms) allowed for STHEFUNCTIONSS$ to stay in state A before automatically switching
back in to B state.

relay - set_maxTimeOnStateB(newval)

Sets the maximum time (ms) allowed for STHEFUNCTIONSS to stay in state B before automatically switching
back in to A state.

relay - set_output(newval)
Changes the output state of the relays, when used as a simple switch (single throw).

relay - set_state(newval)
Changes the state of the relays (A for the idle position, B for the active position).

relay - set_stateAtPowerOn(newval)

Preset the state of the relays at device startup (A for the idle position, B for the active position, UNCHANGED
for no modification).

relay - set_userData(data)

Stores a user context provided as argument in the userData attribute of the function.
relay - unmuteValueCallbacks()

Re-enables the propagation of every new advertised value to the parent hub.
relay - wait_async(callback, context)

Waits for all pending asynchronous commands on the module to complete, and invoke the user-provided
callback function.

www.yoctopuce.com 213

20. High-level API Reference

YRelay.FindRelay() YRelay
yFindRelay()

Retrieves a relay for a given identifier.

[is |function yFindRelay(func)
[nodej s | function FindRelay(func)

YRelay* yFindRelay(string func)
+(YRelay*) FindRelay : (NSString*) func
function yFindRelay(func: string): TYRelay
function yFindRelay(ByVal func As String) As YRelay
YRelay FindRelay(string func)

YRelay FindRelay(String func)

YRelay FindRelay(string func)

def FindRelay(func)

[php | function yFindRelay($func)

[es |function FindRelay(func)

The identifier can be specified using several formats:

- FunctionLogicalName

- ModuleSerialNumber.Functionldentifier

- ModuleSerialNumber.FunctionLogicalName
- ModuleLogicalName.Functionldentifier

- ModuleLogicalName.FunctionLogicalName

This function does not require that the relay is online at the time it is invoked. The returned object is
nevertheless valid. Use the method YRel ay. i sOnl i ne() to test if the relay is indeed online at a
given time. In case of ambiguity when looking for a relay by logical name, no error is notified: the first
instance found is returned. The search is performed first by hardware name, then by logical name.

Parameters :
func a string that uniquely characterizes the relay

Returns :
a YRel ay object allowing you to drive the relay.

214 www.yoctopuce.com

20. High-level API Reference

YRelay.FindRelaylnContext() YRelay
yFindRelayInContext()

Retrieves a relay for a given identifier in a YAPI context.

YRelay FindRelayInContext(YAPIContext yctx, String func)
YRelay FindRelayInContext(YAPIContext yctx, string func)
function FindRelayInContext(yctx, func)

The identifier can be specified using several formats:

- FunctionLogicalName

- ModuleSerialNumber.Functionldentifier

- ModuleSerialNumber.FunctionLogicalName
- ModuleLogicalName.Functionldentifier

- ModuleLogicalName.FunctionLogicalName

This function does not require that the relay is online at the time it is invoked. The returned object is
nevertheless valid. Use the method YRel ay. i sOnl i ne() to test if the relay is indeed online at a
given time. In case of ambiguity when looking for a relay by logical name, no error is notified: the first
instance found is returned. The search is performed first by hardware name, then by logical name.

p
Parameters :

yctx a YAPI context

func a string that uniquely characterizes the relay

Returns :
a YRel ay object allowing you to drive the relay.

www.yoctopuce.com 215

20. High-level API Reference

YRelay.FirstRelay()
yFirstRelay()

YRelay

Starts the enumeration of relays currently accessible.

function yFirstRelay()

function FirstRelay/()

YRelay* yFirstRelay()
+(YRelay*) FirstRelay

function yFirstRelay(): TYRelay
function yFirstRelay() As YRelay
YRelay FirstRelay()

YRelay FirstRelay()

YRelay FirstRelay()

def FirstRelay()

function yFirstRelay()

function FirstRelay/()

Use the method YRel ay. next Rel ay() to iterate on next relays.

Returns :

a pointer to a YRel ay object, corresponding to the first relay currently online, or a nul | pointer if there

are none.

216

www.yoctopuce.com

20. High-level API Reference

YRelay.FirstRelaylnContext()
yFirstRelaylnContext()

YRelay

Starts the enumeration of relays currently accessible.

YRelay FirstRelaylnContext(YAPIContext yctx)
YRelay FirstRelayInContext(YAPIContext yctx)
function FirstRelaylnContext(yctx)

Use the method YRel ay. next Rel ay() to iterate on next relays.

p
Parameters :
yctx a YAPI context.

Returns :

are none.

a pointer to a YRel ay object, corresponding to the first relay currently online, or a nul | pointer if there

www.yoctopuce.com

217

20. High-level API Reference

relay - clearCache() YRelay

Invalidates the cache.

[is |function clearCache()
[nodej s | function clearCache()

[cpp | void clearCache()
-(void) clearCache
procedure clearCache()
procedure clearCache()
void clearCache()

void clearCache()

def clearCache()

[php | function clearCache()

[es |function clearCache()

Invalidates the cache of the relay attributes. Forces the next call to get_xxx() or loadxxx() to use values
that come from the device.

218 www.yoctopuce.com

20. High-level API Reference

relay - delayedPulse() YRelay
Schedules a pulse.
[is |function delayedPulse(ms_delay, ms_duration)
[nodej s| function delayedPulse(ms_delay, ms_duration)
int delayedPulse(int ms_delay, int ms_duration)
-(int) delayedPulse : (int) ms_delay
: (int) ms_duration
[pas_|function delayedPulse(ms_delay: Longint, ms_duration: Longlnt): integer
function delayedPulse(ByVal ms_delay As Integer,
ByVal ms_duration As Integer) As Integer
int delayedPulse(int ms_delay, int ms_duration)
int delayedPulse(int ms_delay, int ms_duration)
def delayedPulse(ms_delay, ms_duration)
function delayedPulse($ms_delay, $ms_duration)
[es |function delayedPulse(ms_delay, ms_duration)
YRelay target delayedPulse ms_delay ms_duration
Parameters :
ms_delay waiting time before the pulse, in millisecondes
ms_duration pulse duration, in millisecondes
Returns :
YAPI _SUCCESS if the call succeeds.
On failure, throws an exception or returns a negative error code.
www.yoctopuce.com 219

20. High-level API Reference

relay - describe() YRelay

Returns a short text that describes unambiguously the instance of the relay in the form
TYPE(NAVE) =SERI AL. FUNCTI ONI D.

[is |function describe()
[nodej s | function describe()

| cpp |string describe()
-(NSString*) describe

[pas|function describe(): string
[vb |function describe() As String
[cs |string describe()

String describe()

def describe()

[php | function describe()

[es |function describe()

More precisely, TYPE is the type of the function, NAME it the name used for the first access to the
function, SERI AL is the serial number of the module if the module is connected or " unr esol ved",
and FUNCTI ONI D is the hardware identifier of the function if the module is connected. For example,
this method returns Rel ay(MyCust omNane. r el ayl) =RELAYLOL- 123456. rel ayl if the
module is already connected or Rel ay(BadCust oneNane. r el ayl) =unr esol ved if the module
has not yet been connected. This method does not trigger any USB or TCP transaction and can
therefore be used in a debugger.

Returns :
a string that describes the relay (ex: Rel ay(MyCust omName. rel ayl) =RELAYLOL1-
123456. rel ayl)

220 www.yoctopuce.com

20. High-level API Reference

relay - get_advertisedValue()
relay - advertisedValue()

YRelay

Returns the current value of the relay (no more than 6 characters).

function get_advertisedValue()

function get_advertisedValue()

string get_advertisedValue()
-(NSString*) advertisedValue

function get_advertisedValue(): string
function get_advertisedValue() As String
string get_advertisedValue()

String get_advertisedValue()

async Task<string> get_advertisedValue()
def get_advertisedValue()

function get_advertisedValue()

function get_advertisedValue()

YRelay target get_advertisedValue

Returns :
a string corresponding to the current value of the relay (no more than 6 characters).

On failure, throws an exception or returns Y_ADVERTI SEDVALUE | NVALI D.

www.yoctopuce.com

221

20. High-level API Reference

relay - get_countdown() YRelay
relay - countdown()

Returns the number of milliseconds remaining before a pulse (delayedPulse() call) When there is no
scheduled pulse, returns zero.

[is |function get_countdown()
function get_countdown()

s64 get_countdown()

-(s64) countdown

[pas_|function get_countdown(): int64
function get_countdown() As Long
long get_countdown()

long get_countdown()

async Task<long> get_countdown()
def get_countdown()

[php | function get_countdown()

[es |function get_countdown()

YRelay target get_countdown

Ve

Returns :
an integer corresponding to the number of milliseconds remaining before a pulse (delayedPulse() call) When
there is no scheduled pulse, returns zero

On failure, throws an exception or returns Y_COUNTDOWN_| NVALI D.

222 www.yoctopuce.com

20. High-level API Reference

relay - get_errorMessage() YRelay
relay - errorMessage()

Returns the error message of the latest error with the relay.

function get_errorMessage()
function get_errorMessage()

string get_errorMessage()
-(NSString*) errorMessage

function get_errorMessage(): string
function get_errorMessage() As String
string get_errorMessage()

String get_errorMessage()

def get_errorMessage()

function get_errorMessage()
function get_errorMessage()

This method is mostly useful when using the Yoctopuce library with exceptions disabled.

Returns :
a string corresponding to the latest error message that occured while using the relay object

www.yoctopuce.com 223

20. High-level API Reference

relay - get_errorType() YRelay
relay - errorType()

Returns the numerical error code of the latest error with the relay.

function get_errorType()

function get_errorType()

YRETCODE get_errorType()

[pas_|function get_errorType(): YRETCODE

[vb |function get_errorType() As YRETCODE
YRETCODE get_errorType()

int get_errorType()

def get_errorType()

[_php_|function get_errorType()

function get_errorType()

This method is mostly useful when using the Yoctopuce library with exceptions disabled.

Returns :
a number corresponding to the code of the latest error that occurred while using the relay object

224 www.yoctopuce.com

20. High-level API Reference

relay - get_friendlyName() YRelay
relay - friendlyName()

Returns a global identifier of the relay in the format MODULE NAME. FUNCTI ON_NAMVE.

function get_friendlyName()
function get_friendlyName()
string get_friendlyName()
-(NSString*) friendlyName
string get_friendlyName()
String get_friendlyName()
def get_friendlyName()
function get_friendlyName()
function get_friendlyName()

The returned string uses the logical names of the module and of the relay if they are defined, otherwise
the serial number of the module and the hardware identifier of the relay (for example:
MyCust omNane. r el ayl)

Returns :
a string that uniquely identifies the relay using logical names (ex: MyCust onNan®e. r el ayl)

On failure, throws an exception or returns Y_FRI ENDLYNAME | NVALI D.

www.yoctopuce.com 225

20. High-level API Reference

relay - get_functionDescriptor() YRelay
relay - functionDescriptor()

Returns a unique identifier of type YFUN_DESCR corresponding to the function.

[is |function get_functionDescriptor()
[nodej s | function get_functionDescriptor()

YFUN_DESCR get_functionDescriptor()
-(YFUN_DESCR) functionDescriptor

[pas|function get_functionDescriptor(): YFUN_DESCR
function get_functionDescriptor() As YFUN_DESCR
YFUN_DESCR get_functionDescriptor()

String get_functionDescriptor()

def get_functionDescriptor()

[php | function get_functionDescriptor()
function get_functionDescriptor()

This identifier can be used to test if two instances of YFunct i on reference the same physical function
on the same physical device.

Returns :
an identifier of type YFUN_DESCR

If the function has never been contacted, the returned value is
Y_FUNCTI ONDESCRI PTOR_| NVALI D.

226 www.yoctopuce.com

20. High-level API Reference

relay - get_functionld() YRelay
relay - functionld()

Returns the hardware identifier of the relay, without reference to the module.

function get_functionld()

function get_functionld()

string get_functionld()
-(NSString*) functionld

function get_functionld() As String
string get_functionld()

String get_functionld()

def get_functionld()

function get_functionld()

function get_functionld()

For example r el ay1

Returns :
a string that identifies the relay (ex: r el ay1)

On failure, throws an exception or returns Y_FUNCTI ONI D_I NVALI D.

www.yoctopuce.com 227

20. High-level API Reference

relay - get_hardwareld() YRelay
relay - hardwareld()

Returns the unique hardware identifier of the relay in the form SERI AL. FUNCTI ONI D.

[is |function get_hardwareld()
[nodej s | function get_hardwareld()

string get_hardwareld()
-(NSString*) hardwareld

[vb |function get_hardwareld() As String
string get_hardwareld()

String get_hardwareld()

def get_hardwareld()

[php | function get_hardwareld()

[es |function get_hardwareld()

The unique hardware identifier is composed of the device serial number and of the hardware identifier
of the relay (for example RELAYLOL- 123456. r el ay1).

Returns :
a string that uniquely identifies the relay (ex: RELAYLOL- 123456. r el ay1)

On failure, throws an exception or returns Y_HARDWAREI D | NVALI D.

228 www.yoctopuce.com

20. High-level API Reference

relay - get_logicalName()
relay —logicalName()

YRelay

Returns the logical name of the relay.

function get_logicalName()

function get_logicalName()

string get_logicalName()
-(NSString*) logicalName

function get_logicalName(): string
function get_logicalName() As String
string get_logicalName()

String get_logicalName()

async Task<string> get_logicalName()
def get_logicalName()

function get_logicalName()

function get_logicalName()

YRelay target get_logicalName

Returns :
a string corresponding to the logical name of the relay.

On failure, throws an exception or returns Y_LOG CALNAME | NVALI D.

www.yoctopuce.com

229

20. High-level API Reference

relay -~ get_maxTimeOnStateA() YRelay
relay - maxTimeOnStateA()

Retourne the maximum time (ms) allowed for $THEFUNCTIONSS to stay in state A before
automatically switching back in to B state.

[is |function get_maxTimeOnStateA()
[nodej s | function get_maxTimeOnStateA()

s64 get_maxTimeOnStateA()

-(s64) maxTimeOnStateA

[pas_|function get_maxTimeOnStateA(): int64
function get_maxTimeOnStateA() As Long
long get_maxTimeOnStateA()

long get_maxTimeOnStateA()

async Task<long> get_maxTimeOnStateA()
def get_maxTimeOnStateA()

[php | function get_maxTimeOnStateA()

[es |function get_maxTimeOnStateA()

YRelay target get_maxTimeOnStateA

Zero means no maximum time.

Returns :
an integer

On failure, throws an exception or returns Y_MAXTI MEONSTATEA | NVALI D.

230 www.yoctopuce.com

20. High-level API Reference

relay - get_maxTimeOnStateB() YRelay
relay - maxTimeOnStateB()

Retourne the maximum time (ms) allowed for $STHEFUNCTIONSS to stay in state B before
automatically switching back in to A state.

function get_maxTimeOnStateB()

function get_maxTimeOnStateB()

s64 get_maxTimeOnStateB()

-(s64) maxTimeOnStateB

function get_maxTimeOnStateB(): int64
function get_maxTimeOnStateB() As Long
long get_maxTimeOnStateB()

long get_maxTimeOnStateB()

async Task<long> get_maxTimeOnStateB()
def get_maxTimeOnStateB()

function get_maxTimeOnStateB()

function get_maxTimeOnStateB()

YRelay target get_maxTimeOnStateB

Zero means no maximum time.

Returns :
an integer

On failure, throws an exception or returns Y_MAXTI MEONSTATEB | NVALI D.

www.yoctopuce.com 231

20. High-level API Reference

relay -~ get_module() YRelay
relay - module()

Gets the YMbdul e object for the device on which the function is located.

[is |function get_module()
[nodej s | function get_module()

YModule * get_module()
-(YModule*) module

[pas_|function get_module(): TYModule
[vb |function get_module() As YModule
YModule get_module()

YModule get_module()

def get_module()

[php | function get_module()
function get_module()

If the function cannot be located on any module, the returned instance of YModul e is not shown as on-
line.

Returns :
an instance of YModul e

232 www.yoctopuce.com

20. High-level API Reference

relay - get_module_async() YRelay
relay - module_async()

Gets the YMbdul e object for the device on which the function is located (asynchronous version).

[is |function get_module_async(callback, context)
function get_module_async(callback, context)

If the function cannot be located on any module, the returned YModul e object does not show as on-
line.

This asynchronous version exists only in Javascript. It uses a callback instead of a return value in order
to avoid blocking Firefox javascript VM that does not implement context switching during blocking 110
calls. See the documentation section on asynchronous Javascript calls for more details.

Parameters :

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving function object and the requested

YModul e object

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

www.yoctopuce.com 233

20. High-level API Reference

relay - get_output() YRelay
relay - output()

Returns the output state of the relays, when used as a simple switch (single throw).

[is |function get_output()
[nodej s | function get_output()
Y_OUTPUT_enum get_output()
-(Y_OUTPUT_enum) output

[pas_|function get_output(): Integer

[vb |function get_output() As Integer
int get_output()

int get_output()

async Task<int> get_output()
def get_output()

[php | function get_output()

[es |function get_output()

YRelay target get_output

Ve

Returns :

either Y_OUTPUT _OFF or Y_OUTPUT _QN, according to the output state of the relays, when used as a
simple switch (single throw)

On failure, throws an exception or returns Y_OUTPUT _| NVALI D.

234 www.yoctopuce.com

20. High-level API Reference

relay - get_pulseTimer() YRelay
relay - pulseTimer()

Returns the number of milliseconds remaining before the relays is returned to idle position (state A),
during a measured pulse generation.

function get_pulseTimer()

function get_pulseTimer()

s64 get_pulseTimer()

-(s64) pulseTimer

function get_pulseTimer(): int64
function get_pulseTimer() As Long
long get_pulseTimer()

long get_pulseTimer()

async Task<long> get_pulseTimer()
def get_pulseTimer()

function get_pulseTimer()

function get_pulseTimer()

YRelay target get_pulseTimer

When there is no ongoing pulse, returns zero.

Returns :
an integer corresponding to the number of milliseconds remaining before the relays is returned to idle
position (state A), during a measured pulse generation

On failure, throws an exception or returns Y_PULSETI MER | NVALI D.

www.yoctopuce.com 235

20. High-level API Reference

relay - get_state() YRelay
relay - state()

Returns the state of the relays (A for the idle position, B for the active position).

function get_state()

function get_state()

Y _STATE_enum get_state()
-(Y_STATE_enum) state

[pas |function get_state(): Integer
function get_state() As Integer
int get_state()

int get_state()

async Task<int> get_state()
def get_state()

function get_state()

function get_state()

YRelay target get_state

g ™\
Returns :

either Y_STATE _Aor Y_STATE_B, according to the state of the relays (A for the idle position, B for the
active position)

On failure, throws an exception or returns Y_STATE_| NVALI D.

236 www.yoctopuce.com

20. High-level API Reference

relay - get_stateAtPowerOn() YRelay
relay - stateAtPowerOn()

Returns the state of the relays at device startup (A for the idle position, B for the active position,
UNCHANGED for no change).

function get_stateAtPowerOn()

function get_stateAtPowerOn()
Y_STATEATPOWERON_enum get_stateAtPowerOn()
-(Y_STATEATPOWERON_enum) stateAtPowerOn
function get_stateAtPowerOn(): Integer

function get_stateAtPowerOn() As Integer

int get_stateAtPowerOn()

int get_stateAtPowerOn()

async Task<int> get_stateAtPowerOn()

def get_stateAtPowerOn()

function get_stateAtPowerOn()

function get_stateAtPowerOn()

YRelay target get_stateAtPowerOn

Ve

Returns :
a value among Y_STATEATPOWERON_UNCHANGED, Y _STATEATPOWERON_ A and

Y STATEATPOWERON B corresponding to the state of the relays at device startup (A for the idle
position, B for the active position, UNCHANGED for no change)

On failure, throws an exception or returns Y_STATEATPOAERON | NVALI D.

www.yoctopuce.com 237

20. High-level API Reference

relay - get_userData() YRelay
relay - userData()

Returns the value of the userData attribute, as previously stored using method set _user Dat a.

function get_userData()
function get_userData()
cpp | void * get_userData()
-(id) userData
function get_userData(): Tobject
function get_userData() As Object
object get_userData()
Object get_userData()
def get_userData()
function get_userData()
function get_userData()

This attribute is never touched directly by the API, and is at disposal of the caller to store a context.

Returns :
the object stored previously by the caller.

238 www.yoctopuce.com

20. High-level API Reference

relay - isOnline() YRelay

Checks if the relay is currently reachable, without raising any error.

function isOnline()

function isOnline()

[cpp | boolisOnline()

-(BOOL) isOnline

function isOnline(): boolean
function isOnline() As Boolean
[cs |boolisOnline()

boolean isOnline()

[py |defisOnline()

function isOnline()

function isOnline()

If there is a cached value for the relay in cache, that has not yet expired, the device is considered
reachable. No exception is raised if there is an error while trying to contact the device hosting the relay.

Returns :
t r ue if the relay can be reached, and f al se otherwise

www.yoctopuce.com 239

20. High-level API Reference

relay - isOnline_async() YRelay

Checks if the relay is currently reachable, without raising any error (asynchronous version).

[is |function isOnline_async(callback, context)
[nodej s | function isOnline_async(callback, context)

If there is a cached value for the relay in cache, that has not yet expired, the device is considered
reachable. No exception is raised if there is an error while trying to contact the device hosting the
requested function.

This asynchronous version exists only in Javascript. It uses a callback instead of a return value in order
to avoid blocking the Javascript virtual machine.

p
Parameters :

callback callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving function object and the boolean result

context caller-specific object that is passed as-is to the callback function

Returns :
nothing : the result is provided to the callback.

240 www.yoctopuce.com

20. High-level API Reference

relay - load() YRelay

Preloads the relay cache with a specified validity duration.

[is |function load(msValidity)

[nodej s | function load(msValidity)

YRETCODE load(int msValidity)
-(YRETCODE) load : (int) msValidity
function load(msValidity: integer): YRETCODE
function load(ByVal msValidity As Integer) As YRETCODE
YRETCODE load(ulong msValidity)

int load(long msValidity)

def load(msValidity)

function load($msValidity)

[es |function load(msValidity)

By default, whenever accessing a device, all function attributes are kept in cache for the standard
duration (5 ms). This method can be used to temporarily mark the cache as valid for a longer period, in
order to reduce network traffic for instance.

Parameters :

msValidity an integer corresponding to the validity attributed to the loaded function parameters, in
milliseconds

Returns :
YAPI _SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 241

20. High-level API Reference

relay - loadAttribute() YRelay

Returns the current value of a single function attribute, as a text string, as quickly as possible but
without using the cached value.

[is |function loadAttribute(attrName)
[nodej s | function loadAttribute(attrName)

string loadAttribute(string attrName)
-(NSString*) loadAttribute : (NSString*) attrName
[pas_|function loadAttribute(attrName: string): string
[vb |function loadAttribute() As String

string loadAttribute(string attrName)

String loadAttribute(String attrName)

async Task<string> loadAttribute(string attrName)
def loadAttribute(attrName)

[php_|function loadAttribute($attrName)

[es |function loadAttribute(attrName)

Parameters :
attrName the name of the requested attribute

Returns :
a string with the value of the the attribute

On failure, throws an exception or returns an empty string.

242 www.yoctopuce.com

20. High-level API Referen

ce

relay - load_async()

YRelay

Preloads the relay cache with a specified validity duration (asynchronous version).

[is |function load_async(msValidity, callback, context)
[nodej s | function load_async(msValidity, callback, context)

By default, whenever accessing a device, all function attributes are kept in cache for the standard
duration (5 ms). This method can be used to temporarily mark the cache as valid for a longer period, in
order to reduce network trafic for instance.

This asynchronous version exists only in Javascript. It uses a callback instead of a return value in order
to avoid blocking the Javascript virtual machine.

~

Parameters :
msValidity an integer corresponding to the validity of the loaded function parameters, in milliseconds

callback

context

Returns :

callback function that is invoked when the result is known. The callback function receives three
arguments: the caller-specific context object, the receiving function object and the error code

(or YAPI _SUCCESS)
caller-specific object that is passed as-is to the callback function

nothing : the result is provided to the callback.

www.yoctopuce.com

243

20. High-level API Reference

relay - muteValueCallbacks() YRelay

Disables the propagation of every new advertised value to the parent hub.

[is |function muteValueCallbacks()
[nodej s | function muteValueCallbacks()

int muteValueCallbacks()

-(int) muteValueCallbacks

[pas|function muteValueCallbacks(): Longint
[vb |function muteValueCallbacks() As Integer
int muteValueCallbacks()

int muteValueCallbacks()

async Task<int> muteValueCallbacks()
def muteValueCallbacks()

[php | function muteValueCallbacks()

[es |function muteValueCallbacks()

YRelay target muteValueCallbacks

You can use this function to save bandwidth and CPU on computers with limited resources, or to
prevent unwanted invocations of the HTTP callback. Remember to call the saveToF| ash() method
of the module if the modification must be kept.

Returns :
YAPI _SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

244 www.yoctopuce.com

20. High-level API Reference

relay - nextRelay() YRelay

Continues the enumeration of relays started using yFi r st Rel ay() .

function nextRelay()

function nextRelay/()

YRelay * nextRelay()
-(YRelay*) nextRelay

function nextRelay(): TYRelay
function nextRelay() As YRelay
YRelay nextRelay()

YRelay nextRelay()

YRelay nextRelay()

def nextRelay()

function nextRelay()

function nextRelay/()

Returns :

a pointer to a YRel ay object, corresponding to a relay currently online, or a nul | pointer if there are no
more relays to enumerate.

www.yoctopuce.com 245

20. High-level API Reference

relay - pulse() YRelay

Sets the relay to output B (active) for a specified duration, then brings it automatically back to output
A (idle state).

[is_|function pulse(ms_duration)
[nodej s | function pulse(ms_duration)

int pulse(int ms_duration)

-(int) pulse : (int) ms_duration

[pas_|function pulse(ms_duration: Longlnt): integer
[vb |function pulse(ByVal ms_duration As Integer) As Integer
int pulse(int ms_duration)

int pulse(int ms_duration)

async Task<int> pulse(int ms_duration)

def pulse(ms_duration)

function pulse($ms_duration)

[es |function pulse(ms_duration)

[cmd | YRelay target pulse ms_duration

r N

Parameters :
ms_duration pulse duration, in millisecondes

Returns :
YAPI _ SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

246 www.yoctopuce.com

20. High-level API Reference

relay - registerValueCallback() YRelay

Registers the callback function that is invoked on every change of advertised value.

function registerValueCallback(callback)

function registerValueCallback(callback)

int registerValueCallback(YRelayValueCallback callback)

-(int) registerValueCallback : (YRelayValueCallback) callback
function registerValueCallback(callback: TYRelayValueCallback): Longint
function registerValueCallback() As Integer

int registerValueCallback(ValueCallback callback)

int registerValueCallback(UpdateCallback callback)

async Task<int> registerValueCallback(ValueCallback callback)
def registerValueCallback(callback)

function registerValueCallback($callback)

function registerValueCallback(callback)

The callback is invoked only during the execution of yS| eep or yHandl eEvent s. This provides
control over the time when the callback is triggered. For good responsiveness, remember to call one of
these two functions periodically. To unregister a callback, pass a null pointer as argument.

Parameters :

callback the callback function to call, or a null pointer. The callback function should take two arguments:
the function object of which the value has changed, and the character string describing the new
advertised value.

www.yoctopuce.com 247

20. High-level API Reference

relay - set_logicalName() YRelay
relay - setLogicalName()

Changes the logical name of the relay.

[is |function set_logicalName(newval)
[nodej s | function set_logicalName(newval)

int set_logicalName(const string& newval)

-(int) setLogicalName : (NSString*) newval

[pas_|function set_logicalName(newval: string): integer
[vb |function set_logicalName(ByVal newval As String) As Integer
int set_logicalName(string newval)

int set_logicalName(String newval)

async Task<int> set_logicalName(string newval)
def set_logicalName(newval)

function set_logicalName($newval)

[es |function set_logicalName(newval)

YRelay target set_logicalName newval

You can use yCheckLogi cal Name() prior to this call to make sure that your parameter is valid.
Remember to call the saveToFl ash() method of the module if the modification must be kept.

Ve

Parameters :
newval a string corresponding to the logical name of the relay.

Returns :
YAPI _ SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

248 www.yoctopuce.com

20. High-level API Reference

relay - set_maxTimeOnStateA() YRelay
relay - setMaxTimeOnStateA()

Sets the maximum time (ms) allowed for $THEFUNCTIONSS$ to stay in state A before automatically
switching back in to B state.

function set_maxTimeOnStateA(newval)

function set_maxTimeOnStateA(newval)

int set_maxTimeOnStateA(s64 newval)

-(int) setMaxTimeOnStateA : (s64) newval

function set_maxTimeOnStateA(newval: int64): integer
function set_maxTimeOnStateA(ByVal newval As Long) As Integer
int set_maxTimeOnStateA(long newval)

int set_maxTimeOnStateA(long newval)

async Task<int> set_maxTimeOnStateA(long newval)
def set_maxTimeOnStateA(newval)

function set_maxTimeOnStateA($newval)

function set_maxTimeOnStateA(newval)

YRelay target set_maxTimeOnStateA newval

Use zero for no maximum time.

Parameters :
newval an integer

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 249

20. High-level API Reference

relay - set_maxTimeOnStateB() YRelay
relay - setMaxTimeOnStateB()

Sets the maximum time (ms) allowed for $THEFUNCTIONSS$ to stay in state B before automatically
switching back in to A state.

[is |function set_maxTimeOnStateB(newval)
function set_maxTimeOnStateB(newval)

int set_maxTimeOnStateB(s64 newval)

-(int) setMaxTimeOnStateB : (s64) newval

[pas |function set_maxTimeOnStateB(newval: int64): integer
function set_maxTimeOnStateB(ByVal newval As Long) As Integer
int set_maxTimeOnStateB(long newval)

int set_maxTimeOnStateB(long newval)

async Task<int> set_maxTimeOnStateB(long newval)
def set_maxTimeOnStateB(newval)

[php | function set_maxTimeOnStateB($newval)

[es |function set_maxTimeOnStateB(newval)

YRelay target set_maxTimeOnStateB newval

Use zero for no maximum time.

Parameters :
newval an integer

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

250 www.yoctopuce.com

20. High-level API Reference

relay - set_output() YRelay
relay - setOutput()

Changes the output state of the relays, when used as a simple switch (single throw).

function set_output(newval)

function set_output(newval)

int set_output(Y_OUTPUT_enum newval)
-(int) setOutput : (Y_OUTPUT_enum) newval
[pas |function set_output(newval: Integer): integer
function set_output(ByVal newval As Integer) As Integer
int set_output(int newval)

int set_output(int newval)

async Task<int> set_output(int newval)

def set_output(newval)

function set_output($newval)

function set_output(newval)

[cmd | YRelay target set_output newval

Ve

Parameters :

newval either Y_OUTPUT _OFF or Y_OUTPUT _ON, according to the output state of the relays, when
used as a simple switch (single throw)

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 251

20. High-level API Reference

relay - set_state() YRelay
relay - setState()

Changes the state of the relays (A for the idle position, B for the active position).

function set_state(newval)

function set_state(newval)

int set_state(Y_STATE_enum newval)
-(int) setState : (Y_STATE_enum) newval

| pas|function set_state(newval: Integer): integer
[vb |function set_state(ByVal newval As Integer) As Integer
int set_state(int newval)

int set_state(int newval)

async Task<int> set_state(int newval)

def set_state(newval)

function set_state($newval)

function set_state(newval)

YRelay target set_state newval

Ve

Parameters :

newval either Y_STATE_Aor Y_STATE_B, according to the state of the relays (A for the idle position,
B for the active position)

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

252 www.yoctopuce.com

20. High-level API Reference

relay - set_stateAtPowerOn() YRelay
relay - setStateAtPowerOn()

Preset the state of the relays at device startup (A for the idle position, B for the active position,
UNCHANGED for no modification).

function set_stateAtPowerOn(newval)

function set_stateAtPowerOn(newval)

int set_stateAtPowerOn(Y_STATEATPOWERON_enum newval)
-(int) setStateAtPowerOn : (Y_STATEATPOWERON_enum) newval
[pas |function set_stateAtPowerOn(newval: Integer): integer

function set_stateAtPowerOn(ByVal newval As Integer) As Integer
int set_stateAtPowerOn(int newval)

int set_stateAtPowerOn(int newval)

async Task<int> set_stateAtPowerOn(int newval)

def set_stateAtPowerOn(newval)

function set_stateAtPowerOn($newval)

function set_stateAtPowerOn(newval)

YRelay target set_stateAtPowerOn newval

Remember to call the matching module saveToF| ash() method, otherwise this call will have no
effect.

p
Parameters :

newval a value among Y_STATEATPOWNERON UNCHANGED, Y_STATEATPOWERON A and
Y_STATEATPOAERON_B

Returns :
YAPI _SUCCESS if the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 253

20. High-level API Reference

relay - set_userData() YRelay
relay - setUserData()

Stores a user context provided as argument in the userData attribute of the function.

[is |function set_userData(data)
[nodej s | function set_userData(data)

[cpp | void set_userData(void* data)

-(void) setUserData : (id) data
procedure set_userData(data: Tobject)
procedure set_userData(ByVal data As Object)
void set_userData(object data)

void set_userData(Object data)

def set_userData(data)

function set_userData($data)

[es |function set_userData(data)

This attribute is never touched by the API, and is at disposal of the caller to store a context.

Parameters :
data any kind of object to be stored

254 www.yoctopuce.com

20. High-level API Reference

relay -unmuteValueCallbacks() YRelay

Re-enables the propagation of every new advertised value to the parent hub.

function unmuteValueCallbacks()

function unmuteValueCallbacks()

int unmuteValueCallbacks()

-(int) unmuteValueCallbacks
function unmuteValueCallbacks(): Longint
function unmuteValueCallbacks() As Integer
int unmuteValueCallbacks()

int unmuteValueCallbacks()

async Task<int> unmuteValueCallbacks()
def unmuteValueCallbacks()

function unmuteValueCallbacks()

function unmuteValueCallbacks()
YRelay target unmuteValueCallbacks

This function reverts the effect of a previous call to nut eVal ueCal | backs() . Remember to call the
saveToFl ash() method of the module if the modification must be kept.

Returns :
YAPI _SUCCESS when the call succeeds.

On failure, throws an exception or returns a negative error code.

www.yoctopuce.com 255

20. High-level API Reference

relay - wait_async() YRelay

Waits for all pending asynchronous commands on the module to complete, and invoke the user-
provided callback function.

[is |function wait_async(callback, context)
[nodej s | function wait_async(callback, context)
[es |function wait_async(callback, context)

The callback function can therefore freely issue synchronous or asynchronous commands, without
risking to block the Javascript VM.

Parameters :

callback callback function that is invoked when all pending commands on the module are completed. The
callback function receives two arguments: the caller-specific context object and the receiving
function object.

context caller-specific object that is passed as-is to the callback function

Returns :
nothing.

256 www.yoctopuce.com

21. Troubleshooting
21.1. Linux and USB

To work correctly under Linux, the the library needs to have write access to all the Yoctopuce USB
peripherals. However, by default under Linux, USB privileges of the non-root users are limited to read
access. To avoid having to run the VirtualHub as root, you need to create a new udev rule to
authorize one or several users to have write access to the Yoctopuce peripherals.

To add a new udev rule to your installation, you must add a file with a name following the "##-
arbitraryName.rules" format, in the "/etc/udev/rules.d" directory. When the system is
starting, udev reads all the files with a ".rules" extension in this directory, respecting the
alphabetical order (for example, the "51-custom.rules" file is interpreted AFTER the "50-
udev-default.rules"file).

The "50-udev-default" file contains the system default udev rules. To modify the default
behavior, you therefore need to create a file with a name that starts with a number larger than 50,
that will override the system default rules. Note that to add a rule, you need a root access on the
system.

In the udev conf directory of the VirtualHub for Linux' archive, there are two rule examples which
you can use as a basis.

Example 1: 51-yoctopuce.rules

This rule provides all the users with read and write access to the Yoctopuce USB peripherals. Access
rights for all other peripherals are not modified. If this scenario suits you, you only need to copy the
"51-yoctopuce all.rules"file into the "/etc/udev/rules.d" directory and to restart your
system.

udev rules to allow write access to all users
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0666"

Example 2: 51-yoctopuce_group.rules

This rule authorizes the "yoctogroup" group to have read and write access to Yoctopuce USB
peripherals. Access rights for all other peripherals are not modified. If this scenario suits you, you

1 http://www.yoctopuce.com/FR/virtualhub.php

www.yoctopuce.com 257

21. Troubleshooting

only need to copy the "S1-yoctopuce group.rules" file into the "/etc/udev/rules.d"
directory and restart your system.

udev rules to allow write access to all users of "yoctogroup"
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0664", GROUP="yoctogroup"

21.2. ARM Platforms: HF and EL

There are two main flavors of executable on ARM: HF (Hard Float) binaries, and EL (EABI Little
Endian) binaries. These two families are not compatible at all. The compatibility of a given ARM
platform with of one of these two families depends on the hardware and on the OS build. ArmHL and
ArmEL compatibility problems are quite difficult to detect. Most of the time, the OS itself is unable to
make a difference between an HF and an EL executable and will return meaningless messages
when you try to use the wrong type of binary.

All pre-compiled Yoctopuce binaries are provided in both formats, as two separate ArmHF et ArmEL
executables. If you do not know what family your ARM platform belongs to, just try one executable
from each family.

21.3. Powered module but invisible for the OS

If your Yocto-MaxiRelay is connected by USB, if its blue led is on, but if the operating system cannot
see the module, check that you are using a true USB cable with data wires, and not a charging cable.
Charging cables have only power wires.

21.4. Another process named xxx is already using yAPI

If when initializing the Yoctopuce API, you obtain the "Another process named xxx is already using
yAPI" error message, it means that another application is already using Yoctopuce USB modules. On
a single machine only one process can access Yoctopuce modules by USB at a time. You can easily
work around this limitation by using a VirtualHub and the network mode 2.

21.5. Disconnections, erratic behavior

If you Yocto-MaxiRelay behaves erratically and/or disconnects itself from the USB bus without
apparent reason, check that it is correctly powered. Avoid cables with a length above 2 meters. If
needed, insert a powered USB hub 3 4.

21.6. Where to start?

If it is the first time that you use a Yoctopuce module and you do not really know where to start, have
a look at the Yoctopuce blog. There is a section dedicated to beginners °.

see: http://www.yoctopuce.com/EN/article/error-message-another-process-is-already-using-yapi
see: http://www.yoctopuce.com/EN/article/usb-cables-size-matters
see: http://www.yoctopuce.com/EN/article/how-many-usb-devices-can-you-connect

2
3
4
5 see: http://www.yoctopuce.com/EN/blog_by_categories/for-the-beginners

258 www.yoctopuce.com

22. Characteristics

You can find below a summary of the main technical

module.

Width

Length

Weight

USB connector

Channels

Max switching current

Max switching power

Max voltage

USB consumption

Supported Operating Systems
Drivers

API / SDK/ Libraries (USB+TCP)
APl / SDK / Libraries (TCP only)
RoHS

USB Vendor ID

USB Device ID

Suggested enclosure

58 mm

69 mm

659

micro-B

8

6 A

1500 W

57 VDC

~350 mA

Windows, Linux (Intel + ARM), Mac OS X, Android
no driver needed

C++, Objective-C, C#, VB .NET, Delphi, Python, Java/Android
Javascript, Node.js, PHP, Java

yes

0x24E0

0x0020

YoctoBox-MaxiRelay-Transp

characteristics of your Yocto-MaxiRelay

www.yoctopuce.com

259

22. Characteristics

260 www.yoctopuce.com

20.7
16.9
14
p
| —
10 |

— 69 —
N 42 —
Sy -
| ©®
J
| SEER e D
@ i1 g ©
Bez__"OF ©
ol ol ¥ O°é‘§i§ Dﬁl ©
W o o e O ©
oiFag . 0P
0 ©
O ©
v V O) ©
V

All dimensions are in mm
Toutes les dimensions sont en mm

Yocto-MaxiRelay

eeeeeee

Index

A Erratic 258
Error 37, 47, 54, 61, 68, 74, 81, 87, 93, 105
Access 95 Event 107
Accessories 3 Examples 14
Activating 96
Advanced 107 F
Already 258 .
Android 95, 96, 109 Files 83
Another 258 Filters 44
Application 109 FindModule, YModule 151
Assembly 13, 14 FindModuleInContext, YModule 152
Asynchronous 29 FindRelay, YRelay 213
FindRelayInContext, YRelay 214
B Firmware 109, 110
FirstModule, YModule 153
Basic 63 FirstRelay, YRelay 215
Behavior 258 FirstRelaylnContext, YRelay 216
Blocking 29 Fixing 13
Blueprint 261 FreeAPI, YAPI 125
functionBaseType, YModule 158
C functionCount, YModule 159
C# 69 functionld, YModule 160
C++ 49, 54 functionName, YModule 161
Callback 44 Functions 120
Characteristics 259 functionType, YModule 162
checkFirmware, YModule 154 functionValue, YModule 163
CheckLogicalName, YAPI 121
clearCache, YModule 155 G
clearCache, YRelay 217 General 17, 25, 120
Coils 14 get_advertisedValue, YRelay 220
Command 25, 109, 113 get_allSettings, YModule 164
Compatibility 95 get_beacon, YModule 165
Concepts 17 get_countdown, YRelay 221
Configuration 10 get_errorMessage, YModule 166
Connections 13 get_errorMessage, YRelay 222
get_errorType, YModule 167
D get_errorType, YRelay 223
delayedPulse, YRelay 218 get_firmwareRelease, YModule 168
Delphi 77 get_friendlyName, YRelay 224
describe, YModule 156 get_functionDescriptor, YRelay 225
describe, YRelay 219 get_functionld, YRelay 226
Description 25 get_functionlds, YModule 169
DisableExceptions, YAP| 122 get_hardwareld, YModule 170
Disconnections 258 get_hardwareld, YRelay 227
Distribution 15 get_icon2d, YModule 171
download, YModule 157 get_lastLogs, YModule 172
Dynamic 83, 115 get_logicalName, YModule 173
get_logicalName, YRelay 228
E get_luminosity, YModule 174
get_maxTimeOnStateA, YRelay 229
EcmaScript 29, 30 get_maxTimeOnStateB, YRelay 230
Electro-magnetic 14 get_module, YRelay 231
Elements 5, 6 get_module_async, YRelay 232
EnableExceptions, YAPI 123 get_output, YRelay 233

EnableUSBHost, YAPI 124 get_parentHub, YModule 175

get_persistentSettings, YModule 176
get_productld, YModule 177 M
get_productName, YModule 178 Mode 112

get_productRelease, YModule 179
: Module 9, 19, 26, 34, 41, 51, 59, 65, 72, 79, 85,
get_pulseTimer, YRelay 234 91, 100, 148, 258

g:—gﬁ;ﬁlﬁ%’&?o\\,{v&b\émgd;; 180 muteValueCallbacks, YRelay 243
get:state, YRelay 235

get_stateAtPowerOn, YRelay 236 N
get_subDevices, YModule 182 Named 258
get_upTime, YModule 183 Native 21, 95
get_url, YModule 184 .NET 63
get_usbCurrent, YModule 185 nextModule, YModule 194
get_userData, YModule 186 nextRelay, YRelay 244
get_userData, YRelay 237
get_userVar, YModule 187 O
GetAPIVersion, YAPI 126 o
GetTickCount, YAPI 127 Objective-C 57
Optional 3
H
HandleEvents, YAPI 128 P .
hasFunction, YModule 188 Paradigm 17
High-level 119 Platforms 258
HTTP 44, 113 Port 96
Porting 118
| Power 15
Powered 258
InitAPI, YAPI 129 Preparation 77
Installation 63, 69 PreregisterHub, YAPI 130
Installing 25 Prerequisites 1
Integration 54 Presentation 5
Interface 148, 211 Process 258
Introduction 1 Programming 17, 24, 107, 110
Invisible 258 Project 63, 69
isOnline, YModule 189 pulse, YRelay 245
isOnline, YRelay 238 Python 83
isOnline_async, YModule 190
isOnline_async, YRelay 239 R
J reboot, YModule 195
Reference 119
Java 89 RegisterDeviceArrivalCallback, YAPI 131
JavaScript 29, 30 RegisterDeviceRemovalCallback, YAPI 132
RegisterHub, YAPI 133
|_ RegisterHubDiscoveryCallback, YAPI 135

registerLogCallback, YModule 196

RegisterLogFunction, YAPI 136

registerValueCallback, YRelay 246

Relay 20, 26, 32, 39, 49, 57, 64, 70, 77, 83, 89,
98, 211

Relays 14

revertFromFlash, YModule 197

Languages 113

Libraries 115

Library 30, 54, 83, 109, 110, 118
Limitations 27

Linux 257

load, YModule 191

load, YRelay 240

load_async, YModule 192

load_async, YRelay 242 S

loadAttribute, YRelay 241 saveToFlash, YModule 198
Localization 9 SelectArchitecture, YAPI 137
log, YModule 193 Service 21

set_allSettings, YModule 199
set_allSettingsAndFiles, YModule 200

set_beacon, YModule 201
set_logicalName, YModule 202
set_logicalName, YRelay 247
set_luminosity, YModule 203
set_maxTimeOnStateA, YRelay 248
set_maxTimeOnStateB, YRelay 249
set_output, YRelay 250

set_state, YRelay 251
set_stateAtPowerOn, YRelay 252
set_userData, YModule 204
set_userData, YRelay 253
set_userVar, YModule 205
SetDelegate, YAPI 138
SetTimeout, YAPI 139
SetUSBPacketAckMs, YAPI 140
Sleep, YAPI 141

Source 83

Start 24, 258

T

Test 9

TestHub, YAPI 142
triggerFirmwareUpdate, YModule 206
TriggerHubDiscovery, YAPI 143
Troubleshooting 257

U

unmuteValueCallbacks, YRelay 254
UnregisterHub, YAPI 144
Unsupported 113

Update 109, 112

UpdateDevicelList, YAPI 145
UpdateDeviceList_async, YAPI 146
updateFirmware, YModule 207
updateFirmwareEx, YModule 208
Updating 110

V

Variants 54

Versus 29

VirtualHub 95, 109, 113
Visual 63, 69

W

wait_async, YModule 209
wait_async, YRelay 255

Y

YAP| 258
yCheckLogicalName 121
yDisableExceptions 122
yEnableExceptions 123
yEnableUSBHost 124
yFindModule 151
yFindModulelnContext 152
yFindRelay 213
yFindRelayInContext 214
yFirstModule 153
yFirstRelay 215
yFirstRelaylnContext 216
yFreeAPI 125
yGetAPIVersion 126
yGetTickCount 127
yHandleEvents 128
yInitAPI 129

YModule 151-209
Yocto-Firmware 109

Yocto-MaxiRelay 19, 25, 29, 39, 49, 57, 63, 69,

77,83, 89, 95
YoctoHub 109
yPreregisterHub 130
yRegisterDeviceArrivalCallback 131
yRegisterDeviceRemovalCallback 132
yRegisterHub 133
yRegisterHubDiscoveryCallback 135
yRegisterLogFunction 136
YRelay 213-255
ySelectArchitecture 137
ySetDelegate 138
ySetTimeout 139
ySetUSBPacketAckMs 140
ySleep 141
yTestHub 142
yTriggerHubDiscovery 143
yUnregisterHub 144
yUpdateDeviceList 145
yUpdateDeviceList_async 146

	Table of contents
	1. Introduction
	1.1. Prerequisites
	1.2. Optional accessories

	2. Presentation
	2.1. Common elements
	2.2. Specific elements

	3. First steps
	3.1. Localization
	3.2. Test of the module
	3.3. Configuration

	4. Assembly and connections
	4.1. Fixing
	4.2. Assembly examples
	4.3. Electro-magnetic relays and coils
	4.4. USB power distribution

	5. Programming, general concepts
	5.1. Programming paradigm
	5.2. The Yocto-MaxiRelay module
	5.3. Module control interface
	5.4. Relay function interface
	5.5. What interface: Native, DLL or Service ?
	5.6. Programming, where to start?

	6. Using the Yocto-MaxiRelay in command line
	6.1. Installing
	6.2. Use: general description
	6.3. Control of the Relay function
	6.4. Control of the module part
	6.5. Limitations

	7. Using Yocto-MaxiRelay with JavaScript / EcmaScript
	7.1. Blocking I/O versus Asynchronous I/O in JavaScript
	7.2. Using Yoctopuce library for JavaScript / EcmaScript 2017
	7.3. Control of the Relay function
	7.4. Control of the module part
	7.5. Error handling

	8. Using Yocto-MaxiRelay with PHP
	8.1. Getting ready
	8.2. Control of the Relay function
	8.3. Control of the module part
	8.4. HTTP callback API and NAT filters
	8.5. Error handling

	9. Using Yocto-MaxiRelay with C++
	9.1. Control of the Relay function
	9.2. Control of the module part
	9.3. Error handling
	9.4. Integration variants for the C++ Yoctopuce library

	10. Using Yocto-MaxiRelay with Objective-C
	10.1. Control of the Relay function
	10.2. Control of the module part
	10.3. Error handling

	11. Using Yocto-MaxiRelay with Visual Basic .NET
	11.1. Installation
	11.2. Using the Yoctopuce API in a Visual Basic project
	11.3. Control of the Relay function
	11.4. Control of the module part
	11.5. Error handling

	12. Using Yocto-MaxiRelay with C#
	12.1. Installation
	12.2. Using the Yoctopuce API in a Visual C# project
	12.3. Control of the Relay function
	12.4. Control of the module part
	12.5. Error handling

	13. Using Yocto-MaxiRelay with Delphi
	13.1. Preparation
	13.2. Control of the Relay function
	13.3. Control of the module part
	13.4. Error handling

	14. Using the Yocto-MaxiRelay with Python
	14.1. Source files
	14.2. Dynamic library
	14.3. Control of the Relay function
	14.4. Control of the module part
	14.5. Error handling

	15. Using the Yocto-MaxiRelay with Java
	15.1. Getting ready
	15.2. Control of the Relay function
	15.3. Control of the module part
	15.4. Error handling

	16. Using the Yocto-MaxiRelay with Android
	16.1. Native access and VirtualHub
	16.2. Getting ready
	16.3. Compatibility
	16.4. Activating the USB port under Android
	16.5. Control of the Relay function
	16.6. Control of the module part
	16.7. Error handling

	17. Advanced programming
	17.1. Event programming

	18. Firmware Update
	18.1. The VirtualHub or the YoctoHub
	18.2. The command line library
	18.3. The Android application Yocto-Firmware
	18.4. Updating the firmware with the programming library
	18.5. The "update" mode

	19. Using with unsupported languages
	19.1. Command line
	19.2. VirtualHub and HTTP GET
	19.3. Using dynamic libraries
	19.4. Porting the high level library

	20. High-level API Reference
	20.1. General functions
	20.2. Module control interface
	20.3. Relay function interface

	21. Troubleshooting
	21.1. Linux and USB
	21.2. ARM Platforms: HF and EL
	21.3. Powered module but invisible for the OS
	21.4. Another process named xxx is already using yAPI
	21.5. Disconnections, erratic behavior
	21.6. Where to start?

	22. Characteristics
	Blueprint

