
Yocto-Pressure-C

User's Guide

Table of contents

1. Introduction 1 ...

1.1. Safety Information 2 ...
1.2. Environmental conditions 3 ...

2. Presentation 5 ..

2.1. Common elements 5 ...
2.2. Specific elements 6 ..
2.3. Optional accessories 7 ...

3. First steps 9 ..

3.1. Prerequisites 9 ..
3.2. Testing USB connectivity 10 ..
3.3. Localization 11 ..
3.4. Test of the module 11 ...
3.5. Configuration 11 ...

4. Assembly and connections 13 ...

4.1. Fixing 13 ..
4.2. Connecting to a tube 14 ...
4.3. Moving the sensor away 14 ...
4.4. USB power distribution 15 ...
4.5. Electromagnetic compatibility (EMI) 16 ..

5. Programming, general concepts 17 ...

5.1. Programming paradigm 17 ..
5.2. The Yocto-Pressure-C module 19 ...
5.3. Module 20 ..
5.4. Pressure 21 ...
5.5. Temperature 22 ...
5.6. DataLogger 23 ...
5.7. What interface: Native, DLL or Service ? 24 ...
5.8. Accessing modules through a hub 27 ..
5.9. Programming, where to start? 27 ..

6. Using the Yocto-Pressure-C in command line 29 ..

6.1. Installing 29 ...
6.2. Use: general description 29 ...
6.3. Control of the Pressure function 30 ..
6.4. Control of the module part 30 ..
6.5. Limitations 31 ..

7. Using the Yocto-Pressure-C with Python 33 ..

7.1. Source files 33 ..
7.2. Dynamic library 33 ..
7.3. Control of the Pressure function 33 ..
7.4. Control of the module part 35 ..
7.5. Error handling 37 ..

8. Using Yocto-Pressure-C with C++ 39 ..

8.1. Control of the Pressure function 39 ..
8.2. Control of the module part 41 ..
8.3. Error handling 44 ..
8.4. Integration variants for the C++ Yoctopuce library 44 ..

9. Using Yocto-Pressure-C with C# 47 ..

9.1. Installation 47 ..
9.2. Using the Yoctopuce API in a Visual C# project 47 ...
9.3. Control of the Pressure function 48 ..
9.4. Control of the module part 50 ..
9.5. Error handling 52 ..

10. Using the Yocto-Pressure-C with LabVIEW 55 ...

10.1. Architecture 55 ..
10.2. Compatibility 56 ..
10.3. Installation 56 ..
10.4. Presentation of Yoctopuce VIs 61 ...
10.5. Functioning and use of VIs 64 ...
10.6. Using 66 ...
10.7. Managing the data logger 68 ...
10.8. Function list 69 ...
10.9. A word on performances 70 ...
10.10. A full example of a LabVIEW program 70 ...
10.11. Differences from other Yoctopuce APIs 71 ..

11. Using the Yocto-Pressure-C with Java 73 ...

11.1. Getting ready 73 ..
11.2. Control of the Pressure function 73 ..
11.3. Control of the module part 75 ..
11.4. Error handling 77 ..

12. Using the Yocto-Pressure-C with Android 79 ..

12.1. Native access and VirtualHub 79 ...
12.2. Getting ready 79 ..
12.3. Compatibility 79 ..
12.4. Activating the USB port under Android 80 ...

12.5. Control of the Pressure function 81 ..
12.6. Control of the module part 84 ..
12.7. Error handling 88 ..

13. Using Yocto-Pressure-C with TypeScript 89 ..

13.1. Using the Yoctopuce library for TypeScript 90 ..
13.2. Refresher on asynchronous I/O in JavaScript 90 ..
13.3. Control of the Pressure function 91 ..
13.4. Control of the module part 94 ..
13.5. Error handling 96 ..

14. Using Yocto-Pressure-C with JavaScript / EcmaScript 97

14.1. Blocking I/O versus Asynchronous I/O in JavaScript 97 ..
14.2. Using Yoctopuce library for JavaScript / EcmaScript 2017 98 ...
14.3. Control of the Pressure function 100 ..
14.4. Control of the module part 103 ..
14.5. Error handling 106 ..

15. Using Yocto-Pressure-C with PHP 107 ..

15.1. Getting ready 107 ..
15.2. Control of the Pressure function 108 ..
15.3. Control of the module part 110 ..
15.4. HTTP callback API and NAT filters 112 ...
15.5. Error handling 115 ..

16. Using Yocto-Pressure-C with Visual Basic .NET 117 ..

16.1. Installation 117 ..
16.2. Using the Yoctopuce API in a Visual Basic project 117 ..
16.3. Control of the Pressure function 118 ..
16.4. Control of the module part 120 ..
16.5. Error handling 122 ..

17. Using Yocto-Pressure-C with Delphi or Lazarus 123 ..

17.1. Preparation 123 ...
17.2. About examples 124 ...
17.3. Control of the Pressure function 124 ..
17.4. Control of the module part 126 ..
17.5. Error handling 128 ..

18. Using the Yocto-Pressure-C with Universal Windows Platform 131

18.1. Blocking and asynchronous functions 131 ..
18.2. Installation 132 ..
18.3. Using the Yoctopuce API in a Visual Studio project 132 ..
18.4. Control of the Pressure function 133 ..
18.5. A real example 134 ...
18.6. Control of the module part 134 ..
18.7. Error handling 137 ..

19. Using Yocto-Pressure-C with Objective-C 139 ...

19.1. Control of the Pressure function 139 ..
19.2. Control of the module part 141 ..
19.3. Error handling 143 ..

20. Using with unsupported languages 145 ...

20.1. Command line 145 ..
20.2. .NET Assembly 145 ...
20.3. VirtualHub and HTTP GET 147 ...
20.4. Using dynamic libraries 149 ..
20.5. Porting the high level library 152 ..

21. Using the Yocto-Pressure-C in command line 153 ...

21.1. Installing 153 ...
21.2. Use: general description 153 ...
21.3. Control of the Temperature function 154 ...
21.4. Control of the module part 154 ..
21.5. Limitations 155 ..

22. Using the Yocto-Pressure-C with Python 157 ...

22.1. Source files 157 ..
22.2. Dynamic library 157 ..
22.3. Control of the Temperature function 157 ...
22.4. Control of the module part 159 ..
22.5. Error handling 161 ..

23. Using Yocto-Pressure-C with C++ 163 ..

23.1. Control of the Temperature function 163 ...
23.2. Control of the module part 165 ..
23.3. Error handling 168 ..
23.4. Integration variants for the C++ Yoctopuce library 168 ..

24. Using Yocto-Pressure-C with C# 171 ...

24.1. Installation 171 ..
24.2. Using the Yoctopuce API in a Visual C# project 171 ...
24.3. Control of the Temperature function 172 ...
24.4. Control of the module part 174 ..
24.5. Error handling 176 ..

25. Using the Yocto-Pressure-C with LabVIEW 179 ...

25.1. Architecture 179 ..
25.2. Compatibility 180 ..
25.3. Installation 180 ..
25.4. Presentation of Yoctopuce VIs 185 ...
25.5. Functioning and use of VIs 188 ...
25.6. Using 190 ...
25.7. Managing the data logger 192 ...
25.8. Function list 193 ...
25.9. A word on performances 194 ...
25.10. A full example of a LabVIEW program 194 ...
25.11. Differences from other Yoctopuce APIs 195 ..

26. Using the Yocto-Pressure-C with Java 197 ...

26.1. Getting ready 197 ..
26.2. Control of the Temperature function 197 ...
26.3. Control of the module part 199 ..

26.4. Error handling 201 ..

27. Using the Yocto-Pressure-C with Android 203 ...

27.1. Native access and VirtualHub 203 ...
27.2. Getting ready 203 ..
27.3. Compatibility 203 ..
27.4. Activating the USB port under Android 204 ...
27.5. Control of the Temperature function 205 ...
27.6. Control of the module part 208 ..
27.7. Error handling 212 ..

28. Using Yocto-Pressure-C with TypeScript 213 ...

28.1. Using the Yoctopuce library for TypeScript 214 ..
28.2. Refresher on asynchronous I/O in JavaScript 214 ..
28.3. Control of the Temperature function 215 ...
28.4. Control of the module part 218 ..
28.5. Error handling 220 ..

29. Using Yocto-Pressure-C with JavaScript / EcmaScript 223

29.1. Blocking I/O versus Asynchronous I/O in JavaScript 223 ..
29.2. Using Yoctopuce library for JavaScript / EcmaScript 2017 224
29.3. Control of the Temperature function 226 ...
29.4. Control of the module part 229 ..
29.5. Error handling 232 ..

30. Using Yocto-Pressure-C with PHP 233 ..

30.1. Getting ready 233 ..
30.2. Control of the Temperature function 234 ...
30.3. Control of the module part 236 ..
30.4. HTTP callback API and NAT filters 238 ...
30.5. Error handling 241 ..

31. Using Yocto-Pressure-C with Visual Basic .NET 243 ..

31.1. Installation 243 ..
31.2. Using the Yoctopuce API in a Visual Basic project 243 ..
31.3. Control of the Temperature function 244 ...
31.4. Control of the module part 246 ..
31.5. Error handling 248 ..

32. Using Yocto-Pressure-C with Delphi or Lazarus 249 ..

32.1. Preparation 249 ...
32.2. About examples 250 ...
32.3. Control of the Temperature function 250 ...
32.4. Control of the module part 252 ..
32.5. Error handling 255 ..

33. Using the Yocto-Pressure-C with Universal Windows Platform 257

33.1. Blocking and asynchronous functions 257 ..
33.2. Installation 258 ..
33.3. Using the Yoctopuce API in a Visual Studio project 258 ..
33.4. Control of the Temperature function 259 ...
33.5. A real example 260 ...

33.6. Control of the module part 260 ..
33.7. Error handling 263 ..

34. Using Yocto-Pressure-C with Objective-C 265 ...

34.1. Control of the Temperature function 265 ...
34.2. Control of the module part 267 ..
34.3. Error handling 269 ..

35. Using with unsupported languages 271 ...

35.1. Command line 271 ..
35.2. .NET Assembly 271 ...
35.3. VirtualHub and HTTP GET 273 ...
35.4. Using dynamic libraries 275 ..
35.5. Porting the high level library 278 ..

36. Advanced programming 279 ...

36.1. Event programming 279 ...
36.2. The data logger 282 ..
36.3. Sensor calibration 284 ...

37. Firmware Update 289 ...

37.1. VirtualHub or the YoctoHub 289 ..
37.2. The command line library 289 ...
37.3. The Android application Yocto-Firmware 289 ..
37.4. Updating the firmware with the programming library 290 ..
37.5. The "update" mode 292 ..

38. High-level API Reference 293 ...

38.1. Class YAPI 294 ..
38.2. Class YModule 298 ...
38.3. Class YPressure 305 ..
38.4. Class YTemperature 311 ..
38.5. Class YDataLogger 318 ..
38.6. Class YDataSet 323 ..
38.7. Class YMeasure 326 ...

39. Troubleshooting 327 ..

39.1. Where to start? 327 ..
39.2. Programming examples don't seem to work 327 ..
39.3. Linux and USB 327 ...
39.4. ARM Platforms: HF and EL 328 ...
39.5. Powered module but invisible for the OS 328 ..
39.6. Another process named xxx is already using yAPI 328 ..
39.7. Disconnections, erratic behavior 328 ...
39.8. After a failed firmware update, the device stopped working 329
39.9. The web interface shows errors after a firmware update 329 ..
39.10. Registering VirtualHub disconnects another instance 329 ..
39.11. Dropped commands 329 ..
39.12. Damaged device 329 ..

40. Characteristics 331 ...

Blueprint 333 ..

www.yoctopuce.com 1

1. Introduction
The Yocto-Pressure-C is a 60x20mm electronic module enabling you to perform by USB the
measure of a pressure up to 10 bars. It has a 100mbar accuracy. It is equipped with a quick coupler
enabling you to connect a 4mm diameter tube. It can measure gas as well as liquids. Incidentally, the
Yocto-Pressure-C also provides a temperature measure.

The Yocto-Pressure-C module

The Yocto-Pressure-C is not in itself a complete product. It is a component intended to be integrated
into a solution used in laboratory equipments, or in industrial process-control equipments, or for
similar applications in domestic and commercial environments. In order to use it, you must at least
install it in a protective enclosure and connect it to a host computer.

Yoctopuce thanks you for buying this Yocto-Pressure-C and sincerely hopes that you will be satisfied
with it. The Yoctopuce engineers have put a large amount of effort to ensure that your Yocto-
Pressure-C is easy to install anywhere and easy to drive from a maximum of programming
languages. If you are nevertheless disappointed with this module, or if you need additional
information, do not hesitate to contact Yoctopuce support:

E-mail address: support@yoctopuce.com

Web site: www.yoctopuce.com

Postal address: Route de Cartigny 33

ZIP code, city: 1236 Cartigny

Country: Switzerland

1. Introduction

2 www.yoctopuce.com

1.1. Safety Information
The Yocto-Pressure-C is designed to meet the requirements of IEC 61010-1:2010 safety standard. It
does not create any serious hazards to the operator and surrounding area, even in single fault
condition, as long as it is integrated and used according to the instructions contained in this
documentation, and in this section in particular.

Protective enclosure
The Yocto-Pressure-C should not be used without a protective enclosure, because of the accessible
bare electronic components. For optimal safety, it should be put into a non-metallic, non-inflammable
enclosure, resistant to a mechanical stress level of 5 J. For instance, use a polycarbonate (e.g.
LEXAN) enclosure rated IK08 with a IEC 60695-11-10 flammability rating of V-1 or better. Using a
lower quality enclosure may require specific warnings for the operator and/or compromise conformity
with the safety standard.

Maintenance
If a damage is observed on the electronic board or on the enclosure, it should be replaced in order to
ensure continued safety of the equipment, and to prevent damaging other parts of the system due to
overload that a short circuit could cause.

Identification
In order to ease the maintenance and the identification of risks during maintenance, you should stick
the water-resistant identification label provided together with the electronic board as close as
possible to the device. If the device is put in a dedicated enclosure, the identification label should be
affixed on the outside of the enclosure. This label is resistant to humidity and to the usual rubbing
that can occur during normal maintenance.

Identification label is integrated in the package label.

Application
The safety standard applied is intended to cover laboratory equipment, industrial process-control
equipment and similar applications in residential or commercial environment. If you intend to use the
Yocto-Pressure-C for another kind of application, you should check the safety regulations according
to the standard applicable to your application.

In particular, the Yocto-Pressure-C is not certified for use in medical environments or for life-support
applications.

Environment
The Yocto-Pressure-C is not certified for use in hazardous locations, explosive environments, or life-
threatening applications. Environmental ratings are provided below.

1. Introduction

www.yoctopuce.com 3

1.2. Environmental conditions
Yoctopuce devices have been designed for indoor use in a standard office or laboratory environment
(IEC 60664 pollution degree 2): air pollution is expected to be limited and mainly non-conductive.
Relative humidity is expected to be between 10% and 90% RH, non condensing. Use in
environments with significant solid pollution or conductive pollution requires a protection from such
pollution using an IP67 or IP68 enclosure. Yoctopuce's products are designed for use up to altitude
2000m.

All Yoctopuce devices are warranted to perform according to their documentation and technical
specifications under normal temperature conditions according to IEC61010-1, i.e. 5°C to 40°C. In
addition, most devices can also be used on an extended temperature range, where some limitations
may apply from case to case.

The extended operating temperature range for the Yocto-Pressure-C is -5...60°C. This temperature
range has been determined based on components manufacturer recommendations, and on
controlled environment tests performed during a limited duration (1h). If you plan to use the Yocto-
Pressure-C in harsh environments for a long period of time, we strongly advise you to run extensive
tests before going to production.

4 www.yoctopuce.com

www.yoctopuce.com 5

2. Presentation

1: Micro-B USB socket 4: Picoflex header slots
2: Yocto-button 5: 1.27mm pads
3: Yocto-led 6: Pressure sensor

2.1. Common elements
All Yocto-modules share a number of common functionalities.

USB connector
The Yocto-Pressure-C features an USB Type-C socket and uses USB 1.1 protocol which makes it
compatible with any USB host port. Alternatively USB wires or a 1.27mm connector can be soldered
on the footprint right behind the USB socket.

If, when you plug your Yocto-Pressure-C into a USB-C cable, your module lights up but is not
detected by your computer, check that the USB-C plug is fully inserted and that you're using a
regular USB cable, not a charging cable with no data lines.

If you plan to use a power source other then a standard USB host port to power the device through
the USB connector, that power source must respect the assigned values of USB 2.0 specifications:

• Voltage min.: 4.75 V DC
• Voltage max.: 5.25 V DC
• Over-current protection: 5.0 A max.

A higher voltage is likely to destroy the device. The behaviour with a lower voltage is not specified,
but it can result firmware corruption.

2. Presentation

6 www.yoctopuce.com

Yocto-button
The Yocto-button has two functionalities. First, it can activate the Yocto-beacon mode (see below
under Yocto-led). Second, if you plug in a Yocto-module while keeping this button pressed, you can
then reprogram its firmware with a new version. Note that there is a simpler UI-based method to
update the firmware, but this one works even in case of severely damaged firmware.

Yocto-led
Normally, the Yocto-led is used to indicate that the module is working smoothly. The Yocto-led then
emits a low blue light which varies slowly, mimicking breathing. The Yocto-led stops breathing when
the module is not communicating any more, as for instance when powered by a USB hub which is
disconnected from any active computer.

When you press the Yocto-button, the Yocto-led switches to Yocto-beacon mode. It starts flashing
faster with a stronger light, in order to facilitate the localization of a module when you have several
identical ones. It is indeed possible to trigger off the Yocto-beacon by software, as it is possible to
detect by software that a Yocto-beacon is on.

The Yocto-led has a third functionality, which is less pleasant: when the internal software which
controls the module encounters a fatal error, the Yocto-led starts emitting an SOS in morse 1. If this
happens, unplug and re-plug the module. If it happens again, check that the module contains the
latest version of the firmware, and, if it is the case, contact Yoctopuce support2.

Current sensor
Each Yocto-module is able to measure its own current consumption on the USB bus. Current supply
on a USB bus being quite critical, this functionality can be of great help. You can only view the
current consumption of a module by software.

Serial number
Each Yocto-module has a unique serial number assigned to it at the factory. For Yocto-Pressure-C
modules, this number starts with PRSSMK1C. The module can be software driven using this serial
number. The serial number cannot be modified.

Logical name
The logical name is similar to the serial number: it is a supposedly unique character string which
allows you to reference your module by software. However, in the opposite of the serial number, the
logical name can be modified at will. The benefit is to enable you to build several copies of the same
project without needing to modify the driving software. You only need to program the same logical
name in each copy. Warning: the behavior of a project becomes unpredictable when it contains
several modules with the same logical name and when the driving software tries to access one of
these modules through its logical name. When leaving the factory, modules do not have an assigned
logical name. It is yours to define.

2.2. Specific elements
The sensor
The pressure sensor is the MS5837-30BA manufactured by TE connectivity. An SMC KQH04-M6A
quick coupler is mounted on the sensor to ease the connection to the pressurized circuit to be
measured. Therefore, the technical characteristics of the whole result from both the sensor and the
SMC coupler.

The MS5837-30BA sensor itself can measure a pressure from 0 to 30 bars, but the fixing device
securing the quick coupler is guarantied only up to 10 bars. As a safety measure, we checked that
the fixing device supports an accidental overpressure of 20 bars during 48 hours. Likewise, the

1 short-short-short long-long-long short-short-short
2 support@yoctopuce.com

2. Presentation

www.yoctopuce.com 7

MS5837-30BA sensor itself can work between -20 and +85°C, but the quick coupler is specified only
from -5°C to 60°C for air, and from 0°C to 40°C (without ice) for water.

On the standard temperature range, between 5 and 40°C, the absolute accuracy of the sensor is of
0.05 bar between 0 and 6 bar, and 0.1 bar up to 10 bars.

In the extended temperature range from -20°C and 85°C, the accuracy is of 0.1 bar between 0 and 6
bar, and of 0.2 bar up to 20 bars. But pay attention to the information above about the quick coupler
if you go outside of the standard temperature range.

This sensor measures the absolute pressure, which means that if it measures the pressure of a
pneumatic circuit which is not under pressure, it does not return zero, but the value of the local
atmospheric pressure, that is about 1000 mbars at sea level.

Beware: this MS5837-30BA sensor is very fragile, it is made of a small ceramic square on which is
glued a small metal cylinder containing a gel which serves as interface between the electronics of the
sensor and the substance to be measured. This little cylinder can be very easily ripped off. The quick
coupler mounting system consolidates the whole, but we nevertheless recommend you not to drop
the module and not to dismantle it. To avoid the temptation of dismantling it to satisfy your curiosity,
you can find below an exploded view of the sensor part.

Exploded view of the sensor part

2.3. Optional accessories
The accessories below are not necessary to use the Yocto-Pressure-C module but might be useful
depending on your project. These are mostly common products that you can buy from your favorite
DIY store. To save you the tedious job of looking for them, most of them are also available on the
Yoctopuce shop.

Screws and spacers
In order to mount the Yocto-Pressure-C module, you can put small screws in the 2.5mm assembly
holes, with a screw head no larger than 4.5mm. The best way is to use threaded spacers, which you
can then mount wherever you want. You can find more details on this topic in the chapter about
assembly and connections.

Micro-USB hub
If you intend to put several Yoctopuce modules in a very small space, you can connect them directly
to a micro-USB hub. Yoctopuce builds a multi-TT USB hub particularly small for this purpose (down
to 20mmx36mm), on which you can directly solder a USB cable instead of using a USB plug. For
more details, see the micro-USB hub information sheet.

YoctoHub-Ethernet, YoctoHub-Wireless and YoctoHub-GSM
You can add network connectivity to your Yocto-Pressure-C, thanks to the YoctoHub-Ethernet, the
YoctoHub-Wireless and the YoctoHub-GSM which provides respectively Ethernet, WiFi and GSM
connectivity. All of them can drive up to three devices and behave exactly like a regular computer
running the VirtualHub application3.

3 http://www.yoctopuce.com/EN/virtualhub.php

2. Presentation

8 www.yoctopuce.com

1.27mm (or 1.25mm) connectors
In case you wish to connect your Yocto-Pressure-C to a Micro-hub USB or a YoctoHub without using
a bulky USB connector, you can use the four 1.27mm pads just behind the USB connector. There
are two options.

You can mount the Yocto-Pressure-C directly on the hub using screw and spacers, and connect it
using 1.27mm board-to-board connectors. To prevent shortcuts, it is best to solder the female
connector on the hub and the male connector on the Yocto-Pressure-C.

You can also use a small 4-wires cable with a 1.27mm connector. 1.25mm works as well, it does not
make a difference for 4 pins. This makes it possible to move the device a few inches away. Don't put
it too far away if you use that type of cable, because as the cable is not shielded, it may cause
undesirable electromagnetic emissions.

Enclosure
Your Yocto-Pressure-C has been designed to be installed as is in your project. Nevertheless,
Yoctopuce sells enclosures specifically designed for Yoctopuce devices. These enclosures have
removable mounting brackets and magnets allowing them to stick on ferromagnetic surfaces. More
details are available on the Yoctopuce web site4. The suggested enclosure model for your Yocto-
Pressure-C is the YoctoBox-Long-Thick-Black-Press.

You can install your Yocto-Pressure-C in an optional enclosure

Picoflex connectors and flexible ribbon cable
If you want to move away the sensor part of the Yocto-Pressure-C module with a plug connector, you
need 4-wire flexible ribbon cable of 1.27mm pitch and Picoflex connectors. 5 You can find more
details on this topic in the chapter about assembly and connections.

4 http://www.yoctopuce.com/EN/products/category/enclosures
5 Header Molex ref 90325-3004 or 90325-0004, available from most electronic component suppliers (www.mouser.com,
www.digikey.com, www.farnell.com, www.distrelec.ch...). To be used with connectors ref 90327-3304 or 90327-0304.

www.yoctopuce.com 9

3. First steps
By design, all Yoctopuce modules are driven the same way. Therefore, user's guides for all the
modules of the range are very similar. If you have already carefully read through the user's guide of
another Yoctopuce module, you can jump directly to the description of the module functions.

3.1. Prerequisites
In order to use your Yocto-Pressure-C module, you should have the following items at hand.

A computer
Yoctopuce modules are intended to be driven by a computer (or possibly an embedded
microprocessor). You will write the control software yourself, according to your needs, using the
information provided in this manual.

Yoctopuce provides software libraries to drive its modules for the following operating systems:
Windows, Linux, macOS, and Android. Yoctopuce modules do not require the installation of
specific drivers, as they use the HID driver1 standardly supplied in all operating systems.

The general rule regarding supported operating system versions is as follows: Yoctopuce
development tools are supported for all versions covered by the operating system vendor's support,
including the duration of extended support (long term support or LTS). Yoctopuce pays particular
attention to long-term support, and whenever possible with reasonable effort, our tools are designed
so that they can be used on older systems even several years after the end of the manufacturer's
extended support.

Moreover, the programming libraries used to drive our modules being available in source code, you
can generally recompile them to run on even older operating systems. To date, our programming
library can still be compiled to run on operating systems released in 2008, such as Windows XP SP3
or Linux Debian Squeeze.

The architectures supported by Yoctopuce software libraries are as follows:

• Windows: Intel 64 bits and 32 bits
• Linux: Intel 64 bits and 32 bits, ARM 64 bits and 32 bits, including Raspberry Pi OS.
• macOS: Intel 64 bits and Apple Silicon (ARM)

Under Linux, communication with our USB modules requires the libusb library, version 1.0 or higher,
which is available on all common distributions. Libraries and command-line tools should be easy to

1 The HID driver is manages peripheral devices such as mouse, keyboard, and so on.

3. First steps

10 www.yoctopuce.com

recompile on any UNIX variant (Linux, FreeBSD, ...) from the last fifteen years for which libusb-1.0 is
available and functional.

Under Android, the ability to connect a USB module depends on whether the tablet or phone
supports the USB Host mode.

An USB cable, type A - USB-C
USB connectors come in several shapes. The "standard" size is the one you probably use to connect
your printer. The "mini" size has more or less disappeared. The "micro" size was the smallest when
the first Yoctopuce modules were designed. Over the last few years, USB-C connectors have
appeared and are about replace all other types. That is why, since 2024 Yoctopuce, is progressively
migrating its product line to USB-C2.

The most common USB 2.0 connectors: A, B, Mini B, Micro B and USB-C.

To connect your Yocto-Pressure-C module to a computer, you need an USB cable of type A-USB-C
or type C-USB-C. The price of this cable may vary a lot depending on the source, look for it under the
name USB A to USB-C Data cable. Make sure not to buy a simple USB charging cable without data
connectivity. The correct type of cable is available on the Yoctopuce shop.

You must plug in your Yocto-Pressure-C module with a USB 2.0 cable of type A-USB-C

If you insert a USB hub between the computer and the Yocto-Pressure-C module, make sure to take
into account the USB current limits. If you do not, be prepared to face unstable behaviors and
unpredictable failures. You can find more details on this topic in the chapter about assembly and
connections.

3.2. Testing USB connectivity
At this point, your Yocto-Pressure-C should be connected to your computer, which should have
recognized it. It is time to make it work.

Go to the Yoctopuce web site and download the VirtualHub software3. It is available for Windows,
Linux, and macOS. Normally, VirtualHub serves as an abstraction layer for languages which cannot

2 www.yoctopuce.com/EN/article/would-you-like-usb-c-devices
3 www.yoctopuce.com/EN/virtualhub.php

3. First steps

www.yoctopuce.com 11

access the hardware layers of your computer. However, it also offers a succinct interface to configure
your modules and to test their basic functions. You access this interface with a simple web browser4.
Start VirtualHub in a command line, open your preferred web browser and enter the URL http://
127.0.0.1:4444. The list of the Yoctopuce modules connected to your computer is displayed.

Module list as displayed in your web bowser

3.3. Localization
You can then physically localize each of the displayed modules by clicking on the beacon button.
This puts the Yocto-led of the corresponding module in Yocto-beacon mode. It starts flashing, which
allows you to easily localize it. The second effect is to display a little blue circle on the screen. You
obtain the same behavior when pressing the Yocto-button of the module.

3.4. Test of the module
The first item to check is that your module is working well: click on the serial number corresponding
to your module. This displays a window summarizing the properties of your Yocto-Pressure-C.

Properties of the Yocto-Pressure-C module

This window allows you, among other things, to play with your module to check how it works, as the
pressure and temperature values are displayed in real time.

3.5. Configuration
When, in the module list, you click on the configure button corresponding to your module, the
configuration window is displayed.

4 The interface is tested on Chrome, FireFox, Safari, Edge et IE 11.

3. First steps

12 www.yoctopuce.com

Yocto-Pressure-C module configuration

Firmware
The module firmware can easily be updated with the help of the interface. Firmware destined for
Yoctopuce modules are available as .byn files and can be downloaded from the Yoctopuce web site.

To update a firmware, simply click on the upgrade button on the configuration window and follow the
instructions. If the update fails for one reason or another, unplug and re-plug the module and start
the update process again. This solves the issue in most cases. If the module was unplugged while it
was being reprogrammed, it does probably not work anymore and is not listed in the interface.
However, it is always possible to reprogram the module correctly by using VirtualHub 5 in command
line 6.

Logical name of the module
The logical name is a name that you choose, which allows you to access your module, in the same
way a file name allows you to access its content. A logical name has a maximum length of 19
characters. Authorized characters are A..Z, a..z, 0..9, _, and -. If you assign the same logical name
to two modules connected to the same computer and you try to access one of them through this
logical name, behavior is undetermined: you have no way of knowing which of the two modules
answers.

Luminosity
This parameter allows you to act on the maximal intensity of the leds of the module. This enables
you, if necessary, to make it a little more discreet, while limiting its power consumption. Note that this
parameter acts on all the signposting leds of the module, including the Yocto-led. If you connect a
module and no led turns on, it may mean that its luminosity was set to zero.

Logical names of functions
Each Yoctopuce module has a serial number and a logical name. In the same way, each function on
each Yoctopuce module has a hardware name and a logical name, the latter can be freely chosen by
the user. Using logical names for functions provides a greater flexibility when programming modules.

The only two functions provided by the Yocto-Pressure-C module are the "pressure" and
"temperature" functions. Simply click on the corresponding "rename" button to assign them a new
logical name.

5 www.yoctopuce.com/EN/virtualhub.php
6 More information available in the VirtualHub documentation

www.yoctopuce.com 13

4. Assembly and connections
This chapter provides important information regarding the use of the Yocto-Pressure-C module in
real-world situations. Make sure to read it carefully before going too far into your project if you want
to avoid pitfalls.

4.1. Fixing
While developing your project, you can simply let the module hang at the end of its cable. Check only
that it does not come in contact with any conducting material (such as your tools). When your project
is almost at an end, you need to find a way for your modules to stop moving around.

Examples of assembly on supports

The Yocto-Pressure-C module contains 2.5mm assembly holes. You can use these holes for screws.
The screw head diameter must not be larger than 4.5mm or they will damage the module circuits.
Make sure that the lower surface of the module is not in contact with the support. We recommend
using spacers, but other methods are possible. Nothing prevents you from fixing the module with a
glue gun; it will not be good-looking, but it will hold.

If your intend to screw your module directly against a conducting part, for example a metallic frame,
insert an isolating layer in between. Otherwise you are bound to induce a short circuit: there are
naked pads under your module. Simple insulating tape should be enough.

4. Assembly and connections

14 www.yoctopuce.com

4.2. Connecting to a tube
The Yocto-Pressure-C is equipped with a 4mm quick coupler to very easily connect a polyethylene
tube, such as widely used in pneumatic techniques, but any tube with a 4mm external diameter will
do. To connect the tube to the Yocto-Pressure-C, simply push the tube in the quick coupler of the
Yocto-Pressure-C. To disconnect the tube, do not forcibly remove it:

1. Make sure the tube is not under pressure
2. Press on the quick coupler ring
3. Remove the tube

Do not force to disconnect the tube

4.3. Moving the sensor away
The Yocto-Pressure-C module is designed so that you can split it into two parts, allowing you to
move away the sensors from the command sub-module. You can split the module by simply breaking
the circuit. However, you will obtain better results if you use a good pincer, or cutting pliers. When
you have split the sub-modules, you can sandpaper the protruding parts without risk.

Wiring under the sub-modules once separated.

Once the module is split into two, you must rewire the sub-modules. Several solutions are available.
You can connect the sub-modules by soldering simple electric wires, but you will obtain a better
result with 1.27 pitch ribbon cable. Consider using solid copper cables, rather than threaded ones:
solid copper cables are somewhat less flexible, but much easier to solder.

Moving the sensors away with a simple ribbon cable.

4. Assembly and connections

www.yoctopuce.com 15

You can also use a ribbon cable equipped with Picoflex connectors. You will obtain a slightly bigger
system, but Picoflex headers are much easier to solder than ribbon cable. Moreover, the result can
be disassembled.

Moving the sensors away with Picoflex connectors.

Warning, divisible Yoctopuce modules very often have very similar connection systems.
Nevertheless, sub-modules from different models are not all compatible. If you connect your Yocto-
Pressure-C sub-module to another type of module such as a Yocto-Meteo for instance, it will not
work, and you run a high risk of damaging your equipment.

4.4. USB power distribution
Although USB means Universal Serial BUS, USB devices are not physically organized as a flat bus
but as a tree, using point-to-point connections. This has consequences on power distribution: to
make it simple, every USB port must supply power to all devices directly or indirectly connected to it.
And USB puts some limits.

In theory, a USB port provides 100mA, and may provide up to 500mA if available and requested by
the device. In the case of a hub without external power supply, 100mA are available for the hub itself,
and the hub should distribute no more than 100mA to each of its ports. This is it, and this is not
much. In particular, it means that in theory, it is not possible to connect USB devices through two
cascaded hubs without external power supply. In order to cascade hubs, it is necessary to use self-
powered USB hubs, that provide a full 500mA to each subport.

In practice, USB would not have been as successful if it was really so picky about power distribution.
As it happens, most USB hub manufacturers have been doing savings by not implementing current
limitation on ports: they simply connect the computer power supply to every port, and declare
themselves as self-powered hub even when they are taking all their power from the USB bus (in
order to prevent any power consumption check in the operating system). This looks a bit dirty, but
given the fact that computer USB ports are usually well protected by a hardware current limitation
around 2000mA, it actually works in every day life, and seldom makes hardware damage.

What you should remember: if you connect Yoctopuce modules through one, or more, USB hub
without external power supply, you have no safe-guard and you depend entirely on your computer
manufacturer attention to provide as much current as possible on the USB ports, and to detect
overloads before they lead to problems or to hardware damages. When modules are not provided
enough current, they may work erratically and create unpredictable bugs. If you want to prevent any
risk, do not cascade hubs without external power supply, and do not connect peripherals requiring
more than 100mA behind a bus-powered hub.

In order to help you controlling and planning overall power consumption for your project, all
Yoctopuce modules include a built-in current sensor that indicates (with 5mA precision) the
consumption of the module on the USB bus.

Note also that the USB cable itself may also cause power supply issues, in particular when the wires
are too thin or when the cable is too long 1. Good cables are usually made using AWG 26 or AWG 28
wires for data lines and AWG 24 wires for power.

1 www.yoctopuce.com/EN/article/usb-cables-size-matters

4. Assembly and connections

16 www.yoctopuce.com

4.5. Electromagnetic compatibility (EMI)
Connection methods to integrate the Yocto-Pressure-C obviously have an impact on the system
overall electromagnetic emissions, and therefore also impact the conformity with international
standards.

When we perform reference measurements to validate the conformity of our products with IEC
CISPR 11, we do not use any enclosure but connect the devices using a shielded USB cable,
compliant with USB 2.0 specifications: the cable shield is connected to both connector shells, and the
total resistance from shell to shell is under 0.6Ω. The USB cable length is 3m, in order to expose one
meter horizontally, one meter vertically and keep the last meter close to the host computer within a
ferrite bead.

If you use a non-shielded USB cable, or an improperly shielded cable, your system will work perfectly
well but you may not remain in conformity with the emission standard. If you are building a system
made of multiple devices connected using 1.27mm pitch connectors, or with a sensor moved away
from the device CPU, you can generally recover the conformity by using a metallic enclosure acting
as an external shield.

Still on the topic of electromagnetic compatibility, the maximum supported length of the USB cable is
3m. In addition to the voltage drop issue mentionned above, using longer wires would require to run
extra tests to assert compatibility with the electromagnetic immunity standards.

www.yoctopuce.com 17

5. Programming, general concepts
The Yoctopuce API was designed to be at the same time simple to use and sufficiently generic for
the concepts used to be valid for all the modules in the Yoctopuce range, and this in all the available
programming languages. Therefore, when you have understood how to drive your Yocto-Pressure-C
with your favorite programming language, learning to use another module, even with a different
language, will most likely take you only a minimum of time.

5.1. Programming paradigm
The Yoctopuce API is object oriented. However, for simplicity's sake, only the basics of object
programming were used. Even if you are not familiar with object programming, it is unlikely that this
will be a hinderance for using Yoctopuce products. Note that you will never need to allocate or
deallocate an object linked to the Yoctopuce API: it is automatically managed.

There is one class per Yoctopuce function type. The name of these classes always starts with a Y
followed by the name of the function, for example YTemperature, YRelay, YPressure, and so on.
There is also a YModule class, dedicated to managing the modules themselves, and finally there is
the static YAPI class, that supervises the global workings of the API and manages low level
communications.

Structure of the Yoctopuce API

The YSensor class
Each Yoctopuce sensor function has its dedicated class: YTemperature to measure the temperature,
YVoltage to measure a voltage, YRelay to drive a relay, etc. However there is a special class that
can do more: YSensor.

5. Programming, general concepts

18 www.yoctopuce.com

The YSensor class is the parent class for all Yoctopuce sensors, and can provide access to any
sensor, regardless of its type. It includes methods to access all common functions. This makes it
easier to create applications that use many different sensors. Moreover, if you create an application
based on YSensor, it will work with all Yoctopuce sensors, even those which do no yet exist.

Programmation
In the Yoctopuce API, priority was put on the ease of access to the module functions by offering the
possibility to make abstractions of the modules implementing them. Therefore, it is quite possible to
work with a set of functions without ever knowing exactly which module are hosting them at the
hardware level. This tremendously simplifies programming projects with a large number of modules.

From the programming stand point, your Yocto-Pressure-C is viewed as a module hosting a given
number of functions. In the API, these functions are objects which can be found independently, in
several ways.

Access to the functions of a module

Access by logical name
Each function can be assigned an arbitrary and persistent logical name: this logical name is stored in
the flash memory of the module, even if this module is disconnected. An object corresponding to an
Xxx function to which a logical name has been assigned can then be directly found with this logical
name and the YXxx.FindXxx method. Note however that a logical name must be unique among all
the connected modules.

Access by enumeration
You can enumerate all the functions of the same type on all the connected modules with the help of
the classic enumeration functions FirstXxx and nextXxxx available for each YXxx class.

Access by hardware name
Each module function has a hardware name, assigned at the factory and which cannot be modified.
The functions of a module can also be found directly with this hardware name and the YXxx.FindXxx
function of the corresponding class.

Difference between Find and First
The YXxx.FindXxxx and YXxx.FirstXxxx methods do not work exactly the same way. If there is no
available module, YXxx.FirstXxxx returns a null value. On the opposite, even if there is no
corresponding module, YXxx.FindXxxx returns a valid object, which is not online but which could
become so if the corresponding module is later connected.

Function handling
When the object corresponding to a function is found, its methods are available in a classic way.
Note that most of these subfunctions require the module hosting the function to be connected in
order to be handled. This is generally not guaranteed, as a USB module can be disconnected after
the control software has started. The isOnline method, available in all the classes, is then very
helpful.

Access to the modules
Even if it is perfectly possible to build a complete project while making a total abstraction of which
function is hosted on which module, the modules themselves are also accessible from the API. In
fact, they can be handled in a way quite similar to the functions. They are assigned a serial number
at the factory which allows you to find the corresponding object with YModule.Find(). You can also
assign arbitrary logical names to the modules to make finding them easier. Finally, the YModule
class contains the YModule.FirstModule() and nextModule() enumeration methods allowing you to list
the connected modules.

5. Programming, general concepts

www.yoctopuce.com 19

Functions/Module interaction
From the API standpoint, the modules and their functions are strongly uncorrelated by design.
Nevertheless, the API provides the possibility to go from one to the other. Thus, the get_module()
method, available for each function class, allows you to find the object corresponding to the module
hosting this function. Inversely, the YModule class provides several methods allowing you to
enumerate the functions available on a module.

5.2. The Yocto-Pressure-C module
The Yocto-Pressure-C device provides one instance of the Altitude function, corresponding to the
estimated altitude, with a sensitivity of about 0.25m. It also provides the measured atmospheric
pressure and temperature.

module : Module

attribute type modifiable ?
productName String read-only
serialNumber String read-only
logicalName String modifiable
productId Hexadecimal number read-only
productRelease Hexadecimal number read-only
firmwareRelease String read-only
persistentSettings Enumerated modifiable
luminosity 0..100% modifiable
beacon On/Off modifiable
upTime Time read-only
usbCurrent Used current (mA) read-only
rebootCountdown Integer modifiable
userVar Integer modifiable

pressure : Pressure

attribute type modifiable ?
logicalName String modifiable
advertisedValue String modifiable
unit String read-only
currentValue Fixed-point number read-only
lowestValue Fixed-point number modifiable
highestValue Fixed-point number modifiable
currentRawValue Fixed-point number read-only
logFrequency Frequency modifiable
reportFrequency Frequency modifiable
advMode Enumerated modifiable
calibrationParam Calibration parameters modifiable
resolution Fixed-point number modifiable
sensorState Integer read-only

temperature : Temperature

attribute type modifiable ?
logicalName String modifiable
advertisedValue String modifiable
unit String modifiable
currentValue Fixed-point number read-only
lowestValue Fixed-point number modifiable
highestValue Fixed-point number modifiable
currentRawValue Fixed-point number read-only
logFrequency Frequency modifiable

5. Programming, general concepts

20 www.yoctopuce.com

reportFrequency Frequency modifiable
advMode Enumerated modifiable
calibrationParam Calibration parameters modifiable
resolution Fixed-point number modifiable
sensorState Integer read-only
sensorType Enumerated modifiable
signalValue Fixed-point number read-only
signalUnit String read-only
command String modifiable

dataLogger : DataLogger

attribute type modifiable ?
logicalName String modifiable
advertisedValue String modifiable
currentRunIndex Integer read-only
timeUTC UTC time modifiable
recording Enumerated modifiable
autoStart On/Off modifiable
beaconDriven On/Off modifiable
usage 0..100% read-only
clearHistory Boolean modifiable

5.3. Module
Global parameters control interface for all Yoctopuce devices

The YModule class can be used with all Yoctopuce USB devices. It can be used to control the
module global parameters, and to enumerate the functions provided by each module.

productName
Character string containing the commercial name of the module, as set by the factory.

serialNumber
Character string containing the serial number, unique and programmed at the factory. For a Yocto-
Pressure-C module, this serial number always starts with PRSSMK1C. You can use the serial
number to access a given module by software.

logicalName
Character string containing the logical name of the module, initially empty. This attribute can be
modified at will by the user. Once initialized to an non-empty value, it can be used to access a given
module. If two modules with the same logical name are in the same project, there is no way to
determine which one answers when one tries accessing by logical name. The logical name is limited
to 19 characters among A..Z,a..z,0..9,_, and -.

productId
USB device identifier of the module, preprogrammed to 236 at the factory.

productRelease
Release number of the module hardware, preprogrammed at the factory. The original hardware
release returns value 1, revision B returns value 2, and so on.

firmwareRelease
Release version of the embedded firmware, changes each time the embedded software is updated.

5. Programming, general concepts

www.yoctopuce.com 21

persistentSettings
State of persistent module settings: loaded from flash memory, modified by the user or saved to flash
memory.

luminosity
Lighting strength of the informative leds (e.g. the Yocto-Led) contained in the module. It is an integer
value which varies between 0 (LEDs turned off) and 100 (maximum led intensity). The default value
is 50. To change the strength of the module LEDs, or to turn them off completely, you only need to
change this value.

beacon
Activity of the localization beacon of the module.

upTime
Time elapsed since the last time the module was powered on.

usbCurrent
Current consumed by the module on the USB bus, in milli-amps.

rebootCountdown
Countdown to use for triggering a reboot of the module.

userVar
32bit integer variable available for user storage.

5.4. Pressure
pressure sensor control interface, available for instance in the Yocto-Altimeter-V2, the Yocto-CO2-
V2, the Yocto-Meteo-V2 or the Yocto-Pressure

The YPressure class allows you to read and configure Yoctopuce pressure sensors. It inherits
from YSensor class the core functions to read measurements, to register callback functions, and to
access the autonomous datalogger.

logicalName
Character string containing the logical name of the pressure sensor, initially empty. This attribute can
be modified at will by the user. Once initialized to an non-empty value, it can be used to access the
pressure sensor directly. If two pressure sensors with the same logical name are used in the same
project, there is no way to determine which one answers when one tries accessing by logical name.
The logical name is limited to 19 characters among A..Z,a..z,0..9,_, and -.

advertisedValue
Short character string summarizing the current state of the pressure sensor, that is automatically
advertised up to the parent hub. For a pressure sensor, the advertised value is the current value of
the pressure.

unit
Short character string representing the measuring unit for the pressure.

currentValue
Current value of the pressure, in millibar (hPa), as a floating point number.

lowestValue
Minimal value of the pressure, in millibar (hPa), as a floating point number.

5. Programming, general concepts

22 www.yoctopuce.com

highestValue
Maximal value of the pressure, in millibar (hPa), as a floating point number.

currentRawValue
Uncalibrated, unrounded raw value returned by the sensor, as a floating point number.

logFrequency
Datalogger recording frequency, or "OFF" when measures should not be stored in the data logger
flash memory.

reportFrequency
Timed value notification frequency, or "OFF" when timed value notifications are disabled for this
function.

advMode
Measuring mode for the advertised value pushed to the parent hub.

calibrationParam
Extra calibration parameters (for instance to compensate for the effects of an enclosure), as an array
of 16 bit words.

resolution
Measure resolution (i.e. precision of the numeric representation, not necessarily of the measure
itself).

sensorState
Sensor state (zero when a current measure is available).

5.5. Temperature
temperature sensor control interface, available for instance in the Yocto-Meteo-V2, the Yocto-PT100,
the Yocto-Temperature or the Yocto-Thermocouple

The YTemperature class allows you to read and configure Yoctopuce temperature sensors. It
inherits from YSensor class the core functions to read measurements, to register callback functions,
and to access the autonomous datalogger. This class adds the ability to configure some specific
parameters for some sensors (connection type, temperature mapping table).

logicalName
Character string containing the logical name of the temperature sensor, initially empty. This attribute
can be modified at will by the user. Once initialized to an non-empty value, it can be used to access
the temperature sensor directly. If two temperature sensors with the same logical name are used in
the same project, there is no way to determine which one answers when one tries accessing by
logical name. The logical name is limited to 19 characters among A..Z,a..z,0..9,_, and -.

advertisedValue
Short character string summarizing the current state of the temperature sensor, that is automatically
advertised up to the parent hub. For a temperature sensor, the advertised value is the current value
of the temperature.

unit
Short character string representing the measuring unit for the temperature.

5. Programming, general concepts

www.yoctopuce.com 23

currentValue
Current value of the temperature, in Celsius, as a floating point number.

lowestValue
Minimal value of the temperature, in Celsius, as a floating point number.

highestValue
Maximal value of the temperature, in Celsius, as a floating point number.

currentRawValue
Uncalibrated, unrounded raw value returned by the sensor, as a floating point number.

logFrequency
Datalogger recording frequency, or "OFF" when measures should not be stored in the data logger
flash memory.

reportFrequency
Timed value notification frequency, or "OFF" when timed value notifications are disabled for this
function.

advMode
Measuring mode for the advertised value pushed to the parent hub.

calibrationParam
Extra calibration parameters (for instance to compensate for the effects of an enclosure), as an array
of 16 bit words.

resolution
Measure resolution (i.e. precision of the numeric representation, not necessarily of the measure
itself).

sensorState
Sensor state (zero when a current measure is available).

sensorType
Thermal sensor type used in the device, this can be a digital sensor, a specific type for a
thermocouple, a PT100, a thermistor or a IR sensor

signalValue
Current value of the electrical signal measured by the sensor (except for digital sensors) as a floating
point number.

signalUnit
Short character string representing the measuring unit of the electrical signal used by the sensor.

command
Magic attribute used to set up physical sensor parameters.

5.6. DataLogger
DataLogger control interface, available on most Yoctopuce sensors.

5. Programming, general concepts

24 www.yoctopuce.com

A non-volatile memory for storing ongoing measured data is available on most Yoctopuce sensors.
Recording can happen automatically, without requiring a permanent connection to a computer. The
YDataLogger class controls the global parameters of the internal data logger. Recording control
(start/stop) as well as data retrieval is done at sensor objects level.

logicalName
Character string containing the logical name of the data logger, initially empty. This attribute can be
modified at will by the user. Once initialized to an non-empty value, it can be used to access the data
logger directly. If two data loggers with the same logical name are used in the same project, there is
no way to determine which one answers when one tries accessing by logical name. The logical name
is limited to 19 characters among A..Z,a..z,0..9,_, and -.

advertisedValue
Short character string summarizing the current state of the data logger, that is automatically
advertised up to the parent hub. For a data logger, the advertised value is its recording state (ON or
OFF).

currentRunIndex
Current run number, corresponding to the number of time the module was powered on with the
dataLogger enabled at some point.

timeUTC
Current UTC time, in case it is desirable to bind an absolute time reference to the data stored by the
data logger. This time must be set up by software.

recording
Activation state of the data logger. The data logger can be enabled and disabled at will, using this
attribute, but its state on power on is determined by the autoStart persistent attribute. When the
datalogger is enabled but not yet ready to record data, its state is set to PENDING.

autoStart
Automatic start of the data logger on power on. Setting this attribute ensures that the data logger is
always turned on when the device is powered up, without need for a software command. Note: if the
device doesn't have any time source at his disposal, it will wait for ~8 seconds before automatically
starting to record.

beaconDriven
Synchronize the sate of the localization beacon and the state of the data logger. If this attribute is set,
it is possible to start the recording with the Yocto-button or the attribute beacon of the function
YModule. In the same way, if the attribute recording is changed, the sate of the localization
beacon is updated. Note: when this attribute is set the localization beacon pulses at a slower rate
than usual.

usage
Percentage of datalogger memory in use.

clearHistory
Attribute that can be set to true to clear recorded data.

5.7. What interface: Native, DLL or Service ?
There are several methods to control you Yoctopuce module by software.

5. Programming, general concepts

www.yoctopuce.com 25

Native control
In this case, the software driving your project is compiled directly with a library which provides control
of the modules. Objectively, it is the simplest and most elegant solution for the end user. The end
user then only needs to plug the USB cable and run your software for everything to work.
Unfortunately, this method is not always available or even possible.

The application uses the native library to control the locally connected module

Native control by DLL
Here, the main part of the code controlling the modules is located in a DLL. The software is compiled
with a small library which provides control of the DLL. It is the fastest method to code module support
in a given language. Indeed, the "useful" part of the control code is located in the DLL which is the
same for all languages: the effort to support a new language is limited to coding the small library
which controls the DLL. From the end user stand point, there are few differences: one must simply
make sure that the DLL is installed on the end user's computer at the same time as the main
software.

The application uses the DLL to natively control the locally connected module

Control by service
Some languages do simply not allow you to easily gain access to the hardware layers of the
machine. It is the case for Javascript, for instance. To deal with this case, Yoctopuce provides a
solution in the form of a small piece of software called VirtualHub1. It can access the modules, and
your application only needs to use a library which offers all necessary functions to control the
modules via this VirtualHub. The end users will have to start VirtualHub before running the project
control software itself, unless they decide to install the hub as a service/deamon, in which case
VirtualHub starts automatically when the machine starts up.

1 www.yoctopuce.com/EN/virtualhub.php

5. Programming, general concepts

26 www.yoctopuce.com

The application connects itself to VirtualHub to gain access to the module

The service control method comes with a non-negligible advantage: the application does not need to
run on the machine on which the modules are connected. The application can very well be located
on another machine which connects itself to the service to drive the modules. Moreover, the native
libraries and DLL mentioned above are also able to connect themselves remotely to one or several
machines running VirtualHub.

When VirtualHub is used, the control application does not need to reside on the same machine as the module.

Whatever the selected programming language and the control paradigm used, programming itself
stays strictly identical. From one language to another, functions bear exactly the same name, and
have the same parameters. The only differences are linked to the constraints of the languages
themselves.

Language Native Native with DLL VirtualHub
Command line ✔ - ✔
Python - ✔ ✔
C++ ✔ ✔ ✔
C# .Net - ✔ ✔
C# UWP ✔ - ✔
LabVIEW - ✔ ✔
Java - ✔ ✔
Java for Android ✔ - ✔
TypeScript - - ✔
JavaScript / ECMAScript - - ✔
PHP - - ✔
VisualBasic .Net - ✔ ✔
Delphi - ✔ ✔
Objective-C ✔ - ✔

Support methods for different languages

5. Programming, general concepts

www.yoctopuce.com 27

5.8. Accessing modules through a hub
VirtualHub to work around USB access limitation
Only one application at a given time can have native access to Yoctopuce devices. This limitation is
related to the fact that two different processes cannot talk to a USB device at the same time. Usually,
this kind of problem is solved by a driver that takes care of the police work to prevent multiple
processes fighting over the same device. But Yoctopuce products do not use drivers. Therefore, the
first process that manages to access the native mode keeps it for itself until UnregisterHub or
FreeApi is called.

If your application tries to communicate in native mode with Yoctopuce devices, but that another
application prevents you from accessing them, you receive the following error message:

Another process is already using yAPI

The solution is to use VirtualHub locally on your machine and to use it as a gateway for your
applications. In this way, if all your applications use VirtualHub, you do not have conflicts anymore
and you can access all your devices all the time.

With a YoctoHub
A YoctoHub behaves itself exactly like a computer running VirtualHub. The only difference between a
program using the Yoctopuce API with modules in native USB and the same program with
Yoctopuce modules connected to a YoctoHub is located at the level of the RegisterHub function
call. To use USB modules connected natively, the RegisterHub parameter is usb. To use
modules connected to a YoctoHub, you must simply replace this parameter by the IP address of the
YoctoHub.

So there are three possible modes: native mode, network mode via VirtualHub on your local
machine, or via a YoctoHub. To switch from native to network mode on your local machine, you only
need to change the parameter when calling YAPI.RegisterHub, as shown in the examples
below:

YAPI.RegisterHub("usb",errmsg); // native USB mode

YAPI.RegisterHub("127.0.0.1",errmsg); // local network mode with VirtualHub

YAPI.RegisterHub("192.168.0.10",errmsg); // YoctoHub mode, with 192.168.0.10 as YoctoHub IP
address

5.9. Programming, where to start?
At this point of the user's guide, you should know the main theoretical points of your Yocto-Pressure-
C. It is now time to practice. You must download the Yoctopuce library for your favorite programming
language from the Yoctopuce web site2. Then skip directly to the chapter corresponding to the
chosen programming language.

All the examples described in this guide are available in the programming libraries. For some
languages, the libraries also include some complete graphical applications, with their source code.

When you have mastered the basic programming of your module, you can turn to the chapter on
advanced programming that describes some techniques that will help you make the most of your
Yocto-Pressure-C.

2 http://www.yoctopuce.com/EN/libraries.php

28 www.yoctopuce.com

www.yoctopuce.com 29

6. Using the Yocto-Pressure-C in command line
When you want to perform a punctual operation on your Yocto-Pressure-C, such as reading a value,
assigning a logical name, and so on, you can obviously use VirtualHub, but there is a simpler, faster,
and more efficient method: the command line API.

The command line API is a set of executables, one by type of functionality offered by the range of
Yoctopuce products. These executables are provided pre-compiled for all the Yoctopuce officially
supported platforms/OS. Naturally, the executable sources are also provided1.

6.1. Installing
Download the command line API2. You do not need to run any setup, simply copy the executables
corresponding to your platform/OS in a directory of your choice. You may add this directory to your
PATH variable to be able to access these executables from anywhere. You are all set, you only need
to connect your Yocto-Pressure-C, open a shell, and start working by typing for example:

C:\>YPressure any get_currentValue

To use the command line API on Linux, you need either have root privileges or to define an udev rule
for your system. See the Troubleshooting chapter for more details.

6.2. Use: general description
All the command line API executables work on the same principle. They must be called the following
way

C:\>Executable [options] [target] command [parameter]

[options] manage the global workings of the commands, they allow you, for instance, to pilot a
module remotely through the network, or to force the module to save its configuration after executing
the command.

[target] is the name of the module or of the function to which the command applies. Some very
generic commands do not need a target. You can also use the aliases "any" and "all", or a list of
names separated by comas without space.

1 If you want to recompile the command line API, you also need the C++ API.
2 http://www.yoctopuce.com/EN/libraries.php

6. Using the Yocto-Pressure-C in command line

30 www.yoctopuce.com

command is the command you want to run. Almost all the functions available in the classic
programming APIs are available as commands. You need to respect neither the case nor the
underlined characters in the command name.

[parameters] are logically the parameters needed by the command.

At any time, the command line API executables can provide a rather detailed help. Use for instance:

C:\>executable /help

to know the list of available commands for a given command line API executable, or even:

C:\>executable command /help

to obtain a detailed description of the parameters of a command.

6.3. Control of the Pressure function
To control the Pressure function of your Yocto-Pressure-C, you need the YPressure executable file.

For instance, you can launch:

C:\>YPressure any get_currentValue

This example uses the "any" target to indicate that we want to work on the first Pressure function
found among all those available on the connected Yoctopuce modules when running. This prevents
you from having to know the exact names of your function and of your module.

But you can use logical names as well, as long as you have configured them beforehand. Let us
imagine a Yocto-Pressure-C module with the PRSSMK1C-123456 serial number which you have
called "MyModule", and its pressure function which you have renamed "MyFunction". The five
following calls are strictly equivalent (as long as MyFunction is defined only once, to avoid any
ambiguity).

C:\>YPressure PRSSMK1C-123456.pressure describe

C:\>YPressure PRSSMK1C-123456.MyFunction describe

C:\>YPressure MyModule.pressure describe

C:\>YPressure MyModule.MyFunction describe

C:\>YPressure MyFunction describe

To work on all the Pressure functions at the same time, use the "all" target.

C:\>YPressure all describe

For more details on the possibilities of the YPressure executable, use:

C:\>YPressure /help

6.4. Control of the module part
Each module can be controlled in a similar way with the help of the YModule executable. For
example, to obtain the list of all the connected modules, use:

C:\>YModule inventory

6. Using the Yocto-Pressure-C in command line

www.yoctopuce.com 31

You can also use the following command to obtain an even more detailed list of the connected
modules:

C:\>YModule all describe

Each xxx property of the module can be obtained thanks to a command of the get_xxxx() type,
and the properties which are not read only can be modified with the set_xxx() command. For
example:

C:\>YModule PRSSMK1C-12346 set_logicalName MonPremierModule

C:\>YModule PRSSMK1C-12346 get_logicalName

Changing the settings of the module

When you want to change the settings of a module, simply use the corresponding set_xxx
command. However, this change happens only in the module RAM: if the module restarts, the
changes are lost. To store them permanently, you must tell the module to save its current
configuration in its nonvolatile memory. To do so, use the saveToFlash command. Inversely, it is
possible to force the module to forget its current settings by using the revertFromFlash method.
For example:

C:\>YModule PRSSMK1C-12346 set_logicalName MonPremierModule
C:\>YModule PRSSMK1C-12346 saveToFlash

Note that you can do the same thing in a single command with the -s option.

C:\>YModule -s PRSSMK1C-12346 set_logicalName MonPremierModule

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash() function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

6.5. Limitations
The command line API has the same limitation than the other APIs: there can be only one application
at a given time which can access the modules natively. By default, the command line API works in
native mode.

You can easily work around this limitation by using a Virtual Hub: run VirtualHub3 on the concerned
machine, and use the executables of the command line API with the -r option. For example, if you
use:

C:\>YModule inventory

you obtain a list of the modules connected by USB, using a native access. If another command which
accesses the modules natively is already running, this does not work. But if you run VirtualHub, and
you give your command in the form:

C:\>YModule -r 127.0.0.1 inventory

it works because the command is not executed natively anymore, but through VirtualHub. Note that
VirtualHub counts as a native application.

3 http://www.yoctopuce.com/EN/virtualhub.php

32 www.yoctopuce.com

www.yoctopuce.com 33

7. Using the Yocto-Pressure-C with Python
Python is an interpreted object oriented language developed by Guido van Rossum. Among its
advantages is the fact that it is free, and the fact that it is available for most platforms, Windows as
well as UNIX. It is an ideal language to write small scripts on a napkin. The Yoctopuce library is
compatible with Python 2.7 and 3.x up to the latest official versions. It works under Windows,
macOS, and Linux, Intel as well as ARM. Python interpreters are available on the Python web site1.

7.1. Source files
The Yoctopuce library classes2 for Python that you will use are provided as source files. Copy all the
content of the Sources directory in the directory of your choice and add this directory to the
PYTHONPATH environment variable. If you use an IDE to program in Python, refer to its
documentation to configure it so that it automatically finds the API source files.

7.2. Dynamic library
A section of the low-level library is written in C, but you should not need to interact directly with it: it is
provided as a DLL under Windows, as a .so files under UNIX, and as a .dylib file under macOS.
Everything was done to ensure the simplest possible interaction from Python: the distinct versions of
the dynamic library corresponding to the distinct operating systems and architectures are stored in
the cdll directory. The API automatically loads the correct file during its initialization. You should not
have to worry about it.

If you ever need to recompile the dynamic library, its complete source code is located in the
Yoctopuce C++ library.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

7.3. Control of the Pressure function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a Python code
snipplet to use the Pressure function.

1 http://www.python.org/download/
2 www.yoctopuce.com/EN/libraries.php

7. Using the Yocto-Pressure-C with Python

34 www.yoctopuce.com

[...]
Enable detection of USB devices
errmsg=YRefParam()
YAPI.RegisterHub("usb",errmsg)
[...]

Retrieve the object used to interact with the device
pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure")

Hot-plug is easy: just check that the device is online
if pressure.isOnline():
 # Use pressure.get_currentValue()
 [...]

[...]

Let's look at these lines in more details.

YAPI.RegisterHub
The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPI.SUCCESS and errmsg contains the error message.

YPressure.FindPressure
The YPressure.FindPressure function allows you to find a pressure sensor from the serial
number of the module on which it resides and from its function name. You can use logical names as
well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with serial
number PRSSMK1C-123456 which you have named "MyModule", and for which you have given the
pressure function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure")
pressure = YPressure.FindPressure("PRSSMK1C-123456.MyFunction")
pressure = YPressure.FindPressure("MyModule.pressure")
pressure = YPressure.FindPressure("MyModule.MyFunction")
pressure = YPressure.FindPressure("MyFunction")

YPressure.FindPressure returns an object which you can then use at will to control the
pressure sensor.

isOnline
The isOnline() method of the object returned by YPressure.FindPressure allows you to
know if the corresponding module is present and in working order.

About python imports
This documentation assumes that you are using the Python library downloaded directly from the
Yoctopuce website, but if you are using the library installed with PIP, then you will need to prefix all
imports with yoctopuce.. Meaning all the import examples shown in the documentation, such as:

from yocto_api import *

need to be converted , when the yoctopuce library was installed by PIP, to:

from yoctopuce.yocto_api import *

7. Using the Yocto-Pressure-C with Python

www.yoctopuce.com 35

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

A real example
Launch Python and open the corresponding sample script provided in the directory Examples/Doc-
GettingStarted-Yocto-Pressure-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

#!/usr/bin/python
-*- coding: utf-8 -*-
import os, sys

from yocto_api import *
from yocto_pressure import *

def usage():
 scriptname = os.path.basename(sys.argv[0])
 print("Usage:")
 print(scriptname + ' <serial_number>')
 print(scriptname + ' <logical_name>')
 print(scriptname + ' any ')
 sys.exit()

def die(msg):
 sys.exit(msg + ' (check USB cable)')

errmsg = YRefParam()

if len(sys.argv) < 2:
 usage()

target = sys.argv[1]

Setup the API to use local USB devices
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
 sys.exit("init error" + errmsg.value)

if target == 'any':
 # retreive any pressure sensor
 sensor = YPressure.FirstPressure()
 if sensor is None:
 die('No module connected')
else:
 sensor = YPressure.FindPressure(target + '.pressure')

if not (sensor.isOnline()):
 die('device not connected')

while sensor.isOnline():
 print("Pressure : " + "%2.1f" % sensor.get_currentValue() + "mbar (Ctrl-C to stop)")
 YAPI.Sleep(1000)
YAPI.FreeAPI()

7.4. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#!/usr/bin/python
-*- coding: utf-8 -*-
import os, sys

7. Using the Yocto-Pressure-C with Python

36 www.yoctopuce.com

from yocto_api import *

def usage():
 sys.exit("usage: demo <serial or logical name> [ON/OFF]")

errmsg = YRefParam()
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
 sys.exit("RegisterHub error: " + str(errmsg))

if len(sys.argv) < 2:
 usage()

m = YModule.FindModule(sys.argv[1]) # # use serial or logical name

if m.isOnline():
 if len(sys.argv) > 2:
 if sys.argv[2].upper() == "ON":
 m.set_beacon(YModule.BEACON_ON)
 if sys.argv[2].upper() == "OFF":
 m.set_beacon(YModule.BEACON_OFF)

 print("serial: " + m.get_serialNumber())
 print("logical name: " + m.get_logicalName())
 print("luminosity: " + str(m.get_luminosity()))
 if m.get_beacon() == YModule.BEACON_ON:
 print("beacon: ON")
 else:
 print("beacon: OFF")
 print("upTime: " + str(m.get_upTime() / 1000) + " sec")
 print("USB current: " + str(m.get_usbCurrent()) + " mA")
 print("logs:\n" + m.get_lastLogs())
else:
 print(sys.argv[1] + " not connected (check identification and USB cable)")
YAPI.FreeAPI()

Each property xxx of the module can be read thanks to a method of type YModule.get_xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set_xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
YModule.set_xxx() function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash() method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash() method.
The short example below allows you to modify the logical name of a module.

#!/usr/bin/python
-*- coding: utf-8 -*-
import os, sys

from yocto_api import *

def usage():
 sys.exit("usage: demo <serial or logical name> <new logical name>")

if len(sys.argv) != 3:
 usage()

errmsg = YRefParam()
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
 sys.exit("RegisterHub error: " + str(errmsg))

m = YModule.FindModule(sys.argv[1]) # use serial or logical name
if m.isOnline():
 newname = sys.argv[2]
 if not YAPI.CheckLogicalName(newname):
 sys.exit("Invalid name (" + newname + ")")

7. Using the Yocto-Pressure-C with Python

www.yoctopuce.com 37

 m.set_logicalName(newname)
 m.saveToFlash() # do not forget this
 print("Module: serial= " + m.get_serialNumber() + " / name= " + m.get_logicalName())
else:
 sys.exit("not connected (check identification and USB cable")
YAPI.FreeAPI()

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash() function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the YModule.yFirstModule()
function which returns the first module found. Then, you only need to call the nextModule()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

#!/usr/bin/python
-*- coding: utf-8 -*-
import os, sys

from yocto_api import *

errmsg = YRefParam()

Setup the API to use local USB devices
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
 sys.exit("init error" + str(errmsg))

print('Device list')

module = YModule.FirstModule()
while module is not None:
 print(module.get_serialNumber() + ' (' + module.get_productName() + ')')
 module = module.nextModule()
YAPI.FreeAPI()

7.5. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

7. Using the Yocto-Pressure-C with Python

38 www.yoctopuce.com

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 39

8. Using Yocto-Pressure-C with C++
C++ is not the simplest language to master. However, if you take care to limit yourself to its essential
functionalities, this language can very well be used for short programs quickly coded, and it has the
advantage of being easily ported from one operating system to another. Under Windows, C++ is
supported with Microsoft Visual Studio 2017 and more recent versions. Under macOS, we support
the XCode versions supported by Apple. And under Linux, we support all GCC version published
since 2008. Moreover, under Max OS X and under Linux, you can compile the examples using a
command line with GCC using the provided GNUmakefile. In the same manner under Windows, a
Makefile allows you to compile examples using a command line, fully knowing the compilation and
linking arguments.

Yoctopuce C++ libraries1 are integrally provided as source files. A section of the low-level library is
written in pure C, but you should not need to interact directly with it: everything was done to ensure
the simplest possible interaction from C++. The library is naturally also available as binary files, so
that you can link it directly if you prefer.

You will soon notice that the C++ API defines many functions which return objects. You do not need
to deallocate these objects yourself, the API does it automatically at the end of the application.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface. You will find in the last section of this chapter all the information
needed to create a wholly new project linked with the Yoctopuce libraries.

8.1. Control of the Pressure function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a C++ code
snipplet to use the Pressure function.

#include "yocto_api.h"
#include "yocto_pressure.h"

[...]
// Enable detection of USB devices
String errmsg;
YAPI::RegisterHub("usb", errmsg);
[...]

// Retrieve the object used to interact with the device
YPressure *pressure;

1 www.yoctopuce.com/EN/libraries.php

8. Using Yocto-Pressure-C with C++

40 www.yoctopuce.com

pressure = YPressure::FindPressure("PRSSMK1C-123456.pressure");

// Hot-plug is easy: just check that the device is online
if(pressure->isOnline())
{
 // Use pressure->get_currentValue()
 [...]
}

Let's look at these lines in more details.

yocto_api.h et yocto_pressure.h
These two include files provide access to the functions allowing you to manage Yoctopuce modules.
yocto_api.h must always be used, yocto_pressure.h is necessary to manage modules
containing a pressure sensor, such as Yocto-Pressure-C.

YAPI::RegisterHub
The YAPI::RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPI_SUCCESS and errmsg contains the error message.

YPressure::FindPressure
The YPressure::FindPressure function allows you to find a pressure sensor from the serial
number of the module on which it resides and from its function name. You can use logical names as
well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with serial
number PRSSMK1C-123456 which you have named "MyModule", and for which you have given the
pressure function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

YPressure *pressure = YPressure::FindPressure("PRSSMK1C-123456.pressure");
YPressure *pressure = YPressure::FindPressure("PRSSMK1C-123456.MyFunction");
YPressure *pressure = YPressure::FindPressure("MyModule.pressure");
YPressure *pressure = YPressure::FindPressure("MyModule.MyFunction");
YPressure *pressure = YPressure::FindPressure("MyFunction");

YPressure::FindPressure returns an object which you can then use at will to control the
pressure sensor.

isOnline
The isOnline() method of the object returned by YPressure::FindPressure allows you to
know if the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by yFindPressure provides the
pressure currently measured by the sensor. The value returned is a floating number, equal to the
current number millibar.

A real example
Launch your C++ environment and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-Pressure-C of the Yoctopuce library. If you prefer to work
with your favorite text editor, open the file main.cpp, and type make to build the example when you
are done.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

#include "yocto_api.h"
#include "yocto_pressure.h"
#include <iostream>
#include <stdlib.h>

8. Using Yocto-Pressure-C with C++

www.yoctopuce.com 41

using namespace std;

static void usage(void)
{
 cout << "usage: demo <serial_number> " << endl;
 cout << " demo <logical_name>" << endl;
 cout << " demo any" << endl;
 u64 now = YAPI::GetTickCount();
 while (YAPI::GetTickCount() - now < 3000) {
 // wait 3 sec to show the message
 }
 exit(1);
}

int main(int argc, const char * argv[])
{
 string errmsg, target;
 YPressure *psensor;

 if (argc < 2) {
 usage();
 }
 target = (string) argv[1];

 // Setup the API to use local USB devices
 if (YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
 cerr << "RegisterHub error: " << errmsg << endl;
 return 1;
 }

 if (target == "any") {
 psensor = YPressure::FirstPressure();
 if (psensor == NULL) {
 cout << "No module connected (check USB cable)" << endl;
 return 1;
 }
 } else {
 psensor = YPressure::FindPressure(target + ".pressure");
 }

 while (1) {
 if (!psensor->isOnline()) {
 cout << "Module not connected (check identification and USB cable)";
 break;
 }
 cout << "Current pressure: " << psensor->get_currentValue() << " mbar" << endl;
 cout << " (press Ctrl-C to exit)" << endl;
 YAPI::Sleep(1000, errmsg);
 };
 YAPI::FreeAPI();

 return 0;
}

8.2. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#include <iostream>
#include <stdlib.h>

#include "yocto_api.h"

using namespace std;

static void usage(const char *exe)
{
 cout << "usage: " << exe << " <serial or logical name> [ON/OFF]" << endl;
 exit(1);
}

8. Using Yocto-Pressure-C with C++

42 www.yoctopuce.com

int main(int argc, const char * argv[])
{
 string errmsg;

 // Setup the API to use local USB devices
 if(YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
 cerr << "RegisterHub error: " << errmsg << endl;
 return 1;
 }

 if(argc < 2)
 usage(argv[0]);

 YModule *module = YModule::FindModule(argv[1]); // use serial or logical name

 if (module->isOnline()) {
 if (argc > 2) {
 if (string(argv[2]) == "ON")
 module->set_beacon(Y_BEACON_ON);
 else
 module->set_beacon(Y_BEACON_OFF);
 }
 cout << "serial: " << module->get_serialNumber() << endl;
 cout << "logical name: " << module->get_logicalName() << endl;
 cout << "luminosity: " << module->get_luminosity() << endl;
 cout << "beacon: ";
 if (module->get_beacon() == Y_BEACON_ON)
 cout << "ON" << endl;
 else
 cout << "OFF" << endl;
 cout << "upTime: " << module->get_upTime() / 1000 << " sec" << endl;
 cout << "USB current: " << module->get_usbCurrent() << " mA" << endl;
 cout << "Logs:" << endl << module->get_lastLogs() << endl;
 } else {
 cout << argv[1] << " not connected (check identification and USB cable)"
 << endl;
 }
 YAPI::FreeAPI();
 return 0;
}

Each property xxx of the module can be read thanks to a method of type get_xxxx(), and
properties which are not read-only can be modified with the help of the set_xxx() method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
set_xxx() function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash() method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash() method. The short example below
allows you to modify the logical name of a module.

#include <iostream>
#include <stdlib.h>

#include "yocto_api.h"

using namespace std;

static void usage(const char *exe)
{
 cerr << "usage: " << exe << " <serial> <newLogicalName>" << endl;
 exit(1);
}

int main(int argc, const char * argv[])
{
 string errmsg;

 // Setup the API to use local USB devices

8. Using Yocto-Pressure-C with C++

www.yoctopuce.com 43

 if(YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
 cerr << "RegisterHub error: " << errmsg << endl;
 return 1;
 }

 if(argc < 2)
 usage(argv[0]);

 YModule *module = YModule::FindModule(argv[1]); // use serial or logical name

 if (module->isOnline()) {
 if (argc >= 3) {
 string newname = argv[2];
 if (!yCheckLogicalName(newname)) {
 cerr << "Invalid name (" << newname << ")" << endl;
 usage(argv[0]);
 }
 module->set_logicalName(newname);
 module->saveToFlash();
 }
 cout << "Current name: " << module->get_logicalName() << endl;
 } else {
 cout << argv[1] << " not connected (check identification and USB cable)"
 << endl;
 }
 YAPI::FreeAPI();
 return 0;
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash() function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the yFirstModule() function which
returns the first module found. Then, you only need to call the nextModule() function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

#include <iostream>

#include "yocto_api.h"

using namespace std;

int main(int argc, const char * argv[])
{
 string errmsg;

 // Setup the API to use local USB devices
 if(YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
 cerr << "RegisterHub error: " << errmsg << endl;
 return 1;
 }

 cout << "Device list: " << endl;

 YModule *module = YModule::FirstModule();
 while (module != NULL) {
 cout << module->get_serialNumber() << " ";
 cout << module->get_productName() << endl;
 module = module->nextModule();
 }
 YAPI::FreeAPI();
 return 0;
}

8. Using Yocto-Pressure-C with C++

44 www.yoctopuce.com

8.3. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

8.4. Integration variants for the C++ Yoctopuce library
Depending on your needs and on your preferences, you can integrate the library into your projects in
several distinct manners. This section explains how to implement the different options.

Integration in source format (recommended)
Integrating all the sources of the library into your projects has several advantages:

• It guaranties the respect of the compilation conventions of your project (32/64 bits, inclusion of
debugging symbols, unicode or ASCII characters, etc.);

• It facilitates debugging if you are looking for the cause of a problem linked to the Yoctopuce
library;

• It reduces the dependencies on third party components, for example in the case where you
would need to recompile this project for another architecture in many years;

8. Using Yocto-Pressure-C with C++

www.yoctopuce.com 45

• It does not require the installation of a dynamic library specific to Yoctopuce on the final
system, everything is in the executable.

To integrate the source code, the easiest way is to simply include the Sources directory of your
Yoctopuce library into your IncludePath, and to add all the files of this directory (including the sub-
directory yapi) to your project.

For your project to build correctly, you need to link with your project the prerequisite system libraries,
that is:

• For Windows: the libraries are added automatically
• For macOS: IOKit.framework and CoreFoundation.framework
• For Linux: libm, libpthread, libusb1.0, and libstdc++

Integration as a static library
With the integration of the Yoctopuce library as a static library, you do not need to install a dynamic
library specific to Yoctopuce, everything is in the executable.

To use the static library, you must first compile it using the shell script build.sh on UNIX, or
build.bat on Windows. This script, located in the root directory of the library, detects the OS and
recompiles all the corresponding libraries as well as the examples.

Then, to integrate the static Yoctopuce library to your project, you must include the Sources
directory of the Yoctopuce library into your IncludePath, and add the sub-directory Binaries/...
corresponding to your operating system into your libPath.

Finally, for you project to build correctly, you need to link with your project the Yoctopuce library and
the prerequisite system libraries:

• For Windows: yocto-static.lib
• For macOS: libyocto-static.a, IOKit.framework, and CoreFoundation.framework
• For Linux: libyocto-static.a, libm, libpthread, libusb1.0, and libstdc++.

Note, under Linux, if you wish to compile in command line with GCC, it is generally advisable to link
system libraries as dynamic libraries, rather than as static ones. To mix static and dynamic libraries
on the same command line, you must pass the following arguments:

gcc (...) -Wl,-Bstatic -lyocto-static -Wl,-Bdynamic -lm -lpthread -lusb-1.0 -lstdc++

Integration as a dynamic library
Integration of the Yoctopuce library as a dynamic library allows you to produce an executable smaller
than with the two previous methods, and to possibly update this library, if a patch reveals itself
necessary, without needing to recompile the source code of the application. On the other hand, it is
an integration mode which systematically requires you to copy the dynamic library on the target
machine where the application will run (yocto.dll for Windows, libyocto.so.1.0.1 for macOS and
Linux).

To use the dynamic library, you must first compile it using the shell script build.sh on UNIX, or
build.bat on Windows. This script, located in the root directory of the library, detects the OS and
recompiles all the corresponding libraries as well as the examples.

Then, To integrate the dynamic Yoctopuce library to your project, you must include the Sources
directory of the Yoctopuce library into your IncludePath, and add the sub-directory Binaries/...
corresponding to your operating system into your LibPath.

Finally, for you project to build correctly, you need to link with your project the dynamic Yoctopuce
library and the prerequisite system libraries:

• For Windows: yocto.lib

8. Using Yocto-Pressure-C with C++

46 www.yoctopuce.com

• For macOS: libyocto, IOKit.framework, and CoreFoundation.framework
• For Linux: libyocto, libm, libpthread, libusb1.0, and libstdc++.

With GCC, the command line to compile is simply:

gcc (...) -lyocto -lm -lpthread -lusb-1.0 -lstdc++

www.yoctopuce.com 47

9. Using Yocto-Pressure-C with C#
C# (pronounced C-Sharp) is an object-oriented programming language promoted by Microsoft, it is
somewhat similar to Java. Like Visual-Basic and Delphi, it allows you to create Windows applications
quite easily. C# is supported under Windows Visual Studio 2017 and its more recent versions.

Our programming library is also compatible with Mono, the open source version of C# that also works
on Linux and macOS. Under Linux, use Mono version 5.20 or more recent. Under macOS, support is
limited to 32bit systems, which makes it virtually useless nowadays. You will find on our web site
various articles that describe how to configure Mono to use our library.

9.1. Installation
Download the Visual C# Yoctopuce library from the Yoctopuce web site1. There is no setup program,
simply copy the content of the zip file into the directory of your choice. You mostly need the content
of the Sources directory. The other directories contain the documentation and a few sample
programs. All sample projects are Visual C# 2010, projects, if you are using a previous version, you
may have to recreate the projects structure from scratch.

9.2. Using the Yoctopuce API in a Visual C# project
The Visual C#.NET Yoctopuce library is composed of a DLL and of source files in Visual C#. The
DLL is not a .NET DLL, but a classic DLL, written in C, which manages the low level communications
with the modules2. The source files in Visual C# manage the high level part of the API. Therefore,
your need both this DLL and the .cs files of the sources directory to create a project managing
Yoctopuce modules.

Configuring a Visual C# project
The following indications are provided for Visual Studio Express 2010, but the process is similar for
other versions. Start by creating your project. Then, on the Solution Explorer panel, right click on your
project, and select "Add" and then "Add an existing item".

A file selection window opens. Select the yocto_api.cs file and the files corresponding to the
functions of the Yoctopuce modules that your project is going to manage. If in doubt, select all the
files.

1 www.yoctopuce.com/EN/libraries.php
2 The sources of this DLL are available in the C++ API

9. Using Yocto-Pressure-C with C#

48 www.yoctopuce.com

You then have the choice between simply adding these files to your project, or to add them as links
(the Add button is in fact a scroll-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply keeps a link on the original files. We
recommend you to use links, which makes updates of the library much easier.

Then add in the same manner the yapi.dll DLL, located in the Sources/dll directory3. Then,
from the Solution Explorer window, right click on the DLL, select Properties and in the Properties
panel, set the Copy to output folder to always. You are now ready to use your Yoctopuce modules
from Visual Studio.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

9.3. Control of the Pressure function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a C# code
snipplet to use the Pressure function.

[...]
// Enable detection of USB devices
string errmsg ="";
YAPI.RegisterHub("usb", errmsg);
[...]

// Retrieve the object used to interact with the device
YPressure pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure");

// Hot-plug is easy: just check that the device is online
if (pressure.isOnline())
{
 // Use pressure.get_currentValue()
 [...]
}

Let's look at these lines in more details.

YAPI.RegisterHub
The YAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPI.SUCCESS and errmsg contains the error message.

YPressure.FindPressure
The YPressure.FindPressure function allows you to find a pressure sensor from the serial
number of the module on which it resides and from its function name. You can use logical names as
well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with serial
number PRSSMK1C-123456 which you have named "MyModule", and for which you have given the
pressure function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure");
pressure = YPressure.FindPressure("PRSSMK1C-123456.MyFunction");
pressure = YPressure.FindPressure("MyModule.pressure");
pressure = YPressure.FindPressure("MyModule.MyFunction");
pressure = YPressure.FindPressure("MyFunction");

YPressure.FindPressure returns an object which you can then use at will to control the
pressure sensor.

3 Remember to change the filter of the selection window, otherwise the DLL will not show.

9. Using Yocto-Pressure-C with C#

www.yoctopuce.com 49

isOnline
The isOnline() method of the object returned by YPressure.FindPressure allows you to
know if the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

A real example
Launch Microsoft Visual C# and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-Pressure-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void usage()
 {
 string execname = System.AppDomain.CurrentDomain.FriendlyName;
 Console.WriteLine("Usage:");
 Console.WriteLine(execname + " <serial_number>");
 Console.WriteLine(execname + " <logical_name>");
 Console.WriteLine(execname + " any ");
 System.Threading.Thread.Sleep(2500);
 Environment.Exit(0);
 }

 static void Main(string[] args)
 {
 string errmsg = "";
 string target;

 YPressure psensor;

 if (args.Length < 1) usage();
 target = args[0].ToUpper();

 // Setup the API to use local USB devices
 if (YAPI.RegisterHub("usb", ref errmsg) != YAPI.SUCCESS) {
 Console.WriteLine("RegisterHub error: " + errmsg);
 Environment.Exit(0);
 }

 if (target == "ANY") {
 psensor = YPressure.FirstPressure();

 if (psensor == null) {
 Console.WriteLine("No module connected (check USB cable) ");
 Environment.Exit(0);
 }
 } else {
 psensor = YPressure.FindPressure(target + ".pressure");
 }

 if (!psensor.isOnline()) {
 Console.WriteLine("Module not connected");
 Console.WriteLine("check identification and USB cable");
 Environment.Exit(0);
 }

 while (psensor.isOnline()) {
 Console.WriteLine("Current pressure: " + psensor.get_currentValue().ToString()

9. Using Yocto-Pressure-C with C#

50 www.yoctopuce.com

 + " mbar");
 Console.WriteLine(" (press Ctrl-C to exit)");

 YAPI.Sleep(1000, ref errmsg);
 }
 YAPI.FreeAPI();
 }
 }
}

9.4. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void usage()
 {
 string execname = System.AppDomain.CurrentDomain.FriendlyName;
 Console.WriteLine("Usage:");
 Console.WriteLine(execname + " <serial or logical name> [ON/OFF]");
 System.Threading.Thread.Sleep(2500);
 Environment.Exit(0);
 }

 static void Main(string[] args)
 {
 YModule m;
 string errmsg = "";

 if (YAPI.RegisterHub("usb", ref errmsg) != YAPI.SUCCESS) {
 Console.WriteLine("RegisterHub error: " + errmsg);
 Environment.Exit(0);
 }

 if (args.Length < 1) usage();

 m = YModule.FindModule(args[0]); // use serial or logical name

 if (m.isOnline()) {
 if (args.Length >= 2) {
 if (args[1].ToUpper() == "ON") {
 m.set_beacon(YModule.BEACON_ON);
 }
 if (args[1].ToUpper() == "OFF") {
 m.set_beacon(YModule.BEACON_OFF);
 }
 }

 Console.WriteLine("serial: " + m.get_serialNumber());
 Console.WriteLine("logical name: " + m.get_logicalName());
 Console.WriteLine("luminosity: " + m.get_luminosity().ToString());
 Console.Write("beacon: ");
 if (m.get_beacon() == YModule.BEACON_ON)
 Console.WriteLine("ON");
 else
 Console.WriteLine("OFF");
 Console.WriteLine("upTime: " + (m.get_upTime() / 1000).ToString() + " sec");
 Console.WriteLine("USB current: " + m.get_usbCurrent().ToString() + " mA");
 Console.WriteLine("Logs:\r\n" + m.get_lastLogs());

 } else {
 Console.WriteLine(args[0] + " not connected (check identification and USB cable)");
 }

9. Using Yocto-Pressure-C with C#

www.yoctopuce.com 51

 YAPI.FreeAPI();
 }
 }
}

Each property xxx of the module can be read thanks to a method of type YModule.get_xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set_xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
YModule.set_xxx() function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash() method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash() method.
The short example below allows you to modify the logical name of a module.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void usage()
 {
 string execname = System.AppDomain.CurrentDomain.FriendlyName;
 Console.WriteLine("Usage:");
 Console.WriteLine("usage: demo <serial or logical name> <new logical name>");
 System.Threading.Thread.Sleep(2500);
 Environment.Exit(0);
 }

 static void Main(string[] args)
 {
 YModule m;
 string errmsg = "";
 string newname;

 if (args.Length != 2) usage();

 if (YAPI.RegisterHub("usb", ref errmsg) != YAPI.SUCCESS) {
 Console.WriteLine("RegisterHub error: " + errmsg);
 Environment.Exit(0);
 }

 m = YModule.FindModule(args[0]); // use serial or logical name

 if (m.isOnline()) {
 newname = args[1];
 if (!YAPI.CheckLogicalName(newname)) {
 Console.WriteLine("Invalid name (" + newname + ")");
 Environment.Exit(0);
 }

 m.set_logicalName(newname);
 m.saveToFlash(); // do not forget this

 Console.Write("Module: serial= " + m.get_serialNumber());
 Console.WriteLine(" / name= " + m.get_logicalName());
 } else {
 Console.Write("not connected (check identification and USB cable");
 }
 YAPI.FreeAPI();
 }
 }
}

9. Using Yocto-Pressure-C with C#

52 www.yoctopuce.com

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash() function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the YModule.yFirstModule()
function which returns the first module found. Then, you only need to call the nextModule()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 YModule m;
 string errmsg = "";

 if (YAPI.RegisterHub("usb", ref errmsg) != YAPI.SUCCESS) {
 Console.WriteLine("RegisterHub error: " + errmsg);
 Environment.Exit(0);
 }

 Console.WriteLine("Device list");
 m = YModule.FirstModule();
 while (m != null) {
 Console.WriteLine(m.get_serialNumber() + " (" + m.get_productName() + ")");
 m = m.nextModule();
 }
 YAPI.FreeAPI();
 }
 }
}

9.5. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.

9. Using Yocto-Pressure-C with C#

www.yoctopuce.com 53

• If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

54 www.yoctopuce.com

www.yoctopuce.com 55

10. Using the Yocto-Pressure-C with LabVIEW
LabVIEW is edited by National Instruments since 1986. It is a graphic development environment:
rather than writing lines of code, the users draw their programs, somewhat like a flow chart.
LabVIEW was designed mostly to interface measuring tools, hence the Virtual Instruments name for
LabVIEW programs. With visual programming, drawing complex algorithms becomes quickly
fastidious. The LabVIEW Yoctopuce library was thus designed to make it as easy to use as possible.
In other words, LabVIEW being an environment extremely different from other languages supported
by Yoctopuce, there are major differences between the LabVIEW API and the other APIs.

10.1. Architecture
The LabVIEW library is based on the Yoctopuce DotNetProxy library contained in the
DotNetProxyLibrary.dll DLL. In fact, it is this DotNetProxy library which takes care or most of the work
by relying on the C# library which, in turn, uses the low level library coded in yapi.dll (32bits) and
amd64\yapi.dll(64bits).

LabVIEW Yoctopuce API architecture

You must therefore imperatively distribute the DotNetProxyLibrary.dll, yapi.dll, and amd64\yapi.dll
with your LabVIEW applications using the Yoctopuce API.

If need be, you can find the low level API sources in the C# library and the DotNetProxyLibrary.dll
sources in the DotNetProxy library.

10. Using the Yocto-Pressure-C with LabVIEW

56 www.yoctopuce.com

10.2. Compatibility
Firmware
For the LabVIEW Yoctopuce library to work correctly with your Yoctopuce modules, these modules
need to have firmware 37120, or higher.

LabVIEW for Linux and MacOS
At the time of writing, the LabVIEW Yoctopuce API has been tested under Windows only. It is
therefore most likely that it simply does not work with the Linux and MacOS versions of LabVIEW.

LabVIEW NXG
The LabVIEW Yoctopuce library uses many techniques which are not yet available in the new
generation of LabVIEW. The library is therefore absolutely not compatible with LabVIEW NXG.

About DotNewProxyLibrary.dll
In order to be compatible with as many versions of Windows as possible, including Windows XP, the
DotNetProxyLibrary.dll library is compiled in .NET 3.5, which is available by default on all the
Windows versions since XP.

10.3. Installation
Download the LabVIEW library from the Yoctopuce web site1. It is a ZIP file in which there is a
distinct directory for each version of LabVIEW. Each of these directories contains two subdirectories:
the first one contains programming examples for each Yoctopuce product; the second one, called
VIs, contains all the VIs of the API and the required DLLs.

Depending on Windows configuration and the method used to copy the DotNetProxyLibrary.dll on
your system, Windows may block it because it comes from an other computer. This may happen
when the library zip file is uncompressed with Window's file explorer. If the DLL is blocked, LabVIEW
will not be able to load it and an error 1386 will occur whenever any of the Yoctopuce VIs is
executed.

There are two ways to fix this. The simplest is to unblock the file with the Windows file explorer: right
click / properties on the DotNetProxyLibrary.dll file, and click on the unblock button. But this has to be
done each time a new version of the DLL is copied on your system.

1 http://www.yoctopuce.com/EN/libraries.php

10. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 57

Unblock the DotNetProxyLibrary DLL.

Alternatively, one can modify the LabVIEW configuration by creating, in the same directory as the
labview.exe executable, an XML file called labview.exe.config containing the following code:

<?xml version ="1.0"?>
<configuration>
 <runtime>
 <loadFromRemoteSources enabled="true" />
 </runtime>
</configuration>

Make sure to select the correct directory depending on the LabVIEW version you are using (32 bits
vs. 64 bits). You can find more information about this file on the National Instruments web site.2

To install the LabVIEW Yoctopuce API, there are several methods.

Method 1 : "Take-out" installation
The simplest way to use the Yoctopuce library is to copy the content of the VIs directory wherever
you want and to use the VIs in LabVIEW with a simple drag-n-drop operation.

To use the examples provided with the API, it is simpler if you add the directory of Yoctopuce VIs into
the list of where LabVIEW must look for VIs that it has not found. You can access this list through the
Tools > Options > Paths > VI Search Path menu.

2 https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P8XnSAK

10. Using the Yocto-Pressure-C with LabVIEW

58 www.yoctopuce.com

Configuring the "VI Search Path"

Method 2 : Provided installer
In each LabVIEW folder of the Library, you will find a VI named "Install.vi", just open the one
matching your LabVIEW version.

The provider installer

This installer provide 3 installation options:

Install: Keep VI and documentation files where they are.
With this option, VI files are keep in the place where the library has been unzipped. So you will have
to make sure these files are not deleted as long as you need them. Here is what the installer will do if
that option is chosen:

• All references to Yoctopuce any library paths will be removed from the viSearchPath option in
the labview.ini file.

• A dir.mnu palette file referring to VIs in the install folder will be created in
C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce

• A reference to the VIs source install path will inserted into the viSearchPath option in the
labview.ini file.

10. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 59

Install: Copy VI and documentation files into LabVIEW's vi.lib folder
In that case all required files are copied inside the LabVIEW's installation folder, so you will be able
to delete the installation folder once the original installation is complete. Note that programming
examples won't be copied. Here is the exact behaviour of the installer in that case:

• All references to Yoctopuce library paths will be removed from viSearchPath in labview.ini file
• All VIs, DLLs, and documentation files will be copied into:

C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\Yoctopuce
• VIs will be patched with the path to copied documentation files
• A dir.mnu palette file referring to copied VIs will be created in

C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce

Uninstall Yoctopuce Library
this option is meant to remove the LabVIEW library from your LabVIEW installation, here is how it is
done:

• All references to Yoctopuce library paths will be removed from viSearchPath in labview.ini file
• Following folders, if exists, will be removed:

C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce
C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\Yoctopuce

In any case, if the labview.ini file needs to be modified, a backup copy will be made beforehand.

The installer identifies Yoctopuce VIs library folders by checking the presence of the YRegisterHub.vi
file in said folders.

Once the installation is complete, a Yoctopuce palette will appear in Functions/Addons menu.

Method 3 : Installation in a LabVIEW palette (ancillary method)
The steps to manually install the VIs directly in the LabVIEW palette are somewhat more complex.
You can find the detailed procedure on the National Instruments web site 3, but here is a summary:

1. Create a Yoctopuce/API directory in the C:\Program Files\National Instruments\LabVIEW xxxx
\vi.lib directory and copy all the VIs and DLLs of the VIs directory into it.

2. Create a Yoctopuce directory in the C:\Program Files\National Instruments\LabVIEW xxxx
\menus\Categories directory.

3. Run LabVIEW and select the option Tools>Advanced>Edit Palette Set

3 https://forums.ni.com/t5/Developer-Center-Resources/Creating-a-LabVIEW-Palette/ta-p/3520557

10. Using the Yocto-Pressure-C with LabVIEW

60 www.yoctopuce.com

Three windows pop up:

◦ "Edit Controls and Functions Palette Set"
◦ "Functions"
◦ "Controls"

.
In the Function window, there is a Yoctopuce icon. Double-click it to create an empty
"Yoctopuce" window.

4. In the Yoctopuce window, perform a Right click>Insert>Vi(s)..

in order to open a file chooser. Put the file chooser in the vi.lib\Yoctopuce\API directory that
you have created in step 1 and click on Current Folder

All the Yoctopuce VIs now appear in the Yoctopuce window. By default, they are sorted by
alphabetical order, but you can arrange them as you see fit by moving them around with the
mouse. For the palette to be easy to use, we recommend to reorganize the icons over 8
columns.

5. In the "Edit Controls and Functions Palette Set" window, click on the "Save Changes" button,
the window indicates that it has created a dir.mnu file in your Documents directory.

10. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 61

Copy this file in the "menus\Categories\Yoctopuce" directory that you have created in
step 2.

6. Restart LabVIEW, the LabVIEW palette now contains a Yoctopuce sub-palette with all the VIs
of the API.

10.4. Presentation of Yoctopuce VIs
The LabVIEW Yoctopuce library contains one VI per class of the Yoctopuce API, as well as a few
special VIs. All the VIs have the traditional connectors Error IN and Error Out.

YRegisterHub
The YRegisterHub VI is used to initialize the API. You must imperatively call this VI once before
you do anything in relation with Yoctopuce modules.

The YRegisterHub VI

10. Using the Yocto-Pressure-C with LabVIEW

62 www.yoctopuce.com

The YRegisterHub VI takes a url parameter which can be:

• The "usb" character string to indicated that you wish to work with local modules, directly
connected by USB

• An IP address to indicate that you wish to work with modules which are available through a
network connection. This IP address can be that of a YoctoHub4 or even that of a machine on
which the VirtualHub5 application is running.

In the case of an IP address, the YRegisterHub VI tries to contact this address and generates and
error if it does not succeed, unless the async parameter is set to TRUE. If async is set to TRUE, no
error is generated and Yoctopuce modules corresponding to that IP address become automatically
available as soon as the said machine can be reached.

If everything went well, the successful output contains the value TRUE. In the opposite case, it
contains the value FALSE and the error msg output contains a string of characters with a description
of the error.

You can use several YRegisterHub VIs with distinct URLs if you so wish. However, on the same
machine, there can be only one process accessing local Yoctopuce modules directly by USB (url set
to "usb"). You can easily work around this limitation by running the VirtualHub software on the local
machine and using the "127.0.0.1" url.

YFreeAPI
The YFreeAPI VI enables you to free resources allocated by the Yoctopuce API.

The YFreeAPI VI

You must call the YFreeAPI VI when your code is done with the Yoctopuce API. Otherwise, direct
USB access (url set to "usb") could stay locked after the execution of your VI, and stay so for as
long as LabVIEW is not completely closed.

Structure of the VIs corresponding to a class
The other VIs correspond to each function/class of the Yoctopuce API, they all have the same
structure:

Structure of most VIs of the API.

• Connector [11]: name must contain the hardware name or the logical name of the intended
function.

• Connectors [10] and [9]: input parameters depending on the nature of the VI.
• Connectors [8] and [0] : error in and error out.
• Connector [7] : Unique hardware name of the found function.
• Connector [5] : is online contains TRUE if the function is available, FALSE otherwise.
• Connectors [2] and [1]: output values depending on the nature of the VI.
• Connector [6]: If this input is set to TRUE, connector [3] contains a reference to the Proxy

objects implemented by the VI6. This input is initialized to FALSE by default.

4 www.yoctopuce.com/EN/products/category/extensions-and-networking
5 http://www.yoctopuce.com/EN/virtualhub.php
6 see section Using Proxy objects

10. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 63

• Connector [3]: Reference on the Proxy object implemented by the VI if input [6] is TRUE. This
object enables you to access additional features.

You can find the list of functions available on your Yocto-Pressure-C in chapter Programming,
general concepts.

If the desired function (parameter name) is not available, this does not generate an error, but the is
online output contains FALSE and all the other outputs contain the value "N/A" whenever possible. If
the desired function becomes available later in the life of your program, is online switches to TRUE
automatically.

If the name parameter contains an empty string, the VI targets the first available function of the same
type. If no function is available, is online is set to FALSE.

The YModule VI
The YModule VI enables you to interface with the "module" section of each Yoctopuce module. It
enables you to drive the module led and to know the serial number of the module.

The YModule VI

The name input works slightly differently from other VIs. If it is called with a name parameter
corresponding to a function name, the YModule VI finds the Module function of the module hosting
the function. You can therefore easily find the serial number of the module of any function. This
enables you to build the name of other functions which are located on the same module. The
following example finds the first available YHumidity function and builds the name of the
YTemperature function located on the same module. The examples provided with the Yoctopuce API
make extensive use of this technique.

Using the YModule VI to retrieve functions hosted on the same module

The sensor VIs
All the VIs corresponding to Yoctopuce sensors have exactly the same geometry. Both outputs
enable you to retrieve the value measured by the corresponding sensor as well the unit used.

The sensor VIs have all exactly the same geometry

The update freq input parameter is a character string enabling you to configure the way in which the
output value is updated:

• "auto" : The VI value is updated as soon as the sensor detects a significant modification of the
value. It is the default behavior.

• "x/s": The VI value is updated x times per second with the current value of the sensor.

10. Using the Yocto-Pressure-C with LabVIEW

64 www.yoctopuce.com

• "x/m","x/h": The VI value is updated x times per minute (resp. hour) with the average value
over the latest period. Note, maximum frequencies are (60/m) and (3600/h), for higher
frequencies use the (x/s) syntax.

The update frequency of the VI is a parameter managed by the physical Yoctopuce module. If
several VIs try to change the frequency of the same sensor, the valid configuration is that of the
latest call. It is however possible to set different update frequencies to different sensors on the same
Yoctopuce module.

Changing the update frequency of the same module

The update frequency of the VI is completely independent from the sampling frequency of the
sensor, which you usually cannot modify. It is useless and counterproductive to define an update
frequency higher than the sensor sampling frequency.

10.5. Functioning and use of VIs
Here is one of the simplest example of VIs using the Yoctopuce API.

Minimal example of use of the LabVIEW Yoctopuce API

This example is based on the YSensor VI which is a generic VI enabling you to interface any
sensor function of a Yoctopuce module. You can replace this VI by any other from the Yoctopuce
API, they all have the same geometry and work in the same way. This example is limited to three
actions:

1. It initializes the API in native ("usb") mode with the YRegisterHub VI.
2. It displays the value of the first Yoctopuce sensor it finds thanks to the YSensor VI.
3. It frees the API thanks to the YFreeAPI VI.

This example automatically looks for an available sensor. If there is such a sensor, we can retrieve
its name through the hardware name output and the isOnline output equals TRUE. If there is no
available sensor, the VI does not generate an error but emulates a ghost sensor which is "offline".
However, if later in the life of the application, a sensor becomes available because it has been
connected, isOnline switches to TRUE and the hardware name contains the name of the sensor. We
can therefore easily add a few indicators in the previous example to know how the executions goes.

10. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 65

Use of the hardware name and isOnline outputs

The VIs of the Yoctopuce API are actually an entry door into the library. Internally, this mechanism
works independently of the Yoctopuce VIs. Indeed, most communications with electronic modules
are managed automatically as background tasks. Therefore, you do not necessarily need to take any
specific care to use Yoctopuce VIs, you can for example use them in a non-delayed loop without
creating any specific problem for the API.

The Yoctopuce VIs can be used in a non-delayed loop

Note that the YRegisterHub VI is not inside the loop. The YRegisterHub VI is used to initialize
the API. Unless you have several URLs that you need to register, it is better to call the
YRegisterHub VI only once.

When the name parameter is initialized to an empty string, the Yoctopuce VIs automatically look for a
function they can work with. This is very handy when you know that there is only one function of the
same type available and when you do not want to manage its name. If the name parameter contains
a hardware name or a logical name, the VI looks for the corresponding function. If it does not find it, it
emulates an offline function while it waits for the true function to become available.

Using names to identify the functions to be used

10. Using the Yocto-Pressure-C with LabVIEW

66 www.yoctopuce.com

Error handling
The LabVIEW Yoctopuce API is coded to handle errors as smoothly as possible: for example, if you
use a VI to access a function which does not exist, the isOnline output is set to FALSE, the other
outputs are set to NaN, and thus the inputs do not have any impact. Fatal errors are propagated
through the traditional error in, error out channel.

However, the YRegisterHub VI manages connection errors slightly differently. In order to make
them easier to manage, connection errors are signaled with Success and error msg outputs. If there
is an issue during a call to the YRegisterHub VI, Success contains FALSE and error msg contains
a description of the error.

Error handling

The most common error message is "Another process is already using yAPI". It means that another
application, LabVIEW or other, already uses the API in native USB mode. For technical reasons, the
native USB API can be used by only one application at the same time on the same machine. You
can easily work around this limitation by using the network mode.

10.6. Using Proxy objects
The Yoctopuce API contains hundreds of methods, functions, and properties. It was not possible, or
desirable, to create a VI for each of them. Therefore, there is a VI per class that shows the two
properties that Yoctopuce deemed the most useful, but this does not mean that the rest is not
available.

Each VI corresponding to a class has two connectors create ref and optional ref which enable you to
obtain a reference on the Proxy object of the .NET Proxy API on which the LabVIEW library is built.

The connectors to obtain a reference on the Proxy object corresponding to the VI

To obtain this reference, you only need to set optional ref to TRUE. Note, it is essential to close all
references created in this way, otherwise you risk to quickly saturate the computer memory.

Here is an example which uses this technique to change the luminosity of the leds of a Yoctopuce
module.

10. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 67

Regulating the luminosity of the leds of a module

Note that each reference allows you to obtain properties (property nodes) as well as methods (invoke
nodes). By convention, properties are optimized to generate a minimum of communication with the
modules. Therefore, we recommend to use them rather than the corresponding get_xxx and set_xxx
methods which might seem equivalent but which are not optimized. Properties also enable you to
retrieve the various constants of the API, prefixed with the "_" character. For technical reasons, the
get_xxx and set_xxx methods are not all available as properties.

Property and Invoke nodes: Using properties, methods and constants

You can find a description of all the available properties, functions, and methods in the
documentation of the .NET Proxy API.

Network mode
On a given machine, there can be only one process accessing local Yoctopuce modules directly by
USB (url set to "usb"). It is however possible that multiple process connect in parallel to
YoctoHubs7 or tp a machine on which VirtualHub8 is running, including the local machine. Therefore,
if you use the local address of your machine (127.0.0.1) and if a VirtualHub runs on it, you can work
around the limitation which prevents using the native USB API in parallel.

Network mode

7 https://www.yoctopuce.com/EN/products/category/extensions-and-networking
8 www.yoctopuce.com/EN/virtualhub.php

10. Using the Yocto-Pressure-C with LabVIEW

68 www.yoctopuce.com

In the same way, there is no limitation on the number of network interfaces to which the API can
connect itself in parallel. This means that it is quite possible to make multiple calls to the
YRegisterHub VI. This is the only case where it is useful to call the YRegisterHub VI several
times in the life of the application.

You can have multiple network connections

By default, the YRegisterHub VI tries to connect itself on the address given as parameter and
generates an error (success=FALSE) when it cannot do so because nobody answers. But if the
async parameter is initialized to TRUE, no error is generated when the connection does not succeed.
If the connection becomes possible later in the life of the application, the corresponding modules are
automatically made available.

Asynchronous connection

10.7. Managing the data logger
Almost all the Yoctopuce sensors have a data logger which enables you to store the measures of the
sensors in the non-volatile memory of the module. You can configure the data logger with the
VirtualHub, but also with a little bit of LabVIEW code.

Logging
To do so, you must configure the logging frequency by using the "LogFrequency" property which you
can reach with a reference on the Proxy object of the sensor you are using. Then, you must turn the
data logger on thanks to the YDataLogger VI. Note that, like with the YModule VI, you can obtain
the YDataLogger VI corresponding to a module with its own name, but also with the name of any
of the functions available on the same module.

Activating the data logger

Reading
You can retrieve the data in the data logger with the YDataLoggerContents VI.

10. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 69

The YDataLoggerContents VI

Retrieving the data from the logger of a Yoctopuce module is a slow process which can take up to
several tens of seconds. Therefore, we designed the VI enabling this operation to work iteratively.

As a first step, you must call the VI with a sensor name, a start date, and an end date (UTC UNIX
timestamp). The (0,0) pair enables you to obtain the complete content of the data logger. This first
call enables you to obtain a summary of the data logger content and a context.

As a second step, you must call the YDataLoggerContents VI in a loop with the context parameter,
until the progress output reaches the 100 value. At this time, the data output represents the content
of the data logger.

Retrieving the content of the data logger

The results and the summary are returned as an array of structures containing the following fields:

• startTime: beginning of the measuring period
• endTime: end of the measuring period
• averageValue: average value for the period
• minValue: minimum value over the period
• maxValue: maximum value over the period

Note that if the logging frequency is superior to 1Hz, the data logger stores only current values. In
this case, averageValue, minValue, and maxValue share the same value.

10.8. Function list
Each VI corresponding to an object of the Proxy API enables you to list all the functions of the same
class with the getSimilarfunctions() method of the corresponding Proxy object. Thus, you can easily
perform an inventory of all the connected modules, of all the connected sensors, of all the connected
relays, and so on.

10. Using the Yocto-Pressure-C with LabVIEW

70 www.yoctopuce.com

Retrieving the list of all the modules which are connected

10.9. A word on performances
The LabVIEW Yoctopuce API is optimized so that all the VIs and .NET Proxy API object properties
generate a minimum of communication with Yoctopuce modules. Thus, you can use them in loops
without taking any specific precaution: you do not have to slow down the loops with a timer.

These two loops generate little USB communication and do not need to be slowed down

However, almost all the methods of the available Proxy objects initiate a communication with the
Yoctopuce modules each time they are called. You should therefore avoid calling them too often
without purpose.

This loop, using a method, must be slowed down

10.10. A full example of a LabVIEW program
Here is a short example of how to use the Yocto-Pressure-C in LabVIEW. After a call to the
RegisterHub VI, the YPressure VI finds the first pressure sensor available, then use the YModule VI
to find out the device serial number. This number is used to build the name of all sensors present on
the device. Theses names are used to initialize one VI per sensor. This technique avoids ambiguities
when several Yocto-Pressure-C are connected at the same time. Once every VI is initialized, the
sensor value can be displayed. When the application is about to exit, it frees the Yoctopuce API,
thanks to the YFreeAPI VI.

10. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 71

Example of Yocto-Pressure-C usage in LabVIEW

If you read this documentation on screen, you can zoom on the image above. You can also find this
example in the LabVIEW Yoctopuce library.

10.11. Differences from other Yoctopuce APIs
Yoctopuce does everything it can to maintain a strong coherence between its different programming
libraries. However, LabVIEW being clearly apart as an environment, there are, as a consequence,
important differences from the other libraries.

These differences were introduced to make the use of modules as easy as possible and requiring a
minimum of LabVIEW code.

YFreeAPI
In the opposite to other languages, you must absolutely free the native API by calling the YFreeAPI
VI when your code does not need to use the API anymore. If you forget this call, the native API risks
to stay locked for the other applications until LabVIEW is completely closed.

Properties
In the opposite to classes of the other APIs, classes available in LabVIEW implement properties. By
convention, these properties are optimized to generate a minimum of communication with the
modules while automatically refreshing. By contrast, methods of type get_xxx and set_xxx
systematically generate communications with the Yoctopuce modules and must be called sparingly.

Callback vs. Properties
There is no callback in the LabVIEW Yoctopuce API, the VIs automatically refresh: they are based
on the properties of the .NET Proxy API objects.

72 www.yoctopuce.com

www.yoctopuce.com 73

11. Using the Yocto-Pressure-C with Java
Java is an object oriented language created by Sun Microsystem. Beside being free, its main
strength is its portability. Unfortunately, this portability has an excruciating price. In Java, hardware
abstraction is so high that it is almost impossible to work directly with the hardware. Therefore, the
Yoctopuce API does not support native mode in regular Java. The Java API needs VirtualHub to
communicate with Yoctopuce devices.

11.1. Getting ready
Go to the Yoctopuce web site and download the following items:

• The Java programming library1

• VirtualHub2 for Windows, macOS or Linux, depending on your OS

The library is available as source files as well as a jar file. Decompress the library files in a folder of
your choice, connect your modules, run VirtualHub, and you are ready to start your first tests. You do
not need to install any driver.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

11.2. Control of the Pressure function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a Java code
snippet to use the Pressure function.

[...]
// Get access to your device, through the VirtualHub running locally
YAPI.RegisterHub("127.0.0.1");
[...]

// Retrieve the object used to interact with the device
pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure");

// Hot-plug is easy: just check that the device is online
if (pressure.isOnline())
{

1 www.yoctopuce.com/EN/libraries.php
2 www.yoctopuce.com/EN/virtualhub.php

11. Using the Yocto-Pressure-C with Java

74 www.yoctopuce.com

 // Use pressure.get_currentValue()
 [...]
}

[...]

Let us look at these lines in more details.

YAPI.RegisterHub
The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the Virtual Hub able to see the devices. If the
initialization does not succeed, an exception is thrown.

YPressure.FindPressure
The YPressure.FindPressure function allows you to find a pressure sensor from the serial
number of the module on which it resides and from its function name. You can use logical names as
well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with serial
number PRSSMK1C-123456 which you have named "MyModule", and for which you have given the
pressure function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure")
pressure = YPressure.FindPressure("PRSSMK1C-123456.MyFunction")
pressure = YPressure.FindPressure("MyModule.pressure")
pressure = YPressure.FindPressure("MyModule.MyFunction")
pressure = YPressure.FindPressure("MyFunction")

YPressure.FindPressure returns an object which you can then use at will to control the
pressure sensor.

isOnline
The isOnline() method of the object returned by YPressure.FindPressure allows you to
know if the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

A real example
Launch you Java environment and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-Pressure-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

import com.yoctopuce.YoctoAPI.*;

public class Demo {

 public static void main(String[] args) {
 try {
 // setup the API to use local VirtualHub
 YAPI.RegisterHub("127.0.0.1");
 } catch (YAPI_Exception ex) {
 System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage() + ")");
 System.out.println("Ensure that the VirtualHub application is running");
 System.exit(1);
 }
 YPressure psensor;

 if (args.length == 0) {
 psensor = YPressure.FirstPressure();

11. Using the Yocto-Pressure-C with Java

www.yoctopuce.com 75

 if (psensor == null) {
 System.out.println("No module connected (check USB cable)");
 System.exit(1);
 }
 } else {
 psensor = YPressure.FindPressure(args[0] + ".pressure");
 }

 while (true) {
 try {
 System.out.println("Current pressure: " + psensor.get_currentValue() + "
mbar");
 System.out.println(" (press Ctrl-C to exit)");
 YAPI.Sleep(1000);
 } catch (YAPI_Exception ex) {
 System.out.println("Module not connected (check identification and USB
cable)");
 break;
 }
 }

 YAPI.FreeAPI();
 }
}

11.3. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

import com.yoctopuce.YoctoAPI.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class Demo {

 public static void main(String[] args)
 {
 try {
 // setup the API to use local VirtualHub
 YAPI.RegisterHub("127.0.0.1");
 } catch (YAPI_Exception ex) {
 System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage() + ")");
 System.out.println("Ensure that the VirtualHub application is running");
 System.exit(1);
 }
 System.out.println("usage: demo [serial or logical name] [ON/OFF]");

 YModule module;
 if (args.length == 0) {
 module = YModule.FirstModule();
 if (module == null) {
 System.out.println("No module connected (check USB cable)");
 System.exit(1);
 }
 } else {
 module = YModule.FindModule(args[0]); // use serial or logical name
 }

 try {
 if (args.length > 1) {
 if (args[1].equalsIgnoreCase("ON")) {
 module.setBeacon(YModule.BEACON_ON);
 } else {
 module.setBeacon(YModule.BEACON_OFF);
 }
 }
 System.out.println("serial: " + module.get_serialNumber());
 System.out.println("logical name: " + module.get_logicalName());
 System.out.println("luminosity: " + module.get_luminosity());
 if (module.get_beacon() == YModule.BEACON_ON) {

11. Using the Yocto-Pressure-C with Java

76 www.yoctopuce.com

 System.out.println("beacon: ON");
 } else {
 System.out.println("beacon: OFF");
 }
 System.out.println("upTime: " + module.get_upTime() / 1000 + " sec");
 System.out.println("USB current: " + module.get_usbCurrent() + " mA");
 System.out.println("logs:\n" + module.get_lastLogs());
 } catch (YAPI_Exception ex) {
 System.out.println(args[1] + " not connected (check identification and USB
cable)");
 }
 YAPI.FreeAPI();
 }
}

Each property xxx of the module can be read thanks to a method of type YModule.get_xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set_xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
YModule.set_xxx() function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash() method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash() method.
The short example below allows you to modify the logical name of a module.

import com.yoctopuce.YoctoAPI.*;

public class Demo {

 public static void main(String[] args)
 {
 try {
 // setup the API to use local VirtualHub
 YAPI.RegisterHub("127.0.0.1");
 } catch (YAPI_Exception ex) {
 System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage() + ")");
 System.out.println("Ensure that the VirtualHub application is running");
 System.exit(1);
 }

 if (args.length != 2) {
 System.out.println("usage: demo <serial or logical name> <new logical name>");
 System.exit(1);
 }

 YModule m;
 String newname;

 m = YModule.FindModule(args[0]); // use serial or logical name

 try {
 newname = args[1];
 if (!YAPI.CheckLogicalName(newname))
 {
 System.out.println("Invalid name (" + newname + ")");
 System.exit(1);
 }

 m.set_logicalName(newname);
 m.saveToFlash(); // do not forget this

 System.out.println("Module: serial= " + m.get_serialNumber());
 System.out.println(" / name= " + m.get_logicalName());
 } catch (YAPI_Exception ex) {
 System.out.println("Module " + args[0] + "not connected (check identification
and USB cable)");
 System.out.println(ex.getMessage());
 System.exit(1);
 }

11. Using the Yocto-Pressure-C with Java

www.yoctopuce.com 77

 YAPI.FreeAPI();
 }
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash() function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the YModule.yFirstModule()
function which returns the first module found. Then, you only need to call the nextModule()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

import com.yoctopuce.YoctoAPI.*;

public class Demo {

 public static void main(String[] args)
 {
 try {
 // setup the API to use local VirtualHub
 YAPI.RegisterHub("127.0.0.1");
 } catch (YAPI_Exception ex) {
 System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage() + ")");
 System.out.println("Ensure that the VirtualHub application is running");
 System.exit(1);
 }

 System.out.println("Device list");
 YModule module = YModule.FirstModule();
 while (module != null) {
 try {
 System.out.println(module.get_serialNumber() + " (" +
module.get_productName() + ")");
 } catch (YAPI_Exception ex) {
 break;
 }
 module = module.nextModule();
 }
 YAPI.FreeAPI();
 }
}

11.4. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software.

In the Java API, error handling is implemented with exceptions. Therefore you must catch and
handle correctly all exceptions that might be thrown by the API if you do not want your software to
crash as soon as you unplug a device.

11. Using the Yocto-Pressure-C with Java

78 www.yoctopuce.com

www.yoctopuce.com 79

12. Using the Yocto-Pressure-C with Android
To tell the truth, Android is not a programming language, it is an operating system developed by
Google for mobile appliances such as smart phones and tablets. But it so happens that under
Android everything is programmed with the same programming language: Java. Nevertheless, the
programming paradigms and the possibilities to access the hardware are slightly different from
classical Java, and this justifies a separate chapter on Android programming.

12.1. Native access and VirtualHub
In the opposite to the classical Java API, the Java for Android API can access USB modules natively.
However, as there is no VirtualHub running under Android, it is not possible to remotely control
Yoctopuce modules connected to a machine under Android. Naturally, the Java for Android API
remains perfectly able to connect itself to VirtualHub running on another OS.

12.2. Getting ready
Go to the Yoctopuce web site and download the Java for Android programming library1. The library is
available as source files, and also as a jar file. Connect your modules, decompress the library files in
the directory of your choice, and configure your Android programming environment so that it can find
them.

To keep them simple, all the examples provided in this documentation are snippets of Android
applications. You must integrate them in your own Android applications to make them work.
However, your can find complete applications in the examples provided with the Java for Android
library.

12.3. Compatibility
In an ideal world, you would only need to have a smart phone running under Android to be able to
make Yoctopuce modules work. Unfortunately, it is not quite so in the real world. A machine running
under Android must fulfil to a few requirements to be able to manage Yoctopuce USB modules
natively.

Android version
Our library can be compiled to work with older versions, as long as the Android tools allow us to
support them, i.e. approximately versions of the last ten years.

1 www.yoctopuce.com/EN/libraries.php

12. Using the Yocto-Pressure-C with Android

80 www.yoctopuce.com

USB host support
Naturally, not only must your machine have a USB port, this port must also be able to run in host
mode. In host mode, the machine literally takes control of the devices which are connected to it. The
USB ports of a desktop computer, for example, work in host mode. The opposite of the host mode is
the device mode. USB keys, for instance, work in device mode: they must be controlled by a host.
Some USB ports are able to work in both modes, they are OTG (On The Go) ports. It so happens
that many mobile devices can only work in device mode: they are designed to be connected to a
charger or a desktop computer, and nothing else. It is therefore highly recommended to pay careful
attention to the technical specifications of a product working under Android before hoping to make
Yoctopuce modules work with it.

Unfortunately, having a correct version of Android and USB ports working in host mode is not enough
to guaranty that Yoctopuce modules will work well under Android. Indeed, some manufacturers
configure their Android image so that devices other than keyboard and mass storage are ignored,
and this configuration is hard to detect. As things currently stand, the best way to know if a given
Android machine works with Yoctopuce modules consists in trying.

12.4. Activating the USB port under Android
By default, Android does not allow an application to access the devices connected to the USB port.
To enable your application to interact with a Yoctopuce module directly connected on your tablet on a
USB port, a few additional steps are required. If you intend to interact only with modules connected
on another machine through the network, you can ignore this section.

In your AndroidManifest.xml, you must declare using the "USB Host" functionality by adding
the <uses-feature android:name="android.hardware.usb.host" /> tag in the
manifest section.

<manifest ...>
 ...
 <uses-feature android:name="android.hardware.usb.host" />;
 ...
</manifest>

When first accessing a Yoctopuce module, Android opens a window to inform the user that the
application is going to access the connected module. The user can deny or authorize access to the
device. If the user authorizes the access, the application can access the connected device as long as
it stays connected. To enable the Yoctopuce library to correctly manage these authorizations, your
must provide a pointer on the application context by calling the EnableUSBHost method of the YAPI
class before the first USB access. This function takes as arguments an object of the
android.content.Context class (or of a subclass). As the Activity class is a subclass of
Context, it is simpler to call YAPI.EnableUSBHost(this); in the method onCreate of your
application. If the object passed as parameter is not of the correct type, a YAPI_Exception
exception is generated.

...
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 try {
 // Pass the application Context to the Yoctopuce Library
 YAPI.EnableUSBHost(this);
 } catch (YAPI_Exception e) {
 Log.e("Yocto",e.getLocalizedMessage());
 }
}
...

Autorun
It is possible to register your application as a default application for a USB module. In this case, as
soon as a module is connected to the system, the application is automatically launched. You must

12. Using the Yocto-Pressure-C with Android

www.yoctopuce.com 81

add <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"/> in the
section <intent-filter> of the main activity. The section <activity> must have a pointer to an XML file
containing the list of USB modules which can run the application.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 ...
 <uses-feature android:name="android.hardware.usb.host" />
 ...
 <application ... >
 <activity
 android:name=".MainActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

 <meta-data
 android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"
 android:resource="@xml/device_filter" />
 </activity>
 </application>

</manifest>

The XML file containing the list of modules allowed to run the application must be saved in the res/
xml directory. This file contains a list of USB vendorId and deviceID in decimal. The following
example runs the application as soon as a Yocto-Relay or a YoctoPowerRelay is connected. You can
find the vendorID and the deviceID of Yoctopuce modules in the characteristics section of the
documentation.

<?xml version="1.0" encoding="utf-8"?>

<resources>
 <usb-device vendor-id="9440" product-id="12" />
 <usb-device vendor-id="9440" product-id="13" />
</resources>

12.5. Control of the Pressure function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a Java code
snippet to use the Pressure function.

[...]
// Enable detection of USB devices
YAPI.EnableUSBHost(this);
YAPI.RegisterHub("usb");
[...]
// Retrieve the object used to interact with the device
pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure");

// Hot-plug is easy: just check that the device is online
if (pressure.isOnline()) {
 // Use pressure.get_currentValue()
 [...]
}

[...]

Let us look at these lines in more details.

YAPI.EnableUSBHost
The YAPI.EnableUSBHost function initializes the API with the Context of the current application.
This function takes as argument an object of the android.content.Context class (or of a
subclass). If you intend to connect your application only to other machines through the network, this
function is facultative.

12. Using the Yocto-Pressure-C with Android

82 www.yoctopuce.com

YAPI.RegisterHub
The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the virtual hub able to see the devices. If the
string "usb" is passed as parameter, the API works with modules locally connected to the machine. If
the initialization does not succeed, an exception is thrown.

YPressure.FindPressure
The YPressure.FindPressure function allows you to find a pressure sensor from the serial
number of the module on which it resides and from its function name. You can use logical names as
well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with serial
number PRSSMK1C-123456 which you have named "MyModule", and for which you have given the
pressure function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure")
pressure = YPressure.FindPressure("PRSSMK1C-123456.MyFunction")
pressure = YPressure.FindPressure("MyModule.pressure")
pressure = YPressure.FindPressure("MyModule.MyFunction")
pressure = YPressure.FindPressure("MyFunction")

YPressure.FindPressure returns an object which you can then use at will to control the
pressure sensor.

isOnline
The isOnline() method of the object returned by YPressure.FindPressure allows you to
know if the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

A real example
Launch you Java environment and open the corresponding sample project provided in the directory
Examples//Doc-Examples of the Yoctopuce library.

In this example, you can recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;
import android.widget.Spinner;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YModule;
import com.yoctopuce.YoctoAPI.YPressure;

import java.util.Locale;

public class GettingStarted_Yocto_Pressure extends Activity implements
OnItemSelectedListener
{

 private ArrayAdapter<String> aa;
 private String serial = "";

12. Using the Yocto-Pressure-C with Android

www.yoctopuce.com 83

 private Handler handler = null;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.gettingstarted_yocto_pressure);
 Spinner my_spin = (Spinner) findViewById(R.id.spinner1);
 my_spin.setOnItemSelectedListener(this);
 aa = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item);
 aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
 my_spin.setAdapter(aa);
 handler = new Handler();
 }

 @Override
 protected void onStart()
 {
 super.onStart();
 try {
 aa.clear();
 YAPI.EnableUSBHost(this);
 YAPI.RegisterHub("usb");
 YModule module = YModule.FirstModule();
 while (module != null) {
 if (module.get_productName().equals("Yocto-Pressure")) {
 String serial = module.get_serialNumber();
 aa.add(serial);
 }
 module = module.nextModule();
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 aa.notifyDataSetChanged();
 handler.postDelayed(r, 500);
 }

 @Override
 protected void onStop()
 {
 super.onStop();
 handler.removeCallbacks(r);
 YAPI.FreeAPI();
 }

 @Override
 public void onItemSelected(AdapterView<?> parent, View view, int pos, long id)
 {
 serial = parent.getItemAtPosition(pos).toString();
 }

 @Override
 public void onNothingSelected(AdapterView<?> arg0)
 {
 }

 final Runnable r = new Runnable()
 {
 public void run()
 {
 if (serial != null) {
 YPressure temp_sensor = YPressure.FindPressure(serial + ".pressure");
 try {
 TextView view = (TextView) findViewById(R.id.presfield);
 view.setText(String.format(Locale.US, "%.1f %s",
 temp_sensor.getCurrentValue(), temp_sensor.getUnit()));
 } catch (YAPI_Exception e) {
 e.printStackTrace();

 }
 }
 handler.postDelayed(this, 1000);
 }
 };

}

12. Using the Yocto-Pressure-C with Android

84 www.yoctopuce.com

12.6. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;
import android.widget.Spinner;
import android.widget.Switch;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class ModuleControl extends Activity implements OnItemSelectedListener
{

 private ArrayAdapter<String> aa;
 private YModule module = null;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.modulecontrol);
 Spinner my_spin = (Spinner) findViewById(R.id.spinner1);
 my_spin.setOnItemSelectedListener(this);
 aa = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item);
 aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
 my_spin.setAdapter(aa);
 }

 @Override
 protected void onStart()
 {
 super.onStart();

 try {
 aa.clear();
 YAPI.EnableUSBHost(this);
 YAPI.RegisterHub("usb");
 YModule r = YModule.FirstModule();
 while (r != null) {
 String hwid = r.get_hardwareId();
 aa.add(hwid);
 r = r.nextModule();
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 // refresh Spinner with detected relay
 aa.notifyDataSetChanged();
 }

 @Override
 protected void onStop()
 {
 super.onStop();
 YAPI.FreeAPI();
 }

 private void DisplayModuleInfo()
 {
 TextView field;
 if (module == null)
 return;
 try {
 field = (TextView) findViewById(R.id.serialfield);
 field.setText(module.getSerialNumber());

12. Using the Yocto-Pressure-C with Android

www.yoctopuce.com 85

 field = (TextView) findViewById(R.id.logicalnamefield);
 field.setText(module.getLogicalName());
 field = (TextView) findViewById(R.id.luminosityfield);
 field.setText(String.format("%d%%", module.getLuminosity()));
 field = (TextView) findViewById(R.id.uptimefield);
 field.setText(module.getUpTime() / 1000 + " sec");
 field = (TextView) findViewById(R.id.usbcurrentfield);
 field.setText(module.getUsbCurrent() + " mA");
 Switch sw = (Switch) findViewById(R.id.beaconswitch);
 sw.setChecked(module.getBeacon() == YModule.BEACON_ON);
 field = (TextView) findViewById(R.id.logs);
 field.setText(module.get_lastLogs());

 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 public void onItemSelected(AdapterView<?> parent, View view, int pos, long id)
 {
 String hwid = parent.getItemAtPosition(pos).toString();
 module = YModule.FindModule(hwid);
 DisplayModuleInfo();
 }

 @Override
 public void onNothingSelected(AdapterView<?> arg0)
 {
 }

 public void refreshInfo(View view)
 {
 DisplayModuleInfo();
 }

 public void toggleBeacon(View view)
 {
 if (module == null)
 return;
 boolean on = ((Switch) view).isChecked();

 try {
 if (on) {
 module.setBeacon(YModule.BEACON_ON);
 } else {
 module.setBeacon(YModule.BEACON_OFF);
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 }
}

Each property xxx of the module can be read thanks to a method of type YModule.get_xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set_xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
YModule.set_xxx() function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash() method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash() method.
The short example below allows you to modify the logical name of a module.

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;

12. Using the Yocto-Pressure-C with Android

86 www.yoctopuce.com

import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;
import android.widget.EditText;
import android.widget.Spinner;
import android.widget.TextView;
import android.widget.Toast;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class SaveSettings extends Activity implements OnItemSelectedListener
{

 private ArrayAdapter<String> aa;
 private YModule module = null;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.savesettings);
 Spinner my_spin = (Spinner) findViewById(R.id.spinner1);
 my_spin.setOnItemSelectedListener(this);
 aa = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item);
 aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
 my_spin.setAdapter(aa);
 }

 @Override
 protected void onStart()
 {
 super.onStart();

 try {
 aa.clear();
 YAPI.EnableUSBHost(this);
 YAPI.RegisterHub("usb");
 YModule r = YModule.FirstModule();
 while (r != null) {
 String hwid = r.get_hardwareId();
 aa.add(hwid);
 r = r.nextModule();
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 // refresh Spinner with detected relay
 aa.notifyDataSetChanged();
 }

 @Override
 protected void onStop()
 {
 super.onStop();
 YAPI.FreeAPI();
 }

 private void DisplayModuleInfo()
 {
 TextView field;
 if (module == null)
 return;
 try {
 YAPI.UpdateDeviceList();// fixme
 field = (TextView) findViewById(R.id.logicalnamefield);
 field.setText(module.getLogicalName());
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 public void onItemSelected(AdapterView<?> parent, View view, int pos, long id)
 {
 String hwid = parent.getItemAtPosition(pos).toString();
 module = YModule.FindModule(hwid);
 DisplayModuleInfo();

12. Using the Yocto-Pressure-C with Android

www.yoctopuce.com 87

 }

 @Override
 public void onNothingSelected(AdapterView<?> arg0)
 {
 }

 public void saveName(View view)
 {
 if (module == null)
 return;

 EditText edit = (EditText) findViewById(R.id.newname);
 String newname = edit.getText().toString();
 try {
 if (!YAPI.CheckLogicalName(newname)) {
 Toast.makeText(getApplicationContext(), "Invalid name (" + newname + ")",
Toast.LENGTH_LONG).show();
 return;
 }
 module.set_logicalName(newname);
 module.saveToFlash(); // do not forget this
 edit.setText("");
 } catch (YAPI_Exception ex) {
 ex.printStackTrace();
 }
 DisplayModuleInfo();
 }

}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash() function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the YModule.yFirstModule()
function which returns the first module found. Then, you only need to call the nextModule()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.util.TypedValue;
import android.view.View;
import android.widget.LinearLayout;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class Inventory extends Activity
{

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.inventory);
 }

 public void refreshInventory(View view)
 {
 LinearLayout layout = (LinearLayout) findViewById(R.id.inventoryList);
 layout.removeAllViews();

 try {
 YAPI.UpdateDeviceList();

12. Using the Yocto-Pressure-C with Android

88 www.yoctopuce.com

 YModule module = YModule.FirstModule();
 while (module != null) {
 String line = module.get_serialNumber() + " (" + module.get_productName() +
")";
 TextView tx = new TextView(this);
 tx.setText(line);
 tx.setTextSize(TypedValue.COMPLEX_UNIT_SP, 20);
 layout.addView(tx);
 module = module.nextModule();
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 protected void onStart()
 {
 super.onStart();
 try {
 YAPI.EnableUSBHost(this);
 YAPI.RegisterHub("usb");
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 refreshInventory(null);
 }

 @Override
 protected void onStop()
 {
 super.onStop();
 YAPI.FreeAPI();
 }

}

12.7. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software.

In the Java API for Android, error handling is implemented with exceptions. Therefore you must catch
and handle correctly all exceptions that might be thrown by the API if you do not want your software
to crash soon as you unplug a device.

www.yoctopuce.com 89

13. Using Yocto-Pressure-C with TypeScript
TypeScript is an enhanced version of the JavaScript programming language. It is a syntaxic superset
with strong typing, therefore increasing the code reliability, but transpiled - aka compiled - into
JavaScript for execution in any standard Web browser or Node.js environment.

This Yoctopuce library therefore makes it possible to implement JavaScript applications using strong
typing. Similarly to our EcmaScript library, it uses the new asynchronous features introduced in
ECMAScript 2017, which are now available in all modern JavaScript environments. Note however
that at the time of writting, Web browsers and Node.JS cannot use TypeScript code directly, so you
must first compile your TypeScript into JavaScript before running it.

The library works both in a Web browser and in Node.js. In order to allow for a static resolution of
dependencies, and to avoid ambiguities that can arise when using hybrid environments such as
Electron, the choice of the runtime environment must be done explicitly upon import of the library, by
referencing in the project either yocto_api_nodejs.js or yocto_api_html.js.

The library can be integrated in your projects in multiple ways, depending on what best fits your
requirements:

• by directly copying the TypeScript library source files into your project, and by adding them to
your build script. Only a few files are usually needed to handle most use-cases. You will find
TypeScript source files in the src subdirectory of our library.

• by using CommonJS module resolution, natively supported by TypeScript, with a package
manager such as npm. You will find a version of the library transpiled according to CommonJS
module standard in the dist/cjs subdirectory, including all type definition files (with
extension .d.ts) and source maps (with extension .js.map) enabling source-level error
reporting and debugging. We have also published these files on npmjs under the name
yoctolib-cjs.

• by using ECMAScript standard module resolution, also supported by TypeScript, usually
referenced by relative path. You will find a version of the library transpiled as an ECMAScript
2015 module in the dist/esm subdirectory, including all type definition files (with extension .d.ts)
and source maps (with extension .js.map) enabling source-level error reporting and
debugging. We have also published these files on npmjs under the name yoctolib-esm.

13. Using Yocto-Pressure-C with TypeScript

90 www.yoctopuce.com

13.1. Using the Yoctopuce library for TypeScript
1. Start by installing TypeScript on your machine if this is not yet done. In order to do so:

• Install on your development machine the official version of Node.js (version 10 or more
recent). You can download it for free from the official web site: http://nodejs.org. Make sure to
install it fully, including npm, and add it to the system path.

• Then install TypeScript on your machine using the command line:

npm install -g typescript

2. Go to the Yoctopuce web site and download the following items:

• The TypeScript programming library1

• The VirtualHub software2 for Windows, macOS, or Linux, depending on your OS. TypeScript
and JavaScript are part of those languages which do not generally allow you to directly access
to USB peripherals. Therefore the library can only be used to access network-enabled devices
(connected through a YoctoHub), or USB devices accessible through Yoctopuce TCP/IP to
USB gateway, named VirtualHub. No extra driver will be needed, though.

3. Extract the library files in a folder of your choice, and open a command window in the directory
where you have installed it. In order to install the few dependencies which are necessary to start the
examples, run this command:

npm install

When the command has run without error, you are ready to explore the examples. They are available
in two different trees, depending on the environment that you need to use: example_html for
running the Yoctopuce library within a Web browser, or example_nodejs if you plan to use the
library in a Node.js environment.

The method to use for launching the examples depends on the environment. You will find more
about it below.

13.2. Refresher on asynchronous I/O in JavaScript
JavaScript is single-threaded by design. In order to handle time-consuming I/O operations,
JavaScript relies on asynchronous operations: the I/O call is only triggered but then the code
execution flow is suspended. The JavaScript engine is therefore free to handle other pending tasks,
such as user interface. Whenever the pending I/O call is completed, the system invokes a callback
function with the result of the I/O call to resume execution of the original execution flow.

When used with plain callback functions, as pervasive in Node.js libraries, asynchronous I/O tend to
produce code with poor readability, as the execution flow is broken into many disconnected callback
functions. Fortunately, the ECMAScript 2015 standard came in with Promise objects and a new
async / await syntax to abstract calls to asynchronous calls:

• a function declared async automatically encapsulates its result as a Promise
• within an async function, any function call prefixed with by await chains the Promise returned

by the function with a promise to resume execution of the caller
• any exception during the execution of an async function automatically invokes the Promise

failure continuation

To make a long story short, async and await make it possible to write TypeScript code with all the
benefits of asynchronous I/O, but without breaking the code flow. It is almost like multi-threaded

1 www.yoctopuce.com/EN/libraries.php
2 www.yoctopuce.com/EN/virtualhub.php

13. Using Yocto-Pressure-C with TypeScript

www.yoctopuce.com 91

execution, except that control switch between pending tasks only happens at places where the await
keyword appears.

This TypeScript library uses the Promise objects and async methods, to allow you to use the await
syntax. To keep it easy to remember, all public methods of the TypeScript library are async, i.e.
return a Promise object, except:

• GetTickCount(), because returning a time stamp asynchronously does not make sense...
• FindModule(), FirstModule(), nextModule(), ... because device detection and

enumeration always works on internal device lists handled in background, and does not
require immediate asynchronous I/O.

In most cases, TypeScript strong typing will remind you to use await when calling an asynchronous
method.

13.3. Control of the Pressure function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a TypeScript code
snipplet to use the Pressure function.

// For Node.js, the library is referenced through the NPM package
// For HTML, we would use instead a relative path (depending on the build environment)
import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';
import { YPressure } from 'yoctolib-cjs/yocto_pressure.js';

[...]
// Get access to your device, through the VirtualHub running locally
await YAPI.RegisterHub('127.0.0.1');
[...]

// Retrieve the object used to interact with the device
var pressure: YPressure = YPressure.FindPressure("PRSSMK1C-123456.pressure");

// Check that the module is online to handle hot-plug
if(await pressure.isOnline())
{
 // Use pressure.get_currentValue()
 [...]
}

Let us look at these lines in more details.

yocto_api and yocto_pressure import
These two imports provide access to functions allowing you to manage Yoctopuce modules.
yocto_api is always needed, yocto_pressure is necessary to manage modules containing a
pressure sensor, such as Yocto-Pressure-C. Other imports can be useful in other cases, such as
YModule which can let you enumerate any type of Yoctopuce device.

In order to properly bind yocto_api to the proper network libraries (provided either by Node.js or
by the web browser for an HTML application), you must import at least once in your project one of
the two variants yocto_api_nodejs.js or yocto_api_html.js.

Note that this example imports the Yoctopuce library as a CommonJS module, which is the most
frequently used with Node.JS, but if your project is designed around EcmaScript native modules, you
can also replace in the import directive the prefix yoctolib-cjs by yoctolib-esm.

YAPI.RegisterHub
The RegisterHub method allows you to indicate on which machine the Yoctopuce modules are
located, more precisely on which machine the VirtualHub software is running. In our case, the
127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port used by
Yoctopuce). You can very well modify this address, and enter the address of another machine on
which the VirtualHub software is running, or of a YoctoHub. If the host cannot be reached, this
function will trigger an exception.

13. Using Yocto-Pressure-C with TypeScript

92 www.yoctopuce.com

As explained above, using RegisterHub("usb") is not supported in TypeScript, because the
JavaScript engine has no direct access to USB devices. It needs to go through the VirtualHub via a
localhost connection.

YPressure.FindPressure
The FindPressure method allows you to find a pressure sensor from the serial number of the
module on which it resides and from its function name. You can also use logical names, as long as
you have initialized them. Let us imagine a Yocto-Pressure-C module with serial number
PRSSMK1C-123456 which you have named "MyModule", and for which you have given the pressure
function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure")
pressure = YPressure.FindPressure("PRSSMK1C-123456.MaFonction")
pressure = YPressure.FindPressure("MonModule.pressure")
pressure = YPressure.FindPressure("MonModule.MaFonction")
pressure = YPressure.FindPressure("MaFonction")

YPressure.FindPressure returns an object which you can then use at will to control the
pressure sensor.

isOnline
The isOnline() method of the object returned by FindPressure allows you to know if the
corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

A real example, for Node.js
Open a command window (a terminal, a shell...) and go into the directory example_nodejs/Doc-
GettingStarted-Yocto-Pressure-C within Yoctopuce library for TypeScript. In there, you will find a
file named demo.ts with the sample code below, which uses the functions explained above, but this
time used with all side materials needed to make it work nicely as a small demo.

If your Yocto-Pressure-C is not connected on the host running the browser, replace in the example
the address 127.0.0.1 by the IP address of the host on which the Yocto-Pressure-C is connected
and where you run the VirtualHub.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';
import { YPressure } from 'yoctolib-cjs/yocto_pressure.js'

let pres: YPressure;

async function startDemo(): Promise<void>
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg: YErrorMsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select specified device, or use first available one
 let serial: string = process.argv[process.argv.length-1];
 if(serial[8] != '-') {
 // by default use any connected module suitable for the demo
 let anysensor = YPressure.FirstPressure();
 if(anysensor) {
 let module: YModule = await anysensor.get_module();
 serial = await module.get_serialNumber();
 } else {

13. Using Yocto-Pressure-C with TypeScript

www.yoctopuce.com 93

 console.log('No matching sensor connected, check cable !');
 await YAPI.FreeAPI();
 return;
 }
 }
 console.log('Using device '+serial);
 pres = YPressure.FindPressure(serial+".pressure");
 refresh();
}

async function refresh(): Promise<void>
{
 if (await pres.isOnline()) {
 console.log('Pressure : ' + (await pres.get_currentValue())
 + (await pres.get_unit()));
 } else {
 console.log('Module not connected');
 }
 setTimeout(refresh, 500);
}

startDemo();

As explained at the beginning of this chapter, you need to have installed the TypeScript compiler on
your machine to test these examples, and to install the typescript library dependencies. If you have
done that, you can now type the following two commands in the example directory, to finalize the
resolution of the example-specific dependencies:

npm install

You ar now ready to start the sample code with Node.js. The easiest way to do it is to use the
following command, replacing the [...] by the arguments that you want to pass to the demo code:

npm run demo [...]

This command, defined in package.json, will first start the TypeScript compiler using the simple
tsc command, then run the transpiled code in Node.js.

The compilation uses the parameters specified in the file tsconfig.json, and produces

• a JavaScript file named demo.js, that Node.js can run
• a debug file named demo.js.map, that will help Node.js to locate the source of errors in the

original TypeScript source file rather than reporting them in the JavaScript compiled file.

Note that the package.json file in our examples uses a relative reference to the local copy of the
library, to avoid duplicating the library in each example. But of course, for your application, you can
refer to the package directly in npm repository, by adding it to your project using the command:

npm install yoctolib-cjs

Same example, but this time running in a browser
If you want to see how to use the library within a browser rather than with Node.js, switch to the
directory example_html/Doc-GettingStarted-Yocto-Pressure-C. You will find there an HTML file
named app.html, and a TypeScript file app.ts similar to the code above, but with a few changes
since it has to interact through an HTML page rather than through the JavaScript console.

No installation is needed to run this example, as the TypeScript library is referenced using a relative
path. However, in order to allow the browser to run the code, the HTML page must be served by a
Web server. We therefore provide a simple test server for this purpose, that you can start with the
command:

npm run app-server

13. Using Yocto-Pressure-C with TypeScript

94 www.yoctopuce.com

This command will compile the TypeScript sample code, make it available via an HTTP server on
port 3000 and open a Web browser on this example. If you change the example source code, the
TypeScript compiler will automatically be triggered to update the transpiled code and a simple page
reload on the browser will make it possible to test the change.

As for the Node.js example, the compilation process will create a source map file which makes it
possible to debug the example code in TypeScript source form within the browser debugger. Note
that as of the writing of this document, this works on Chromium-based browsers but not yet in
Firefox.

13.4. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';

async function startDemo(args: string[]): Promise<void>
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg: YErrorMsg = new YErrorMsg();
 if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select the device to use
 let module: YModule = YModule.FindModule(args[0]);
 if(await module.isOnline()) {
 if(args.length > 1) {
 if(args[1] == 'ON') {
 await module.set_beacon(YModule.BEACON_ON);
 } else {
 await module.set_beacon(YModule.BEACON_OFF);
 }
 }
 console.log('serial: '+await module.get_serialNumber());
 console.log('logical name: '+await module.get_logicalName());
 console.log('luminosity: '+await module.get_luminosity()+'%');
 console.log('beacon: '+
 (await module.get_beacon() == YModule.BEACON_ON ? 'ON' : 'OFF'));
 console.log('upTime: '+
 ((await module.get_upTime()/1000)>>0) +' sec');
 console.log('USB current: '+await module.get_usbCurrent()+' mA');
 console.log('logs:');
 console.log(await module.get_lastLogs());
 } else {
 console.log("Module not connected (check identification and USB cable)\n");
 }
 await YAPI.FreeAPI();
}

if(process.argv.length < 3) {
 console.log("usage: npm run demo <serial or logicalname> [ON | OFF]");
} else {
 startDemo(process.argv.slice(2));
}

Each property xxx of the module can be read thanks to a method of type get_xxxx(), and
properties which are not read-only can be modified with the help of the set_xxx() method. For
more details regarding the used methods, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
set_xxx() method. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent

13. Using Yocto-Pressure-C with TypeScript

www.yoctopuce.com 95

memory. To do so, use the saveToFlash() method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash() method. The short example below
allows you to modify the logical name of a module.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';

async function startDemo(args: string[]): Promise<void>
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg: YErrorMsg = new YErrorMsg();
 if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select the device to use
 let module: YModule = YModule.FindModule(args[0]);
 if(await module.isOnline()) {
 if(args.length > 1) {
 let newname: string = args[1];
 if (!await YAPI.CheckLogicalName(newname)) {
 console.log("Invalid name (" + newname + ")");
 process.exit(1);
 }
 await module.set_logicalName(newname);
 await module.saveToFlash();
 }
 console.log('Current name: '+await module.get_logicalName());
 } else {
 console.log("Module not connected (check identification and USB cable)\n");
 }
 await YAPI.FreeAPI();
}

if(process.argv.length < 3) {
 console.log("usage: npm run demo <serial> [newLogicalName]");
} else {
 startDemo(process.argv.slice(2));
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash() method only 100000 times in the life of the module. Make sure
you do not call this method within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the YModule.FirstModule()
method which returns the first module found. Then, you only need to call the nextModule()
method of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';

async function startDemo(): Promise<void>
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1');
 return;
 }
 refresh();
}

async function refresh(): Promise<void>
{
 try {

13. Using Yocto-Pressure-C with TypeScript

96 www.yoctopuce.com

 let errmsg: YErrorMsg = new YErrorMsg();
 await YAPI.UpdateDeviceList(errmsg);

 let module = YModule.FirstModule();
 while(module) {
 let line: string = await module.get_serialNumber();
 line += '(' + (await module.get_productName()) + ')';
 console.log(line);
 module = module.nextModule();
 }
 setTimeout(refresh, 500);
 } catch(e) {
 console.log(e);
 }
}

startDemo();

13.5. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 97

14. Using Yocto-Pressure-C with JavaScript /
EcmaScript
EcmaScript is the official name of the standardized version of the web-oriented programming
language commonly referred to as JavaScript. This Yoctopuce library take advantages of advanced
features introduced in EcmaScript 2017. It has therefore been named Library for JavaScript /
EcmaScript 2017 to differentiate it from the previous Library for JavaScript, now deprecated in favor
of this new version.

This library provides access to Yoctopuce devices for modern JavaScript engines. It can be used
within a browser as well as with Node.js. The library will automatically detect upon initialization
whether the runtime environment is a browser or a Node.js virtual machine, and use the most
appropriate system libraries accordingly.

Asynchronous communication with the devices is handled across the whole library using Promise
objects, leveraging the new EcmaScript 2017 async / await non-blocking syntax for asynchronous
I/O (see below). This syntax is now available out-of-the-box in most Javascript engines. No
transpilation is needed: no Babel, no jspm, just plain Javascript. Here is your favorite engines
minimum version needed to run this code. All of them are officially released at the time we write this
document.

• Node.js v7.6 and later
• Firefox 52
• Opera 42 (incl. Android version)
• Chrome 55 (incl. Android version)
• Safari 10.1 (incl. iOS version)
• Android WebView 55
• Google V8 Javascript engine v5.5

If you need backward-compatibility with older releases, you can always run Babel to transpile your
code and the library to older standards, as described a few paragraphs below.

We don't suggest using jspm anymore now that async / await are part of the standard.

14.1. Blocking I/O versus Asynchronous I/O in JavaScript
JavaScript is single-threaded by design. That means, if a program is actively waiting for the result of
a network-based operation such as reading from a sensor, the whole program is blocked. In browser
environments, this can even completely freeze the user interface. For this reason, the use of blocking
I/O in JavaScript is strongly discouraged nowadays, and blocking network APIs are getting
deprecated everywhere.

14. Using Yocto-Pressure-C with JavaScript / EcmaScript

98 www.yoctopuce.com

Instead of using parallel threads, JavaScript relies on asynchronous I/O to handle operations with a
possible long timeout: whenever a long I/O call needs to be performed, it is only triggered and but
then the code execution flow is terminated. The JavaScript engine is therefore free to handle other
pending tasks, such as UI. Whenever the pending I/O call is completed, the system invokes a
callback function with the result of the I/O call to resume execution of the original execution flow.

When used with plain callback functions, as pervasive in Node.js libraries, asynchronous I/O tend to
produce code with poor readability, as the execution flow is broken into many disconnected callback
functions. Fortunately, new methods have emerged recently to improve that situation. In particular,
the use of Promise objects to abstract and work with asynchronous tasks helps a lot. Any function
that makes a long I/O operation can return a Promise, which can be used by the caller to chain
subsequent operations in the same flow. Promises are part of EcmaScript 2015 standard.

Promise objects are good, but what makes them even better is the new async / await keywords to
handle asynchronous I/O:

• a function declared async will automatically encapsulate its result as a Promise
• within an async function, any function call prefixed with by await will chain the Promise

returned by the function with a promise to resume execution of the caller
• any exception during the execution of an async function will automatically invoke the Promise

failure continuation

Long story made short, async and await make it possible to write EcmaScript code with all benefits of
asynchronous I/O, but without breaking the code flow. It is almost like multi-threaded execution,
except that control switch between pending tasks only happens at places where the await keyword
appears.

We have therefore chosen to write our new EcmaScript library using Promises and async functions,
so that you can use the friendly await syntax. To keep it easy to remember, all public methods of
the EcmaScript library are async, i.e. return a Promise object, except:

• GetTickCount(), because returning a time stamp asynchronously does not make sense...
• FindModule(), FirstModule(), nextModule(), ... because device detection and

enumeration always work on internal device lists handled in background, and does not require
immediate asynchronous I/O.

14.2. Using Yoctopuce library for JavaScript / EcmaScript 2017
JavaScript is one of those languages which do not generally allow you to directly access the
hardware layers of your computer. Therefore the library can only be used to access network-enabled
devices (connected through a YoctoHub), or USB devices accessible through Yoctopuce TCP/IP to
USB gateway, named VirtualHub.

Go to the Yoctopuce web site and download the following items:

• The Javascript / EcmaScript 2017 programming library1

• VirtualHub2 for Windows, macOS or Linux, depending on your OS

Extract the library files in a folder of your choice, you will find many of examples in it. Connect your
modules and start the VirtualHub software. You do not need to install any driver.

Using the official Yoctopuce library for node.js
Start by installing the latest Node.js version (v7.6 or later) on your system. It is very easy. You can
download it from the official web site: http://nodejs.org. Make sure to install it fully, including npm, and
add it to the system path.

1 www.yoctopuce.com/EN/libraries.php
2 www.yoctopuce.com/EN/virtualhub.php

14. Using Yocto-Pressure-C with JavaScript / EcmaScript

www.yoctopuce.com 99

To give it a try, go into one of the example directory (for instance example_nodejs/Doc-Inventory).
You will see that it include an application description file (package.json) and a source file (demo.js).
To download and setup the libraries needed by this example, just run:

npm install

Once done, you can start the example file using:

node demo.js

Using a local copy of the Yoctopuce library with node.js
If for some reason you need to make changes to the Yoctopuce library, you can easily configure your
project to use the local copy in the lib/ subdirectory rather than the official npm package. In order
to do so, simply type the following command in your project directory:

npm link ../../lib

Using the Yoctopuce library within a browser (HTML)
For HTML examples, it is even simpler: there is nothing to install. Each example is a single HTML file
that you can open in a browser to try it. In this context, loading the Yoctopuce library is no different
from any standard HTML script include tag.

Using the Yoctoluce library on older JavaScript engines
If you need to run this library on older JavaScript engines, you can use Babel3 to transpile your code
and the library into older JavaScript standards. To install Babel with typical settings, simply use:

npm instal -g babel-cli
npm instal babel-preset-env

You would typically ask Babel to put the transpiled files in another directory, named compat for
instance. Your files and all files of the Yoctopuce library should be transpiled, as follow:

babel --presets env demo.js --out-dir compat/
babel --presets env ../../lib --out-dir compat/

Although this approach is based on node.js toolchain, it actually works as well for transpiling
JavaScript files for use in a browser. The only thing that you cannot do so easily is transpiling
JavaScript code embedded directly in an HTML page. You have to use an external script file for
using EcmaScript 2017 syntax with Babel.

Babel has many smart features, such as a watch mode that will automatically refresh transpiled files
whenever the source file is changed, but this is beyond the scope of this note. You will find more in
Babel documentation.

Backward-compatibility with the old JavaScript library
This new library is not fully backward-compatible with the old JavaScript library, because there is no
way to transparently map the old blocking API to the new asynchronous API. The method names
however are the same, and old synchronous code can easily be made asynchronous just by adding
the proper await keywords before the method calls. For instance, simply replace:

beaconState = module.get_beacon();

by

3 http://babeljs.io

14. Using Yocto-Pressure-C with JavaScript / EcmaScript

100 www.yoctopuce.com

beaconState = await module.get_beacon();

Apart from a few exceptions, most XXX_async redundant methods have been removed as well, as
they would have introduced confusion on the proper way of handling asynchronous behaviors. It is
however very simple to get an async method to invoke a callback upon completion, using the
returned Promise object. For instance, you can replace:

module.get_beacon_async(callback, myContext);

by

module.get_beacon().then(function(res) { callback(myContext, module, res); });

In some cases, it might be desirable to get a sensor value using a method identical to the old
synchronous methods (without using Promises), even if it returns a slightly outdated cached value
since I/O is not possible. For this purpose, the EcmaScript library introduce new classes called
synchronous proxies. A synchronous proxy is an object that mirrors the most recent state of the
connected class, but can be read using regular synchronous function calls. For instance, instead of
writing:

async function logInfo(module)
{
 console.log('Name: '+await module.get_logicalName());
 console.log('Beacon: '+await module.get_beacon());
}

...
logInfo(myModule);
...

you can use:

function logInfoProxy(moduleSyncProxy)
{
 console.log('Name: '+moduleProxy.get_logicalName());
 console.log('Beacon: '+moduleProxy.get_beacon());
}

logInfoSync(await myModule.get_syncProxy());

You can also rewrite this last asynchronous call as:

myModule.get_syncProxy().then(logInfoProxy);

14.3. Control of the Pressure function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a JavaScript code
snippet to use the Pressure function.

// For Node.js, we use function require()
// For HTML, we would use <script src="...">
require('yoctolib-es2017/yocto_api.js');
require('yoctolib-es2017/yocto_pressure.js');

[...]
// Get access to your device, through the VirtualHub running locally
await YAPI.RegisterHub('127.0.0.1');
[...]

// Retrieve the object used to interact with the device
var pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure");

// Check that the module is online to handle hot-plug

14. Using Yocto-Pressure-C with JavaScript / EcmaScript

www.yoctopuce.com 101

if(await pressure.isOnline())
{
 // Use pressure.get_currentValue()
 [...]
}

Let us look at these lines in more details.

yocto_api and yocto_pressure import
These two import provide access to functions allowing you to manage Yoctopuce modules.
yocto_api is always needed, yocto_pressure is necessary to manage modules containing a
pressure sensor, such as Yocto-Pressure-C. Other imports can be useful in other cases, such as
YModule which can let you enumerate any type of Yoctopuce device.

YAPI.RegisterHub
The RegisterHub method allows you to indicate on which machine the Yoctopuce modules are
located, more precisely on which machine the VirtualHub software is running. In our case, the
127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port used by
Yoctopuce). You can very well modify this address, and enter the address of another machine on
which the VirtualHub software is running, or of a YoctoHub. If the host cannot be reached, this
function will trigger an exception.

YPressure.FindPressure
The FindPressure method allows you to find a pressure sensor from the serial number of the
module on which it resides and from its function name. You can also use logical names, as long as
you have initialized them. Let us imagine a Yocto-Pressure-C module with serial number
PRSSMK1C-123456 which you have named "MyModule", and for which you have given the pressure
function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure")
pressure = YPressure.FindPressure("PRSSMK1C-123456.MaFonction")
pressure = YPressure.FindPressure("MonModule.pressure")
pressure = YPressure.FindPressure("MonModule.MaFonction")
pressure = YPressure.FindPressure("MaFonction")

YPressure.FindPressure returns an object which you can then use at will to control the
pressure sensor.

isOnline
The isOnline() method of the object returned by FindPressure allows you to know if the
corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

A real example, for Node.js
Open a command window (a terminal, a shell...) and go into the directory example_nodejs/Doc-
GettingStarted-Yocto-Pressure-C within Yoctopuce library for JavaScript / EcmaScript 2017. In
there, you will find a file named demo.js with the sample code below, which uses the functions
explained above, but this time used with all side materials needed to make it work nicely as a small
demo.

If your Yocto-Pressure-C is not connected on the host running the browser, replace in the example
the address 127.0.0.1 with the IP address of the host on which the Yocto-Pressure-C is
connected and where you run the VirtualHub.

14. Using Yocto-Pressure-C with JavaScript / EcmaScript

102 www.yoctopuce.com

"use strict";

require('yoctolib-es2017/yocto_api.js');
require('yoctolib-es2017/yocto_pressure.js');

let press;

async function startDemo()
{
 await YAPI.LogUnhandledPromiseRejections();
 await YAPI.DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select specified device, or use first available one
 let serial = process.argv[process.argv.length-1];
 if(serial[8] != '-') {
 // by default use any connected module suitable for the demo
 let anysensor = YPressure.FirstPressure();
 if(anysensor) {
 let module = await anysensor.module();
 serial = await module.get_serialNumber();
 } else {
 console.log('No matching sensor connected, check cable !');
 return;
 }
 }
 console.log('Using device '+serial);
 press = YPressure.FindPressure(serial+".pressure");

 refresh();
}

async function refresh()
{
 if (await press.isOnline()) {
 console.log('Pressure : '+(await press.get_currentValue()) + (await press.get_unit(
)));
 } else {
 console.log('Module not connected');
 }
 setTimeout(refresh, 500);
}

startDemo();

As explained at the beginning of this chapter, you need to have Node.js v7.6 or later installed to try
this example. When done, you can type the following two commands to automatically download and
install the dependencies for building this example:

npm install

You can the start the sample code within Node.js using the following command, replacing the [...] by
the arguments that you want to pass to the demo code:

node demo.js [...]

Same example, but this time running in a browser
If you want to see how to use the library within a browser rather than with Node.js, switch to the
directory example_html/Doc-GettingStarted-Yocto-Pressure-C. You will find there a single HTML
file, with a JavaScript section similar to the code above, but with a few changes since it has to
interact through an HTML page rather than through the JavaScript console.

<!DOCTYPE html>
<html>
<head>

14. Using Yocto-Pressure-C with JavaScript / EcmaScript

www.yoctopuce.com 103

 <meta charset="UTF-8">
 <title>Hello World</title>
 <script src="../../lib/yocto_api.js"></script>
 <script src="../../lib/yocto_pressure.js"></script>
 <script>
 async function startDemo()
 {
 await YAPI.LogUnhandledPromiseRejections();
 await YAPI.DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 alert('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 }
 refresh();
 }

 async function refresh()
 {
 let serial = document.getElementById('serial').value;
 if(serial == '') {
 // by default use any connected module suitable for the demo
 let anysensor = YPressure.FirstPressure();
 if(anysensor) {
 let module = await anysensor.module();
 serial = await module.get_serialNumber();
 document.getElementById('serial').value = serial;
 }
 }
 let press = YPressure.FindPressure(serial+".pressure");

 if (await press.isOnline()) {
 document.getElementById('msg').value = '';
 document.getElementById("press").value = (await press.get_currentValue()) + (await
press.get_unit());
 } else {
 document.getElementById('msg').value = 'Module not connected';
 }
 setTimeout(refresh, 500);
 }

 startDemo();
 </script>
</head>
<body>
Module to use: <input id='serial'>
<input id='msg' style='color:red;border:none;' readonly>

pressure : <input id='press' readonly>

</body>
</html>

No installation is needed to run this example, all you have to do is open the HTML file using a web
browser,

14.4. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

"use strict";

require('yoctolib-es2017/yocto_api.js');

async function startDemo(args)
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

14. Using Yocto-Pressure-C with JavaScript / EcmaScript

104 www.yoctopuce.com

 // Select the relay to use
 let module = YModule.FindModule(args[0]);
 if(await module.isOnline()) {
 if(args.length > 1) {
 if(args[1] == 'ON') {
 await module.set_beacon(YModule.BEACON_ON);
 } else {
 await module.set_beacon(YModule.BEACON_OFF);
 }
 }
 console.log('serial: '+await module.get_serialNumber());
 console.log('logical name: '+await module.get_logicalName());
 console.log('luminosity: '+await module.get_luminosity()+'%');
 console.log('beacon: '+(await module.get_beacon()==YModule.BEACON_ON
?'ON':'OFF'));
 console.log('upTime: '+parseInt(await module.get_upTime()/1000)+' sec');
 console.log('USB current: '+await module.get_usbCurrent()+' mA');
 console.log('logs:');
 console.log(await module.get_lastLogs());
 } else {
 console.log("Module not connected (check identification and USB cable)\n");
 }
 await YAPI.FreeAPI();
}

if(process.argv.length < 2) {
 console.log("usage: node demo.js <serial or logicalname> [ON | OFF]");
} else {
 startDemo(process.argv.slice(2));
}

Each property xxx of the module can be read thanks to a method of type get_xxxx(), and
properties which are not read-only can be modified with the help of the set_xxx() method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
set_xxx() function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash() method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash() method. The short example below
allows you to modify the logical name of a module.

"use strict";

require('yoctolib-es2017/yocto_api.js');

async function startDemo(args)
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select the relay to use
 let module = YModule.FindModule(args[0]);
 if(await module.isOnline()) {
 if(args.length > 1) {
 let newname = args[1];
 if (!await YAPI.CheckLogicalName(newname)) {
 console.log("Invalid name (" + newname + ")");
 process.exit(1);
 }
 await module.set_logicalName(newname);
 await module.saveToFlash();
 }
 console.log('Current name: '+await module.get_logicalName());

14. Using Yocto-Pressure-C with JavaScript / EcmaScript

www.yoctopuce.com 105

 } else {
 console.log("Module not connected (check identification and USB cable)\n");
 }
 await YAPI.FreeAPI();
}

if(process.argv.length < 2) {
 console.log("usage: node demo.js <serial> [newLogicalName]");
} else {
 startDemo(process.argv.slice(2));
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash() function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the YModule.FirstModule()
function which returns the first module found. Then, you only need to call the nextModule()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

"use strict";

require('yoctolib-es2017/yocto_api.js');

async function startDemo()
{
 await YAPI.LogUnhandledPromiseRejections();
 await YAPI.DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1');
 return;
 }
 refresh();
}

async function refresh()
{
 try {
 let errmsg = new YErrorMsg();
 await YAPI.UpdateDeviceList(errmsg);

 let module = YModule.FirstModule();
 while(module) {
 let line = await module.get_serialNumber();
 line += '(' + (await module.get_productName()) + ')';
 console.log(line);
 module = module.nextModule();
 }
 setTimeout(refresh, 500);
 } catch(e) {
 console.log(e);
 }
}

try {
 startDemo();
} catch(e) {
 console.log(e);
}

14. Using Yocto-Pressure-C with JavaScript / EcmaScript

106 www.yoctopuce.com

14.5. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 107

15. Using Yocto-Pressure-C with PHP
PHP is, like Javascript, an atypical language when interfacing with hardware is at stakes.
Nevertheless, using PHP with Yoctopuce modules provides you with the opportunity to very easily
create web sites which are able to interact with their physical environment, and this is not available to
every web server. This technique has a direct application in home automation: a few Yoctopuce
modules, a PHP server, and you can interact with your home from anywhere on the planet, as long
as you have an internet connection.

PHP is one of those languages which do not allow you to directly access the hardware layers of your
computer. Therefore you need to run VirtualHub on the machine on which your modules are
connected.

To start your tests with PHP, you need a PHP 7.1 (or more recent) server1, preferably locally on you
machine. If you wish to use the PHP server of your internet provider, it is possible, but you will
probably need to configure your ADSL router for it to accept and forward TCP request on the 4444
port.

15.1. Getting ready
Go to the Yoctopuce web site and download the following items:

• The PHP programming library2

• VirtualHub3 for Windows, macOS, or Linux, depending on your OS

Our PHP library is based on PHP 8.x. In other words, our library works perfectly with any version of
PHP currently still supported. However, in order not to abandon our customers with older
installations, we maintain a version compatible with PHP 7.1. which dates back to 2016.

We also offer a version of the library that follows PSR's recommendations. For simplicity's sake, this
version uses the same code as the php8 version, but each class is stored in a separate file. In
addition, this version uses a Yoctopuce\YoctoAPI namespace. These changes make our library
much easier to use with autoload installations.

Note that the examples in the documentation do not use the PSR version.

1 A couple of free PHP servers: easyPHP for Windows, MAMP for macOS.
2 www.yoctopuce.com/EN/libraries.php
3 www.yoctopuce.com/EN/virtualhub.php

15. Using Yocto-Pressure-C with PHP

108 www.yoctopuce.com

In the library archive, there are thus three subdirectories:

• php7
• php8
• phpPSR

Choose the right directory according to the version of the library you wish to use, unzip the files of
this directory into a directory of your choice accessible to your web server, plug in your modules,
launch VirtualHub, and you are ready to start testing. You do not need to install any driver.

15.2. Control of the Pressure function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a PHP code
snipplet to use the Pressure function.

include('yocto_api.php');
include('yocto_pressure.php');

[...]
// Get access to your device, through the VirtualHub running locally
YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg);
[...]

// Retrieve the object used to interact with the device
$pressure = YPressure::FindPressure("PRSSMK1C-123456.pressure");

// Check that the module is online to handle hot-plug
if($pressure->isOnline())
{
 // Use $pressure->get_currentValue()
 [...]
}

Let's look at these lines in more details.

yocto_api.php and yocto_pressure.php
These two PHP includes provides access to the functions allowing you to manage Yoctopuce
modules. yocto_api.php must always be included, yocto_pressure.php is necessary to
manage modules containing a pressure sensor, such as Yocto-Pressure-C.

YAPI::RegisterHub
The YAPI::RegisterHub function allows you to indicate on which machine the Yoctopuce
modules are located, more precisely on which machine the VirtualHub software is running. In our
case, the 127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port
used by Yoctopuce). You can very well modify this address, and enter the address of another
machine on which the VirtualHub software is running.

YPressure::FindPressure
The YPressure::FindPressure function allows you to find a pressure sensor from the serial
number of the module on which it resides and from its function name. You can use logical names as
well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with serial
number PRSSMK1C-123456 which you have named "MyModule", and for which you have given the
pressure function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

$pressure = YPressure::FindPressure("PRSSMK1C-123456.pressure");
$pressure = YPressure::FindPressure("PRSSMK1C-123456.MyFunction");
$pressure = YPressure::FindPressure("MyModule.pressure");
$pressure = YPressure::FindPressure("MyModule.MyFunction");
$pressure = YPressure::FindPressure("MyFunction");

YPressure::FindPressure returns an object which you can then use at will to control the
pressure sensor.

15. Using Yocto-Pressure-C with PHP

www.yoctopuce.com 109

isOnline
The isOnline() method of the object returned by YPressure::FindPressure allows you to
know if the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by yFindPressure provides the
pressure currently measured by the sensor. The value returned is a floating number, equal to the
current number millibar.

A real example
Open your preferred text editor4, copy the code sample below, save it with the Yoctopuce library files
in a location which is accessible to you web server, then use your preferred web browser to access
this page. The code is also provided in the directory Examples/Doc-GettingStarted-Yocto-
Pressure-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

<HTML>
<HEAD>
 <TITLE>Hello World</TITLE>
</HEAD>
<BODY>
<?php
 include('../../php8/yocto_api.php');
 include('../../php8/yocto_pressure.php');

 // Use explicit error handling rather than exceptions
 YAPI::DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 if(YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg) != YAPI::SUCCESS) {
 die("Cannot contact VirtualHub on 127.0.0.1");
 }

 @$serial = $_GET['serial'];
 if ($serial != '') {
 // Check if a specified module is available online
 $press = YPressure::FindPressure("$serial.pressure");
 if (!$press->isOnline()) {
 die("Module not connected (check serial and USB cable)");
 }
 } else {
 // or use any connected module suitable for the demo
 $press = YPressure::FirstPressure();
 if(is_null($press)) {
 die("No module connected (check USB cable)");
 } else {
 $serial = $press->module()->get_serialnumber();
 }
 }
 Print("Module to use: <input name='serial' value='$serial'>
");

 $pvalue = $press->get_currentValue();
 Print("Pressure: $pvalue mbar
");
 YAPI::FreeAPI();

 // trigger auto-refresh after one second
 Print("<script language='javascript1.5' type='text/JavaScript'>\n");
 Print("setTimeout('window.location.reload()',1000);");
 Print("</script>\n");
?>
</BODY>
</HTML>

4 If you do not have a text editor, use Notepad rather than Microsoft Word.

15. Using Yocto-Pressure-C with PHP

110 www.yoctopuce.com

15.3. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

<HTML>
<HEAD>
 <TITLE>Module Control</TITLE>
</HEAD>
<BODY>
<FORM method='get'>
<?php
 include('../../php8/yocto_api.php');

 // Use explicit error handling rather than exceptions
 YAPI::DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 if(YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg) != YAPI::SUCCESS) {
 die("Cannot contact VirtualHub on 127.0.0.1 : ".$errmsg);
 }

 @$serial = $_GET['serial'];
 if ($serial != '') {
 // Check if a specified module is available online
 $module = YModule::FindModule("$serial");
 if (!$module->isOnline()) {
 die("Module not connected (check serial and USB cable)");
 }
 } else {
 // or use any connected module suitable for the demo
 $module = YModule::FirstModule();
 if($module) { // skip VirtualHub
 $module = $module->nextModule();
 }
 if(is_null($module)) {
 die("No module connected (check USB cable)");
 } else {
 $serial = $module->get_serialnumber();
 }
 }
 Print("Module to use: <input name='serial' value='$serial'>
");

 if (isset($_GET['beacon'])) {
 if ($_GET['beacon']=='ON')
 $module->set_beacon(Y_BEACON_ON);
 else
 $module->set_beacon(Y_BEACON_OFF);
 }
 printf('serial: %s
',$module->get_serialNumber());
 printf('logical name: %s
',$module->get_logicalName());
 printf('luminosity: %s
',$module->get_luminosity());
 print('beacon: ');
 if($module->get_beacon() == Y_BEACON_ON) {
 printf("<input type='radio' name='beacon' value='ON' checked>ON ");
 printf("<input type='radio' name='beacon' value='OFF'>OFF
");
 } else {
 printf("<input type='radio' name='beacon' value='ON'>ON ");
 printf("<input type='radio' name='beacon' value='OFF' checked>OFF
");
 }
 printf('upTime: %s sec
',intVal($module->get_upTime()/1000));
 printf('USB current: %smA
',$module->get_usbCurrent());
 printf('logs:
<pre>%s</pre>',$module->get_lastLogs());
 YAPI::FreeAPI();
?>
<input type='submit' value='refresh'>
</FORM>
</BODY>
</HTML>

Each property xxx of the module can be read thanks to a method of type get_xxxx(), and
properties which are not read-only can be modified with the help of the set_xxx() method. For
more details regarding the used functions, refer to the API chapters.

15. Using Yocto-Pressure-C with PHP

www.yoctopuce.com 111

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
set_xxx() function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash() method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash() method. The short example below
allows you to modify the logical name of a module.

<HTML>
<HEAD>
 <TITLE>save settings</TITLE>
<BODY>
<FORM method='get'>
<?php
 include('../../php8/yocto_api.php');

 // Use explicit error handling rather than exceptions
 YAPI::DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 if(YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg) != YAPI::SUCCESS) {
 die("Cannot contact VirtualHub on 127.0.0.1");
 }

 @$serial = $_GET['serial'];
 if ($serial != '') {
 // Check if a specified module is available online
 $module = YModule::FindModule("$serial");
 if (!$module->isOnline()) {
 die("Module not connected (check serial and USB cable)");
 }
 } else {
 // or use any connected module suitable for the demo
 $module = YModule::FirstModule();
 if($module) { // skip VirtualHub
 $module = $module->nextModule();
 }
 if(is_null($module)) {
 die("No module connected (check USB cable)");
 } else {
 $serial = $module->get_serialnumber();
 }
 }
 Print("Module to use: <input name='serial' value='$serial'>
");

 if (isset($_GET['newname'])){
 $newname = $_GET['newname'];
 if (!yCheckLogicalName($newname))
 die('Invalid name');
 $module->set_logicalName($newname);
 $module->saveToFlash();
 }
 printf("Current name: %s
", $module->get_logicalName());
 print("New name: <input name='newname' value='' maxlength=19>
");
 YAPI::FreeAPI();
?>
<input type='submit'>
</FORM>
</BODY>
</HTML>

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash() function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

15. Using Yocto-Pressure-C with PHP

112 www.yoctopuce.com

Listing the modules
Obtaining the list of the connected modules is performed with the yFirstModule() function which
returns the first module found. Then, you only need to call the nextModule() function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

<HTML>
<HEAD>
 <TITLE>inventory</TITLE>
</HEAD>
<BODY>
<H1>Device list</H1>
<TT>
 <?php
 include('../../php8/yocto_api.php');
 YAPI::RegisterHub("http://127.0.0.1:4444/");
 $module = YModule::FirstModule();
 while (!is_null($module)) {
 printf("%s (%s)
\n", $module->get_serialNumber(),
 $module->get_productName());
 $module=$module->nextModule();
 }
 YAPI::FreeAPI();
 ?>
</TT>
</BODY>
</HTML>

15.4. HTTP callback API and NAT filters
The PHP library is able to work in a specific mode called HTTP callback Yocto-API. With this mode,
you can control Yoctopuce devices installed behind a NAT filter, such as a DSL router for example,
and this without needing to open a port. The typical application is to control Yoctopuce devices,
located on a private network, from a public web site.

The NAT filter: advantages and disadvantages
A DSL router which translates network addresses (NAT) works somewhat like a private phone
switchboard (a PBX): internal extensions can call each other and call the outside; but seen from the
outside, there is only one official phone number, that of the switchboard itself. You cannot reach the
internal extensions from the outside.

Typical DSL configuration: LAN machines are isolated from the outside by the DSL router

Transposed to the network, we have the following: appliances connected to your home automation
network can communicate with one another using a local IP address (of the 192.168.xxx.yyy type),
and contact Internet servers through their public address. However, seen from the outside, you have

15. Using Yocto-Pressure-C with PHP

www.yoctopuce.com 113

only one official IP address, assigned to the DSL router only, and you cannot reach your network
appliances directly from the outside. It is rather restrictive, but it is a relatively efficient protection
against intrusions.

Responses from request from LAN machines are routed.

But requests from the outside are blocked.

Seeing Internet without being seen provides an enormous security advantage. However, this signifies
that you cannot, a priori, set up your own web server at home to control a home automation
installation from the outside. A solution to this problem, advised by numerous home automation
system dealers, consists in providing outside visibility to your home automation server itself, by
adding a routing rule in the NAT configuration of the DSL router. The issue of this solution is that it
exposes the home automation server to external attacks.

The HTTP callback API solves this issue without having to modify the DSL router configuration. The
module control script is located on an external site, and it is the VirtualHub which is in charge of
calling it a regular intervals.

The HTTP callback API uses the VirtualHub which initiates the requests.

15. Using Yocto-Pressure-C with PHP

114 www.yoctopuce.com

Configuration
The callback API thus uses the VirtualHub as a gateway. All the communications are initiated by the
VirtualHub. They are thus outgoing communications and therefore perfectly authorized by the DSL
router.

You must configure the VirtualHub so that it calls the PHP script on a regular basis. To do so:

1. Launch a VirtualHub
2. Access its interface, usually 127.0.0.1:4444
3. Click on the configure button of the line corresponding to the VirtualHub itself
4. Click on the edit button of the Outgoing callbacks section

Click on the "configure" button on the first line

Click on the "edit" button of the "Outgoing callbacks" section

And select "Yocto-API callback".

You then only need to define the URL of the PHP script and, if need be, the user name and
password to access this URL. Supported authentication methods are basic and digest. The second
method is safer than the first one because it does not allow transfer of the password on the network.

15. Using Yocto-Pressure-C with PHP

www.yoctopuce.com 115

Usage
From the programmer standpoint, the only difference is at the level of the yRegisterHub function call.
Instead of using an IP address, you must use the callback string (or http://callback which is
equivalent).

include("yocto_api.php");
yRegisterHub("callback");

The remainder of the code stays strictly identical. On the VirtualHub interface, at the bottom of the
configuration window for the HTTP callback API , there is a button allowing you to test the call to the
PHP script.

Be aware that the PHP script controlling the modules remotely through the HTTP callback API can
be called only by the VirtualHub. Indeed, it requires the information posted by the VirtualHub to
function. To code a web site which controls Yoctopuce modules interactively, you must create a user
interface which stores in a file or in a database the actions to be performed on the Yoctopuce
modules. These actions are then read and run by the control script.

Common issues
For the HTTP callback API to work, the PHP option allow_url_fopen must be set. Some web site
hosts do not set it by default. The problem then manifests itself with the following error:

error: URL file-access is disabled in the server configuration

To set this option, you must create, in the repertory where the control PHP script is located, an .htaccess
file containing the following line:

php_flag "allow_url_fopen" "On"

Depending on the security policies of the host, it is sometimes impossible to authorize this option at
the root of the web site, or even to install PHP scripts receiving data from a POST HTTP. In this
case, place the PHP script in a subdirectory.

Limitations

This method that allows you to go through NAT filters cheaply has nevertheless a price.
Communications being initiated by the VirtualHub at a more or less regular interval, reaction time to
an event is clearly longer than if the Yoctopuce modules were driven directly. You can configure the
reaction time in the specific window of the VirtualHub, but it is at least of a few seconds in the best
case.

The HTTP callback Yocto-API mode is currently available in PHP, EcmaScript (Node.JS) and Java
only.

15.5. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

15. Using Yocto-Pressure-C with PHP

116 www.yoctopuce.com

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 117

16. Using Yocto-Pressure-C with Visual Basic .NET
VisualBasic has long been the most favored entrance path to the Microsoft world. Therefore, we had
to provide our library for this language, even if the new trend is shifting to C#. We support Visual
Studio 2017 and its more recent versions.

16.1. Installation
Download the Visual Basic Yoctopuce library from the Yoctopuce web site1. There is no setup
program, simply copy the content of the zip file into the directory of your choice. You mostly need the
content of the Sources directory. The other directories contain the documentation and a few
sample programs. All sample projects are Visual Basic 2010, projects, if you are using a previous
version, you may have to recreate the projects structure from scratch.

16.2. Using the Yoctopuce API in a Visual Basic project
The Visual Basic.NET Yoctopuce library is composed of a DLL and of source files in Visual Basic.
The DLL is not a .NET DLL, but a classic DLL, written in C, which manages the low level
communications with the modules2. The source files in Visual Basic manage the high level part of the
API. Therefore, your need both this DLL and the .vb files of the sources directory to create a
project managing Yoctopuce modules.

Configuring a Visual Basic project
The following indications are provided for Visual Studio Express 2010, but the process is similar for
other versions. Start by creating your project. Then, on the Solution Explorer panel, right click on your
project, and select "Add" and then "Add an existing item".

A file selection window opens. Select the yocto_api.vb file and the files corresponding to the
functions of the Yoctopuce modules that your project is going to manage. If in doubt, select all the
files.

You then have the choice between simply adding these files to your project, or to add them as links
(the Add button is in fact a scroll-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply keeps a link on the original files. We
recommend you to use links, which makes updates of the library much easier.

1 www.yoctopuce.com/EN/libraries.php
2 The sources of this DLL are available in the C++ API

16. Using Yocto-Pressure-C with Visual Basic .NET

118 www.yoctopuce.com

Then add in the same manner the yapi.dll DLL, located in the Sources/dll directory3. Then,
from the Solution Explorer window, right click on the DLL, select Properties and in the Properties
panel, set the Copy to output folder to always. You are now ready to use your Yoctopuce modules
from Visual Studio.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

16.3. Control of the Pressure function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a Visual Basic
code snipplet to use the Pressure function.

[...]
' Enable detection of USB devices
Dim errmsg As String errmsg
YAPI.RegisterHub("usb", errmsg)
[...]

' Retrieve the object used to interact with the device
Dim pressure As YPressure
pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure")

' Hot-plug is easy: just check that the device is online
If (pressure.isOnline()) Then
 ' Use pressure.get_currentValue()
 [...]
End If

[...]

Let's look at these lines in more details.

YAPI.RegisterHub
The YAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPI_SUCCESS and errmsg contains the error message.

YPressure.FindPressure
The YPressure.FindPressure function allows you to find a pressure sensor from the serial
number of the module on which it resides and from its function name. You can use logical names as
well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with serial
number PRSSMK1C-123456 which you have named "MyModule", and for which you have given the
pressure function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure")
pressure = YPressure.FindPressure("PRSSMK1C-123456.MyFunction")
pressure = YPressure.FindPressure("MyModule.pressure")
pressure = YPressure.FindPressure("MyModule.MyFunction")
pressure = YPressure.FindPressure("MyFunction")

YPressure.FindPressure returns an object which you can then use at will to control the
pressure sensor.

isOnline
The isOnline() method of the object returned by YPressure.FindPressure allows you to
know if the corresponding module is present and in working order.

3 Remember to change the filter of the selection window, otherwise the DLL will not show.

16. Using Yocto-Pressure-C with Visual Basic .NET

www.yoctopuce.com 119

get_currentValue
The get_currentValue() method of the object returned by yFindPressure provides the
pressure currently measured by the sensor. The value returned is a floating number, equal to the
current number millibar.

A real example
Launch Microsoft VisualBasic and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-Pressure-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

Module Module1

 Private Sub Usage()
 Dim execname = System.AppDomain.CurrentDomain.FriendlyName
 Console.WriteLine("Usage:")
 Console.WriteLine(execname + " <serial_number>")
 Console.WriteLine(execname + " <logical_name>")
 Console.WriteLine(execname + " any ")
 System.Threading.Thread.Sleep(2500)

 End
 End Sub

 Sub Main()
 Dim argv() As String = System.Environment.GetCommandLineArgs()
 Dim errmsg As String = ""
 Dim target As String

 Dim psensor As YPressure

 If argv.Length < 2 Then Usage()

 target = argv(1)

 REM Setup the API to use local USB devices
 If (YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS) Then
 Console.WriteLine("RegisterHub error: " + errmsg)
 End
 End If

 If target = "any" Then
 psensor = YPressure.FirstPressure()

 If psensor Is Nothing Then
 Console.WriteLine("No module connected (check USB cable) ")
 End
 End If
 Else
 psensor = YPressure.FindPressure(target + ".pressure")
 End If

 While (True)
 If Not (psensor.isOnline()) Then
 Console.WriteLine("Module not connected (check identification and USB cable)")
 End
 End If
 Console.WriteLine("Current pressure: " + Str(psensor.get_currentValue()) _
 + " mbar")
 Console.WriteLine(" (press Ctrl-C to exit)")
 YAPI.Sleep(1000, errmsg)
 End While
 YAPI.FreeAPI()
 End Sub

End Module

16. Using Yocto-Pressure-C with Visual Basic .NET

120 www.yoctopuce.com

16.4. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

Imports System.IO
Imports System.Environment

Module Module1

 Sub usage()
 Console.WriteLine("usage: demo <serial or logical name> [ON/OFF]")
 End
 End Sub

 Sub Main()
 Dim argv() As String = System.Environment.GetCommandLineArgs()
 Dim errmsg As String = ""
 Dim m As ymodule

 If (YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS) Then
 Console.WriteLine("RegisterHub error:" + errmsg)
 End
 End If

 If argv.Length < 2 Then usage()

 m = YModule.FindModule(argv(1)) REM use serial or logical name
 If (m.isOnline()) Then
 If argv.Length > 2 Then
 If argv(2) = "ON" Then m.set_beacon(Y_BEACON_ON)
 If argv(2) = "OFF" Then m.set_beacon(Y_BEACON_OFF)
 End If
 Console.WriteLine("serial: " + m.get_serialNumber())
 Console.WriteLine("logical name: " + m.get_logicalName())
 Console.WriteLine("luminosity: " + Str(m.get_luminosity()))
 Console.Write("beacon: ")
 If (m.get_beacon() = Y_BEACON_ON) Then
 Console.WriteLine("ON")
 Else
 Console.WriteLine("OFF")
 End If
 Console.WriteLine("upTime: " + Str(m.get_upTime() / 1000) + " sec")
 Console.WriteLine("USB current: " + Str(m.get_usbCurrent()) + " mA")
 Console.WriteLine("Logs:")
 Console.WriteLine(m.get_lastLogs())
 Else
 Console.WriteLine(argv(1) + " not connected (check identification and USB cable)")
 End If
 YAPI.FreeAPI()
 End Sub

End Module

Each property xxx of the module can be read thanks to a method of type get_xxxx(), and
properties which are not read-only can be modified with the help of the set_xxx() method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
set_xxx() function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash() method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash() method. The short example below
allows you to modify the logical name of a module.

Module Module1

16. Using Yocto-Pressure-C with Visual Basic .NET

www.yoctopuce.com 121

 Sub usage()

 Console.WriteLine("usage: demo <serial or logical name> <new logical name>")
 End
 End Sub

 Sub Main()
 Dim argv() As String = System.Environment.GetCommandLineArgs()
 Dim errmsg As String = ""
 Dim newname As String
 Dim m As YModule

 If (argv.Length <> 3) Then usage()

 REM Setup the API to use local USB devices
 If YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS Then
 Console.WriteLine("RegisterHub error: " + errmsg)
 End
 End If

 m = YModule.FindModule(argv(1)) REM use serial or logical name
 If m.isOnline() Then
 newname = argv(2)
 If (Not YAPI.CheckLogicalName(newname)) Then
 Console.WriteLine("Invalid name (" + newname + ")")
 End
 End If
 m.set_logicalName(newname)
 m.saveToFlash() REM do not forget this
 Console.Write("Module: serial= " + m.get_serialNumber)
 Console.Write(" / name= " + m.get_logicalName())
 Else
 Console.Write("not connected (check identification and USB cable")
 End If
 YAPI.FreeAPI()

 End Sub

End Module

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash() function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the yFirstModule() function which
returns the first module found. Then, you only need to call the nextModule() function of this
object to find the following modules, and this as long as the returned value is not Nothing. Below a
short example listing the connected modules.

Module Module1

 Sub Main()
 Dim M As ymodule
 Dim errmsg As String = ""

 REM Setup the API to use local USB devices
 If YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS Then
 Console.WriteLine("RegisterHub error: " + errmsg)
 End
 End If

 Console.WriteLine("Device list")
 M = YModule.FirstModule()
 While M IsNot Nothing
 Console.WriteLine(M.get_serialNumber() + " (" + M.get_productName() + ")")
 M = M.nextModule()
 End While
 YAPI.FreeAPI()
 End Sub

16. Using Yocto-Pressure-C with Visual Basic .NET

122 www.yoctopuce.com

End Module

16.5. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 123

17. Using Yocto-Pressure-C with Delphi or Lazarus
Delphi is a descendent of Turbo-Pascal. Originally, Delphi was produced by Borland, Embarcadero
now edits it. The strength of this language resides in its ease of use, as anyone with some notions of
the Pascal language can develop a Windows application in next to no time. Its only disadvantage is
to cost something1.

Lazarus2 is a free IDE based on Free-Pascal, it has nothing to envy to Delphi and is available for
both Windows and Linux. The Yoctopuce Delphi library is compatible with both Windows and Linux
versions of Lazarus

Delphi libraries are provided not as VCL components, but directly as source files. These files are
compatible with most Delphi and Lazarus versions.3

17.1. Preparation
Go to the Yoctopuce web site and download the Yoctopuce Delphi libraries4. Uncompress everything
in a directory of your choice.

• With Delphi, add the subdirectory sources in the list of directories of Delphi libraries.5
• With Lazarus, open your project options and add the sources folder to your "other unit files"

path. 6.

Windows
With Windows, the Yoctopuce Delphi / Lazarus library uses two dlls yapi.dll (32-bit version) and
yapi64.dll (64-bit version). All the applications that you create with Delphi or Lazarus must have
access to these DLL. The simplest way to ensure this is to make sure that they are located in the
same directory as the executable file of your application. You can find these dlls in the sources/dll
folder.

1 Actually, Borland provided free versions (for personal use) of Delphi 2006 and 2007. Look for them on the Internet, you
may still be able to download them.
2 www.lazarus-ide.org
3 Delphi libraries are regularly tested with Delphi 5, Delphi XE2, and the latest version of Lazarus.
4 www.yoctopuce.com/EN/libraries.php
5 Use the Tools / Environment options menu.
6 Use the Menu Project / Project options/ Compiler options / Paths

17. Using Yocto-Pressure-C with Delphi or Lazarus

124 www.yoctopuce.com

Linux
Under Linux, the Delphi / Lazarus library uses the following lib files:

• libyapi-i386.so for Intel 32-bit systems
• libyapi-amd64.so for Intel 64-bit systems
• libyapi-armhf.so for ARM 32-bit systems
• libyapi-aarch64.so for ARM 64-bit systems

You will find these lib files in the sources/dll folder. You have to make sure that

• Lazarus can find the right .so file at compilation time.
• The executable can find it at execution time.

The simplest way to ensure this is to copy all four .so files into the /usr/lib folder. Alternatively, you
can copy them next to your main source file and adjust your LD_LIBRARY_PATH environment
variable accordingly.

17.2. About examples
To keep them simple, all the examples provided in this documentation are console applications.
Obviously, the libraries work in a strictly identical way with VCL applications.

Note that most of these examples use command line parameters 7.

You will soon notice that the Delphi API defines many functions which return objects. You do not
need to deallocate these objects yourself, the API does it automatically at the end of the application.

17.3. Control of the Pressure function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a Delphi code
snipplet to use the Pressure function.

uses yocto_api, yocto_pressure;

var errmsg: string;
 pressure: TYPressure;

[...]
// Enable detection of USB devices
yRegisterHub('usb',errmsg)
[...]

// Retrieve the object used to interact with the device
pressure = yFindPressure("PRSSMK1C-123456.pressure")

// Hot-plug is easy: just check that the device is online
if pressure.isOnline() then
 begin
 // Use pressure.get_currentValue()
 [...]
 end;
[...]

Let's look at these lines in more details.

yocto_api and yocto_pressure
These two units provide access to the functions allowing you to manage Yoctopuce modules.
yocto_api must always be used, yocto_pressure is necessary to manage modules containing
a pressure sensor, such as Yocto-Pressure-C.

7 See https://www.yoctopuce.com/EN/article/about-programming-examples

17. Using Yocto-Pressure-C with Delphi or Lazarus

www.yoctopuce.com 125

yRegisterHub
The yRegisterHub function initializes the Yoctopuce API and specifies where the modules should
be looked for. When used with the parameter 'usb', it will use the modules locally connected to the
computer running the library. If the initialization does not succeed, this function returns a value
different from YAPI_SUCCESS and errmsg contains the error message.

yFindPressure
The yFindPressure function allows you to find a pressure sensor from the serial number of the
module on which it resides and from its function name. You can also use logical names, as long as
you have initialized them. Let us imagine a Yocto-Pressure-C module with serial number
PRSSMK1C-123456 which you have named "MyModule", and for which you have given the pressure
function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pressure := yFindPressure("PRSSMK1C-123456.pressure");
pressure := yFindPressure("PRSSMK1C-123456.MyFunction");
pressure := yFindPressure("MyModule.pressure");
pressure := yFindPressure("MyModule.MyFunction");
pressure := yFindPressure("MyFunction");

yFindPressure returns an object which you can then use at will to control the pressure sensor.

isOnline
The isOnline() method of the object returned by yFindPressure allows you to know if the
corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by yFindPressure provides the
pressure currently measured by the sensor. The value returned is a floating number, equal to the
current number millibar.

A real example
Launch your Delphi environment, copy the yapi.dll DLL in a directory, create a new console
application in the same directory, and copy-paste the piece of code below:

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

program helloworld;
{$APPTYPE CONSOLE}
uses
 SysUtils,
 {$IFNDEF UNIX}
 windows,
 {$ENDIF UNIX}

 yocto_api,
 yocto_pressure;

Procedure Usage();
 var
 exe : string;
 begin
 exe:= ExtractFileName(paramstr(0));
 WriteLn(exe+' <serial_number>');
 WriteLn(exe+' <logical_name>');
 WriteLn(exe+' any');
 sleep(3000);
 halt;
 End;

var
 sensor : TYPressure;
 errmsg : string;

17. Using Yocto-Pressure-C with Delphi or Lazarus

126 www.yoctopuce.com

 done : boolean;

begin

 if (paramcount<1) then usage();

 // Setup the API to use local USB devices
 if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
 begin
 Write('RegisterHub error: '+errmsg);
 sleep(3000);
 exit;
 end;

 if paramstr(1)='any' then
 begin
 // try to find the first pressure sensor available
 sensor := yFirstPressure();
 if sensor=nil then
 begin
 writeln('No module connected (check USB cable)');
 sleep(3000);
 halt;
 end
 end
 else // or use the one specified on the commande line
 sensor:= yFindPressure(paramstr(1)+'.pressure');

 // let's poll
 done := false;
 repeat
 if (sensor.isOnline()) then
 begin
 Write('Current pressure: '+FloatToStr(sensor.get_currentValue())+' mbar');
 Writeln(' (press Ctrl-C to exit)');
 Sleep(1000);
 end
 else
 begin
 Writeln('Module not connected (check identification and USB cable)');
 done := true;
 end;
 until done;
 yFreeAPI();
end.

17.4. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

program modulecontrol;
{$APPTYPE CONSOLE}
uses
 SysUtils,
 yocto_api;

const
 serial = 'PRSSMK1C-123456'; // use serial number or logical name

procedure refresh(module:Tymodule) ;
 begin
 if (module.isOnline()) then
 begin
 Writeln('');
 Writeln('Serial : ' + module.get_serialNumber());
 Writeln('Logical name : ' + module.get_logicalName());
 Writeln('Luminosity : ' + intToStr(module.get_luminosity()));
 Write('Beacon :');
 if (module.get_beacon()=Y_BEACON_ON) then Writeln('on')
 else Writeln('off');
 Writeln('uptime : ' + intToStr(module.get_upTime() div 1000)+'s');
 Writeln('USB current : ' + intToStr(module.get_usbCurrent())+'mA');
 Writeln('Logs : ');

17. Using Yocto-Pressure-C with Delphi or Lazarus

www.yoctopuce.com 127

 Writeln(module.get_lastlogs());
 Writeln('');
 Writeln('r : refresh / b:beacon ON / space : beacon off');
 end
 else Writeln('Module not connected (check identification and USB cable)');
 end;

procedure beacon(module:Tymodule;state:integer);
 begin
 module.set_beacon(state);
 refresh(module);
 end;

var
 module : TYModule;
 c : char;
 errmsg : string;

begin
 // Setup the API to use local USB devices
 if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
 begin
 Write('RegisterHub error: '+errmsg);
 exit;
 end;

 module := yFindModule(serial);
 refresh(module);

 repeat
 read(c);
 case c of
 'r': refresh(module);
 'b': beacon(module,Y_BEACON_ON);
 ' ': beacon(module,Y_BEACON_OFF);
 end;
 until c = 'x';
 yFreeAPI();
end.

Each property xxx of the module can be read thanks to a method of type get_xxxx(), and
properties which are not read-only can be modified with the help of the set_xxx() method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
set_xxx() function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash() method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash() method. The short example below
allows you to modify the logical name of a module.

program savesettings;
{$APPTYPE CONSOLE}
uses
 SysUtils,
 yocto_api;

const
 serial = 'PRSSMK1C-123456'; // use serial number or logical name

var
 module : TYModule;
 errmsg : string;
 newname : string;

begin
 // Setup the API to use local USB devices
 if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
 begin
 Write('RegisterHub error: '+errmsg);
 exit;

17. Using Yocto-Pressure-C with Delphi or Lazarus

128 www.yoctopuce.com

 end;

 module := yFindModule(serial);
 if (not(module.isOnline)) then
 begin
 writeln('Module not connected (check identification and USB cable)');
 exit;
 end;

 Writeln('Current logical name : '+module.get_logicalName());
 Write('Enter new name : ');
 Readln(newname);
 if (not(yCheckLogicalName(newname))) then
 begin
 Writeln('invalid logical name');
 exit;
 end;
 module.set_logicalName(newname);
 module.saveToFlash();
 yFreeAPI();
 Writeln('logical name is now : '+module.get_logicalName());
end.

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash() function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the yFirstModule() function which
returns the first module found. Then, you only need to call the nextModule() function of this
object to find the following modules, and this as long as the returned value is not nil. Below a short
example listing the connected modules.

program inventory;
{$APPTYPE CONSOLE}
uses
 SysUtils,
 yocto_api;

var
 module : TYModule;
 errmsg : string;

begin
 // Setup the API to use local USB devices
 if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
 begin
 Write('RegisterHub error: '+errmsg);
 exit;
 end;

 Writeln('Device list');

 module := yFirstModule();
 while module<>nil do
 begin
 Writeln(module.get_serialNumber()+' ('+module.get_productName()+')');
 module := module.nextModule();
 end;
 yFreeAPI();

end.

17.5. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before

17. Using Yocto-Pressure-C with Delphi or Lazarus

www.yoctopuce.com 129

running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

130 www.yoctopuce.com

www.yoctopuce.com 131

18. Using the Yocto-Pressure-C with Universal
Windows Platform
Universal Windows Platform (UWP) is not a language per say, but a software platform created by
Microsoft. This platform allows you to run a new type of applications: the universal Windows
applications. These applications can work on all machines running under Windows 10. This includes
computers, tablets, smart phones, XBox One, and also Windows IoT Core.

The Yoctopuce UWP library allows you to use Yoctopuce modules in a universal Windows
application and is written in C# in its entirety. You can add it to a Visual Studio 20171 project.

18.1. Blocking and asynchronous functions
The Universal Windows Platform does not use the Win32 API but only the Windows Runtime API
which is available on all the versions of Windows 10 and for any architecture. Thanks to this library,
you can use UWP on all the Windows 10 versions, including Windows 10 IoT Core.

However, using the new UWP API has some consequences: the Windows Runtime API to access
the USB ports is asynchronous, and therefore the Yoctopuce library must be asynchronous as well.
Concretely, the asynchronous methods do not return a result directly but a Task or Task<> object
and the result can be obtained later. Fortunately, the C# language, version 6, supports the async
and await keywords, which simplifies using these functions enormously. You can thus use
asynchronous functions in the same way as traditional functions as long as you respect the following
two rules:

• The method is declared as asynchronous with the async keyword
• The await keyword is added when calling an asynchronous function

Example:

async Task<int> MyFunction(int val)
{
 // do some long computation
 ...

 return result;
}

int res = await MyFunction(1234);

1 https://www.visualstudio.com/vs/cordova/vs/

18. Using the Yocto-Pressure-C with Universal Windows Platform

132 www.yoctopuce.com

Our library follows these two rules and can therefore use the await notation.

For you not to have to wonder wether a function is asynchronous or not, there is the following
convention: all the public methods of the UWP library are asynchronous, that is that you must call
them with the await keyword, except:

• GetTickCount(), because measuring time in an asynchronous manner does not make a
lot of sense...

• FindModule(), FirstModule(), nextModule(), ... because detecting and
enumerating modules is performed as a background task on internal structures which are
managed transparently. It is therefore not necessary to use blocking functions while going
though the lists of modules.

18.2. Installation
Download the Yoctopuce library for Universal Windows Platform from the Yoctopuce web site2.
There is no installation software, simply copy the content of the zip file in a directory of your choice.
You essentially need the content of the Sources directory. The other directories contain
documentation and a few sample programs. Sample projects are Visual Studio 2017 projects. Visual
Studio 2017 is available on the Microsoft web site3.

18.3. Using the Yoctopuce API in a Visual Studio project
Start by creating your project. Then, from the Solution Explorer panel right click on your project and
select Add then Existing element .

A file chooser opens: select all the files in the library Sources directory.

You then have the choice between simply adding the files to your project or adding them as a link
(the Add button is actually a drop-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply creates a link to the original files. We
recommend to use links, as a potential library update is thus much easier.

The Package.appxmanifest file
By default a Universal Windows application doesn't have access rights to the USB ports. If you want
to access USB devices, you must imperatively declare it in the Package.appxmanifest file.

Unfortunately, the edition window of this file doesn't allow this operation and you must modify the
Package.appxmanifest file by hand. In the "Solution Explorer" panel, right click on the
Package.appxmanifest and select "View Code".

In this XML file, we must add a DeviceCapability node in the Capabilities node. This
node must have a "Name" attribute with a "humaninterfacedevice" value.

Inside this node, you must declare all the modules that can be used. Concretely, for each module,
you must add a "Device" node with an "Id" attribute, which has for value a character string
"vidpid:USB_VENDORID USB_DEVICE_ID". The Yoctopuce USB_VENDORID is 24e0 and you can
find the USB_DEVICE_ID of each Yoctopuce device in the documentation in the "Characteristics"
section. Finally, the "Device" node must contain a "Function" node with the "Type" attribute with a
value of "usage:ff00 0001".

For the Yocto-Pressure-C, here is what you must add in the "Capabilities" node:

 <DeviceCapability Name="humaninterfacedevice">
 <!-- Yocto-Pressure-C -->
 <Device Id="vidpid:24e0 00EC">
 <Function Type="usage:ff00 0001" />

2 www.yoctopuce.com/EN/libraries.php
3 https://www.visualstudio.com/downloads/

18. Using the Yocto-Pressure-C with Universal Windows Platform

www.yoctopuce.com 133

 </Device>
 </DeviceCapability>

Unfortunately, it's not possible to write a rule authorizing all Yoctopuce modules. Therefore, you must
imperatively add each module that you want to use.

18.4. Control of the Pressure function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a C# code snippet
to use the Pressure function.

[...]
// Enable detection of USB devices
await YAPI.RegisterHub("usb");
[...]

// Retrieve the object used to interact with the device
YPressure pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure");

// Hot-plug is easy: just check that the device is online
if (await pressure.isOnline())
{
 // Use pressure.get_currentValue()
 [...]
}

[...]

Let us look at these lines in more details.

YAPI.RegisterHub
The YAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the virtual hub able to see the devices. If the
string "usb" is passed as parameter, the API works with modules locally connected to the machine. If
the initialization does not succeed, an exception is thrown.

YPressure.FindPressure
The YPressure.FindPressure function allows you to find a pressure sensor from the serial
number of the module on which it resides and from its function name. You can use logical names as
well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with serial
number PRSSMK1C-123456 which you have named "MyModule", and for which you have given the
pressure function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pressure = YPressure.FindPressure("PRSSMK1C-123456.pressure");
pressure = YPressure.FindPressure("PRSSMK1C-123456.MaFonction");
pressure = YPressure.FindPressure("MonModule.pressure");
pressure = YPressure.FindPressure("MonModule.MaFonction");
pressure = YPressure.FindPressure("MaFonction");

YPressure.FindPressure returns an object which you can then use at will to control the
pressure sensor.

isOnline
The isOnline() method of the object returned by YPressure.FindPressure allows you to
know if the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

18. Using the Yocto-Pressure-C with Universal Windows Platform

134 www.yoctopuce.com

18.5. A real example
Launch Visual Studio and open the corresponding project provided in the directory Examples/Doc-
GettingStarted-Yocto-Pressure-C of the Yoctopuce library.

Visual Studio projects contain numerous files, and most of them are not linked to the use of the
Yoctopuce library. To simplify reading the code, we regrouped all the code that uses the library in the
Demo class, located in the demo.cs file. Properties of this class correspond to the different fields
displayed on the screen, and the Run() method contains the code which is run when the "Start"
button is pushed.

In this example, you can recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
 public class Demo : DemoBase
 {
 public string HubURL { get; set; }
 public string Target { get; set; }

 public override async Task<int> Run()
 {
 try {
 await YAPI.RegisterHub(HubURL);

 YPressure psensor;

 if (Target.ToLower() == "any") {
 psensor = YPressure.FirstPressure();

 if (psensor == null) {
 WriteLine("No module connected (check USB cable) ");
 return -1;
 }
 } else {
 psensor = YPressure.FindPressure(Target + ".pressure");
 }

 while (await psensor.isOnline()) {
 WriteLine("Pressure: " + await psensor.get_currentValue() + " mbar");
 await YAPI.Sleep(1000);
 }

 WriteLine("Module not connected (check identification and USB cable)");
 } catch (YAPI_Exception ex) {
 WriteLine("error: " + ex.Message);
 }

 await YAPI.FreeAPI();
 return 0;
 }
 }
}

18.6. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;

18. Using the Yocto-Pressure-C with Universal Windows Platform

www.yoctopuce.com 135

using com.yoctopuce.YoctoAPI;

namespace Demo
{
 public class Demo : DemoBase
 {

 public string HubURL { get; set; }
 public string Target { get; set; }
 public bool Beacon { get; set; }

 public override async Task<int> Run()
 {
 YModule m;
 string errmsg = "";

 if (await YAPI.RegisterHub(HubURL) != YAPI.SUCCESS) {
 WriteLine("RegisterHub error: " + errmsg);
 return -1;
 }
 m = YModule.FindModule(Target + ".module"); // use serial or logical name
 if (await m.isOnline()) {
 if (Beacon) {
 await m.set_beacon(YModule.BEACON_ON);
 } else {
 await m.set_beacon(YModule.BEACON_OFF);
 }

 WriteLine("serial: " + await m.get_serialNumber());
 WriteLine("logical name: " + await m.get_logicalName());
 WriteLine("luminosity: " + await m.get_luminosity());
 Write("beacon: ");
 if (await m.get_beacon() == YModule.BEACON_ON)
 WriteLine("ON");
 else
 WriteLine("OFF");
 WriteLine("upTime: " + (await m.get_upTime() / 1000) + " sec");
 WriteLine("USB current: " + await m.get_usbCurrent() + " mA");
 WriteLine("Logs:\r\n" + await m.get_lastLogs());
 } else {
 WriteLine(Target + " not connected on" + HubURL +
 "(check identification and USB cable)");
 }
 await YAPI.FreeAPI();
 return 0;
 }
 }
}

Each property xxx of the module can be read thanks to a method of type YModule.get_xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set_xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
YModule.set_xxx() function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash() method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash() method.
The short example below allows you to modify the logical name of a module.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
 public class Demo : DemoBase
 {

 public string HubURL { get; set; }

18. Using the Yocto-Pressure-C with Universal Windows Platform

136 www.yoctopuce.com

 public string Target { get; set; }
 public string LogicalName { get; set; }

 public override async Task<int> Run()
 {
 try {
 YModule m;

 await YAPI.RegisterHub(HubURL);

 m = YModule.FindModule(Target); // use serial or logical name
 if (await m.isOnline()) {
 if (!YAPI.CheckLogicalName(LogicalName)) {
 WriteLine("Invalid name (" + LogicalName + ")");
 return -1;
 }

 await m.set_logicalName(LogicalName);
 await m.saveToFlash(); // do not forget this
 Write("Module: serial= " + await m.get_serialNumber());
 WriteLine(" / name= " + await m.get_logicalName());
 } else {
 Write("not connected (check identification and USB cable");
 }
 } catch (YAPI_Exception ex) {
 WriteLine("RegisterHub error: " + ex.Message);
 }
 await YAPI.FreeAPI();
 return 0;
 }
 }
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash() function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the YModule.yFirstModule()
function which returns the first module found. Then, you only need to call the nextModule()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
 public class Demo : DemoBase
 {
 public string HubURL { get; set; }

 public override async Task<int> Run()
 {
 YModule m;
 try {
 await YAPI.RegisterHub(HubURL);

 WriteLine("Device list");
 m = YModule.FirstModule();
 while (m != null) {
 WriteLine(await m.get_serialNumber()
 + " (" + await m.get_productName() + ")");
 m = m.nextModule();
 }
 } catch (YAPI_Exception ex) {
 WriteLine("Error:" + ex.Message);
 }
 await YAPI.FreeAPI();

18. Using the Yocto-Pressure-C with Universal Windows Platform

www.yoctopuce.com 137

 return 0;
 }
 }
}

18.7. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software.

In the Universal Windows Platform library, error handling is implemented with exceptions. You must
therefore intercept and correctly handle these exceptions if you want to have a reliable project which
does not crash as soon as you disconnect a module.

Library thrown exceptions are always of the YAPI_Exception type, so you can easily separate them
from other exceptions in a try{...} catch{...} block.

Example:

try {

} catch (YAPI_Exception ex) {
 Debug.WriteLine("Exception from Yoctopuce lib:" + ex.Message);
} catch (Exception ex) {
 Debug.WriteLine("Other exceptions :" + ex.Message);
}

138 www.yoctopuce.com

www.yoctopuce.com 139

19. Using Yocto-Pressure-C with Objective-C
Objective-C is language of choice for programming on macOS, due to its integration with the Cocoa
framework. Yoctopuce supports the XCode versions supported by Apple. The Yoctopuce library is
ARC compatible. You can therefore implement your projects either using the traditional retain /
release method, or using the Automatic Reference Counting.

Yoctopuce Objective-C libraries1 are integrally provided as source files. A section of the low-level
library is written in pure C, but you should not need to interact directly with it: everything was done to
ensure the simplest possible interaction from Objective-C.

You will soon notice that the Objective-C API defines many functions which return objects. You do
not need to deallocate these objects yourself, the API does it automatically at the end of the
application.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface. You can find on Yoctopuce blog a detailed example2 with video
shots showing how to integrate the library into your projects.

19.1. Control of the Pressure function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a Objective-C
code snipplet to use the Pressure function.

#import "yocto_api.h"
#import "yocto_pressure.h"

...
NSError *error;
[YAPI RegisterHub:@"usb": &error]
...
// On récupère l'objet représentant le module (ici connecté en local sur USB)
pressure = [YPressure FindPressure:@"PRSSMK1C-123456.pressure"];

// Pour gérer le hot-plug, on vérifie que le module est là
if([pressure isOnline])
{
 // Utiliser [pressure get_currentValue]
 ...
}

1 www.yoctopuce.com/EN/libraries.php
2 www.yoctopuce.com/EN/article/new-objective-c-library-for-mac-os-x

19. Using Yocto-Pressure-C with Objective-C

140 www.yoctopuce.com

Let's look at these lines in more details.

yocto_api.h and yocto_pressure.h
These two import files provide access to the functions allowing you to manage Yoctopuce modules.
yocto_api.h must always be used, yocto_pressure.h is necessary to manage modules
containing a pressure sensor, such as Yocto-Pressure-C.

[YAPI RegisterHub]
The [YAPI RegisterHub] function initializes the Yoctopuce API and indicates where the
modules should be looked for. When used with the parameter @"usb", it will use the modules
locally connected to the computer running the library. If the initialization does not succeed, this
function returns a value different from YAPI_SUCCESS and errmsg contains the error message.

[Pressure FindPressure]
The [Pressure FindPressure] function allows you to find a pressure sensor from the serial
number of the module on which it resides and from its function name. You can use logical names as
well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with serial
number PRSSMK1C-123456 which you have named "MyModule", and for which you have given the
pressure function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

YPressure *pressure = [Pressure FindPressure:@"PRSSMK1C-123456.pressure"];
YPressure *pressure = [Pressure FindPressure:@"PRSSMK1C-123456.MyFunction"];
YPressure *pressure = [Pressure FindPressure:@"MyModule.pressure"];
YPressure *pressure = [Pressure FindPressure:@"MyModule.MyFunction"];
YPressure *pressure = [Pressure FindPressure:@"MyFunction"];

[Pressure FindPressure] returns an object which you can then use at will to control the
pressure sensor.

isOnline
The isOnline method of the object returned by [Pressure FindPressure] allows you to
know if the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

A real example
Launch Xcode 4.2 and open the corresponding sample project provided in the directory Examples/
Doc-GettingStarted-Yocto-Pressure-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

#import <Foundation/Foundation.h>
#import "yocto_api.h"
#import "yocto_pressure.h"

static void usage(void)
{
 NSLog(@"usage: demo <serial_number> ");
 NSLog(@" demo <logical_name>");
 NSLog(@" demo any (use any discovered device)");
 exit(1);
}

int main(int argc, const char * argv[])
{
 NSError *error;

19. Using Yocto-Pressure-C with Objective-C

www.yoctopuce.com 141

 if (argc < 2) {
 usage();
 }

 @autoreleasepool {
 // Setup the API to use local USB devices
 if([YAPI RegisterHub:@"usb": &error] != YAPI_SUCCESS) {
 NSLog(@"RegisterHub error: %@", [error localizedDescription]);
 return 1;
 }
 NSString *target = [NSString stringWithUTF8String:argv[1]];
 YPressure *psensor;
 if ([target isEqualToString:@"any"]) {
 psensor = [YPressure FirstPressure];
 if (psensor == NULL) {
 NSLog(@"No module connected (check USB cable)");
 return 1;
 }
 } else {
 psensor = [YPressure FindPressure:[target stringByAppendingString:@".pressure"]];
 }

 while(1) {
 if(![psensor isOnline]) {
 NSLog(@"Module not connected (check identification and USB cable)\n");
 break;
 }

 NSLog(@"Current pressure: %f C\n", [psensor get_currentValue]);
 NSLog(@" (press Ctrl-C to exit)\n");
 [YAPI Sleep:1000:NULL];
 }
 [YAPI FreeAPI];
 }
 return 0;
}

19.2. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#import <Foundation/Foundation.h>
#import "yocto_api.h"

static void usage(const char *exe)
{
 NSLog(@"usage: %s <serial or logical name> [ON/OFF]\n", exe);
 exit(1);
}

int main (int argc, const char * argv[])
{
 NSError *error;

 @autoreleasepool {
 // Setup the API to use local USB devices
 if([YAPI RegisterHub:@"usb": &error] != YAPI_SUCCESS) {
 NSLog(@"RegisterHub error: %@", [error localizedDescription]);
 return 1;
 }
 if(argc < 2)
 usage(argv[0]);
 NSString *serial_or_name = [NSString stringWithUTF8String:argv[1]];
 // use serial or logical name
 YModule *module = [YModule FindModule:serial_or_name];
 if ([module isOnline]) {
 if (argc > 2) {
 if (strcmp(argv[2], "ON") == 0)
 [module setBeacon:Y_BEACON_ON];
 else

19. Using Yocto-Pressure-C with Objective-C

142 www.yoctopuce.com

 [module setBeacon:Y_BEACON_OFF];
 }
 NSLog(@"serial: %@\n", [module serialNumber]);
 NSLog(@"logical name: %@\n", [module logicalName]);
 NSLog(@"luminosity: %d\n", [module luminosity]);
 NSLog(@"beacon: ");
 if ([module beacon] == Y_BEACON_ON)
 NSLog(@"ON\n");
 else
 NSLog(@"OFF\n");
 NSLog(@"upTime: %ld sec\n", [module upTime] / 1000);
 NSLog(@"USB current: %d mA\n", [module usbCurrent]);
 NSLog(@"logs: %@\n", [module get_lastLogs]);
 } else {
 NSLog(@"%@ not connected (check identification and USB cable)\n",
 serial_or_name);
 }
 [YAPI FreeAPI];
 }
 return 0;
}

Each property xxx of the module can be read thanks to a method of type get_xxxx, and
properties which are not read-only can be modified with the help of the set_xxx: method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
set_xxx: function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash method. The short example below
allows you to modify the logical name of a module.

#import <Foundation/Foundation.h>
#import "yocto_api.h"

static void usage(const char *exe)
{
 NSLog(@"usage: %s <serial> <newLogicalName>\n", exe);
 exit(1);
}

int main (int argc, const char * argv[])
{
 NSError *error;

 @autoreleasepool {
 // Setup the API to use local USB devices
 if([YAPI RegisterHub:@"usb" :&error] != YAPI_SUCCESS) {
 NSLog(@"RegisterHub error: %@", [error localizedDescription]);
 return 1;
 }

 if(argc < 2)
 usage(argv[0]);

 NSString *serial_or_name = [NSString stringWithUTF8String:argv[1]];
 // use serial or logical name
 YModule *module = [YModule FindModule:serial_or_name];

 if (module.isOnline) {
 if (argc >= 3) {
 NSString *newname = [NSString stringWithUTF8String:argv[2]];
 if (![YAPI CheckLogicalName:newname]) {
 NSLog(@"Invalid name (%@)\n", newname);
 usage(argv[0]);
 }
 module.logicalName = newname;
 [module saveToFlash];
 }

19. Using Yocto-Pressure-C with Objective-C

www.yoctopuce.com 143

 NSLog(@"Current name: %@\n", module.logicalName);
 } else {
 NSLog(@"%@ not connected (check identification and USB cable)\n",
 serial_or_name);
 }
 [YAPI FreeAPI];
 }
 return 0;
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash function only 100000 times in the life of the module. Make sure you
do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the yFirstModule() function which
returns the first module found. Then, you only need to call the nextModule() function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

#import <Foundation/Foundation.h>
#import "yocto_api.h"

int main (int argc, const char * argv[])
{
 NSError *error;

 @autoreleasepool {
 // Setup the API to use local USB devices
 if([YAPI RegisterHub:@"usb" :&error] != YAPI_SUCCESS) {
 NSLog(@"RegisterHub error: %@\n", [error localizedDescription]);
 return 1;
 }

 NSLog(@"Device list:\n");

 YModule *module = [YModule FirstModule];
 while (module != nil) {
 NSLog(@"%@ %@", module.serialNumber, module.productName);
 module = [module nextModule];
 }
 [YAPI FreeAPI];
 }
 return 0;
}

19.3. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

19. Using Yocto-Pressure-C with Objective-C

144 www.yoctopuce.com

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 145

20. Using with unsupported languages
Yoctopuce modules can be driven from most common programming languages. New languages are
regularly added, depending on the interest expressed by Yoctopuce product users. Nevertheless,
some languages are not, and will never be, supported by Yoctopuce. There can be several reasons
for this: compilers which are not available anymore, unadapted environments, and so on.

However, there are alternative methods to access Yoctopuce modules from an unsupported
programming language.

20.1. Command line
The easiest method to drive Yoctopuce modules from an unsupported programming language is to
use the command line API through system calls. The command line API is in fact made of a group of
small executables which are easy to call. Their output is also easy to analyze. As most programming
languages allow you to make system calls, the issue is solved with a few lines of code.

However, if the command line API is the easiest solution, it is neither the fastest nor the most
efficient. For each call, the executable must initialize its own API and make an inventory of USB
connected modules. This requires about one second per call.

20.2. .NET Assembly
A .NET Assembly enables you to share a set of pre-compiled classes to offer a service, by stating
entry points which can be used by third-party applications. In our case, it's the whole Yoctopuce
library which is available in the .NET Assembly, so that it can be used in any environment which
supports .NET Assembly dynamic loading.

The Yoctopuce library as a .NET Assembly does not contain only the standard C# Yoctopuce library,
as this would not have allowed an optimal use in all environments. Indeed, we cannot expect host
applications to necessarily offer a thread system or a callback system, although they are very useful
to manage plug-and-play events and sensors with a high refresh rate. Likewise, we cannot expect
from external applications a transparent behavior in cases where a function call in Assembly creates
a delay because of network communications.

Therefore, we added to it an additional layer, called .NET Proxy library. This additional layer offers an
interface very similar to the standard library but somewhat simplified, as it internally manages all the
callback mechanisms. Instead, this library offers mirror objects, called Proxys, which publish through
Properties the main attributes of the Yoctopuce functions such as the current measure, configuration
parameters, the state, and so on.

20. Using with unsupported languages

146 www.yoctopuce.com

.NET Assembly Architecture

The callback mechanism automatically updates the properties of the Proxys objects, without the host
application needing to care for it. The later can thus, at any time and without any risk of latency,
display the value of all properties of Yoctopuce Proxy objects.

Pay attention to the fact that the yapi.dll low-level communication library is not included in
the .NET Assembly. You must therefore keep it together with DotNetProxyLibrary.dll. The
32 bit version must be located in the same directory as DotNetProxyLibrary.dll, while the 64
bit version must be in a subdirectory amd64.

Example of use with MATLAB
Here is how to load our Proxy .NET Assembly in MATLAB and how to read the value of the first
sensor connected by USB found on the machine:

NET.addAssembly("C:/Yoctopuce/DotNetProxyLibrary.dll");
import YoctoProxyAPI.*

errmsg = YAPIProxy.RegisterHub("usb");
sensor = YSensorProxy.FindSensor("");
measure = sprintf('%.3f %s', sensor.CurrentValue, sensor.Unit);

Example of use in PowerShell
PowerShell commands are a little stranger, but we can recognize the same structure:

Add-Type -Path "C:/Yoctopuce/DotNetProxyLibrary.dll"

$errmsg = [YoctoProxyAPI.YAPIProxy]::RegisterHub("usb")
$sensor = [YoctoProxyAPI.YSensorProxy]::FindSensor("")
$measure = "{0:n3} {1}" -f $sensor.CurrentValue, $sensor.Unit

Specificities of the .NET Proxy library
With regards to classic Yoctopuce libraries, the following differences in particular should be noted:

No FirstModule/nextModule method
To obtain an object referring to the first found module, we call YModuleProxy.FindModule
(""). If there is no connected module, this method returns an object with its module.IsOnline
property set to False. As soon as a module is connected, the property changes to True and the
module hardware identifier is updated.

To list modules, you can call the module.GetSimilarFunctions() method which returns an
array of character strings containing the identifiers of all the modules which were found.

No callback function
Callback functions are implemented internally and they update the object properties. You can
therefore simply poll the properties, without significant performance penalties. Be aware that if you

20. Using with unsupported languages

www.yoctopuce.com 147

use one of the function that disables callbacks, the automatic refresh of object properties may not
work anymore.

A new method YAPIProxy.GetLog makes it possible to retrieve low-level debug logs without
using callbacks.

Enumerated types
In order to maximize compatibility with host applications, the .NET Proxy library does not use
true .NET enumerated types, but simple integers. For each enumerated type, the library includes
public constants named according to the possible values. Contrarily to standard Yoctopuce libraries,
numeric values always start from 1, as the value 0 is reserved to return an invalid value, for instance
when the device is disconnected.

Invalid numeric results
For all numeric results, rather than using an arbitrary constant, the invalid value returned in case of
error is NaN. You should therefore use function isNaN() to detect this value.

Using .NET Assembly without the Proxy library
If for a reason or another you do not want to use the Proxy library, and if your environment allows it,
you can use the standard C# API as it is located in the Assembly, under the YoctoLib namespace.
Beware however not to mix both types of use: either you go through the Proxy library, or you use he
YoctoLib version directly, but not both!

Compatibility
For the LabVIEW Yoctopuce library to work correctly with your Yoctopuce modules, these modules
need to have firmware 37120, or higher.

In order to be compatible with as many versions of Windows as possible, including Windows XP, the
DotNetProxyLibrary.dll library is compiled in .NET 3.5, which is available by default on all the
Windows versions since XP. As of today, we have never met any non-Windows environment able to
load a .NET Assembly, so we only ship the low-level communication dll for Windows together with
the assembly.

20.3. VirtualHub and HTTP GET
VirtualHub is available on almost all current platforms. It is generally used as a gateway to provide
access to Yoctopuce modules from languages which prevent direct access to hardware layers of a
computer (JavaScript, PHP, Java, ...).

In fact, VirtualHub is a small web server able to route HTTP requests to Yoctopuce modules. This
means that if you can make an HTTP request from your programming language, you can drive
Yoctopuce modules, even if this language is not officially supported.

REST interface
At a low level, the modules are driven through a REST API. Thus, to control a module, you only need
to perform appropriate requests on the VirtualHub. By default, the VirtualHub HTTP port is 4444.

An important advantage of this technique is that preliminary tests are very easy to implement. You
only need a VirtualHub and a simple web browser. If you copy the following URL in your preferred
browser, while VirtualHub is running, you obtain the list of the connected modules.

http://127.0.0.1:4444/api/services/whitePages.txt

Note that the result is displayed as text, but if you request whitePages.xml, you obtain an XML result.
Likewise, whitePages.json allows you to obtain a JSON result. The html extension even allows you to
display a rough interface where you can modify values in real time. The whole REST API is available
in these different formats.

20. Using with unsupported languages

148 www.yoctopuce.com

Driving a module through the REST interface
Each Yoctopuce module has its own REST interface, available in several variants. Let us imagine a
Yocto-Pressure-C with the PRSSMK1C-12345 serial number and the myModule logical name. The
following URL allows you to know the state of the module.

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/api/module.txt

You can naturally also use the module logical name rather than its serial number.

http://127.0.0.1:4444/byName/myModule/api/module.txt

To retrieve the value of a module property, simply add the name of the property below module. For
example, if you want to know the signposting led luminosity, send the following request:

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/api/module/luminosity

To change the value of a property, modify the corresponding attribute. Thus, to modify the luminosity,
send the following request:

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/api/module?luminosity=100

Driving the module functions through the REST interface
The module functions can be manipulated in the same way. To know the state of the pressure
function, build the following URL:

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/api/pressure.txt

Note that if you can use logical names for the modules instead of their serial number, you cannot use
logical names for functions. Only hardware names are authorized to access functions.

You can retrieve a module function attribute in a way rather similar to that used with the modules. For
example:

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/api/pressure/logicalName

Rather logically, attributes can be modified in the same manner.

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/api/pressure?logicalName=myFunction

You can find the list of available attributes for your Yocto-Pressure-C at the beginning of the
Programming chapter.

Accessing Yoctopuce data logger through the REST interface
This section only applies to devices with a built-in data logger.

The preview of all recorded data streams can be retrieved in JSON format using the following URL:

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/dataLogger.json

Individual measures for any given stream can be obtained by appending the desired function
identifier as well as start time of the stream:

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/dataLogger.json?id=pressure&utc=1389801080

20. Using with unsupported languages

www.yoctopuce.com 149

20.4. Using dynamic libraries
The low level Yoctopuce API is available under several formats of dynamic libraries written in C. The
sources are available with the C++ API. If you use one of these low level libraries, you do not need
VirtualHub anymore.

Filename Platform
libyapi.dylib Max OS X
libyapi-amd64.so Linux Intel (64 bits)
libyapi-armel.so Linux ARM EL (32 bits)
libyapi-armhf.so Linux ARM HL (32 bits)
libyapi-aarch64.so Linux ARM (64 bits)
libyapi-i386.so Linux Intel (32 bits)
yapi64.dll Windows (64 bits)
yapi.dll Windows (32 bits)

These dynamic libraries contain all the functions necessary to completely rebuild the whole high level
API in any language able to integrate these libraries. This chapter nevertheless restrains itself to
describing basic use of the modules.

Driving a module
The three essential functions of the low level API are the following:

int yapiInitAPI(int connection_type, char *errmsg);
int yapiUpdateDeviceList(int forceupdate, char *errmsg);
int yapiHTTPRequest(char *device, char *request, char* buffer,int buffsize,int *fullsize,
char *errmsg);

The yapiInitAPI function initializes the API and must be called once at the beginning of the program.
For a USB type connection, the connection_type parameter takes value 1. The errmsg parameter
must point to a 255 character buffer to retrieve a potential error message. This pointer can also point
to null. The function returns a negative integer in case of error, zero otherwise.

The yapiUpdateDeviceList manages the inventory of connected Yoctopuce modules. It must be
called at least once. To manage hot plug and detect potential newly connected modules, this function
must be called at regular intervals. The forceupdate parameter must take value 1 to force a hardware
scan. The errmsg parameter must point to a 255 character buffer to retrieve a potential error
message. This pointer can also point to null. The function returns a negative integer in case of error,
zero otherwise.

Finally, the yapiHTTPRequest function sends HTTP requests to the module REST API. The device
parameter contains the serial number or the logical name of the module which you want to reach.
The request parameter contains the full HTTP request (including terminal line breaks). buffer points
to a character buffer long enough to contain the answer. buffsize is the size of the buffer. fullsize is a
pointer to an integer to which will be assigned the actual size of the answer. The errmsg parameter
must point to a 255 character buffer to retrieve a potential error message. This pointer can also point
to null. The function returns a negative integer in case of error, zero otherwise.

The format of the requests is the same as the one described in the VirtualHub et HTTP GET section.
All the character strings used by the API are strings made of 8-bit characters: Unicode and UTF8 are
not supported.

The resutlt returned in the buffer variable respects the HTTP protocol. It therefore includes an HTTP
header. This header ends with two empty lines, that is a sequence of four ASCII characters 13, 10,
13, 10.

Here is a sample program written in pascal using the yapi.dll DLL to read and then update the
luminosity of a module.

// Dll functions import
function yapiInitAPI(mode:integer;

20. Using with unsupported languages

150 www.yoctopuce.com

 errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiInitAPI';
function yapiUpdateDeviceList(force:integer;errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiUpdateDeviceList';
function yapiHTTPRequest(device:pansichar;url:pansichar; buffer:pansichar;
 buffsize:integer;var fullsize:integer;
 errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiHTTPRequest';

var
 errmsgBuffer : array [0..256] of ansichar;
 dataBuffer : array [0..1024] of ansichar;
 errmsg,data : pansichar;
 fullsize,p : integer;

const
 serial = 'PRSSMK1C-12345';
 getValue = 'GET /api/module/luminosity HTTP/1.1'#13#10#13#10;
 setValue = 'GET /api/module?luminosity=100 HTTP/1.1'#13#10#13#10;

begin
 errmsg := @errmsgBuffer;
 data := @dataBuffer;
 // API initialization
 if(yapiInitAPI(1,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

 // forces a device inventory
 if(yapiUpdateDeviceList(1,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

 // requests the module luminosity
 if (yapiHTTPRequest(serial,getValue,data,sizeof(dataBuffer),fullsize,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

 // searches for the HTTP header end
 p := pos(#13#10#13#10,data);

 // displays the response minus the HTTP header
 writeln(copy(data,p+4,length(data)-p-3));

 // changes the luminosity
 if (yapiHTTPRequest(serial,setValue,data,sizeof(dataBuffer),fullsize,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

end.

Module inventory
To perform an inventory of Yoctopuce modules, you need two functions from the dynamic library:

 int yapiGetAllDevices(int *buffer,int maxsize,int *neededsize,char *errmsg);
 int yapiGetDeviceInfo(int devdesc,yDeviceSt *infos, char *errmsg);

The yapiGetAllDevices function retrieves the list of all connected modules as a list of handles. buffer
points to a 32-bit integer array which contains the returned handles. maxsize is the size in bytes of
the buffer. To neededsize is assigned the necessary size to store all the handles. From this, you can
deduce either the number of connected modules or that the input buffer is too small. The errmsg
parameter must point to a 255 character buffer to retrieve a potential error message. This pointer can
also point to null. The function returns a negative integer in case of error, zero otherwise.

20. Using with unsupported languages

www.yoctopuce.com 151

The yapiGetDeviceInfo function retrieves the information related to a module from its handle.
devdesc is a 32-bit integer representing the module and which was obtained through
yapiGetAllDevices. infos points to a data structure in which the result is stored. This data structure
has the following format:

Name Type Size
(bytes)Description

vendorid int 4 Yoctopuce USB ID
deviceid int 4 Module USB ID
devrelease int 4 Module version
nbinbterfaces int 4 Number of USB interfaces used by the module
manufacturer char[] 20 Yoctopuce (null terminated)
productname char[] 28 Model (null terminated)
serial char[] 20 Serial number (null terminated)
logicalname char[] 20 Logical name (null terminated)
firmware char[] 22 Firmware version (null terminated)
beacon byte 1 Beacon state (0/1)

The errmsg parameter must point to a 255 character buffer to retrieve a potential error message.

Here is a sample program written in pascal using the yapi.dll DLL to list the connected modules.

// device description structure
type yDeviceSt = packed record
 vendorid : word;
 deviceid : word;
 devrelease : word;
 nbinbterfaces : word;
 manufacturer : array [0..19] of ansichar;
 productname : array [0..27] of ansichar;
 serial : array [0..19] of ansichar;
 logicalname : array [0..19] of ansichar;
 firmware : array [0..21] of ansichar;
 beacon : byte;
 end;

// Dll function import
function yapiInitAPI(mode:integer;
 errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiInitAPI';

function yapiUpdateDeviceList(force:integer;errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiUpdateDeviceList';

function yapiGetAllDevices(buffer:pointer;
 maxsize:integer;
 var neededsize:integer;
 errmsg : pansichar):integer; cdecl;
 external 'yapi.dll' name 'yapiGetAllDevices';

function apiGetDeviceInfo(d:integer; var infos:yDeviceSt;
 errmsg : pansichar):integer; cdecl;
 external 'yapi.dll' name 'yapiGetDeviceInfo';

var
 errmsgBuffer : array [0..256] of ansichar;
 dataBuffer : array [0..127] of integer; // max of 128 USB devices
 errmsg,data : pansichar;
 neededsize,i : integer;
 devinfos : yDeviceSt;

begin
 errmsg := @errmsgBuffer;

 // API initialization
 if(yapiInitAPI(1,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

20. Using with unsupported languages

152 www.yoctopuce.com

 // forces a device inventory
 if(yapiUpdateDeviceList(1,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

 // loads all device handles into dataBuffer
 if yapiGetAllDevices(@dataBuffer,sizeof(dataBuffer),neededsize,errmsg)<0 then
 begin
 writeln(errmsg);
 halt;
 end;

 // gets device info from each handle
 for i:=0 to neededsize div sizeof(integer)-1 do
 begin
 if (apiGetDeviceInfo(dataBuffer[i], devinfos, errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;
 writeln(pansichar(@devinfos.serial)+' ('+pansichar(@devinfos.productname)+')');
 end;

end.

VB6 and yapi.dll
Each entry point from the yapi.dll is duplicated. You will find one regular C-decl version and one
Visual Basic 6 compatible version, prefixed with vb6_.

20.5. Porting the high level library
As all the sources of the Yoctopuce API are fully provided, you can very well port the whole API in
the language of your choice. Note, however, that a large portion of the API source code is
automatically generated.

Therefore, it is not necessary for you to port the complete API. You only need to port the yocto_api
file and one file corresponding to a function, for example yocto_relay. After a little additional work,
Yoctopuce is then able to generate all other files. Therefore, we highly recommend that you contact
Yoctopuce support before undertaking to port the Yoctopuce library in another language.
Collaborative work is advantageous to both parties.

www.yoctopuce.com 153

21. Using the Yocto-Pressure-C in command line
When you want to perform a punctual operation on your Yocto-Pressure-C, such as reading a value,
assigning a logical name, and so on, you can obviously use VirtualHub, but there is a simpler, faster,
and more efficient method: the command line API.

The command line API is a set of executables, one by type of functionality offered by the range of
Yoctopuce products. These executables are provided pre-compiled for all the Yoctopuce officially
supported platforms/OS. Naturally, the executable sources are also provided1.

21.1. Installing
Download the command line API2. You do not need to run any setup, simply copy the executables
corresponding to your platform/OS in a directory of your choice. You may add this directory to your
PATH variable to be able to access these executables from anywhere. You are all set, you only need
to connect your Yocto-Pressure-C, open a shell, and start working by typing for example:

C:\>YPressure any get_currentValue

To use the command line API on Linux, you need either have root privileges or to define an udev rule
for your system. See the Troubleshooting chapter for more details.

21.2. Use: general description
All the command line API executables work on the same principle. They must be called the following
way

C:\>Executable [options] [target] command [parameter]

[options] manage the global workings of the commands, they allow you, for instance, to pilot a
module remotely through the network, or to force the module to save its configuration after executing
the command.

[target] is the name of the module or of the function to which the command applies. Some very
generic commands do not need a target. You can also use the aliases "any" and "all", or a list of
names separated by comas without space.

1 If you want to recompile the command line API, you also need the C++ API.
2 http://www.yoctopuce.com/EN/libraries.php

21. Using the Yocto-Pressure-C in command line

154 www.yoctopuce.com

command is the command you want to run. Almost all the functions available in the classic
programming APIs are available as commands. You need to respect neither the case nor the
underlined characters in the command name.

[parameters] are logically the parameters needed by the command.

At any time, the command line API executables can provide a rather detailed help. Use for instance:

C:\>executable /help

to know the list of available commands for a given command line API executable, or even:

C:\>executable command /help

to obtain a detailed description of the parameters of a command.

21.3. Control of the Temperature function
To control the Temperature function of your Yocto-Pressure-C, you need the YTemperature
executable file.

For instance, you can launch:

C:\>YPressure any get_currentValue

This example uses the "any" target to indicate that we want to work on the first Temperature function
found among all those available on the connected Yoctopuce modules when running. This prevents
you from having to know the exact names of your function and of your module.

But you can use logical names as well, as long as you have configured them beforehand. Let us
imagine a Yocto-Pressure-C module with the PRSSMK1C-123456 serial number which you have
called "MyModule", and its temperature function which you have renamed "MyFunction". The five
following calls are strictly equivalent (as long as MyFunction is defined only once, to avoid any
ambiguity).

C:\>YTemperature PRSSMK1C-123456.temperature describe

C:\>YTemperature PRSSMK1C-123456.MyFunction describe

C:\>YTemperature MyModule.temperature describe

C:\>YTemperature MyModule.MyFunction describe

C:\>YTemperature MyFunction describe

To work on all the Temperature functions at the same time, use the "all" target.

C:\>YTemperature all describe

For more details on the possibilities of the YTemperature executable, use:

C:\>YTemperature /help

21.4. Control of the module part
Each module can be controlled in a similar way with the help of the YModule executable. For
example, to obtain the list of all the connected modules, use:

C:\>YModule inventory

21. Using the Yocto-Pressure-C in command line

www.yoctopuce.com 155

You can also use the following command to obtain an even more detailed list of the connected
modules:

C:\>YModule all describe

Each xxx property of the module can be obtained thanks to a command of the get_xxxx() type,
and the properties which are not read only can be modified with the set_xxx() command. For
example:

C:\>YModule PRSSMK1C-12346 set_logicalName MonPremierModule

C:\>YModule PRSSMK1C-12346 get_logicalName

Changing the settings of the module

When you want to change the settings of a module, simply use the corresponding set_xxx
command. However, this change happens only in the module RAM: if the module restarts, the
changes are lost. To store them permanently, you must tell the module to save its current
configuration in its nonvolatile memory. To do so, use the saveToFlash command. Inversely, it is
possible to force the module to forget its current settings by using the revertFromFlash method.
For example:

C:\>YModule PRSSMK1C-12346 set_logicalName MonPremierModule
C:\>YModule PRSSMK1C-12346 saveToFlash

Note that you can do the same thing in a single command with the -s option.

C:\>YModule -s PRSSMK1C-12346 set_logicalName MonPremierModule

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash() function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

21.5. Limitations
The command line API has the same limitation than the other APIs: there can be only one application
at a given time which can access the modules natively. By default, the command line API works in
native mode.

You can easily work around this limitation by using a Virtual Hub: run VirtualHub3 on the concerned
machine, and use the executables of the command line API with the -r option. For example, if you
use:

C:\>YModule inventory

you obtain a list of the modules connected by USB, using a native access. If another command which
accesses the modules natively is already running, this does not work. But if you run VirtualHub, and
you give your command in the form:

C:\>YModule -r 127.0.0.1 inventory

it works because the command is not executed natively anymore, but through VirtualHub. Note that
VirtualHub counts as a native application.

3 http://www.yoctopuce.com/EN/virtualhub.php

156 www.yoctopuce.com

www.yoctopuce.com 157

22. Using the Yocto-Pressure-C with Python
Python is an interpreted object oriented language developed by Guido van Rossum. Among its
advantages is the fact that it is free, and the fact that it is available for most platforms, Windows as
well as UNIX. It is an ideal language to write small scripts on a napkin. The Yoctopuce library is
compatible with Python 2.7 and 3.x up to the latest official versions. It works under Windows,
macOS, and Linux, Intel as well as ARM. Python interpreters are available on the Python web site1.

22.1. Source files
The Yoctopuce library classes2 for Python that you will use are provided as source files. Copy all the
content of the Sources directory in the directory of your choice and add this directory to the
PYTHONPATH environment variable. If you use an IDE to program in Python, refer to its
documentation to configure it so that it automatically finds the API source files.

22.2. Dynamic library
A section of the low-level library is written in C, but you should not need to interact directly with it: it is
provided as a DLL under Windows, as a .so files under UNIX, and as a .dylib file under macOS.
Everything was done to ensure the simplest possible interaction from Python: the distinct versions of
the dynamic library corresponding to the distinct operating systems and architectures are stored in
the cdll directory. The API automatically loads the correct file during its initialization. You should not
have to worry about it.

If you ever need to recompile the dynamic library, its complete source code is located in the
Yoctopuce C++ library.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

22.3. Control of the Temperature function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a Python code
snipplet to use the Temperature function.

1 http://www.python.org/download/
2 www.yoctopuce.com/EN/libraries.php

22. Using the Yocto-Pressure-C with Python

158 www.yoctopuce.com

[...]
Enable detection of USB devices
errmsg=YRefParam()
YAPI.RegisterHub("usb",errmsg)
[...]

Retrieve the object used to interact with the device
temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature")

Hot-plug is easy: just check that the device is online
if temperature.isOnline():
 # Use temperature.get_currentValue()
 [...]

[...]

Let's look at these lines in more details.

YAPI.RegisterHub
The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPI.SUCCESS and errmsg contains the error message.

YTemperature.FindTemperature
The YTemperature.FindTemperature function allows you to find a temperature sensor from
the serial number of the module on which it resides and from its function name. You can use logical
names as well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with
serial number PRSSMK1C-123456 which you have named "MyModule", and for which you have
given the temperature function the name "MyFunction". The following five calls are strictly equivalent,
as long as "MyFunction" is defined only once.

temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature")
temperature = YTemperature.FindTemperature("PRSSMK1C-123456.MyFunction")
temperature = YTemperature.FindTemperature("MyModule.temperature")
temperature = YTemperature.FindTemperature("MyModule.MyFunction")
temperature = YTemperature.FindTemperature("MyFunction")

YTemperature.FindTemperature returns an object which you can then use at will to control
the temperature sensor.

isOnline
The isOnline() method of the object returned by YTemperature.FindTemperature allows
you to know if the corresponding module is present and in working order.

About python imports
This documentation assumes that you are using the Python library downloaded directly from the
Yoctopuce website, but if you are using the library installed with PIP, then you will need to prefix all
imports with yoctopuce.. Meaning all the import examples shown in the documentation, such as:

from yocto_api import *

need to be converted , when the yoctopuce library was installed by PIP, to:

from yoctopuce.yocto_api import *

22. Using the Yocto-Pressure-C with Python

www.yoctopuce.com 159

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

A real example
Launch Python and open the corresponding sample script provided in the directory Examples/Doc-
GettingStarted-Yocto-Pressure-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

#!/usr/bin/python
-*- coding: utf-8 -*-
import os, sys

from yocto_api import *
from yocto_pressure import *

def usage():
 scriptname = os.path.basename(sys.argv[0])
 print("Usage:")
 print(scriptname + ' <serial_number>')
 print(scriptname + ' <logical_name>')
 print(scriptname + ' any ')
 sys.exit()

def die(msg):
 sys.exit(msg + ' (check USB cable)')

errmsg = YRefParam()

if len(sys.argv) < 2:
 usage()

target = sys.argv[1]

Setup the API to use local USB devices
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
 sys.exit("init error" + errmsg.value)

if target == 'any':
 # retreive any pressure sensor
 sensor = YPressure.FirstPressure()
 if sensor is None:
 die('No module connected')
else:
 sensor = YPressure.FindPressure(target + '.pressure')

if not (sensor.isOnline()):
 die('device not connected')

while sensor.isOnline():
 print("Pressure : " + "%2.1f" % sensor.get_currentValue() + "mbar (Ctrl-C to stop)")
 YAPI.Sleep(1000)
YAPI.FreeAPI()

22.4. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#!/usr/bin/python
-*- coding: utf-8 -*-
import os, sys

22. Using the Yocto-Pressure-C with Python

160 www.yoctopuce.com

from yocto_api import *

def usage():
 sys.exit("usage: demo <serial or logical name> [ON/OFF]")

errmsg = YRefParam()
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
 sys.exit("RegisterHub error: " + str(errmsg))

if len(sys.argv) < 2:
 usage()

m = YModule.FindModule(sys.argv[1]) # # use serial or logical name

if m.isOnline():
 if len(sys.argv) > 2:
 if sys.argv[2].upper() == "ON":
 m.set_beacon(YModule.BEACON_ON)
 if sys.argv[2].upper() == "OFF":
 m.set_beacon(YModule.BEACON_OFF)

 print("serial: " + m.get_serialNumber())
 print("logical name: " + m.get_logicalName())
 print("luminosity: " + str(m.get_luminosity()))
 if m.get_beacon() == YModule.BEACON_ON:
 print("beacon: ON")
 else:
 print("beacon: OFF")
 print("upTime: " + str(m.get_upTime() / 1000) + " sec")
 print("USB current: " + str(m.get_usbCurrent()) + " mA")
 print("logs:\n" + m.get_lastLogs())
else:
 print(sys.argv[1] + " not connected (check identification and USB cable)")
YAPI.FreeAPI()

Each property xxx of the module can be read thanks to a method of type YModule.get_xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set_xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
YModule.set_xxx() function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash() method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash() method.
The short example below allows you to modify the logical name of a module.

#!/usr/bin/python
-*- coding: utf-8 -*-
import os, sys

from yocto_api import *

def usage():
 sys.exit("usage: demo <serial or logical name> <new logical name>")

if len(sys.argv) != 3:
 usage()

errmsg = YRefParam()
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
 sys.exit("RegisterHub error: " + str(errmsg))

m = YModule.FindModule(sys.argv[1]) # use serial or logical name
if m.isOnline():
 newname = sys.argv[2]
 if not YAPI.CheckLogicalName(newname):
 sys.exit("Invalid name (" + newname + ")")

22. Using the Yocto-Pressure-C with Python

www.yoctopuce.com 161

 m.set_logicalName(newname)
 m.saveToFlash() # do not forget this
 print("Module: serial= " + m.get_serialNumber() + " / name= " + m.get_logicalName())
else:
 sys.exit("not connected (check identification and USB cable")
YAPI.FreeAPI()

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash() function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the YModule.yFirstModule()
function which returns the first module found. Then, you only need to call the nextModule()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

#!/usr/bin/python
-*- coding: utf-8 -*-
import os, sys

from yocto_api import *

errmsg = YRefParam()

Setup the API to use local USB devices
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
 sys.exit("init error" + str(errmsg))

print('Device list')

module = YModule.FirstModule()
while module is not None:
 print(module.get_serialNumber() + ' (' + module.get_productName() + ')')
 module = module.nextModule()
YAPI.FreeAPI()

22.5. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

22. Using the Yocto-Pressure-C with Python

162 www.yoctopuce.com

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 163

23. Using Yocto-Pressure-C with C++
C++ is not the simplest language to master. However, if you take care to limit yourself to its essential
functionalities, this language can very well be used for short programs quickly coded, and it has the
advantage of being easily ported from one operating system to another. Under Windows, C++ is
supported with Microsoft Visual Studio 2017 and more recent versions. Under macOS, we support
the XCode versions supported by Apple. And under Linux, we support all GCC version published
since 2008. Moreover, under Max OS X and under Linux, you can compile the examples using a
command line with GCC using the provided GNUmakefile. In the same manner under Windows, a
Makefile allows you to compile examples using a command line, fully knowing the compilation and
linking arguments.

Yoctopuce C++ libraries1 are integrally provided as source files. A section of the low-level library is
written in pure C, but you should not need to interact directly with it: everything was done to ensure
the simplest possible interaction from C++. The library is naturally also available as binary files, so
that you can link it directly if you prefer.

You will soon notice that the C++ API defines many functions which return objects. You do not need
to deallocate these objects yourself, the API does it automatically at the end of the application.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface. You will find in the last section of this chapter all the information
needed to create a wholly new project linked with the Yoctopuce libraries.

23.1. Control of the Temperature function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a C++ code
snipplet to use the Temperature function.

#include "yocto_api.h"
#include "yocto_temperature.h"

[...]
// Enable detection of USB devices
String errmsg;
YAPI::RegisterHub("usb", errmsg);
[...]

// Retrieve the object used to interact with the device
YTemperature *temperature;

1 www.yoctopuce.com/EN/libraries.php

23. Using Yocto-Pressure-C with C++

164 www.yoctopuce.com

temperature = YTemperature::FindTemperature("PRSSMK1C-123456.temperature");

// Hot-plug is easy: just check that the device is online
if(temperature->isOnline())
{
 // Use temperature->get_currentValue()
 [...]
}

Let's look at these lines in more details.

yocto_api.h et yocto_temperature.h
These two include files provide access to the functions allowing you to manage Yoctopuce modules.
yocto_api.h must always be used, yocto_temperature.h is necessary to manage modules
containing a temperature sensor, such as Yocto-Pressure-C.

YAPI::RegisterHub
The YAPI::RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPI_SUCCESS and errmsg contains the error message.

YTemperature::FindTemperature
The YTemperature::FindTemperature function allows you to find a temperature sensor from
the serial number of the module on which it resides and from its function name. You can use logical
names as well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with
serial number PRSSMK1C-123456 which you have named "MyModule", and for which you have
given the temperature function the name "MyFunction". The following five calls are strictly equivalent,
as long as "MyFunction" is defined only once.

YTemperature *temperature = YTemperature::FindTemperature("PRSSMK1C-123456.temperature");
YTemperature *temperature = YTemperature::FindTemperature("PRSSMK1C-123456.MyFunction");
YTemperature *temperature = YTemperature::FindTemperature("MyModule.temperature");
YTemperature *temperature = YTemperature::FindTemperature("MyModule.MyFunction");
YTemperature *temperature = YTemperature::FindTemperature("MyFunction");

YTemperature::FindTemperature returns an object which you can then use at will to control
the temperature sensor.

isOnline
The isOnline() method of the object returned by YTemperature::FindTemperature
allows you to know if the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by yFindPressure provides the
pressure currently measured by the sensor. The value returned is a floating number, equal to the
current number millibar.

A real example
Launch your C++ environment and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-Pressure-C of the Yoctopuce library. If you prefer to work
with your favorite text editor, open the file main.cpp, and type make to build the example when you
are done.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

#include "yocto_api.h"
#include "yocto_pressure.h"
#include <iostream>
#include <stdlib.h>

23. Using Yocto-Pressure-C with C++

www.yoctopuce.com 165

using namespace std;

static void usage(void)
{
 cout << "usage: demo <serial_number> " << endl;
 cout << " demo <logical_name>" << endl;
 cout << " demo any" << endl;
 u64 now = YAPI::GetTickCount();
 while (YAPI::GetTickCount() - now < 3000) {
 // wait 3 sec to show the message
 }
 exit(1);
}

int main(int argc, const char * argv[])
{
 string errmsg, target;
 YPressure *psensor;

 if (argc < 2) {
 usage();
 }
 target = (string) argv[1];

 // Setup the API to use local USB devices
 if (YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
 cerr << "RegisterHub error: " << errmsg << endl;
 return 1;
 }

 if (target == "any") {
 psensor = YPressure::FirstPressure();
 if (psensor == NULL) {
 cout << "No module connected (check USB cable)" << endl;
 return 1;
 }
 } else {
 psensor = YPressure::FindPressure(target + ".pressure");
 }

 while (1) {
 if (!psensor->isOnline()) {
 cout << "Module not connected (check identification and USB cable)";
 break;
 }
 cout << "Current pressure: " << psensor->get_currentValue() << " mbar" << endl;
 cout << " (press Ctrl-C to exit)" << endl;
 YAPI::Sleep(1000, errmsg);
 };
 YAPI::FreeAPI();

 return 0;
}

23.2. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#include <iostream>
#include <stdlib.h>

#include "yocto_api.h"

using namespace std;

static void usage(const char *exe)
{
 cout << "usage: " << exe << " <serial or logical name> [ON/OFF]" << endl;
 exit(1);
}

23. Using Yocto-Pressure-C with C++

166 www.yoctopuce.com

int main(int argc, const char * argv[])
{
 string errmsg;

 // Setup the API to use local USB devices
 if(YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
 cerr << "RegisterHub error: " << errmsg << endl;
 return 1;
 }

 if(argc < 2)
 usage(argv[0]);

 YModule *module = YModule::FindModule(argv[1]); // use serial or logical name

 if (module->isOnline()) {
 if (argc > 2) {
 if (string(argv[2]) == "ON")
 module->set_beacon(Y_BEACON_ON);
 else
 module->set_beacon(Y_BEACON_OFF);
 }
 cout << "serial: " << module->get_serialNumber() << endl;
 cout << "logical name: " << module->get_logicalName() << endl;
 cout << "luminosity: " << module->get_luminosity() << endl;
 cout << "beacon: ";
 if (module->get_beacon() == Y_BEACON_ON)
 cout << "ON" << endl;
 else
 cout << "OFF" << endl;
 cout << "upTime: " << module->get_upTime() / 1000 << " sec" << endl;
 cout << "USB current: " << module->get_usbCurrent() << " mA" << endl;
 cout << "Logs:" << endl << module->get_lastLogs() << endl;
 } else {
 cout << argv[1] << " not connected (check identification and USB cable)"
 << endl;
 }
 YAPI::FreeAPI();
 return 0;
}

Each property xxx of the module can be read thanks to a method of type get_xxxx(), and
properties which are not read-only can be modified with the help of the set_xxx() method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
set_xxx() function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash() method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash() method. The short example below
allows you to modify the logical name of a module.

#include <iostream>
#include <stdlib.h>

#include "yocto_api.h"

using namespace std;

static void usage(const char *exe)
{
 cerr << "usage: " << exe << " <serial> <newLogicalName>" << endl;
 exit(1);
}

int main(int argc, const char * argv[])
{
 string errmsg;

 // Setup the API to use local USB devices

23. Using Yocto-Pressure-C with C++

www.yoctopuce.com 167

 if(YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
 cerr << "RegisterHub error: " << errmsg << endl;
 return 1;
 }

 if(argc < 2)
 usage(argv[0]);

 YModule *module = YModule::FindModule(argv[1]); // use serial or logical name

 if (module->isOnline()) {
 if (argc >= 3) {
 string newname = argv[2];
 if (!yCheckLogicalName(newname)) {
 cerr << "Invalid name (" << newname << ")" << endl;
 usage(argv[0]);
 }
 module->set_logicalName(newname);
 module->saveToFlash();
 }
 cout << "Current name: " << module->get_logicalName() << endl;
 } else {
 cout << argv[1] << " not connected (check identification and USB cable)"
 << endl;
 }
 YAPI::FreeAPI();
 return 0;
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash() function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the yFirstModule() function which
returns the first module found. Then, you only need to call the nextModule() function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

#include <iostream>

#include "yocto_api.h"

using namespace std;

int main(int argc, const char * argv[])
{
 string errmsg;

 // Setup the API to use local USB devices
 if(YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
 cerr << "RegisterHub error: " << errmsg << endl;
 return 1;
 }

 cout << "Device list: " << endl;

 YModule *module = YModule::FirstModule();
 while (module != NULL) {
 cout << module->get_serialNumber() << " ";
 cout << module->get_productName() << endl;
 module = module->nextModule();
 }
 YAPI::FreeAPI();
 return 0;
}

23. Using Yocto-Pressure-C with C++

168 www.yoctopuce.com

23.3. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

23.4. Integration variants for the C++ Yoctopuce library
Depending on your needs and on your preferences, you can integrate the library into your projects in
several distinct manners. This section explains how to implement the different options.

Integration in source format (recommended)
Integrating all the sources of the library into your projects has several advantages:

• It guaranties the respect of the compilation conventions of your project (32/64 bits, inclusion of
debugging symbols, unicode or ASCII characters, etc.);

• It facilitates debugging if you are looking for the cause of a problem linked to the Yoctopuce
library;

• It reduces the dependencies on third party components, for example in the case where you
would need to recompile this project for another architecture in many years;

23. Using Yocto-Pressure-C with C++

www.yoctopuce.com 169

• It does not require the installation of a dynamic library specific to Yoctopuce on the final
system, everything is in the executable.

To integrate the source code, the easiest way is to simply include the Sources directory of your
Yoctopuce library into your IncludePath, and to add all the files of this directory (including the sub-
directory yapi) to your project.

For your project to build correctly, you need to link with your project the prerequisite system libraries,
that is:

• For Windows: the libraries are added automatically
• For macOS: IOKit.framework and CoreFoundation.framework
• For Linux: libm, libpthread, libusb1.0, and libstdc++

Integration as a static library
With the integration of the Yoctopuce library as a static library, you do not need to install a dynamic
library specific to Yoctopuce, everything is in the executable.

To use the static library, you must first compile it using the shell script build.sh on UNIX, or
build.bat on Windows. This script, located in the root directory of the library, detects the OS and
recompiles all the corresponding libraries as well as the examples.

Then, to integrate the static Yoctopuce library to your project, you must include the Sources
directory of the Yoctopuce library into your IncludePath, and add the sub-directory Binaries/...
corresponding to your operating system into your libPath.

Finally, for you project to build correctly, you need to link with your project the Yoctopuce library and
the prerequisite system libraries:

• For Windows: yocto-static.lib
• For macOS: libyocto-static.a, IOKit.framework, and CoreFoundation.framework
• For Linux: libyocto-static.a, libm, libpthread, libusb1.0, and libstdc++.

Note, under Linux, if you wish to compile in command line with GCC, it is generally advisable to link
system libraries as dynamic libraries, rather than as static ones. To mix static and dynamic libraries
on the same command line, you must pass the following arguments:

gcc (...) -Wl,-Bstatic -lyocto-static -Wl,-Bdynamic -lm -lpthread -lusb-1.0 -lstdc++

Integration as a dynamic library
Integration of the Yoctopuce library as a dynamic library allows you to produce an executable smaller
than with the two previous methods, and to possibly update this library, if a patch reveals itself
necessary, without needing to recompile the source code of the application. On the other hand, it is
an integration mode which systematically requires you to copy the dynamic library on the target
machine where the application will run (yocto.dll for Windows, libyocto.so.1.0.1 for macOS and
Linux).

To use the dynamic library, you must first compile it using the shell script build.sh on UNIX, or
build.bat on Windows. This script, located in the root directory of the library, detects the OS and
recompiles all the corresponding libraries as well as the examples.

Then, To integrate the dynamic Yoctopuce library to your project, you must include the Sources
directory of the Yoctopuce library into your IncludePath, and add the sub-directory Binaries/...
corresponding to your operating system into your LibPath.

Finally, for you project to build correctly, you need to link with your project the dynamic Yoctopuce
library and the prerequisite system libraries:

• For Windows: yocto.lib

23. Using Yocto-Pressure-C with C++

170 www.yoctopuce.com

• For macOS: libyocto, IOKit.framework, and CoreFoundation.framework
• For Linux: libyocto, libm, libpthread, libusb1.0, and libstdc++.

With GCC, the command line to compile is simply:

gcc (...) -lyocto -lm -lpthread -lusb-1.0 -lstdc++

www.yoctopuce.com 171

24. Using Yocto-Pressure-C with C#
C# (pronounced C-Sharp) is an object-oriented programming language promoted by Microsoft, it is
somewhat similar to Java. Like Visual-Basic and Delphi, it allows you to create Windows applications
quite easily. C# is supported under Windows Visual Studio 2017 and its more recent versions.

Our programming library is also compatible with Mono, the open source version of C# that also works
on Linux and macOS. Under Linux, use Mono version 5.20 or more recent. Under macOS, support is
limited to 32bit systems, which makes it virtually useless nowadays. You will find on our web site
various articles that describe how to configure Mono to use our library.

24.1. Installation
Download the Visual C# Yoctopuce library from the Yoctopuce web site1. There is no setup program,
simply copy the content of the zip file into the directory of your choice. You mostly need the content
of the Sources directory. The other directories contain the documentation and a few sample
programs. All sample projects are Visual C# 2010, projects, if you are using a previous version, you
may have to recreate the projects structure from scratch.

24.2. Using the Yoctopuce API in a Visual C# project
The Visual C#.NET Yoctopuce library is composed of a DLL and of source files in Visual C#. The
DLL is not a .NET DLL, but a classic DLL, written in C, which manages the low level communications
with the modules2. The source files in Visual C# manage the high level part of the API. Therefore,
your need both this DLL and the .cs files of the sources directory to create a project managing
Yoctopuce modules.

Configuring a Visual C# project
The following indications are provided for Visual Studio Express 2010, but the process is similar for
other versions. Start by creating your project. Then, on the Solution Explorer panel, right click on your
project, and select "Add" and then "Add an existing item".

A file selection window opens. Select the yocto_api.cs file and the files corresponding to the
functions of the Yoctopuce modules that your project is going to manage. If in doubt, select all the
files.

1 www.yoctopuce.com/EN/libraries.php
2 The sources of this DLL are available in the C++ API

24. Using Yocto-Pressure-C with C#

172 www.yoctopuce.com

You then have the choice between simply adding these files to your project, or to add them as links
(the Add button is in fact a scroll-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply keeps a link on the original files. We
recommend you to use links, which makes updates of the library much easier.

Then add in the same manner the yapi.dll DLL, located in the Sources/dll directory3. Then,
from the Solution Explorer window, right click on the DLL, select Properties and in the Properties
panel, set the Copy to output folder to always. You are now ready to use your Yoctopuce modules
from Visual Studio.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

24.3. Control of the Temperature function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a C# code
snipplet to use the Temperature function.

[...]
// Enable detection of USB devices
string errmsg ="";
YAPI.RegisterHub("usb", errmsg);
[...]

// Retrieve the object used to interact with the device
YTemperature temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature");

// Hot-plug is easy: just check that the device is online
if (temperature.isOnline())
{
 // Use temperature.get_currentValue()
 [...]
}

Let's look at these lines in more details.

YAPI.RegisterHub
The YAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPI.SUCCESS and errmsg contains the error message.

YTemperature.FindTemperature
The YTemperature.FindTemperature function allows you to find a temperature sensor from
the serial number of the module on which it resides and from its function name. You can use logical
names as well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with
serial number PRSSMK1C-123456 which you have named "MyModule", and for which you have
given the temperature function the name "MyFunction". The following five calls are strictly equivalent,
as long as "MyFunction" is defined only once.

temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature");
temperature = YTemperature.FindTemperature("PRSSMK1C-123456.MyFunction");
temperature = YTemperature.FindTemperature("MyModule.temperature");
temperature = YTemperature.FindTemperature("MyModule.MyFunction");
temperature = YTemperature.FindTemperature("MyFunction");

YTemperature.FindTemperature returns an object which you can then use at will to control
the temperature sensor.

3 Remember to change the filter of the selection window, otherwise the DLL will not show.

24. Using Yocto-Pressure-C with C#

www.yoctopuce.com 173

isOnline
The isOnline() method of the object returned by YTemperature.FindTemperature allows
you to know if the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

A real example
Launch Microsoft Visual C# and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-Pressure-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void usage()
 {
 string execname = System.AppDomain.CurrentDomain.FriendlyName;
 Console.WriteLine("Usage:");
 Console.WriteLine(execname + " <serial_number>");
 Console.WriteLine(execname + " <logical_name>");
 Console.WriteLine(execname + " any ");
 System.Threading.Thread.Sleep(2500);
 Environment.Exit(0);
 }

 static void Main(string[] args)
 {
 string errmsg = "";
 string target;

 YPressure psensor;

 if (args.Length < 1) usage();
 target = args[0].ToUpper();

 // Setup the API to use local USB devices
 if (YAPI.RegisterHub("usb", ref errmsg) != YAPI.SUCCESS) {
 Console.WriteLine("RegisterHub error: " + errmsg);
 Environment.Exit(0);
 }

 if (target == "ANY") {
 psensor = YPressure.FirstPressure();

 if (psensor == null) {
 Console.WriteLine("No module connected (check USB cable) ");
 Environment.Exit(0);
 }
 } else {
 psensor = YPressure.FindPressure(target + ".pressure");
 }

 if (!psensor.isOnline()) {
 Console.WriteLine("Module not connected");
 Console.WriteLine("check identification and USB cable");
 Environment.Exit(0);
 }

 while (psensor.isOnline()) {
 Console.WriteLine("Current pressure: " + psensor.get_currentValue().ToString()

24. Using Yocto-Pressure-C with C#

174 www.yoctopuce.com

 + " mbar");
 Console.WriteLine(" (press Ctrl-C to exit)");

 YAPI.Sleep(1000, ref errmsg);
 }
 YAPI.FreeAPI();
 }
 }
}

24.4. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void usage()
 {
 string execname = System.AppDomain.CurrentDomain.FriendlyName;
 Console.WriteLine("Usage:");
 Console.WriteLine(execname + " <serial or logical name> [ON/OFF]");
 System.Threading.Thread.Sleep(2500);
 Environment.Exit(0);
 }

 static void Main(string[] args)
 {
 YModule m;
 string errmsg = "";

 if (YAPI.RegisterHub("usb", ref errmsg) != YAPI.SUCCESS) {
 Console.WriteLine("RegisterHub error: " + errmsg);
 Environment.Exit(0);
 }

 if (args.Length < 1) usage();

 m = YModule.FindModule(args[0]); // use serial or logical name

 if (m.isOnline()) {
 if (args.Length >= 2) {
 if (args[1].ToUpper() == "ON") {
 m.set_beacon(YModule.BEACON_ON);
 }
 if (args[1].ToUpper() == "OFF") {
 m.set_beacon(YModule.BEACON_OFF);
 }
 }

 Console.WriteLine("serial: " + m.get_serialNumber());
 Console.WriteLine("logical name: " + m.get_logicalName());
 Console.WriteLine("luminosity: " + m.get_luminosity().ToString());
 Console.Write("beacon: ");
 if (m.get_beacon() == YModule.BEACON_ON)
 Console.WriteLine("ON");
 else
 Console.WriteLine("OFF");
 Console.WriteLine("upTime: " + (m.get_upTime() / 1000).ToString() + " sec");
 Console.WriteLine("USB current: " + m.get_usbCurrent().ToString() + " mA");
 Console.WriteLine("Logs:\r\n" + m.get_lastLogs());

 } else {
 Console.WriteLine(args[0] + " not connected (check identification and USB cable)");
 }

24. Using Yocto-Pressure-C with C#

www.yoctopuce.com 175

 YAPI.FreeAPI();
 }
 }
}

Each property xxx of the module can be read thanks to a method of type YModule.get_xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set_xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
YModule.set_xxx() function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash() method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash() method.
The short example below allows you to modify the logical name of a module.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void usage()
 {
 string execname = System.AppDomain.CurrentDomain.FriendlyName;
 Console.WriteLine("Usage:");
 Console.WriteLine("usage: demo <serial or logical name> <new logical name>");
 System.Threading.Thread.Sleep(2500);
 Environment.Exit(0);
 }

 static void Main(string[] args)
 {
 YModule m;
 string errmsg = "";
 string newname;

 if (args.Length != 2) usage();

 if (YAPI.RegisterHub("usb", ref errmsg) != YAPI.SUCCESS) {
 Console.WriteLine("RegisterHub error: " + errmsg);
 Environment.Exit(0);
 }

 m = YModule.FindModule(args[0]); // use serial or logical name

 if (m.isOnline()) {
 newname = args[1];
 if (!YAPI.CheckLogicalName(newname)) {
 Console.WriteLine("Invalid name (" + newname + ")");
 Environment.Exit(0);
 }

 m.set_logicalName(newname);
 m.saveToFlash(); // do not forget this

 Console.Write("Module: serial= " + m.get_serialNumber());
 Console.WriteLine(" / name= " + m.get_logicalName());
 } else {
 Console.Write("not connected (check identification and USB cable");
 }
 YAPI.FreeAPI();
 }
 }
}

24. Using Yocto-Pressure-C with C#

176 www.yoctopuce.com

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash() function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the YModule.yFirstModule()
function which returns the first module found. Then, you only need to call the nextModule()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 YModule m;
 string errmsg = "";

 if (YAPI.RegisterHub("usb", ref errmsg) != YAPI.SUCCESS) {
 Console.WriteLine("RegisterHub error: " + errmsg);
 Environment.Exit(0);
 }

 Console.WriteLine("Device list");
 m = YModule.FirstModule();
 while (m != null) {
 Console.WriteLine(m.get_serialNumber() + " (" + m.get_productName() + ")");
 m = m.nextModule();
 }
 YAPI.FreeAPI();
 }
 }
}

24.5. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.

24. Using Yocto-Pressure-C with C#

www.yoctopuce.com 177

• If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

178 www.yoctopuce.com

www.yoctopuce.com 179

25. Using the Yocto-Pressure-C with LabVIEW
LabVIEW is edited by National Instruments since 1986. It is a graphic development environment:
rather than writing lines of code, the users draw their programs, somewhat like a flow chart.
LabVIEW was designed mostly to interface measuring tools, hence the Virtual Instruments name for
LabVIEW programs. With visual programming, drawing complex algorithms becomes quickly
fastidious. The LabVIEW Yoctopuce library was thus designed to make it as easy to use as possible.
In other words, LabVIEW being an environment extremely different from other languages supported
by Yoctopuce, there are major differences between the LabVIEW API and the other APIs.

25.1. Architecture
The LabVIEW library is based on the Yoctopuce DotNetProxy library contained in the
DotNetProxyLibrary.dll DLL. In fact, it is this DotNetProxy library which takes care or most of the work
by relying on the C# library which, in turn, uses the low level library coded in yapi.dll (32bits) and
amd64\yapi.dll(64bits).

LabVIEW Yoctopuce API architecture

You must therefore imperatively distribute the DotNetProxyLibrary.dll, yapi.dll, and amd64\yapi.dll
with your LabVIEW applications using the Yoctopuce API.

If need be, you can find the low level API sources in the C# library and the DotNetProxyLibrary.dll
sources in the DotNetProxy library.

25. Using the Yocto-Pressure-C with LabVIEW

180 www.yoctopuce.com

25.2. Compatibility
Firmware
For the LabVIEW Yoctopuce library to work correctly with your Yoctopuce modules, these modules
need to have firmware 37120, or higher.

LabVIEW for Linux and MacOS
At the time of writing, the LabVIEW Yoctopuce API has been tested under Windows only. It is
therefore most likely that it simply does not work with the Linux and MacOS versions of LabVIEW.

LabVIEW NXG
The LabVIEW Yoctopuce library uses many techniques which are not yet available in the new
generation of LabVIEW. The library is therefore absolutely not compatible with LabVIEW NXG.

About DotNewProxyLibrary.dll
In order to be compatible with as many versions of Windows as possible, including Windows XP, the
DotNetProxyLibrary.dll library is compiled in .NET 3.5, which is available by default on all the
Windows versions since XP.

25.3. Installation
Download the LabVIEW library from the Yoctopuce web site1. It is a ZIP file in which there is a
distinct directory for each version of LabVIEW. Each of these directories contains two subdirectories:
the first one contains programming examples for each Yoctopuce product; the second one, called
VIs, contains all the VIs of the API and the required DLLs.

Depending on Windows configuration and the method used to copy the DotNetProxyLibrary.dll on
your system, Windows may block it because it comes from an other computer. This may happen
when the library zip file is uncompressed with Window's file explorer. If the DLL is blocked, LabVIEW
will not be able to load it and an error 1386 will occur whenever any of the Yoctopuce VIs is
executed.

There are two ways to fix this. The simplest is to unblock the file with the Windows file explorer: right
click / properties on the DotNetProxyLibrary.dll file, and click on the unblock button. But this has to be
done each time a new version of the DLL is copied on your system.

1 http://www.yoctopuce.com/EN/libraries.php

25. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 181

Unblock the DotNetProxyLibrary DLL.

Alternatively, one can modify the LabVIEW configuration by creating, in the same directory as the
labview.exe executable, an XML file called labview.exe.config containing the following code:

<?xml version ="1.0"?>
<configuration>
 <runtime>
 <loadFromRemoteSources enabled="true" />
 </runtime>
</configuration>

Make sure to select the correct directory depending on the LabVIEW version you are using (32 bits
vs. 64 bits). You can find more information about this file on the National Instruments web site.2

To install the LabVIEW Yoctopuce API, there are several methods.

Method 1 : "Take-out" installation
The simplest way to use the Yoctopuce library is to copy the content of the VIs directory wherever
you want and to use the VIs in LabVIEW with a simple drag-n-drop operation.

To use the examples provided with the API, it is simpler if you add the directory of Yoctopuce VIs into
the list of where LabVIEW must look for VIs that it has not found. You can access this list through the
Tools > Options > Paths > VI Search Path menu.

2 https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P8XnSAK

25. Using the Yocto-Pressure-C with LabVIEW

182 www.yoctopuce.com

Configuring the "VI Search Path"

Method 2 : Provided installer
In each LabVIEW folder of the Library, you will find a VI named "Install.vi", just open the one
matching your LabVIEW version.

The provider installer

This installer provide 3 installation options:

Install: Keep VI and documentation files where they are.
With this option, VI files are keep in the place where the library has been unzipped. So you will have
to make sure these files are not deleted as long as you need them. Here is what the installer will do if
that option is chosen:

• All references to Yoctopuce any library paths will be removed from the viSearchPath option in
the labview.ini file.

• A dir.mnu palette file referring to VIs in the install folder will be created in
C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce

• A reference to the VIs source install path will inserted into the viSearchPath option in the
labview.ini file.

25. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 183

Install: Copy VI and documentation files into LabVIEW's vi.lib folder
In that case all required files are copied inside the LabVIEW's installation folder, so you will be able
to delete the installation folder once the original installation is complete. Note that programming
examples won't be copied. Here is the exact behaviour of the installer in that case:

• All references to Yoctopuce library paths will be removed from viSearchPath in labview.ini file
• All VIs, DLLs, and documentation files will be copied into:

C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\Yoctopuce
• VIs will be patched with the path to copied documentation files
• A dir.mnu palette file referring to copied VIs will be created in

C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce

Uninstall Yoctopuce Library
this option is meant to remove the LabVIEW library from your LabVIEW installation, here is how it is
done:

• All references to Yoctopuce library paths will be removed from viSearchPath in labview.ini file
• Following folders, if exists, will be removed:

C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce
C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\Yoctopuce

In any case, if the labview.ini file needs to be modified, a backup copy will be made beforehand.

The installer identifies Yoctopuce VIs library folders by checking the presence of the YRegisterHub.vi
file in said folders.

Once the installation is complete, a Yoctopuce palette will appear in Functions/Addons menu.

Method 3 : Installation in a LabVIEW palette (ancillary method)
The steps to manually install the VIs directly in the LabVIEW palette are somewhat more complex.
You can find the detailed procedure on the National Instruments web site 3, but here is a summary:

1. Create a Yoctopuce/API directory in the C:\Program Files\National Instruments\LabVIEW xxxx
\vi.lib directory and copy all the VIs and DLLs of the VIs directory into it.

2. Create a Yoctopuce directory in the C:\Program Files\National Instruments\LabVIEW xxxx
\menus\Categories directory.

3. Run LabVIEW and select the option Tools>Advanced>Edit Palette Set

3 https://forums.ni.com/t5/Developer-Center-Resources/Creating-a-LabVIEW-Palette/ta-p/3520557

25. Using the Yocto-Pressure-C with LabVIEW

184 www.yoctopuce.com

Three windows pop up:

◦ "Edit Controls and Functions Palette Set"
◦ "Functions"
◦ "Controls"

.
In the Function window, there is a Yoctopuce icon. Double-click it to create an empty
"Yoctopuce" window.

4. In the Yoctopuce window, perform a Right click>Insert>Vi(s)..

in order to open a file chooser. Put the file chooser in the vi.lib\Yoctopuce\API directory that
you have created in step 1 and click on Current Folder

All the Yoctopuce VIs now appear in the Yoctopuce window. By default, they are sorted by
alphabetical order, but you can arrange them as you see fit by moving them around with the
mouse. For the palette to be easy to use, we recommend to reorganize the icons over 8
columns.

5. In the "Edit Controls and Functions Palette Set" window, click on the "Save Changes" button,
the window indicates that it has created a dir.mnu file in your Documents directory.

25. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 185

Copy this file in the "menus\Categories\Yoctopuce" directory that you have created in
step 2.

6. Restart LabVIEW, the LabVIEW palette now contains a Yoctopuce sub-palette with all the VIs
of the API.

25.4. Presentation of Yoctopuce VIs
The LabVIEW Yoctopuce library contains one VI per class of the Yoctopuce API, as well as a few
special VIs. All the VIs have the traditional connectors Error IN and Error Out.

YRegisterHub
The YRegisterHub VI is used to initialize the API. You must imperatively call this VI once before
you do anything in relation with Yoctopuce modules.

The YRegisterHub VI

25. Using the Yocto-Pressure-C with LabVIEW

186 www.yoctopuce.com

The YRegisterHub VI takes a url parameter which can be:

• The "usb" character string to indicated that you wish to work with local modules, directly
connected by USB

• An IP address to indicate that you wish to work with modules which are available through a
network connection. This IP address can be that of a YoctoHub4 or even that of a machine on
which the VirtualHub5 application is running.

In the case of an IP address, the YRegisterHub VI tries to contact this address and generates and
error if it does not succeed, unless the async parameter is set to TRUE. If async is set to TRUE, no
error is generated and Yoctopuce modules corresponding to that IP address become automatically
available as soon as the said machine can be reached.

If everything went well, the successful output contains the value TRUE. In the opposite case, it
contains the value FALSE and the error msg output contains a string of characters with a description
of the error.

You can use several YRegisterHub VIs with distinct URLs if you so wish. However, on the same
machine, there can be only one process accessing local Yoctopuce modules directly by USB (url set
to "usb"). You can easily work around this limitation by running the VirtualHub software on the local
machine and using the "127.0.0.1" url.

YFreeAPI
The YFreeAPI VI enables you to free resources allocated by the Yoctopuce API.

The YFreeAPI VI

You must call the YFreeAPI VI when your code is done with the Yoctopuce API. Otherwise, direct
USB access (url set to "usb") could stay locked after the execution of your VI, and stay so for as
long as LabVIEW is not completely closed.

Structure of the VIs corresponding to a class
The other VIs correspond to each function/class of the Yoctopuce API, they all have the same
structure:

Structure of most VIs of the API.

• Connector [11]: name must contain the hardware name or the logical name of the intended
function.

• Connectors [10] and [9]: input parameters depending on the nature of the VI.
• Connectors [8] and [0] : error in and error out.
• Connector [7] : Unique hardware name of the found function.
• Connector [5] : is online contains TRUE if the function is available, FALSE otherwise.
• Connectors [2] and [1]: output values depending on the nature of the VI.
• Connector [6]: If this input is set to TRUE, connector [3] contains a reference to the Proxy

objects implemented by the VI6. This input is initialized to FALSE by default.

4 www.yoctopuce.com/EN/products/category/extensions-and-networking
5 http://www.yoctopuce.com/EN/virtualhub.php
6 see section Using Proxy objects

25. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 187

• Connector [3]: Reference on the Proxy object implemented by the VI if input [6] is TRUE. This
object enables you to access additional features.

You can find the list of functions available on your Yocto-Pressure-C in chapter Programming,
general concepts.

If the desired function (parameter name) is not available, this does not generate an error, but the is
online output contains FALSE and all the other outputs contain the value "N/A" whenever possible. If
the desired function becomes available later in the life of your program, is online switches to TRUE
automatically.

If the name parameter contains an empty string, the VI targets the first available function of the same
type. If no function is available, is online is set to FALSE.

The YModule VI
The YModule VI enables you to interface with the "module" section of each Yoctopuce module. It
enables you to drive the module led and to know the serial number of the module.

The YModule VI

The name input works slightly differently from other VIs. If it is called with a name parameter
corresponding to a function name, the YModule VI finds the Module function of the module hosting
the function. You can therefore easily find the serial number of the module of any function. This
enables you to build the name of other functions which are located on the same module. The
following example finds the first available YHumidity function and builds the name of the
YTemperature function located on the same module. The examples provided with the Yoctopuce API
make extensive use of this technique.

Using the YModule VI to retrieve functions hosted on the same module

The sensor VIs
All the VIs corresponding to Yoctopuce sensors have exactly the same geometry. Both outputs
enable you to retrieve the value measured by the corresponding sensor as well the unit used.

The sensor VIs have all exactly the same geometry

The update freq input parameter is a character string enabling you to configure the way in which the
output value is updated:

• "auto" : The VI value is updated as soon as the sensor detects a significant modification of the
value. It is the default behavior.

• "x/s": The VI value is updated x times per second with the current value of the sensor.

25. Using the Yocto-Pressure-C with LabVIEW

188 www.yoctopuce.com

• "x/m","x/h": The VI value is updated x times per minute (resp. hour) with the average value
over the latest period. Note, maximum frequencies are (60/m) and (3600/h), for higher
frequencies use the (x/s) syntax.

The update frequency of the VI is a parameter managed by the physical Yoctopuce module. If
several VIs try to change the frequency of the same sensor, the valid configuration is that of the
latest call. It is however possible to set different update frequencies to different sensors on the same
Yoctopuce module.

Changing the update frequency of the same module

The update frequency of the VI is completely independent from the sampling frequency of the
sensor, which you usually cannot modify. It is useless and counterproductive to define an update
frequency higher than the sensor sampling frequency.

25.5. Functioning and use of VIs
Here is one of the simplest example of VIs using the Yoctopuce API.

Minimal example of use of the LabVIEW Yoctopuce API

This example is based on the YSensor VI which is a generic VI enabling you to interface any
sensor function of a Yoctopuce module. You can replace this VI by any other from the Yoctopuce
API, they all have the same geometry and work in the same way. This example is limited to three
actions:

1. It initializes the API in native ("usb") mode with the YRegisterHub VI.
2. It displays the value of the first Yoctopuce sensor it finds thanks to the YSensor VI.
3. It frees the API thanks to the YFreeAPI VI.

This example automatically looks for an available sensor. If there is such a sensor, we can retrieve
its name through the hardware name output and the isOnline output equals TRUE. If there is no
available sensor, the VI does not generate an error but emulates a ghost sensor which is "offline".
However, if later in the life of the application, a sensor becomes available because it has been
connected, isOnline switches to TRUE and the hardware name contains the name of the sensor. We
can therefore easily add a few indicators in the previous example to know how the executions goes.

25. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 189

Use of the hardware name and isOnline outputs

The VIs of the Yoctopuce API are actually an entry door into the library. Internally, this mechanism
works independently of the Yoctopuce VIs. Indeed, most communications with electronic modules
are managed automatically as background tasks. Therefore, you do not necessarily need to take any
specific care to use Yoctopuce VIs, you can for example use them in a non-delayed loop without
creating any specific problem for the API.

The Yoctopuce VIs can be used in a non-delayed loop

Note that the YRegisterHub VI is not inside the loop. The YRegisterHub VI is used to initialize
the API. Unless you have several URLs that you need to register, it is better to call the
YRegisterHub VI only once.

When the name parameter is initialized to an empty string, the Yoctopuce VIs automatically look for a
function they can work with. This is very handy when you know that there is only one function of the
same type available and when you do not want to manage its name. If the name parameter contains
a hardware name or a logical name, the VI looks for the corresponding function. If it does not find it, it
emulates an offline function while it waits for the true function to become available.

Using names to identify the functions to be used

25. Using the Yocto-Pressure-C with LabVIEW

190 www.yoctopuce.com

Error handling
The LabVIEW Yoctopuce API is coded to handle errors as smoothly as possible: for example, if you
use a VI to access a function which does not exist, the isOnline output is set to FALSE, the other
outputs are set to NaN, and thus the inputs do not have any impact. Fatal errors are propagated
through the traditional error in, error out channel.

However, the YRegisterHub VI manages connection errors slightly differently. In order to make
them easier to manage, connection errors are signaled with Success and error msg outputs. If there
is an issue during a call to the YRegisterHub VI, Success contains FALSE and error msg contains
a description of the error.

Error handling

The most common error message is "Another process is already using yAPI". It means that another
application, LabVIEW or other, already uses the API in native USB mode. For technical reasons, the
native USB API can be used by only one application at the same time on the same machine. You
can easily work around this limitation by using the network mode.

25.6. Using Proxy objects
The Yoctopuce API contains hundreds of methods, functions, and properties. It was not possible, or
desirable, to create a VI for each of them. Therefore, there is a VI per class that shows the two
properties that Yoctopuce deemed the most useful, but this does not mean that the rest is not
available.

Each VI corresponding to a class has two connectors create ref and optional ref which enable you to
obtain a reference on the Proxy object of the .NET Proxy API on which the LabVIEW library is built.

The connectors to obtain a reference on the Proxy object corresponding to the VI

To obtain this reference, you only need to set optional ref to TRUE. Note, it is essential to close all
references created in this way, otherwise you risk to quickly saturate the computer memory.

Here is an example which uses this technique to change the luminosity of the leds of a Yoctopuce
module.

25. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 191

Regulating the luminosity of the leds of a module

Note that each reference allows you to obtain properties (property nodes) as well as methods (invoke
nodes). By convention, properties are optimized to generate a minimum of communication with the
modules. Therefore, we recommend to use them rather than the corresponding get_xxx and set_xxx
methods which might seem equivalent but which are not optimized. Properties also enable you to
retrieve the various constants of the API, prefixed with the "_" character. For technical reasons, the
get_xxx and set_xxx methods are not all available as properties.

Property and Invoke nodes: Using properties, methods and constants

You can find a description of all the available properties, functions, and methods in the
documentation of the .NET Proxy API.

Network mode
On a given machine, there can be only one process accessing local Yoctopuce modules directly by
USB (url set to "usb"). It is however possible that multiple process connect in parallel to
YoctoHubs7 or tp a machine on which VirtualHub8 is running, including the local machine. Therefore,
if you use the local address of your machine (127.0.0.1) and if a VirtualHub runs on it, you can work
around the limitation which prevents using the native USB API in parallel.

Network mode

7 https://www.yoctopuce.com/EN/products/category/extensions-and-networking
8 www.yoctopuce.com/EN/virtualhub.php

25. Using the Yocto-Pressure-C with LabVIEW

192 www.yoctopuce.com

In the same way, there is no limitation on the number of network interfaces to which the API can
connect itself in parallel. This means that it is quite possible to make multiple calls to the
YRegisterHub VI. This is the only case where it is useful to call the YRegisterHub VI several
times in the life of the application.

You can have multiple network connections

By default, the YRegisterHub VI tries to connect itself on the address given as parameter and
generates an error (success=FALSE) when it cannot do so because nobody answers. But if the
async parameter is initialized to TRUE, no error is generated when the connection does not succeed.
If the connection becomes possible later in the life of the application, the corresponding modules are
automatically made available.

Asynchronous connection

25.7. Managing the data logger
Almost all the Yoctopuce sensors have a data logger which enables you to store the measures of the
sensors in the non-volatile memory of the module. You can configure the data logger with the
VirtualHub, but also with a little bit of LabVIEW code.

Logging
To do so, you must configure the logging frequency by using the "LogFrequency" property which you
can reach with a reference on the Proxy object of the sensor you are using. Then, you must turn the
data logger on thanks to the YDataLogger VI. Note that, like with the YModule VI, you can obtain
the YDataLogger VI corresponding to a module with its own name, but also with the name of any
of the functions available on the same module.

Activating the data logger

Reading
You can retrieve the data in the data logger with the YDataLoggerContents VI.

25. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 193

The YDataLoggerContents VI

Retrieving the data from the logger of a Yoctopuce module is a slow process which can take up to
several tens of seconds. Therefore, we designed the VI enabling this operation to work iteratively.

As a first step, you must call the VI with a sensor name, a start date, and an end date (UTC UNIX
timestamp). The (0,0) pair enables you to obtain the complete content of the data logger. This first
call enables you to obtain a summary of the data logger content and a context.

As a second step, you must call the YDataLoggerContents VI in a loop with the context parameter,
until the progress output reaches the 100 value. At this time, the data output represents the content
of the data logger.

Retrieving the content of the data logger

The results and the summary are returned as an array of structures containing the following fields:

• startTime: beginning of the measuring period
• endTime: end of the measuring period
• averageValue: average value for the period
• minValue: minimum value over the period
• maxValue: maximum value over the period

Note that if the logging frequency is superior to 1Hz, the data logger stores only current values. In
this case, averageValue, minValue, and maxValue share the same value.

25.8. Function list
Each VI corresponding to an object of the Proxy API enables you to list all the functions of the same
class with the getSimilarfunctions() method of the corresponding Proxy object. Thus, you can easily
perform an inventory of all the connected modules, of all the connected sensors, of all the connected
relays, and so on.

25. Using the Yocto-Pressure-C with LabVIEW

194 www.yoctopuce.com

Retrieving the list of all the modules which are connected

25.9. A word on performances
The LabVIEW Yoctopuce API is optimized so that all the VIs and .NET Proxy API object properties
generate a minimum of communication with Yoctopuce modules. Thus, you can use them in loops
without taking any specific precaution: you do not have to slow down the loops with a timer.

These two loops generate little USB communication and do not need to be slowed down

However, almost all the methods of the available Proxy objects initiate a communication with the
Yoctopuce modules each time they are called. You should therefore avoid calling them too often
without purpose.

This loop, using a method, must be slowed down

25.10. A full example of a LabVIEW program
Here is a short example of how to use the Yocto-Pressure-C in LabVIEW. After a call to the
RegisterHub VI, the YPressure VI finds the first pressure sensor available, then use the YModule VI
to find out the device serial number. This number is used to build the name of all sensors present on
the device. Theses names are used to initialize one VI per sensor. This technique avoids ambiguities
when several Yocto-Pressure-C are connected at the same time. Once every VI is initialized, the
sensor value can be displayed. When the application is about to exit, it frees the Yoctopuce API,
thanks to the YFreeAPI VI.

25. Using the Yocto-Pressure-C with LabVIEW

www.yoctopuce.com 195

Example of Yocto-Pressure-C usage in LabVIEW

If you read this documentation on screen, you can zoom on the image above. You can also find this
example in the LabVIEW Yoctopuce library.

25.11. Differences from other Yoctopuce APIs
Yoctopuce does everything it can to maintain a strong coherence between its different programming
libraries. However, LabVIEW being clearly apart as an environment, there are, as a consequence,
important differences from the other libraries.

These differences were introduced to make the use of modules as easy as possible and requiring a
minimum of LabVIEW code.

YFreeAPI
In the opposite to other languages, you must absolutely free the native API by calling the YFreeAPI
VI when your code does not need to use the API anymore. If you forget this call, the native API risks
to stay locked for the other applications until LabVIEW is completely closed.

Properties
In the opposite to classes of the other APIs, classes available in LabVIEW implement properties. By
convention, these properties are optimized to generate a minimum of communication with the
modules while automatically refreshing. By contrast, methods of type get_xxx and set_xxx
systematically generate communications with the Yoctopuce modules and must be called sparingly.

Callback vs. Properties
There is no callback in the LabVIEW Yoctopuce API, the VIs automatically refresh: they are based
on the properties of the .NET Proxy API objects.

196 www.yoctopuce.com

www.yoctopuce.com 197

26. Using the Yocto-Pressure-C with Java
Java is an object oriented language created by Sun Microsystem. Beside being free, its main
strength is its portability. Unfortunately, this portability has an excruciating price. In Java, hardware
abstraction is so high that it is almost impossible to work directly with the hardware. Therefore, the
Yoctopuce API does not support native mode in regular Java. The Java API needs VirtualHub to
communicate with Yoctopuce devices.

26.1. Getting ready
Go to the Yoctopuce web site and download the following items:

• The Java programming library1

• VirtualHub2 for Windows, macOS or Linux, depending on your OS

The library is available as source files as well as a jar file. Decompress the library files in a folder of
your choice, connect your modules, run VirtualHub, and you are ready to start your first tests. You do
not need to install any driver.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

26.2. Control of the Temperature function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a Java code
snippet to use the Temperature function.

[...]
// Get access to your device, through the VirtualHub running locally
YAPI.RegisterHub("127.0.0.1");
[...]

// Retrieve the object used to interact with the device
temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature");

// Hot-plug is easy: just check that the device is online
if (temperature.isOnline())
{

1 www.yoctopuce.com/EN/libraries.php
2 www.yoctopuce.com/EN/virtualhub.php

26. Using the Yocto-Pressure-C with Java

198 www.yoctopuce.com

 // Use temperature.get_currentValue()
 [...]
}

[...]

Let us look at these lines in more details.

YAPI.RegisterHub
The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the Virtual Hub able to see the devices. If the
initialization does not succeed, an exception is thrown.

YTemperature.FindTemperature
The YTemperature.FindTemperature function allows you to find a temperature sensor from
the serial number of the module on which it resides and from its function name. You can use logical
names as well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with
serial number PRSSMK1C-123456 which you have named "MyModule", and for which you have
given the temperature function the name "MyFunction". The following five calls are strictly equivalent,
as long as "MyFunction" is defined only once.

temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature")
temperature = YTemperature.FindTemperature("PRSSMK1C-123456.MyFunction")
temperature = YTemperature.FindTemperature("MyModule.temperature")
temperature = YTemperature.FindTemperature("MyModule.MyFunction")
temperature = YTemperature.FindTemperature("MyFunction")

YTemperature.FindTemperature returns an object which you can then use at will to control
the temperature sensor.

isOnline
The isOnline() method of the object returned by YTemperature.FindTemperature allows
you to know if the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

A real example
Launch you Java environment and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-Pressure-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

import com.yoctopuce.YoctoAPI.*;

public class Demo {

 public static void main(String[] args) {
 try {
 // setup the API to use local VirtualHub
 YAPI.RegisterHub("127.0.0.1");
 } catch (YAPI_Exception ex) {
 System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage() + ")");
 System.out.println("Ensure that the VirtualHub application is running");
 System.exit(1);
 }
 YPressure psensor;

 if (args.length == 0) {
 psensor = YPressure.FirstPressure();

26. Using the Yocto-Pressure-C with Java

www.yoctopuce.com 199

 if (psensor == null) {
 System.out.println("No module connected (check USB cable)");
 System.exit(1);
 }
 } else {
 psensor = YPressure.FindPressure(args[0] + ".pressure");
 }

 while (true) {
 try {
 System.out.println("Current pressure: " + psensor.get_currentValue() + "
mbar");
 System.out.println(" (press Ctrl-C to exit)");
 YAPI.Sleep(1000);
 } catch (YAPI_Exception ex) {
 System.out.println("Module not connected (check identification and USB
cable)");
 break;
 }
 }

 YAPI.FreeAPI();
 }
}

26.3. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

import com.yoctopuce.YoctoAPI.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class Demo {

 public static void main(String[] args)
 {
 try {
 // setup the API to use local VirtualHub
 YAPI.RegisterHub("127.0.0.1");
 } catch (YAPI_Exception ex) {
 System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage() + ")");
 System.out.println("Ensure that the VirtualHub application is running");
 System.exit(1);
 }
 System.out.println("usage: demo [serial or logical name] [ON/OFF]");

 YModule module;
 if (args.length == 0) {
 module = YModule.FirstModule();
 if (module == null) {
 System.out.println("No module connected (check USB cable)");
 System.exit(1);
 }
 } else {
 module = YModule.FindModule(args[0]); // use serial or logical name
 }

 try {
 if (args.length > 1) {
 if (args[1].equalsIgnoreCase("ON")) {
 module.setBeacon(YModule.BEACON_ON);
 } else {
 module.setBeacon(YModule.BEACON_OFF);
 }
 }
 System.out.println("serial: " + module.get_serialNumber());
 System.out.println("logical name: " + module.get_logicalName());
 System.out.println("luminosity: " + module.get_luminosity());
 if (module.get_beacon() == YModule.BEACON_ON) {

26. Using the Yocto-Pressure-C with Java

200 www.yoctopuce.com

 System.out.println("beacon: ON");
 } else {
 System.out.println("beacon: OFF");
 }
 System.out.println("upTime: " + module.get_upTime() / 1000 + " sec");
 System.out.println("USB current: " + module.get_usbCurrent() + " mA");
 System.out.println("logs:\n" + module.get_lastLogs());
 } catch (YAPI_Exception ex) {
 System.out.println(args[1] + " not connected (check identification and USB
cable)");
 }
 YAPI.FreeAPI();
 }
}

Each property xxx of the module can be read thanks to a method of type YModule.get_xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set_xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
YModule.set_xxx() function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash() method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash() method.
The short example below allows you to modify the logical name of a module.

import com.yoctopuce.YoctoAPI.*;

public class Demo {

 public static void main(String[] args)
 {
 try {
 // setup the API to use local VirtualHub
 YAPI.RegisterHub("127.0.0.1");
 } catch (YAPI_Exception ex) {
 System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage() + ")");
 System.out.println("Ensure that the VirtualHub application is running");
 System.exit(1);
 }

 if (args.length != 2) {
 System.out.println("usage: demo <serial or logical name> <new logical name>");
 System.exit(1);
 }

 YModule m;
 String newname;

 m = YModule.FindModule(args[0]); // use serial or logical name

 try {
 newname = args[1];
 if (!YAPI.CheckLogicalName(newname))
 {
 System.out.println("Invalid name (" + newname + ")");
 System.exit(1);
 }

 m.set_logicalName(newname);
 m.saveToFlash(); // do not forget this

 System.out.println("Module: serial= " + m.get_serialNumber());
 System.out.println(" / name= " + m.get_logicalName());
 } catch (YAPI_Exception ex) {
 System.out.println("Module " + args[0] + "not connected (check identification
and USB cable)");
 System.out.println(ex.getMessage());
 System.exit(1);
 }

26. Using the Yocto-Pressure-C with Java

www.yoctopuce.com 201

 YAPI.FreeAPI();
 }
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash() function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the YModule.yFirstModule()
function which returns the first module found. Then, you only need to call the nextModule()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

import com.yoctopuce.YoctoAPI.*;

public class Demo {

 public static void main(String[] args)
 {
 try {
 // setup the API to use local VirtualHub
 YAPI.RegisterHub("127.0.0.1");
 } catch (YAPI_Exception ex) {
 System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage() + ")");
 System.out.println("Ensure that the VirtualHub application is running");
 System.exit(1);
 }

 System.out.println("Device list");
 YModule module = YModule.FirstModule();
 while (module != null) {
 try {
 System.out.println(module.get_serialNumber() + " (" +
module.get_productName() + ")");
 } catch (YAPI_Exception ex) {
 break;
 }
 module = module.nextModule();
 }
 YAPI.FreeAPI();
 }
}

26.4. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software.

In the Java API, error handling is implemented with exceptions. Therefore you must catch and
handle correctly all exceptions that might be thrown by the API if you do not want your software to
crash as soon as you unplug a device.

26. Using the Yocto-Pressure-C with Java

202 www.yoctopuce.com

www.yoctopuce.com 203

27. Using the Yocto-Pressure-C with Android
To tell the truth, Android is not a programming language, it is an operating system developed by
Google for mobile appliances such as smart phones and tablets. But it so happens that under
Android everything is programmed with the same programming language: Java. Nevertheless, the
programming paradigms and the possibilities to access the hardware are slightly different from
classical Java, and this justifies a separate chapter on Android programming.

27.1. Native access and VirtualHub
In the opposite to the classical Java API, the Java for Android API can access USB modules natively.
However, as there is no VirtualHub running under Android, it is not possible to remotely control
Yoctopuce modules connected to a machine under Android. Naturally, the Java for Android API
remains perfectly able to connect itself to VirtualHub running on another OS.

27.2. Getting ready
Go to the Yoctopuce web site and download the Java for Android programming library1. The library is
available as source files, and also as a jar file. Connect your modules, decompress the library files in
the directory of your choice, and configure your Android programming environment so that it can find
them.

To keep them simple, all the examples provided in this documentation are snippets of Android
applications. You must integrate them in your own Android applications to make them work.
However, your can find complete applications in the examples provided with the Java for Android
library.

27.3. Compatibility
In an ideal world, you would only need to have a smart phone running under Android to be able to
make Yoctopuce modules work. Unfortunately, it is not quite so in the real world. A machine running
under Android must fulfil to a few requirements to be able to manage Yoctopuce USB modules
natively.

Android version
Our library can be compiled to work with older versions, as long as the Android tools allow us to
support them, i.e. approximately versions of the last ten years.

1 www.yoctopuce.com/EN/libraries.php

27. Using the Yocto-Pressure-C with Android

204 www.yoctopuce.com

USB host support
Naturally, not only must your machine have a USB port, this port must also be able to run in host
mode. In host mode, the machine literally takes control of the devices which are connected to it. The
USB ports of a desktop computer, for example, work in host mode. The opposite of the host mode is
the device mode. USB keys, for instance, work in device mode: they must be controlled by a host.
Some USB ports are able to work in both modes, they are OTG (On The Go) ports. It so happens
that many mobile devices can only work in device mode: they are designed to be connected to a
charger or a desktop computer, and nothing else. It is therefore highly recommended to pay careful
attention to the technical specifications of a product working under Android before hoping to make
Yoctopuce modules work with it.

Unfortunately, having a correct version of Android and USB ports working in host mode is not enough
to guaranty that Yoctopuce modules will work well under Android. Indeed, some manufacturers
configure their Android image so that devices other than keyboard and mass storage are ignored,
and this configuration is hard to detect. As things currently stand, the best way to know if a given
Android machine works with Yoctopuce modules consists in trying.

27.4. Activating the USB port under Android
By default, Android does not allow an application to access the devices connected to the USB port.
To enable your application to interact with a Yoctopuce module directly connected on your tablet on a
USB port, a few additional steps are required. If you intend to interact only with modules connected
on another machine through the network, you can ignore this section.

In your AndroidManifest.xml, you must declare using the "USB Host" functionality by adding
the <uses-feature android:name="android.hardware.usb.host" /> tag in the
manifest section.

<manifest ...>
 ...
 <uses-feature android:name="android.hardware.usb.host" />;
 ...
</manifest>

When first accessing a Yoctopuce module, Android opens a window to inform the user that the
application is going to access the connected module. The user can deny or authorize access to the
device. If the user authorizes the access, the application can access the connected device as long as
it stays connected. To enable the Yoctopuce library to correctly manage these authorizations, your
must provide a pointer on the application context by calling the EnableUSBHost method of the YAPI
class before the first USB access. This function takes as arguments an object of the
android.content.Context class (or of a subclass). As the Activity class is a subclass of
Context, it is simpler to call YAPI.EnableUSBHost(this); in the method onCreate of your
application. If the object passed as parameter is not of the correct type, a YAPI_Exception
exception is generated.

...
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 try {
 // Pass the application Context to the Yoctopuce Library
 YAPI.EnableUSBHost(this);
 } catch (YAPI_Exception e) {
 Log.e("Yocto",e.getLocalizedMessage());
 }
}
...

Autorun
It is possible to register your application as a default application for a USB module. In this case, as
soon as a module is connected to the system, the application is automatically launched. You must

27. Using the Yocto-Pressure-C with Android

www.yoctopuce.com 205

add <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"/> in the
section <intent-filter> of the main activity. The section <activity> must have a pointer to an XML file
containing the list of USB modules which can run the application.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 ...
 <uses-feature android:name="android.hardware.usb.host" />
 ...
 <application ... >
 <activity
 android:name=".MainActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

 <meta-data
 android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"
 android:resource="@xml/device_filter" />
 </activity>
 </application>

</manifest>

The XML file containing the list of modules allowed to run the application must be saved in the res/
xml directory. This file contains a list of USB vendorId and deviceID in decimal. The following
example runs the application as soon as a Yocto-Relay or a YoctoPowerRelay is connected. You can
find the vendorID and the deviceID of Yoctopuce modules in the characteristics section of the
documentation.

<?xml version="1.0" encoding="utf-8"?>

<resources>
 <usb-device vendor-id="9440" product-id="12" />
 <usb-device vendor-id="9440" product-id="13" />
</resources>

27.5. Control of the Temperature function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a Java code
snippet to use the Temperature function.

[...]
// Enable detection of USB devices
YAPI.EnableUSBHost(this);
YAPI.RegisterHub("usb");
[...]
// Retrieve the object used to interact with the device
temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature");

// Hot-plug is easy: just check that the device is online
if (temperature.isOnline()) {
 // Use temperature.get_currentValue()
 [...]
}

[...]

Let us look at these lines in more details.

YAPI.EnableUSBHost
The YAPI.EnableUSBHost function initializes the API with the Context of the current application.
This function takes as argument an object of the android.content.Context class (or of a
subclass). If you intend to connect your application only to other machines through the network, this
function is facultative.

27. Using the Yocto-Pressure-C with Android

206 www.yoctopuce.com

YAPI.RegisterHub
The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the virtual hub able to see the devices. If the
string "usb" is passed as parameter, the API works with modules locally connected to the machine. If
the initialization does not succeed, an exception is thrown.

YTemperature.FindTemperature
The YTemperature.FindTemperature function allows you to find a temperature sensor from
the serial number of the module on which it resides and from its function name. You can use logical
names as well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with
serial number PRSSMK1C-123456 which you have named "MyModule", and for which you have
given the temperature function the name "MyFunction". The following five calls are strictly equivalent,
as long as "MyFunction" is defined only once.

temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature")
temperature = YTemperature.FindTemperature("PRSSMK1C-123456.MyFunction")
temperature = YTemperature.FindTemperature("MyModule.temperature")
temperature = YTemperature.FindTemperature("MyModule.MyFunction")
temperature = YTemperature.FindTemperature("MyFunction")

YTemperature.FindTemperature returns an object which you can then use at will to control
the temperature sensor.

isOnline
The isOnline() method of the object returned by YTemperature.FindTemperature allows
you to know if the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

A real example
Launch you Java environment and open the corresponding sample project provided in the directory
Examples//Doc-Examples of the Yoctopuce library.

In this example, you can recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;
import android.widget.Spinner;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YModule;
import com.yoctopuce.YoctoAPI.YPressure;

import java.util.Locale;

public class GettingStarted_Yocto_Pressure extends Activity implements
OnItemSelectedListener
{

 private ArrayAdapter<String> aa;
 private String serial = "";

27. Using the Yocto-Pressure-C with Android

www.yoctopuce.com 207

 private Handler handler = null;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.gettingstarted_yocto_pressure);
 Spinner my_spin = (Spinner) findViewById(R.id.spinner1);
 my_spin.setOnItemSelectedListener(this);
 aa = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item);
 aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
 my_spin.setAdapter(aa);
 handler = new Handler();
 }

 @Override
 protected void onStart()
 {
 super.onStart();
 try {
 aa.clear();
 YAPI.EnableUSBHost(this);
 YAPI.RegisterHub("usb");
 YModule module = YModule.FirstModule();
 while (module != null) {
 if (module.get_productName().equals("Yocto-Pressure")) {
 String serial = module.get_serialNumber();
 aa.add(serial);
 }
 module = module.nextModule();
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 aa.notifyDataSetChanged();
 handler.postDelayed(r, 500);
 }

 @Override
 protected void onStop()
 {
 super.onStop();
 handler.removeCallbacks(r);
 YAPI.FreeAPI();
 }

 @Override
 public void onItemSelected(AdapterView<?> parent, View view, int pos, long id)
 {
 serial = parent.getItemAtPosition(pos).toString();
 }

 @Override
 public void onNothingSelected(AdapterView<?> arg0)
 {
 }

 final Runnable r = new Runnable()
 {
 public void run()
 {
 if (serial != null) {
 YPressure temp_sensor = YPressure.FindPressure(serial + ".pressure");
 try {
 TextView view = (TextView) findViewById(R.id.presfield);
 view.setText(String.format(Locale.US, "%.1f %s",
 temp_sensor.getCurrentValue(), temp_sensor.getUnit()));
 } catch (YAPI_Exception e) {
 e.printStackTrace();

 }
 }
 handler.postDelayed(this, 1000);
 }
 };

}

27. Using the Yocto-Pressure-C with Android

208 www.yoctopuce.com

27.6. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;
import android.widget.Spinner;
import android.widget.Switch;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class ModuleControl extends Activity implements OnItemSelectedListener
{

 private ArrayAdapter<String> aa;
 private YModule module = null;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.modulecontrol);
 Spinner my_spin = (Spinner) findViewById(R.id.spinner1);
 my_spin.setOnItemSelectedListener(this);
 aa = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item);
 aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
 my_spin.setAdapter(aa);
 }

 @Override
 protected void onStart()
 {
 super.onStart();

 try {
 aa.clear();
 YAPI.EnableUSBHost(this);
 YAPI.RegisterHub("usb");
 YModule r = YModule.FirstModule();
 while (r != null) {
 String hwid = r.get_hardwareId();
 aa.add(hwid);
 r = r.nextModule();
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 // refresh Spinner with detected relay
 aa.notifyDataSetChanged();
 }

 @Override
 protected void onStop()
 {
 super.onStop();
 YAPI.FreeAPI();
 }

 private void DisplayModuleInfo()
 {
 TextView field;
 if (module == null)
 return;
 try {
 field = (TextView) findViewById(R.id.serialfield);
 field.setText(module.getSerialNumber());

27. Using the Yocto-Pressure-C with Android

www.yoctopuce.com 209

 field = (TextView) findViewById(R.id.logicalnamefield);
 field.setText(module.getLogicalName());
 field = (TextView) findViewById(R.id.luminosityfield);
 field.setText(String.format("%d%%", module.getLuminosity()));
 field = (TextView) findViewById(R.id.uptimefield);
 field.setText(module.getUpTime() / 1000 + " sec");
 field = (TextView) findViewById(R.id.usbcurrentfield);
 field.setText(module.getUsbCurrent() + " mA");
 Switch sw = (Switch) findViewById(R.id.beaconswitch);
 sw.setChecked(module.getBeacon() == YModule.BEACON_ON);
 field = (TextView) findViewById(R.id.logs);
 field.setText(module.get_lastLogs());

 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 public void onItemSelected(AdapterView<?> parent, View view, int pos, long id)
 {
 String hwid = parent.getItemAtPosition(pos).toString();
 module = YModule.FindModule(hwid);
 DisplayModuleInfo();
 }

 @Override
 public void onNothingSelected(AdapterView<?> arg0)
 {
 }

 public void refreshInfo(View view)
 {
 DisplayModuleInfo();
 }

 public void toggleBeacon(View view)
 {
 if (module == null)
 return;
 boolean on = ((Switch) view).isChecked();

 try {
 if (on) {
 module.setBeacon(YModule.BEACON_ON);
 } else {
 module.setBeacon(YModule.BEACON_OFF);
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 }
}

Each property xxx of the module can be read thanks to a method of type YModule.get_xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set_xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
YModule.set_xxx() function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash() method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash() method.
The short example below allows you to modify the logical name of a module.

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;

27. Using the Yocto-Pressure-C with Android

210 www.yoctopuce.com

import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;
import android.widget.EditText;
import android.widget.Spinner;
import android.widget.TextView;
import android.widget.Toast;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class SaveSettings extends Activity implements OnItemSelectedListener
{

 private ArrayAdapter<String> aa;
 private YModule module = null;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.savesettings);
 Spinner my_spin = (Spinner) findViewById(R.id.spinner1);
 my_spin.setOnItemSelectedListener(this);
 aa = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item);
 aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
 my_spin.setAdapter(aa);
 }

 @Override
 protected void onStart()
 {
 super.onStart();

 try {
 aa.clear();
 YAPI.EnableUSBHost(this);
 YAPI.RegisterHub("usb");
 YModule r = YModule.FirstModule();
 while (r != null) {
 String hwid = r.get_hardwareId();
 aa.add(hwid);
 r = r.nextModule();
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 // refresh Spinner with detected relay
 aa.notifyDataSetChanged();
 }

 @Override
 protected void onStop()
 {
 super.onStop();
 YAPI.FreeAPI();
 }

 private void DisplayModuleInfo()
 {
 TextView field;
 if (module == null)
 return;
 try {
 YAPI.UpdateDeviceList();// fixme
 field = (TextView) findViewById(R.id.logicalnamefield);
 field.setText(module.getLogicalName());
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 public void onItemSelected(AdapterView<?> parent, View view, int pos, long id)
 {
 String hwid = parent.getItemAtPosition(pos).toString();
 module = YModule.FindModule(hwid);
 DisplayModuleInfo();

27. Using the Yocto-Pressure-C with Android

www.yoctopuce.com 211

 }

 @Override
 public void onNothingSelected(AdapterView<?> arg0)
 {
 }

 public void saveName(View view)
 {
 if (module == null)
 return;

 EditText edit = (EditText) findViewById(R.id.newname);
 String newname = edit.getText().toString();
 try {
 if (!YAPI.CheckLogicalName(newname)) {
 Toast.makeText(getApplicationContext(), "Invalid name (" + newname + ")",
Toast.LENGTH_LONG).show();
 return;
 }
 module.set_logicalName(newname);
 module.saveToFlash(); // do not forget this
 edit.setText("");
 } catch (YAPI_Exception ex) {
 ex.printStackTrace();
 }
 DisplayModuleInfo();
 }

}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash() function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the YModule.yFirstModule()
function which returns the first module found. Then, you only need to call the nextModule()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.util.TypedValue;
import android.view.View;
import android.widget.LinearLayout;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class Inventory extends Activity
{

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.inventory);
 }

 public void refreshInventory(View view)
 {
 LinearLayout layout = (LinearLayout) findViewById(R.id.inventoryList);
 layout.removeAllViews();

 try {
 YAPI.UpdateDeviceList();

27. Using the Yocto-Pressure-C with Android

212 www.yoctopuce.com

 YModule module = YModule.FirstModule();
 while (module != null) {
 String line = module.get_serialNumber() + " (" + module.get_productName() +
")";
 TextView tx = new TextView(this);
 tx.setText(line);
 tx.setTextSize(TypedValue.COMPLEX_UNIT_SP, 20);
 layout.addView(tx);
 module = module.nextModule();
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 protected void onStart()
 {
 super.onStart();
 try {
 YAPI.EnableUSBHost(this);
 YAPI.RegisterHub("usb");
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 refreshInventory(null);
 }

 @Override
 protected void onStop()
 {
 super.onStop();
 YAPI.FreeAPI();
 }

}

27.7. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software.

In the Java API for Android, error handling is implemented with exceptions. Therefore you must catch
and handle correctly all exceptions that might be thrown by the API if you do not want your software
to crash soon as you unplug a device.

www.yoctopuce.com 213

28. Using Yocto-Pressure-C with TypeScript
TypeScript is an enhanced version of the JavaScript programming language. It is a syntaxic superset
with strong typing, therefore increasing the code reliability, but transpiled - aka compiled - into
JavaScript for execution in any standard Web browser or Node.js environment.

This Yoctopuce library therefore makes it possible to implement JavaScript applications using strong
typing. Similarly to our EcmaScript library, it uses the new asynchronous features introduced in
ECMAScript 2017, which are now available in all modern JavaScript environments. Note however
that at the time of writting, Web browsers and Node.JS cannot use TypeScript code directly, so you
must first compile your TypeScript into JavaScript before running it.

The library works both in a Web browser and in Node.js. In order to allow for a static resolution of
dependencies, and to avoid ambiguities that can arise when using hybrid environments such as
Electron, the choice of the runtime environment must be done explicitly upon import of the library, by
referencing in the project either yocto_api_nodejs.js or yocto_api_html.js.

The library can be integrated in your projects in multiple ways, depending on what best fits your
requirements:

• by directly copying the TypeScript library source files into your project, and by adding them to
your build script. Only a few files are usually needed to handle most use-cases. You will find
TypeScript source files in the src subdirectory of our library.

• by using CommonJS module resolution, natively supported by TypeScript, with a package
manager such as npm. You will find a version of the library transpiled according to CommonJS
module standard in the dist/cjs subdirectory, including all type definition files (with
extension .d.ts) and source maps (with extension .js.map) enabling source-level error
reporting and debugging. We have also published these files on npmjs under the name
yoctolib-cjs.

• by using ECMAScript standard module resolution, also supported by TypeScript, usually
referenced by relative path. You will find a version of the library transpiled as an ECMAScript
2015 module in the dist/esm subdirectory, including all type definition files (with extension .d.ts)
and source maps (with extension .js.map) enabling source-level error reporting and
debugging. We have also published these files on npmjs under the name yoctolib-esm.

28. Using Yocto-Pressure-C with TypeScript

214 www.yoctopuce.com

28.1. Using the Yoctopuce library for TypeScript
1. Start by installing TypeScript on your machine if this is not yet done. In order to do so:

• Install on your development machine the official version of Node.js (version 10 or more
recent). You can download it for free from the official web site: http://nodejs.org. Make sure to
install it fully, including npm, and add it to the system path.

• Then install TypeScript on your machine using the command line:

npm install -g typescript

2. Go to the Yoctopuce web site and download the following items:

• The TypeScript programming library1

• The VirtualHub software2 for Windows, macOS, or Linux, depending on your OS. TypeScript
and JavaScript are part of those languages which do not generally allow you to directly access
to USB peripherals. Therefore the library can only be used to access network-enabled devices
(connected through a YoctoHub), or USB devices accessible through Yoctopuce TCP/IP to
USB gateway, named VirtualHub. No extra driver will be needed, though.

3. Extract the library files in a folder of your choice, and open a command window in the directory
where you have installed it. In order to install the few dependencies which are necessary to start the
examples, run this command:

npm install

When the command has run without error, you are ready to explore the examples. They are available
in two different trees, depending on the environment that you need to use: example_html for
running the Yoctopuce library within a Web browser, or example_nodejs if you plan to use the
library in a Node.js environment.

The method to use for launching the examples depends on the environment. You will find more
about it below.

28.2. Refresher on asynchronous I/O in JavaScript
JavaScript is single-threaded by design. In order to handle time-consuming I/O operations,
JavaScript relies on asynchronous operations: the I/O call is only triggered but then the code
execution flow is suspended. The JavaScript engine is therefore free to handle other pending tasks,
such as user interface. Whenever the pending I/O call is completed, the system invokes a callback
function with the result of the I/O call to resume execution of the original execution flow.

When used with plain callback functions, as pervasive in Node.js libraries, asynchronous I/O tend to
produce code with poor readability, as the execution flow is broken into many disconnected callback
functions. Fortunately, the ECMAScript 2015 standard came in with Promise objects and a new
async / await syntax to abstract calls to asynchronous calls:

• a function declared async automatically encapsulates its result as a Promise
• within an async function, any function call prefixed with by await chains the Promise returned

by the function with a promise to resume execution of the caller
• any exception during the execution of an async function automatically invokes the Promise

failure continuation

To make a long story short, async and await make it possible to write TypeScript code with all the
benefits of asynchronous I/O, but without breaking the code flow. It is almost like multi-threaded

1 www.yoctopuce.com/EN/libraries.php
2 www.yoctopuce.com/EN/virtualhub.php

28. Using Yocto-Pressure-C with TypeScript

www.yoctopuce.com 215

execution, except that control switch between pending tasks only happens at places where the await
keyword appears.

This TypeScript library uses the Promise objects and async methods, to allow you to use the await
syntax. To keep it easy to remember, all public methods of the TypeScript library are async, i.e.
return a Promise object, except:

• GetTickCount(), because returning a time stamp asynchronously does not make sense...
• FindModule(), FirstModule(), nextModule(), ... because device detection and

enumeration always works on internal device lists handled in background, and does not
require immediate asynchronous I/O.

In most cases, TypeScript strong typing will remind you to use await when calling an asynchronous
method.

28.3. Control of the Temperature function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a TypeScript code
snipplet to use the Temperature function.

// For Node.js, the library is referenced through the NPM package
// For HTML, we would use instead a relative path (depending on the build environment)
import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';
import { YTemperature } from 'yoctolib-cjs/yocto_temperature.js';

[...]
// Get access to your device, through the VirtualHub running locally
await YAPI.RegisterHub('127.0.0.1');
[...]

// Retrieve the object used to interact with the device
var temperature: YTemperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature"
);

// Check that the module is online to handle hot-plug
if(await temperature.isOnline())
{
 // Use temperature.get_currentValue()
 [...]
}

Let us look at these lines in more details.

yocto_api and yocto_temperature import
These two imports provide access to functions allowing you to manage Yoctopuce modules.
yocto_api is always needed, yocto_temperature is necessary to manage modules
containing a temperature sensor, such as Yocto-Pressure-C. Other imports can be useful in other
cases, such as YModule which can let you enumerate any type of Yoctopuce device.

In order to properly bind yocto_api to the proper network libraries (provided either by Node.js or
by the web browser for an HTML application), you must import at least once in your project one of
the two variants yocto_api_nodejs.js or yocto_api_html.js.

Note that this example imports the Yoctopuce library as a CommonJS module, which is the most
frequently used with Node.JS, but if your project is designed around EcmaScript native modules, you
can also replace in the import directive the prefix yoctolib-cjs by yoctolib-esm.

YAPI.RegisterHub
The RegisterHub method allows you to indicate on which machine the Yoctopuce modules are
located, more precisely on which machine the VirtualHub software is running. In our case, the
127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port used by
Yoctopuce). You can very well modify this address, and enter the address of another machine on

28. Using Yocto-Pressure-C with TypeScript

216 www.yoctopuce.com

which the VirtualHub software is running, or of a YoctoHub. If the host cannot be reached, this
function will trigger an exception.

As explained above, using RegisterHub("usb") is not supported in TypeScript, because the
JavaScript engine has no direct access to USB devices. It needs to go through the VirtualHub via a
localhost connection.

YTemperature.FindTemperature
The FindTemperature method allows you to find a temperature sensor from the serial number of
the module on which it resides and from its function name. You can also use logical names, as long
as you have initialized them. Let us imagine a Yocto-Pressure-C module with serial number
PRSSMK1C-123456 which you have named "MyModule", and for which you have given the
temperature function the name "MyFunction". The following five calls are strictly equivalent, as long
as "MyFunction" is defined only once.

temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature")
temperature = YTemperature.FindTemperature("PRSSMK1C-123456.MaFonction")
temperature = YTemperature.FindTemperature("MonModule.temperature")
temperature = YTemperature.FindTemperature("MonModule.MaFonction")
temperature = YTemperature.FindTemperature("MaFonction")

YTemperature.FindTemperature returns an object which you can then use at will to control
the temperature sensor.

isOnline
The isOnline() method of the object returned by FindTemperature allows you to know if the
corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

A real example, for Node.js
Open a command window (a terminal, a shell...) and go into the directory example_nodejs/Doc-
GettingStarted-Yocto-Pressure-C within Yoctopuce library for TypeScript. In there, you will find a
file named demo.ts with the sample code below, which uses the functions explained above, but this
time used with all side materials needed to make it work nicely as a small demo.

If your Yocto-Pressure-C is not connected on the host running the browser, replace in the example
the address 127.0.0.1 by the IP address of the host on which the Yocto-Pressure-C is connected
and where you run the VirtualHub.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';
import { YPressure } from 'yoctolib-cjs/yocto_pressure.js'

let pres: YPressure;

async function startDemo(): Promise<void>
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg: YErrorMsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select specified device, or use first available one
 let serial: string = process.argv[process.argv.length-1];
 if(serial[8] != '-') {
 // by default use any connected module suitable for the demo
 let anysensor = YPressure.FirstPressure();

28. Using Yocto-Pressure-C with TypeScript

www.yoctopuce.com 217

 if(anysensor) {
 let module: YModule = await anysensor.get_module();
 serial = await module.get_serialNumber();
 } else {
 console.log('No matching sensor connected, check cable !');
 await YAPI.FreeAPI();
 return;
 }
 }
 console.log('Using device '+serial);
 pres = YPressure.FindPressure(serial+".pressure");
 refresh();
}

async function refresh(): Promise<void>
{
 if (await pres.isOnline()) {
 console.log('Pressure : ' + (await pres.get_currentValue())
 + (await pres.get_unit()));
 } else {
 console.log('Module not connected');
 }
 setTimeout(refresh, 500);
}

startDemo();

As explained at the beginning of this chapter, you need to have installed the TypeScript compiler on
your machine to test these examples, and to install the typescript library dependencies. If you have
done that, you can now type the following two commands in the example directory, to finalize the
resolution of the example-specific dependencies:

npm install

You ar now ready to start the sample code with Node.js. The easiest way to do it is to use the
following command, replacing the [...] by the arguments that you want to pass to the demo code:

npm run demo [...]

This command, defined in package.json, will first start the TypeScript compiler using the simple
tsc command, then run the transpiled code in Node.js.

The compilation uses the parameters specified in the file tsconfig.json, and produces

• a JavaScript file named demo.js, that Node.js can run
• a debug file named demo.js.map, that will help Node.js to locate the source of errors in the

original TypeScript source file rather than reporting them in the JavaScript compiled file.

Note that the package.json file in our examples uses a relative reference to the local copy of the
library, to avoid duplicating the library in each example. But of course, for your application, you can
refer to the package directly in npm repository, by adding it to your project using the command:

npm install yoctolib-cjs

Same example, but this time running in a browser
If you want to see how to use the library within a browser rather than with Node.js, switch to the
directory example_html/Doc-GettingStarted-Yocto-Pressure-C. You will find there an HTML file
named app.html, and a TypeScript file app.ts similar to the code above, but with a few changes
since it has to interact through an HTML page rather than through the JavaScript console.

No installation is needed to run this example, as the TypeScript library is referenced using a relative
path. However, in order to allow the browser to run the code, the HTML page must be served by a
Web server. We therefore provide a simple test server for this purpose, that you can start with the
command:

28. Using Yocto-Pressure-C with TypeScript

218 www.yoctopuce.com

npm run app-server

This command will compile the TypeScript sample code, make it available via an HTTP server on
port 3000 and open a Web browser on this example. If you change the example source code, the
TypeScript compiler will automatically be triggered to update the transpiled code and a simple page
reload on the browser will make it possible to test the change.

As for the Node.js example, the compilation process will create a source map file which makes it
possible to debug the example code in TypeScript source form within the browser debugger. Note
that as of the writing of this document, this works on Chromium-based browsers but not yet in
Firefox.

28.4. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';

async function startDemo(args: string[]): Promise<void>
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg: YErrorMsg = new YErrorMsg();
 if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select the device to use
 let module: YModule = YModule.FindModule(args[0]);
 if(await module.isOnline()) {
 if(args.length > 1) {
 if(args[1] == 'ON') {
 await module.set_beacon(YModule.BEACON_ON);
 } else {
 await module.set_beacon(YModule.BEACON_OFF);
 }
 }
 console.log('serial: '+await module.get_serialNumber());
 console.log('logical name: '+await module.get_logicalName());
 console.log('luminosity: '+await module.get_luminosity()+'%');
 console.log('beacon: '+
 (await module.get_beacon() == YModule.BEACON_ON ? 'ON' : 'OFF'));
 console.log('upTime: '+
 ((await module.get_upTime()/1000)>>0) +' sec');
 console.log('USB current: '+await module.get_usbCurrent()+' mA');
 console.log('logs:');
 console.log(await module.get_lastLogs());
 } else {
 console.log("Module not connected (check identification and USB cable)\n");
 }
 await YAPI.FreeAPI();
}

if(process.argv.length < 3) {
 console.log("usage: npm run demo <serial or logicalname> [ON | OFF]");
} else {
 startDemo(process.argv.slice(2));
}

Each property xxx of the module can be read thanks to a method of type get_xxxx(), and
properties which are not read-only can be modified with the help of the set_xxx() method. For
more details regarding the used methods, refer to the API chapters.

28. Using Yocto-Pressure-C with TypeScript

www.yoctopuce.com 219

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
set_xxx() method. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash() method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash() method. The short example below
allows you to modify the logical name of a module.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';

async function startDemo(args: string[]): Promise<void>
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg: YErrorMsg = new YErrorMsg();
 if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select the device to use
 let module: YModule = YModule.FindModule(args[0]);
 if(await module.isOnline()) {
 if(args.length > 1) {
 let newname: string = args[1];
 if (!await YAPI.CheckLogicalName(newname)) {
 console.log("Invalid name (" + newname + ")");
 process.exit(1);
 }
 await module.set_logicalName(newname);
 await module.saveToFlash();
 }
 console.log('Current name: '+await module.get_logicalName());
 } else {
 console.log("Module not connected (check identification and USB cable)\n");
 }
 await YAPI.FreeAPI();
}

if(process.argv.length < 3) {
 console.log("usage: npm run demo <serial> [newLogicalName]");
} else {
 startDemo(process.argv.slice(2));
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash() method only 100000 times in the life of the module. Make sure
you do not call this method within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the YModule.FirstModule()
method which returns the first module found. Then, you only need to call the nextModule()
method of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';

async function startDemo(): Promise<void>
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1');
 return;

28. Using Yocto-Pressure-C with TypeScript

220 www.yoctopuce.com

 }
 refresh();
}

async function refresh(): Promise<void>
{
 try {
 let errmsg: YErrorMsg = new YErrorMsg();
 await YAPI.UpdateDeviceList(errmsg);

 let module = YModule.FirstModule();
 while(module) {
 let line: string = await module.get_serialNumber();
 line += '(' + (await module.get_productName()) + ')';
 console.log(line);
 module = module.nextModule();
 }
 setTimeout(refresh, 500);
 } catch(e) {
 console.log(e);
 }
}

startDemo();

28.5. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

28. Using Yocto-Pressure-C with TypeScript

www.yoctopuce.com 221

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

222 www.yoctopuce.com

www.yoctopuce.com 223

29. Using Yocto-Pressure-C with JavaScript /
EcmaScript
EcmaScript is the official name of the standardized version of the web-oriented programming
language commonly referred to as JavaScript. This Yoctopuce library take advantages of advanced
features introduced in EcmaScript 2017. It has therefore been named Library for JavaScript /
EcmaScript 2017 to differentiate it from the previous Library for JavaScript, now deprecated in favor
of this new version.

This library provides access to Yoctopuce devices for modern JavaScript engines. It can be used
within a browser as well as with Node.js. The library will automatically detect upon initialization
whether the runtime environment is a browser or a Node.js virtual machine, and use the most
appropriate system libraries accordingly.

Asynchronous communication with the devices is handled across the whole library using Promise
objects, leveraging the new EcmaScript 2017 async / await non-blocking syntax for asynchronous
I/O (see below). This syntax is now available out-of-the-box in most Javascript engines. No
transpilation is needed: no Babel, no jspm, just plain Javascript. Here is your favorite engines
minimum version needed to run this code. All of them are officially released at the time we write this
document.

• Node.js v7.6 and later
• Firefox 52
• Opera 42 (incl. Android version)
• Chrome 55 (incl. Android version)
• Safari 10.1 (incl. iOS version)
• Android WebView 55
• Google V8 Javascript engine v5.5

If you need backward-compatibility with older releases, you can always run Babel to transpile your
code and the library to older standards, as described a few paragraphs below.

We don't suggest using jspm anymore now that async / await are part of the standard.

29.1. Blocking I/O versus Asynchronous I/O in JavaScript
JavaScript is single-threaded by design. That means, if a program is actively waiting for the result of
a network-based operation such as reading from a sensor, the whole program is blocked. In browser
environments, this can even completely freeze the user interface. For this reason, the use of blocking
I/O in JavaScript is strongly discouraged nowadays, and blocking network APIs are getting
deprecated everywhere.

29. Using Yocto-Pressure-C with JavaScript / EcmaScript

224 www.yoctopuce.com

Instead of using parallel threads, JavaScript relies on asynchronous I/O to handle operations with a
possible long timeout: whenever a long I/O call needs to be performed, it is only triggered and but
then the code execution flow is terminated. The JavaScript engine is therefore free to handle other
pending tasks, such as UI. Whenever the pending I/O call is completed, the system invokes a
callback function with the result of the I/O call to resume execution of the original execution flow.

When used with plain callback functions, as pervasive in Node.js libraries, asynchronous I/O tend to
produce code with poor readability, as the execution flow is broken into many disconnected callback
functions. Fortunately, new methods have emerged recently to improve that situation. In particular,
the use of Promise objects to abstract and work with asynchronous tasks helps a lot. Any function
that makes a long I/O operation can return a Promise, which can be used by the caller to chain
subsequent operations in the same flow. Promises are part of EcmaScript 2015 standard.

Promise objects are good, but what makes them even better is the new async / await keywords to
handle asynchronous I/O:

• a function declared async will automatically encapsulate its result as a Promise
• within an async function, any function call prefixed with by await will chain the Promise

returned by the function with a promise to resume execution of the caller
• any exception during the execution of an async function will automatically invoke the Promise

failure continuation

Long story made short, async and await make it possible to write EcmaScript code with all benefits of
asynchronous I/O, but without breaking the code flow. It is almost like multi-threaded execution,
except that control switch between pending tasks only happens at places where the await keyword
appears.

We have therefore chosen to write our new EcmaScript library using Promises and async functions,
so that you can use the friendly await syntax. To keep it easy to remember, all public methods of
the EcmaScript library are async, i.e. return a Promise object, except:

• GetTickCount(), because returning a time stamp asynchronously does not make sense...
• FindModule(), FirstModule(), nextModule(), ... because device detection and

enumeration always work on internal device lists handled in background, and does not require
immediate asynchronous I/O.

29.2. Using Yoctopuce library for JavaScript / EcmaScript 2017
JavaScript is one of those languages which do not generally allow you to directly access the
hardware layers of your computer. Therefore the library can only be used to access network-enabled
devices (connected through a YoctoHub), or USB devices accessible through Yoctopuce TCP/IP to
USB gateway, named VirtualHub.

Go to the Yoctopuce web site and download the following items:

• The Javascript / EcmaScript 2017 programming library1

• VirtualHub2 for Windows, macOS or Linux, depending on your OS

Extract the library files in a folder of your choice, you will find many of examples in it. Connect your
modules and start the VirtualHub software. You do not need to install any driver.

Using the official Yoctopuce library for node.js
Start by installing the latest Node.js version (v7.6 or later) on your system. It is very easy. You can
download it from the official web site: http://nodejs.org. Make sure to install it fully, including npm, and
add it to the system path.

1 www.yoctopuce.com/EN/libraries.php
2 www.yoctopuce.com/EN/virtualhub.php

29. Using Yocto-Pressure-C with JavaScript / EcmaScript

www.yoctopuce.com 225

To give it a try, go into one of the example directory (for instance example_nodejs/Doc-Inventory).
You will see that it include an application description file (package.json) and a source file (demo.js).
To download and setup the libraries needed by this example, just run:

npm install

Once done, you can start the example file using:

node demo.js

Using a local copy of the Yoctopuce library with node.js
If for some reason you need to make changes to the Yoctopuce library, you can easily configure your
project to use the local copy in the lib/ subdirectory rather than the official npm package. In order
to do so, simply type the following command in your project directory:

npm link ../../lib

Using the Yoctopuce library within a browser (HTML)
For HTML examples, it is even simpler: there is nothing to install. Each example is a single HTML file
that you can open in a browser to try it. In this context, loading the Yoctopuce library is no different
from any standard HTML script include tag.

Using the Yoctoluce library on older JavaScript engines
If you need to run this library on older JavaScript engines, you can use Babel3 to transpile your code
and the library into older JavaScript standards. To install Babel with typical settings, simply use:

npm instal -g babel-cli
npm instal babel-preset-env

You would typically ask Babel to put the transpiled files in another directory, named compat for
instance. Your files and all files of the Yoctopuce library should be transpiled, as follow:

babel --presets env demo.js --out-dir compat/
babel --presets env ../../lib --out-dir compat/

Although this approach is based on node.js toolchain, it actually works as well for transpiling
JavaScript files for use in a browser. The only thing that you cannot do so easily is transpiling
JavaScript code embedded directly in an HTML page. You have to use an external script file for
using EcmaScript 2017 syntax with Babel.

Babel has many smart features, such as a watch mode that will automatically refresh transpiled files
whenever the source file is changed, but this is beyond the scope of this note. You will find more in
Babel documentation.

Backward-compatibility with the old JavaScript library
This new library is not fully backward-compatible with the old JavaScript library, because there is no
way to transparently map the old blocking API to the new asynchronous API. The method names
however are the same, and old synchronous code can easily be made asynchronous just by adding
the proper await keywords before the method calls. For instance, simply replace:

beaconState = module.get_beacon();

by

3 http://babeljs.io

29. Using Yocto-Pressure-C with JavaScript / EcmaScript

226 www.yoctopuce.com

beaconState = await module.get_beacon();

Apart from a few exceptions, most XXX_async redundant methods have been removed as well, as
they would have introduced confusion on the proper way of handling asynchronous behaviors. It is
however very simple to get an async method to invoke a callback upon completion, using the
returned Promise object. For instance, you can replace:

module.get_beacon_async(callback, myContext);

by

module.get_beacon().then(function(res) { callback(myContext, module, res); });

In some cases, it might be desirable to get a sensor value using a method identical to the old
synchronous methods (without using Promises), even if it returns a slightly outdated cached value
since I/O is not possible. For this purpose, the EcmaScript library introduce new classes called
synchronous proxies. A synchronous proxy is an object that mirrors the most recent state of the
connected class, but can be read using regular synchronous function calls. For instance, instead of
writing:

async function logInfo(module)
{
 console.log('Name: '+await module.get_logicalName());
 console.log('Beacon: '+await module.get_beacon());
}

...
logInfo(myModule);
...

you can use:

function logInfoProxy(moduleSyncProxy)
{
 console.log('Name: '+moduleProxy.get_logicalName());
 console.log('Beacon: '+moduleProxy.get_beacon());
}

logInfoSync(await myModule.get_syncProxy());

You can also rewrite this last asynchronous call as:

myModule.get_syncProxy().then(logInfoProxy);

29.3. Control of the Temperature function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a JavaScript code
snippet to use the Temperature function.

// For Node.js, we use function require()
// For HTML, we would use <script src="...">
require('yoctolib-es2017/yocto_api.js');
require('yoctolib-es2017/yocto_temperature.js');

[...]
// Get access to your device, through the VirtualHub running locally
await YAPI.RegisterHub('127.0.0.1');
[...]

// Retrieve the object used to interact with the device
var temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature");

// Check that the module is online to handle hot-plug

29. Using Yocto-Pressure-C with JavaScript / EcmaScript

www.yoctopuce.com 227

if(await temperature.isOnline())
{
 // Use temperature.get_currentValue()
 [...]
}

Let us look at these lines in more details.

yocto_api and yocto_temperature import
These two import provide access to functions allowing you to manage Yoctopuce modules.
yocto_api is always needed, yocto_temperature is necessary to manage modules
containing a temperature sensor, such as Yocto-Pressure-C. Other imports can be useful in other
cases, such as YModule which can let you enumerate any type of Yoctopuce device.

YAPI.RegisterHub
The RegisterHub method allows you to indicate on which machine the Yoctopuce modules are
located, more precisely on which machine the VirtualHub software is running. In our case, the
127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port used by
Yoctopuce). You can very well modify this address, and enter the address of another machine on
which the VirtualHub software is running, or of a YoctoHub. If the host cannot be reached, this
function will trigger an exception.

YTemperature.FindTemperature
The FindTemperature method allows you to find a temperature sensor from the serial number of
the module on which it resides and from its function name. You can also use logical names, as long
as you have initialized them. Let us imagine a Yocto-Pressure-C module with serial number
PRSSMK1C-123456 which you have named "MyModule", and for which you have given the
temperature function the name "MyFunction". The following five calls are strictly equivalent, as long
as "MyFunction" is defined only once.

temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature")
temperature = YTemperature.FindTemperature("PRSSMK1C-123456.MaFonction")
temperature = YTemperature.FindTemperature("MonModule.temperature")
temperature = YTemperature.FindTemperature("MonModule.MaFonction")
temperature = YTemperature.FindTemperature("MaFonction")

YTemperature.FindTemperature returns an object which you can then use at will to control
the temperature sensor.

isOnline
The isOnline() method of the object returned by FindTemperature allows you to know if the
corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

A real example, for Node.js
Open a command window (a terminal, a shell...) and go into the directory example_nodejs/Doc-
GettingStarted-Yocto-Pressure-C within Yoctopuce library for JavaScript / EcmaScript 2017. In
there, you will find a file named demo.js with the sample code below, which uses the functions
explained above, but this time used with all side materials needed to make it work nicely as a small
demo.

If your Yocto-Pressure-C is not connected on the host running the browser, replace in the example
the address 127.0.0.1 with the IP address of the host on which the Yocto-Pressure-C is
connected and where you run the VirtualHub.

29. Using Yocto-Pressure-C with JavaScript / EcmaScript

228 www.yoctopuce.com

"use strict";

require('yoctolib-es2017/yocto_api.js');
require('yoctolib-es2017/yocto_pressure.js');

let press;

async function startDemo()
{
 await YAPI.LogUnhandledPromiseRejections();
 await YAPI.DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select specified device, or use first available one
 let serial = process.argv[process.argv.length-1];
 if(serial[8] != '-') {
 // by default use any connected module suitable for the demo
 let anysensor = YPressure.FirstPressure();
 if(anysensor) {
 let module = await anysensor.module();
 serial = await module.get_serialNumber();
 } else {
 console.log('No matching sensor connected, check cable !');
 return;
 }
 }
 console.log('Using device '+serial);
 press = YPressure.FindPressure(serial+".pressure");

 refresh();
}

async function refresh()
{
 if (await press.isOnline()) {
 console.log('Pressure : '+(await press.get_currentValue()) + (await press.get_unit(
)));
 } else {
 console.log('Module not connected');
 }
 setTimeout(refresh, 500);
}

startDemo();

As explained at the beginning of this chapter, you need to have Node.js v7.6 or later installed to try
this example. When done, you can type the following two commands to automatically download and
install the dependencies for building this example:

npm install

You can the start the sample code within Node.js using the following command, replacing the [...] by
the arguments that you want to pass to the demo code:

node demo.js [...]

Same example, but this time running in a browser
If you want to see how to use the library within a browser rather than with Node.js, switch to the
directory example_html/Doc-GettingStarted-Yocto-Pressure-C. You will find there a single HTML
file, with a JavaScript section similar to the code above, but with a few changes since it has to
interact through an HTML page rather than through the JavaScript console.

<!DOCTYPE html>
<html>
<head>

29. Using Yocto-Pressure-C with JavaScript / EcmaScript

www.yoctopuce.com 229

 <meta charset="UTF-8">
 <title>Hello World</title>
 <script src="../../lib/yocto_api.js"></script>
 <script src="../../lib/yocto_pressure.js"></script>
 <script>
 async function startDemo()
 {
 await YAPI.LogUnhandledPromiseRejections();
 await YAPI.DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 alert('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 }
 refresh();
 }

 async function refresh()
 {
 let serial = document.getElementById('serial').value;
 if(serial == '') {
 // by default use any connected module suitable for the demo
 let anysensor = YPressure.FirstPressure();
 if(anysensor) {
 let module = await anysensor.module();
 serial = await module.get_serialNumber();
 document.getElementById('serial').value = serial;
 }
 }
 let press = YPressure.FindPressure(serial+".pressure");

 if (await press.isOnline()) {
 document.getElementById('msg').value = '';
 document.getElementById("press").value = (await press.get_currentValue()) + (await
press.get_unit());
 } else {
 document.getElementById('msg').value = 'Module not connected';
 }
 setTimeout(refresh, 500);
 }

 startDemo();
 </script>
</head>
<body>
Module to use: <input id='serial'>
<input id='msg' style='color:red;border:none;' readonly>

pressure : <input id='press' readonly>

</body>
</html>

No installation is needed to run this example, all you have to do is open the HTML file using a web
browser,

29.4. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

"use strict";

require('yoctolib-es2017/yocto_api.js');

async function startDemo(args)
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

29. Using Yocto-Pressure-C with JavaScript / EcmaScript

230 www.yoctopuce.com

 // Select the relay to use
 let module = YModule.FindModule(args[0]);
 if(await module.isOnline()) {
 if(args.length > 1) {
 if(args[1] == 'ON') {
 await module.set_beacon(YModule.BEACON_ON);
 } else {
 await module.set_beacon(YModule.BEACON_OFF);
 }
 }
 console.log('serial: '+await module.get_serialNumber());
 console.log('logical name: '+await module.get_logicalName());
 console.log('luminosity: '+await module.get_luminosity()+'%');
 console.log('beacon: '+(await module.get_beacon()==YModule.BEACON_ON
?'ON':'OFF'));
 console.log('upTime: '+parseInt(await module.get_upTime()/1000)+' sec');
 console.log('USB current: '+await module.get_usbCurrent()+' mA');
 console.log('logs:');
 console.log(await module.get_lastLogs());
 } else {
 console.log("Module not connected (check identification and USB cable)\n");
 }
 await YAPI.FreeAPI();
}

if(process.argv.length < 2) {
 console.log("usage: node demo.js <serial or logicalname> [ON | OFF]");
} else {
 startDemo(process.argv.slice(2));
}

Each property xxx of the module can be read thanks to a method of type get_xxxx(), and
properties which are not read-only can be modified with the help of the set_xxx() method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
set_xxx() function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash() method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash() method. The short example below
allows you to modify the logical name of a module.

"use strict";

require('yoctolib-es2017/yocto_api.js');

async function startDemo(args)
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select the relay to use
 let module = YModule.FindModule(args[0]);
 if(await module.isOnline()) {
 if(args.length > 1) {
 let newname = args[1];
 if (!await YAPI.CheckLogicalName(newname)) {
 console.log("Invalid name (" + newname + ")");
 process.exit(1);
 }
 await module.set_logicalName(newname);
 await module.saveToFlash();
 }
 console.log('Current name: '+await module.get_logicalName());

29. Using Yocto-Pressure-C with JavaScript / EcmaScript

www.yoctopuce.com 231

 } else {
 console.log("Module not connected (check identification and USB cable)\n");
 }
 await YAPI.FreeAPI();
}

if(process.argv.length < 2) {
 console.log("usage: node demo.js <serial> [newLogicalName]");
} else {
 startDemo(process.argv.slice(2));
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash() function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the YModule.FirstModule()
function which returns the first module found. Then, you only need to call the nextModule()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

"use strict";

require('yoctolib-es2017/yocto_api.js');

async function startDemo()
{
 await YAPI.LogUnhandledPromiseRejections();
 await YAPI.DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1');
 return;
 }
 refresh();
}

async function refresh()
{
 try {
 let errmsg = new YErrorMsg();
 await YAPI.UpdateDeviceList(errmsg);

 let module = YModule.FirstModule();
 while(module) {
 let line = await module.get_serialNumber();
 line += '(' + (await module.get_productName()) + ')';
 console.log(line);
 module = module.nextModule();
 }
 setTimeout(refresh, 500);
 } catch(e) {
 console.log(e);
 }
}

try {
 startDemo();
} catch(e) {
 console.log(e);
}

29. Using Yocto-Pressure-C with JavaScript / EcmaScript

232 www.yoctopuce.com

29.5. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 233

30. Using Yocto-Pressure-C with PHP
PHP is, like Javascript, an atypical language when interfacing with hardware is at stakes.
Nevertheless, using PHP with Yoctopuce modules provides you with the opportunity to very easily
create web sites which are able to interact with their physical environment, and this is not available to
every web server. This technique has a direct application in home automation: a few Yoctopuce
modules, a PHP server, and you can interact with your home from anywhere on the planet, as long
as you have an internet connection.

PHP is one of those languages which do not allow you to directly access the hardware layers of your
computer. Therefore you need to run VirtualHub on the machine on which your modules are
connected.

To start your tests with PHP, you need a PHP 7.1 (or more recent) server1, preferably locally on you
machine. If you wish to use the PHP server of your internet provider, it is possible, but you will
probably need to configure your ADSL router for it to accept and forward TCP request on the 4444
port.

30.1. Getting ready
Go to the Yoctopuce web site and download the following items:

• The PHP programming library2

• VirtualHub3 for Windows, macOS, or Linux, depending on your OS

Our PHP library is based on PHP 8.x. In other words, our library works perfectly with any version of
PHP currently still supported. However, in order not to abandon our customers with older
installations, we maintain a version compatible with PHP 7.1. which dates back to 2016.

We also offer a version of the library that follows PSR's recommendations. For simplicity's sake, this
version uses the same code as the php8 version, but each class is stored in a separate file. In
addition, this version uses a Yoctopuce\YoctoAPI namespace. These changes make our library
much easier to use with autoload installations.

Note that the examples in the documentation do not use the PSR version.

1 A couple of free PHP servers: easyPHP for Windows, MAMP for macOS.
2 www.yoctopuce.com/EN/libraries.php
3 www.yoctopuce.com/EN/virtualhub.php

30. Using Yocto-Pressure-C with PHP

234 www.yoctopuce.com

In the library archive, there are thus three subdirectories:

• php7
• php8
• phpPSR

Choose the right directory according to the version of the library you wish to use, unzip the files of
this directory into a directory of your choice accessible to your web server, plug in your modules,
launch VirtualHub, and you are ready to start testing. You do not need to install any driver.

30.2. Control of the Temperature function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a PHP code
snipplet to use the Temperature function.

include('yocto_api.php');
include('yocto_temperature.php');

[...]
// Get access to your device, through the VirtualHub running locally
YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg);
[...]

// Retrieve the object used to interact with the device
$temperature = YTemperature::FindTemperature("PRSSMK1C-123456.temperature");

// Check that the module is online to handle hot-plug
if($temperature->isOnline())
{
 // Use $temperature->get_currentValue()
 [...]
}

Let's look at these lines in more details.

yocto_api.php and yocto_temperature.php
These two PHP includes provides access to the functions allowing you to manage Yoctopuce
modules. yocto_api.php must always be included, yocto_temperature.php is necessary
to manage modules containing a temperature sensor, such as Yocto-Pressure-C.

YAPI::RegisterHub
The YAPI::RegisterHub function allows you to indicate on which machine the Yoctopuce
modules are located, more precisely on which machine the VirtualHub software is running. In our
case, the 127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port
used by Yoctopuce). You can very well modify this address, and enter the address of another
machine on which the VirtualHub software is running.

YTemperature::FindTemperature
The YTemperature::FindTemperature function allows you to find a temperature sensor from
the serial number of the module on which it resides and from its function name. You can use logical
names as well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with
serial number PRSSMK1C-123456 which you have named "MyModule", and for which you have
given the temperature function the name "MyFunction". The following five calls are strictly equivalent,
as long as "MyFunction" is defined only once.

$temperature = YTemperature::FindTemperature("PRSSMK1C-123456.temperature");
$temperature = YTemperature::FindTemperature("PRSSMK1C-123456.MyFunction");
$temperature = YTemperature::FindTemperature("MyModule.temperature");
$temperature = YTemperature::FindTemperature("MyModule.MyFunction");
$temperature = YTemperature::FindTemperature("MyFunction");

YTemperature::FindTemperature returns an object which you can then use at will to control
the temperature sensor.

30. Using Yocto-Pressure-C with PHP

www.yoctopuce.com 235

isOnline
The isOnline() method of the object returned by YTemperature::FindTemperature
allows you to know if the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by yFindPressure provides the
pressure currently measured by the sensor. The value returned is a floating number, equal to the
current number millibar.

A real example
Open your preferred text editor4, copy the code sample below, save it with the Yoctopuce library files
in a location which is accessible to you web server, then use your preferred web browser to access
this page. The code is also provided in the directory Examples/Doc-GettingStarted-Yocto-
Pressure-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

<HTML>
<HEAD>
 <TITLE>Hello World</TITLE>
</HEAD>
<BODY>
<?php
 include('../../php8/yocto_api.php');
 include('../../php8/yocto_pressure.php');

 // Use explicit error handling rather than exceptions
 YAPI::DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 if(YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg) != YAPI::SUCCESS) {
 die("Cannot contact VirtualHub on 127.0.0.1");
 }

 @$serial = $_GET['serial'];
 if ($serial != '') {
 // Check if a specified module is available online
 $press = YPressure::FindPressure("$serial.pressure");
 if (!$press->isOnline()) {
 die("Module not connected (check serial and USB cable)");
 }
 } else {
 // or use any connected module suitable for the demo
 $press = YPressure::FirstPressure();
 if(is_null($press)) {
 die("No module connected (check USB cable)");
 } else {
 $serial = $press->module()->get_serialnumber();
 }
 }
 Print("Module to use: <input name='serial' value='$serial'>
");

 $pvalue = $press->get_currentValue();
 Print("Pressure: $pvalue mbar
");
 YAPI::FreeAPI();

 // trigger auto-refresh after one second
 Print("<script language='javascript1.5' type='text/JavaScript'>\n");
 Print("setTimeout('window.location.reload()',1000);");
 Print("</script>\n");
?>
</BODY>
</HTML>

4 If you do not have a text editor, use Notepad rather than Microsoft Word.

30. Using Yocto-Pressure-C with PHP

236 www.yoctopuce.com

30.3. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

<HTML>
<HEAD>
 <TITLE>Module Control</TITLE>
</HEAD>
<BODY>
<FORM method='get'>
<?php
 include('../../php8/yocto_api.php');

 // Use explicit error handling rather than exceptions
 YAPI::DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 if(YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg) != YAPI::SUCCESS) {
 die("Cannot contact VirtualHub on 127.0.0.1 : ".$errmsg);
 }

 @$serial = $_GET['serial'];
 if ($serial != '') {
 // Check if a specified module is available online
 $module = YModule::FindModule("$serial");
 if (!$module->isOnline()) {
 die("Module not connected (check serial and USB cable)");
 }
 } else {
 // or use any connected module suitable for the demo
 $module = YModule::FirstModule();
 if($module) { // skip VirtualHub
 $module = $module->nextModule();
 }
 if(is_null($module)) {
 die("No module connected (check USB cable)");
 } else {
 $serial = $module->get_serialnumber();
 }
 }
 Print("Module to use: <input name='serial' value='$serial'>
");

 if (isset($_GET['beacon'])) {
 if ($_GET['beacon']=='ON')
 $module->set_beacon(Y_BEACON_ON);
 else
 $module->set_beacon(Y_BEACON_OFF);
 }
 printf('serial: %s
',$module->get_serialNumber());
 printf('logical name: %s
',$module->get_logicalName());
 printf('luminosity: %s
',$module->get_luminosity());
 print('beacon: ');
 if($module->get_beacon() == Y_BEACON_ON) {
 printf("<input type='radio' name='beacon' value='ON' checked>ON ");
 printf("<input type='radio' name='beacon' value='OFF'>OFF
");
 } else {
 printf("<input type='radio' name='beacon' value='ON'>ON ");
 printf("<input type='radio' name='beacon' value='OFF' checked>OFF
");
 }
 printf('upTime: %s sec
',intVal($module->get_upTime()/1000));
 printf('USB current: %smA
',$module->get_usbCurrent());
 printf('logs:
<pre>%s</pre>',$module->get_lastLogs());
 YAPI::FreeAPI();
?>
<input type='submit' value='refresh'>
</FORM>
</BODY>
</HTML>

Each property xxx of the module can be read thanks to a method of type get_xxxx(), and
properties which are not read-only can be modified with the help of the set_xxx() method. For
more details regarding the used functions, refer to the API chapters.

30. Using Yocto-Pressure-C with PHP

www.yoctopuce.com 237

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
set_xxx() function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash() method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash() method. The short example below
allows you to modify the logical name of a module.

<HTML>
<HEAD>
 <TITLE>save settings</TITLE>
<BODY>
<FORM method='get'>
<?php
 include('../../php8/yocto_api.php');

 // Use explicit error handling rather than exceptions
 YAPI::DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 if(YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg) != YAPI::SUCCESS) {
 die("Cannot contact VirtualHub on 127.0.0.1");
 }

 @$serial = $_GET['serial'];
 if ($serial != '') {
 // Check if a specified module is available online
 $module = YModule::FindModule("$serial");
 if (!$module->isOnline()) {
 die("Module not connected (check serial and USB cable)");
 }
 } else {
 // or use any connected module suitable for the demo
 $module = YModule::FirstModule();
 if($module) { // skip VirtualHub
 $module = $module->nextModule();
 }
 if(is_null($module)) {
 die("No module connected (check USB cable)");
 } else {
 $serial = $module->get_serialnumber();
 }
 }
 Print("Module to use: <input name='serial' value='$serial'>
");

 if (isset($_GET['newname'])){
 $newname = $_GET['newname'];
 if (!yCheckLogicalName($newname))
 die('Invalid name');
 $module->set_logicalName($newname);
 $module->saveToFlash();
 }
 printf("Current name: %s
", $module->get_logicalName());
 print("New name: <input name='newname' value='' maxlength=19>
");
 YAPI::FreeAPI();
?>
<input type='submit'>
</FORM>
</BODY>
</HTML>

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash() function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

30. Using Yocto-Pressure-C with PHP

238 www.yoctopuce.com

Listing the modules
Obtaining the list of the connected modules is performed with the yFirstModule() function which
returns the first module found. Then, you only need to call the nextModule() function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

<HTML>
<HEAD>
 <TITLE>inventory</TITLE>
</HEAD>
<BODY>
<H1>Device list</H1>
<TT>
 <?php
 include('../../php8/yocto_api.php');
 YAPI::RegisterHub("http://127.0.0.1:4444/");
 $module = YModule::FirstModule();
 while (!is_null($module)) {
 printf("%s (%s)
\n", $module->get_serialNumber(),
 $module->get_productName());
 $module=$module->nextModule();
 }
 YAPI::FreeAPI();
 ?>
</TT>
</BODY>
</HTML>

30.4. HTTP callback API and NAT filters
The PHP library is able to work in a specific mode called HTTP callback Yocto-API. With this mode,
you can control Yoctopuce devices installed behind a NAT filter, such as a DSL router for example,
and this without needing to open a port. The typical application is to control Yoctopuce devices,
located on a private network, from a public web site.

The NAT filter: advantages and disadvantages
A DSL router which translates network addresses (NAT) works somewhat like a private phone
switchboard (a PBX): internal extensions can call each other and call the outside; but seen from the
outside, there is only one official phone number, that of the switchboard itself. You cannot reach the
internal extensions from the outside.

Typical DSL configuration: LAN machines are isolated from the outside by the DSL router

Transposed to the network, we have the following: appliances connected to your home automation
network can communicate with one another using a local IP address (of the 192.168.xxx.yyy type),
and contact Internet servers through their public address. However, seen from the outside, you have

30. Using Yocto-Pressure-C with PHP

www.yoctopuce.com 239

only one official IP address, assigned to the DSL router only, and you cannot reach your network
appliances directly from the outside. It is rather restrictive, but it is a relatively efficient protection
against intrusions.

Responses from request from LAN machines are routed.

But requests from the outside are blocked.

Seeing Internet without being seen provides an enormous security advantage. However, this signifies
that you cannot, a priori, set up your own web server at home to control a home automation
installation from the outside. A solution to this problem, advised by numerous home automation
system dealers, consists in providing outside visibility to your home automation server itself, by
adding a routing rule in the NAT configuration of the DSL router. The issue of this solution is that it
exposes the home automation server to external attacks.

The HTTP callback API solves this issue without having to modify the DSL router configuration. The
module control script is located on an external site, and it is the VirtualHub which is in charge of
calling it a regular intervals.

The HTTP callback API uses the VirtualHub which initiates the requests.

30. Using Yocto-Pressure-C with PHP

240 www.yoctopuce.com

Configuration
The callback API thus uses the VirtualHub as a gateway. All the communications are initiated by the
VirtualHub. They are thus outgoing communications and therefore perfectly authorized by the DSL
router.

You must configure the VirtualHub so that it calls the PHP script on a regular basis. To do so:

1. Launch a VirtualHub
2. Access its interface, usually 127.0.0.1:4444
3. Click on the configure button of the line corresponding to the VirtualHub itself
4. Click on the edit button of the Outgoing callbacks section

Click on the "configure" button on the first line

Click on the "edit" button of the "Outgoing callbacks" section

And select "Yocto-API callback".

You then only need to define the URL of the PHP script and, if need be, the user name and
password to access this URL. Supported authentication methods are basic and digest. The second
method is safer than the first one because it does not allow transfer of the password on the network.

30. Using Yocto-Pressure-C with PHP

www.yoctopuce.com 241

Usage
From the programmer standpoint, the only difference is at the level of the yRegisterHub function call.
Instead of using an IP address, you must use the callback string (or http://callback which is
equivalent).

include("yocto_api.php");
yRegisterHub("callback");

The remainder of the code stays strictly identical. On the VirtualHub interface, at the bottom of the
configuration window for the HTTP callback API , there is a button allowing you to test the call to the
PHP script.

Be aware that the PHP script controlling the modules remotely through the HTTP callback API can
be called only by the VirtualHub. Indeed, it requires the information posted by the VirtualHub to
function. To code a web site which controls Yoctopuce modules interactively, you must create a user
interface which stores in a file or in a database the actions to be performed on the Yoctopuce
modules. These actions are then read and run by the control script.

Common issues
For the HTTP callback API to work, the PHP option allow_url_fopen must be set. Some web site
hosts do not set it by default. The problem then manifests itself with the following error:

error: URL file-access is disabled in the server configuration

To set this option, you must create, in the repertory where the control PHP script is located, an .htaccess
file containing the following line:

php_flag "allow_url_fopen" "On"

Depending on the security policies of the host, it is sometimes impossible to authorize this option at
the root of the web site, or even to install PHP scripts receiving data from a POST HTTP. In this
case, place the PHP script in a subdirectory.

Limitations

This method that allows you to go through NAT filters cheaply has nevertheless a price.
Communications being initiated by the VirtualHub at a more or less regular interval, reaction time to
an event is clearly longer than if the Yoctopuce modules were driven directly. You can configure the
reaction time in the specific window of the VirtualHub, but it is at least of a few seconds in the best
case.

The HTTP callback Yocto-API mode is currently available in PHP, EcmaScript (Node.JS) and Java
only.

30.5. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

30. Using Yocto-Pressure-C with PHP

242 www.yoctopuce.com

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 243

31. Using Yocto-Pressure-C with Visual Basic .NET
VisualBasic has long been the most favored entrance path to the Microsoft world. Therefore, we had
to provide our library for this language, even if the new trend is shifting to C#. We support Visual
Studio 2017 and its more recent versions.

31.1. Installation
Download the Visual Basic Yoctopuce library from the Yoctopuce web site1. There is no setup
program, simply copy the content of the zip file into the directory of your choice. You mostly need the
content of the Sources directory. The other directories contain the documentation and a few
sample programs. All sample projects are Visual Basic 2010, projects, if you are using a previous
version, you may have to recreate the projects structure from scratch.

31.2. Using the Yoctopuce API in a Visual Basic project
The Visual Basic.NET Yoctopuce library is composed of a DLL and of source files in Visual Basic.
The DLL is not a .NET DLL, but a classic DLL, written in C, which manages the low level
communications with the modules2. The source files in Visual Basic manage the high level part of the
API. Therefore, your need both this DLL and the .vb files of the sources directory to create a
project managing Yoctopuce modules.

Configuring a Visual Basic project
The following indications are provided for Visual Studio Express 2010, but the process is similar for
other versions. Start by creating your project. Then, on the Solution Explorer panel, right click on your
project, and select "Add" and then "Add an existing item".

A file selection window opens. Select the yocto_api.vb file and the files corresponding to the
functions of the Yoctopuce modules that your project is going to manage. If in doubt, select all the
files.

You then have the choice between simply adding these files to your project, or to add them as links
(the Add button is in fact a scroll-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply keeps a link on the original files. We
recommend you to use links, which makes updates of the library much easier.

1 www.yoctopuce.com/EN/libraries.php
2 The sources of this DLL are available in the C++ API

31. Using Yocto-Pressure-C with Visual Basic .NET

244 www.yoctopuce.com

Then add in the same manner the yapi.dll DLL, located in the Sources/dll directory3. Then,
from the Solution Explorer window, right click on the DLL, select Properties and in the Properties
panel, set the Copy to output folder to always. You are now ready to use your Yoctopuce modules
from Visual Studio.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

31.3. Control of the Temperature function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a Visual Basic
code snipplet to use the Temperature function.

[...]
' Enable detection of USB devices
Dim errmsg As String errmsg
YAPI.RegisterHub("usb", errmsg)
[...]

' Retrieve the object used to interact with the device
Dim temperature As YTemperature
temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature")

' Hot-plug is easy: just check that the device is online
If (temperature.isOnline()) Then
 ' Use temperature.get_currentValue()
 [...]
End If

[...]

Let's look at these lines in more details.

YAPI.RegisterHub
The YAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPI_SUCCESS and errmsg contains the error message.

YTemperature.FindTemperature
The YTemperature.FindTemperature function allows you to find a temperature sensor from
the serial number of the module on which it resides and from its function name. You can use logical
names as well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with
serial number PRSSMK1C-123456 which you have named "MyModule", and for which you have
given the temperature function the name "MyFunction". The following five calls are strictly equivalent,
as long as "MyFunction" is defined only once.

temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature")
temperature = YTemperature.FindTemperature("PRSSMK1C-123456.MyFunction")
temperature = YTemperature.FindTemperature("MyModule.temperature")
temperature = YTemperature.FindTemperature("MyModule.MyFunction")
temperature = YTemperature.FindTemperature("MyFunction")

YTemperature.FindTemperature returns an object which you can then use at will to control
the temperature sensor.

isOnline
The isOnline() method of the object returned by YTemperature.FindTemperature allows
you to know if the corresponding module is present and in working order.

3 Remember to change the filter of the selection window, otherwise the DLL will not show.

31. Using Yocto-Pressure-C with Visual Basic .NET

www.yoctopuce.com 245

get_currentValue
The get_currentValue() method of the object returned by yFindPressure provides the
pressure currently measured by the sensor. The value returned is a floating number, equal to the
current number millibar.

A real example
Launch Microsoft VisualBasic and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-Pressure-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

Module Module1

 Private Sub Usage()
 Dim execname = System.AppDomain.CurrentDomain.FriendlyName
 Console.WriteLine("Usage:")
 Console.WriteLine(execname + " <serial_number>")
 Console.WriteLine(execname + " <logical_name>")
 Console.WriteLine(execname + " any ")
 System.Threading.Thread.Sleep(2500)

 End
 End Sub

 Sub Main()
 Dim argv() As String = System.Environment.GetCommandLineArgs()
 Dim errmsg As String = ""
 Dim target As String

 Dim psensor As YPressure

 If argv.Length < 2 Then Usage()

 target = argv(1)

 REM Setup the API to use local USB devices
 If (YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS) Then
 Console.WriteLine("RegisterHub error: " + errmsg)
 End
 End If

 If target = "any" Then
 psensor = YPressure.FirstPressure()

 If psensor Is Nothing Then
 Console.WriteLine("No module connected (check USB cable) ")
 End
 End If
 Else
 psensor = YPressure.FindPressure(target + ".pressure")
 End If

 While (True)
 If Not (psensor.isOnline()) Then
 Console.WriteLine("Module not connected (check identification and USB cable)")
 End
 End If
 Console.WriteLine("Current pressure: " + Str(psensor.get_currentValue()) _
 + " mbar")
 Console.WriteLine(" (press Ctrl-C to exit)")
 YAPI.Sleep(1000, errmsg)
 End While
 YAPI.FreeAPI()
 End Sub

End Module

31. Using Yocto-Pressure-C with Visual Basic .NET

246 www.yoctopuce.com

31.4. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

Imports System.IO
Imports System.Environment

Module Module1

 Sub usage()
 Console.WriteLine("usage: demo <serial or logical name> [ON/OFF]")
 End
 End Sub

 Sub Main()
 Dim argv() As String = System.Environment.GetCommandLineArgs()
 Dim errmsg As String = ""
 Dim m As ymodule

 If (YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS) Then
 Console.WriteLine("RegisterHub error:" + errmsg)
 End
 End If

 If argv.Length < 2 Then usage()

 m = YModule.FindModule(argv(1)) REM use serial or logical name
 If (m.isOnline()) Then
 If argv.Length > 2 Then
 If argv(2) = "ON" Then m.set_beacon(Y_BEACON_ON)
 If argv(2) = "OFF" Then m.set_beacon(Y_BEACON_OFF)
 End If
 Console.WriteLine("serial: " + m.get_serialNumber())
 Console.WriteLine("logical name: " + m.get_logicalName())
 Console.WriteLine("luminosity: " + Str(m.get_luminosity()))
 Console.Write("beacon: ")
 If (m.get_beacon() = Y_BEACON_ON) Then
 Console.WriteLine("ON")
 Else
 Console.WriteLine("OFF")
 End If
 Console.WriteLine("upTime: " + Str(m.get_upTime() / 1000) + " sec")
 Console.WriteLine("USB current: " + Str(m.get_usbCurrent()) + " mA")
 Console.WriteLine("Logs:")
 Console.WriteLine(m.get_lastLogs())
 Else
 Console.WriteLine(argv(1) + " not connected (check identification and USB cable)")
 End If
 YAPI.FreeAPI()
 End Sub

End Module

Each property xxx of the module can be read thanks to a method of type get_xxxx(), and
properties which are not read-only can be modified with the help of the set_xxx() method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
set_xxx() function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash() method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash() method. The short example below
allows you to modify the logical name of a module.

Module Module1

31. Using Yocto-Pressure-C with Visual Basic .NET

www.yoctopuce.com 247

 Sub usage()

 Console.WriteLine("usage: demo <serial or logical name> <new logical name>")
 End
 End Sub

 Sub Main()
 Dim argv() As String = System.Environment.GetCommandLineArgs()
 Dim errmsg As String = ""
 Dim newname As String
 Dim m As YModule

 If (argv.Length <> 3) Then usage()

 REM Setup the API to use local USB devices
 If YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS Then
 Console.WriteLine("RegisterHub error: " + errmsg)
 End
 End If

 m = YModule.FindModule(argv(1)) REM use serial or logical name
 If m.isOnline() Then
 newname = argv(2)
 If (Not YAPI.CheckLogicalName(newname)) Then
 Console.WriteLine("Invalid name (" + newname + ")")
 End
 End If
 m.set_logicalName(newname)
 m.saveToFlash() REM do not forget this
 Console.Write("Module: serial= " + m.get_serialNumber)
 Console.Write(" / name= " + m.get_logicalName())
 Else
 Console.Write("not connected (check identification and USB cable")
 End If
 YAPI.FreeAPI()

 End Sub

End Module

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash() function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the yFirstModule() function which
returns the first module found. Then, you only need to call the nextModule() function of this
object to find the following modules, and this as long as the returned value is not Nothing. Below a
short example listing the connected modules.

Module Module1

 Sub Main()
 Dim M As ymodule
 Dim errmsg As String = ""

 REM Setup the API to use local USB devices
 If YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS Then
 Console.WriteLine("RegisterHub error: " + errmsg)
 End
 End If

 Console.WriteLine("Device list")
 M = YModule.FirstModule()
 While M IsNot Nothing
 Console.WriteLine(M.get_serialNumber() + " (" + M.get_productName() + ")")
 M = M.nextModule()
 End While
 YAPI.FreeAPI()
 End Sub

31. Using Yocto-Pressure-C with Visual Basic .NET

248 www.yoctopuce.com

End Module

31.5. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 249

32. Using Yocto-Pressure-C with Delphi or Lazarus
Delphi is a descendent of Turbo-Pascal. Originally, Delphi was produced by Borland, Embarcadero
now edits it. The strength of this language resides in its ease of use, as anyone with some notions of
the Pascal language can develop a Windows application in next to no time. Its only disadvantage is
to cost something1.

Lazarus2 is a free IDE based on Free-Pascal, it has nothing to envy to Delphi and is available for
both Windows and Linux. The Yoctopuce Delphi library is compatible with both Windows and Linux
versions of Lazarus

Delphi libraries are provided not as VCL components, but directly as source files. These files are
compatible with most Delphi and Lazarus versions.3

32.1. Preparation
Go to the Yoctopuce web site and download the Yoctopuce Delphi libraries4. Uncompress everything
in a directory of your choice.

• With Delphi, add the subdirectory sources in the list of directories of Delphi libraries.5
• With Lazarus, open your project options and add the sources folder to your "other unit files"

path. 6.

Windows
With Windows, the Yoctopuce Delphi / Lazarus library uses two dlls yapi.dll (32-bit version) and
yapi64.dll (64-bit version). All the applications that you create with Delphi or Lazarus must have
access to these DLL. The simplest way to ensure this is to make sure that they are located in the
same directory as the executable file of your application. You can find these dlls in the sources/dll
folder.

1 Actually, Borland provided free versions (for personal use) of Delphi 2006 and 2007. Look for them on the Internet, you
may still be able to download them.
2 www.lazarus-ide.org
3 Delphi libraries are regularly tested with Delphi 5, Delphi XE2, and the latest version of Lazarus.
4 www.yoctopuce.com/EN/libraries.php
5 Use the Tools / Environment options menu.
6 Use the Menu Project / Project options/ Compiler options / Paths

32. Using Yocto-Pressure-C with Delphi or Lazarus

250 www.yoctopuce.com

Linux
Under Linux, the Delphi / Lazarus library uses the following lib files:

• libyapi-i386.so for Intel 32-bit systems
• libyapi-amd64.so for Intel 64-bit systems
• libyapi-armhf.so for ARM 32-bit systems
• libyapi-aarch64.so for ARM 64-bit systems

You will find these lib files in the sources/dll folder. You have to make sure that

• Lazarus can find the right .so file at compilation time.
• The executable can find it at execution time.

The simplest way to ensure this is to copy all four .so files into the /usr/lib folder. Alternatively, you
can copy them next to your main source file and adjust your LD_LIBRARY_PATH environment
variable accordingly.

32.2. About examples
To keep them simple, all the examples provided in this documentation are console applications.
Obviously, the libraries work in a strictly identical way with VCL applications.

Note that most of these examples use command line parameters 7.

You will soon notice that the Delphi API defines many functions which return objects. You do not
need to deallocate these objects yourself, the API does it automatically at the end of the application.

32.3. Control of the Temperature function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a Delphi code
snipplet to use the Temperature function.

uses yocto_api, yocto_temperature;

var errmsg: string;
 temperature: TYTemperature;

[...]
// Enable detection of USB devices
yRegisterHub('usb',errmsg)
[...]

// Retrieve the object used to interact with the device
temperature = yFindTemperature("PRSSMK1C-123456.temperature")

// Hot-plug is easy: just check that the device is online
if temperature.isOnline() then
 begin
 // Use temperature.get_currentValue()
 [...]
 end;
[...]

Let's look at these lines in more details.

yocto_api and yocto_temperature
These two units provide access to the functions allowing you to manage Yoctopuce modules.
yocto_api must always be used, yocto_temperature is necessary to manage modules
containing a temperature sensor, such as Yocto-Pressure-C.

7 See https://www.yoctopuce.com/EN/article/about-programming-examples

32. Using Yocto-Pressure-C with Delphi or Lazarus

www.yoctopuce.com 251

yRegisterHub
The yRegisterHub function initializes the Yoctopuce API and specifies where the modules should
be looked for. When used with the parameter 'usb', it will use the modules locally connected to the
computer running the library. If the initialization does not succeed, this function returns a value
different from YAPI_SUCCESS and errmsg contains the error message.

yFindTemperature
The yFindTemperature function allows you to find a temperature sensor from the serial number
of the module on which it resides and from its function name. You can also use logical names, as
long as you have initialized them. Let us imagine a Yocto-Pressure-C module with serial number
PRSSMK1C-123456 which you have named "MyModule", and for which you have given the
temperature function the name "MyFunction". The following five calls are strictly equivalent, as long
as "MyFunction" is defined only once.

temperature := yFindTemperature("PRSSMK1C-123456.temperature");
temperature := yFindTemperature("PRSSMK1C-123456.MyFunction");
temperature := yFindTemperature("MyModule.temperature");
temperature := yFindTemperature("MyModule.MyFunction");
temperature := yFindTemperature("MyFunction");

yFindTemperature returns an object which you can then use at will to control the temperature
sensor.

isOnline
The isOnline() method of the object returned by yFindTemperature allows you to know if
the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by yFindPressure provides the
pressure currently measured by the sensor. The value returned is a floating number, equal to the
current number millibar.

A real example
Launch your Delphi environment, copy the yapi.dll DLL in a directory, create a new console
application in the same directory, and copy-paste the piece of code below:

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

program helloworld;
{$APPTYPE CONSOLE}
uses
 SysUtils,
 {$IFNDEF UNIX}
 windows,
 {$ENDIF UNIX}

 yocto_api,
 yocto_pressure;

Procedure Usage();
 var
 exe : string;
 begin
 exe:= ExtractFileName(paramstr(0));
 WriteLn(exe+' <serial_number>');
 WriteLn(exe+' <logical_name>');
 WriteLn(exe+' any');
 sleep(3000);
 halt;
 End;

var
 sensor : TYPressure;

32. Using Yocto-Pressure-C with Delphi or Lazarus

252 www.yoctopuce.com

 errmsg : string;
 done : boolean;

begin

 if (paramcount<1) then usage();

 // Setup the API to use local USB devices
 if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
 begin
 Write('RegisterHub error: '+errmsg);
 sleep(3000);
 exit;
 end;

 if paramstr(1)='any' then
 begin
 // try to find the first pressure sensor available
 sensor := yFirstPressure();
 if sensor=nil then
 begin
 writeln('No module connected (check USB cable)');
 sleep(3000);
 halt;
 end
 end
 else // or use the one specified on the commande line
 sensor:= yFindPressure(paramstr(1)+'.pressure');

 // let's poll
 done := false;
 repeat
 if (sensor.isOnline()) then
 begin
 Write('Current pressure: '+FloatToStr(sensor.get_currentValue())+' mbar');
 Writeln(' (press Ctrl-C to exit)');
 Sleep(1000);
 end
 else
 begin
 Writeln('Module not connected (check identification and USB cable)');
 done := true;
 end;
 until done;
 yFreeAPI();
end.

32.4. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

program modulecontrol;
{$APPTYPE CONSOLE}
uses
 SysUtils,
 yocto_api;

const
 serial = 'PRSSMK1C-123456'; // use serial number or logical name

procedure refresh(module:Tymodule) ;
 begin
 if (module.isOnline()) then
 begin
 Writeln('');
 Writeln('Serial : ' + module.get_serialNumber());
 Writeln('Logical name : ' + module.get_logicalName());
 Writeln('Luminosity : ' + intToStr(module.get_luminosity()));
 Write('Beacon :');
 if (module.get_beacon()=Y_BEACON_ON) then Writeln('on')
 else Writeln('off');
 Writeln('uptime : ' + intToStr(module.get_upTime() div 1000)+'s');
 Writeln('USB current : ' + intToStr(module.get_usbCurrent())+'mA');

32. Using Yocto-Pressure-C with Delphi or Lazarus

www.yoctopuce.com 253

 Writeln('Logs : ');
 Writeln(module.get_lastlogs());
 Writeln('');
 Writeln('r : refresh / b:beacon ON / space : beacon off');
 end
 else Writeln('Module not connected (check identification and USB cable)');
 end;

procedure beacon(module:Tymodule;state:integer);
 begin
 module.set_beacon(state);
 refresh(module);
 end;

var
 module : TYModule;
 c : char;
 errmsg : string;

begin
 // Setup the API to use local USB devices
 if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
 begin
 Write('RegisterHub error: '+errmsg);
 exit;
 end;

 module := yFindModule(serial);
 refresh(module);

 repeat
 read(c);
 case c of
 'r': refresh(module);
 'b': beacon(module,Y_BEACON_ON);
 ' ': beacon(module,Y_BEACON_OFF);
 end;
 until c = 'x';
 yFreeAPI();
end.

Each property xxx of the module can be read thanks to a method of type get_xxxx(), and
properties which are not read-only can be modified with the help of the set_xxx() method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
set_xxx() function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash() method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash() method. The short example below
allows you to modify the logical name of a module.

program savesettings;
{$APPTYPE CONSOLE}
uses
 SysUtils,
 yocto_api;

const
 serial = 'PRSSMK1C-123456'; // use serial number or logical name

var
 module : TYModule;
 errmsg : string;
 newname : string;

begin
 // Setup the API to use local USB devices
 if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
 begin
 Write('RegisterHub error: '+errmsg);

32. Using Yocto-Pressure-C with Delphi or Lazarus

254 www.yoctopuce.com

 exit;
 end;

 module := yFindModule(serial);
 if (not(module.isOnline)) then
 begin
 writeln('Module not connected (check identification and USB cable)');
 exit;
 end;

 Writeln('Current logical name : '+module.get_logicalName());
 Write('Enter new name : ');
 Readln(newname);
 if (not(yCheckLogicalName(newname))) then
 begin
 Writeln('invalid logical name');
 exit;
 end;
 module.set_logicalName(newname);
 module.saveToFlash();
 yFreeAPI();
 Writeln('logical name is now : '+module.get_logicalName());
end.

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash() function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the yFirstModule() function which
returns the first module found. Then, you only need to call the nextModule() function of this
object to find the following modules, and this as long as the returned value is not nil. Below a short
example listing the connected modules.

program inventory;
{$APPTYPE CONSOLE}
uses
 SysUtils,
 yocto_api;

var
 module : TYModule;
 errmsg : string;

begin
 // Setup the API to use local USB devices
 if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
 begin
 Write('RegisterHub error: '+errmsg);
 exit;
 end;

 Writeln('Device list');

 module := yFirstModule();
 while module<>nil do
 begin
 Writeln(module.get_serialNumber()+' ('+module.get_productName()+')');
 module := module.nextModule();
 end;
 yFreeAPI();

end.

32. Using Yocto-Pressure-C with Delphi or Lazarus

www.yoctopuce.com 255

32.5. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

256 www.yoctopuce.com

www.yoctopuce.com 257

33. Using the Yocto-Pressure-C with Universal
Windows Platform
Universal Windows Platform (UWP) is not a language per say, but a software platform created by
Microsoft. This platform allows you to run a new type of applications: the universal Windows
applications. These applications can work on all machines running under Windows 10. This includes
computers, tablets, smart phones, XBox One, and also Windows IoT Core.

The Yoctopuce UWP library allows you to use Yoctopuce modules in a universal Windows
application and is written in C# in its entirety. You can add it to a Visual Studio 20171 project.

33.1. Blocking and asynchronous functions
The Universal Windows Platform does not use the Win32 API but only the Windows Runtime API
which is available on all the versions of Windows 10 and for any architecture. Thanks to this library,
you can use UWP on all the Windows 10 versions, including Windows 10 IoT Core.

However, using the new UWP API has some consequences: the Windows Runtime API to access
the USB ports is asynchronous, and therefore the Yoctopuce library must be asynchronous as well.
Concretely, the asynchronous methods do not return a result directly but a Task or Task<> object
and the result can be obtained later. Fortunately, the C# language, version 6, supports the async
and await keywords, which simplifies using these functions enormously. You can thus use
asynchronous functions in the same way as traditional functions as long as you respect the following
two rules:

• The method is declared as asynchronous with the async keyword
• The await keyword is added when calling an asynchronous function

Example:

async Task<int> MyFunction(int val)
{
 // do some long computation
 ...

 return result;
}

int res = await MyFunction(1234);

1 https://www.visualstudio.com/vs/cordova/vs/

33. Using the Yocto-Pressure-C with Universal Windows Platform

258 www.yoctopuce.com

Our library follows these two rules and can therefore use the await notation.

For you not to have to wonder wether a function is asynchronous or not, there is the following
convention: all the public methods of the UWP library are asynchronous, that is that you must call
them with the await keyword, except:

• GetTickCount(), because measuring time in an asynchronous manner does not make a
lot of sense...

• FindModule(), FirstModule(), nextModule(), ... because detecting and
enumerating modules is performed as a background task on internal structures which are
managed transparently. It is therefore not necessary to use blocking functions while going
though the lists of modules.

33.2. Installation
Download the Yoctopuce library for Universal Windows Platform from the Yoctopuce web site2.
There is no installation software, simply copy the content of the zip file in a directory of your choice.
You essentially need the content of the Sources directory. The other directories contain
documentation and a few sample programs. Sample projects are Visual Studio 2017 projects. Visual
Studio 2017 is available on the Microsoft web site3.

33.3. Using the Yoctopuce API in a Visual Studio project
Start by creating your project. Then, from the Solution Explorer panel right click on your project and
select Add then Existing element .

A file chooser opens: select all the files in the library Sources directory.

You then have the choice between simply adding the files to your project or adding them as a link
(the Add button is actually a drop-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply creates a link to the original files. We
recommend to use links, as a potential library update is thus much easier.

The Package.appxmanifest file
By default a Universal Windows application doesn't have access rights to the USB ports. If you want
to access USB devices, you must imperatively declare it in the Package.appxmanifest file.

Unfortunately, the edition window of this file doesn't allow this operation and you must modify the
Package.appxmanifest file by hand. In the "Solution Explorer" panel, right click on the
Package.appxmanifest and select "View Code".

In this XML file, we must add a DeviceCapability node in the Capabilities node. This
node must have a "Name" attribute with a "humaninterfacedevice" value.

Inside this node, you must declare all the modules that can be used. Concretely, for each module,
you must add a "Device" node with an "Id" attribute, which has for value a character string
"vidpid:USB_VENDORID USB_DEVICE_ID". The Yoctopuce USB_VENDORID is 24e0 and you can
find the USB_DEVICE_ID of each Yoctopuce device in the documentation in the "Characteristics"
section. Finally, the "Device" node must contain a "Function" node with the "Type" attribute with a
value of "usage:ff00 0001".

For the Yocto-Pressure-C, here is what you must add in the "Capabilities" node:

 <DeviceCapability Name="humaninterfacedevice">
 <!-- Yocto-Pressure-C -->
 <Device Id="vidpid:24e0 00EC">
 <Function Type="usage:ff00 0001" />

2 www.yoctopuce.com/EN/libraries.php
3 https://www.visualstudio.com/downloads/

33. Using the Yocto-Pressure-C with Universal Windows Platform

www.yoctopuce.com 259

 </Device>
 </DeviceCapability>

Unfortunately, it's not possible to write a rule authorizing all Yoctopuce modules. Therefore, you must
imperatively add each module that you want to use.

33.4. Control of the Temperature function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a C# code snippet
to use the Temperature function.

[...]
// Enable detection of USB devices
await YAPI.RegisterHub("usb");
[...]

// Retrieve the object used to interact with the device
YTemperature temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature");

// Hot-plug is easy: just check that the device is online
if (await temperature.isOnline())
{
 // Use temperature.get_currentValue()
 [...]
}

[...]

Let us look at these lines in more details.

YAPI.RegisterHub
The YAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the virtual hub able to see the devices. If the
string "usb" is passed as parameter, the API works with modules locally connected to the machine. If
the initialization does not succeed, an exception is thrown.

YTemperature.FindTemperature
The YTemperature.FindTemperature function allows you to find a temperature sensor from
the serial number of the module on which it resides and from its function name. You can use logical
names as well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with
serial number PRSSMK1C-123456 which you have named "MyModule", and for which you have
given the temperature function the name "MyFunction". The following five calls are strictly equivalent,
as long as "MyFunction" is defined only once.

temperature = YTemperature.FindTemperature("PRSSMK1C-123456.temperature");
temperature = YTemperature.FindTemperature("PRSSMK1C-123456.MaFonction");
temperature = YTemperature.FindTemperature("MonModule.temperature");
temperature = YTemperature.FindTemperature("MonModule.MaFonction");
temperature = YTemperature.FindTemperature("MaFonction");

YTemperature.FindTemperature returns an object which you can then use at will to control
the temperature sensor.

isOnline
The isOnline() method of the object returned by YTemperature.FindTemperature allows
you to know if the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

33. Using the Yocto-Pressure-C with Universal Windows Platform

260 www.yoctopuce.com

33.5. A real example
Launch Visual Studio and open the corresponding project provided in the directory Examples/Doc-
GettingStarted-Yocto-Pressure-C of the Yoctopuce library.

Visual Studio projects contain numerous files, and most of them are not linked to the use of the
Yoctopuce library. To simplify reading the code, we regrouped all the code that uses the library in the
Demo class, located in the demo.cs file. Properties of this class correspond to the different fields
displayed on the screen, and the Run() method contains the code which is run when the "Start"
button is pushed.

In this example, you can recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
 public class Demo : DemoBase
 {
 public string HubURL { get; set; }
 public string Target { get; set; }

 public override async Task<int> Run()
 {
 try {
 await YAPI.RegisterHub(HubURL);

 YPressure psensor;

 if (Target.ToLower() == "any") {
 psensor = YPressure.FirstPressure();

 if (psensor == null) {
 WriteLine("No module connected (check USB cable) ");
 return -1;
 }
 } else {
 psensor = YPressure.FindPressure(Target + ".pressure");
 }

 while (await psensor.isOnline()) {
 WriteLine("Pressure: " + await psensor.get_currentValue() + " mbar");
 await YAPI.Sleep(1000);
 }

 WriteLine("Module not connected (check identification and USB cable)");
 } catch (YAPI_Exception ex) {
 WriteLine("error: " + ex.Message);
 }

 await YAPI.FreeAPI();
 return 0;
 }
 }
}

33.6. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;

33. Using the Yocto-Pressure-C with Universal Windows Platform

www.yoctopuce.com 261

using com.yoctopuce.YoctoAPI;

namespace Demo
{
 public class Demo : DemoBase
 {

 public string HubURL { get; set; }
 public string Target { get; set; }
 public bool Beacon { get; set; }

 public override async Task<int> Run()
 {
 YModule m;
 string errmsg = "";

 if (await YAPI.RegisterHub(HubURL) != YAPI.SUCCESS) {
 WriteLine("RegisterHub error: " + errmsg);
 return -1;
 }
 m = YModule.FindModule(Target + ".module"); // use serial or logical name
 if (await m.isOnline()) {
 if (Beacon) {
 await m.set_beacon(YModule.BEACON_ON);
 } else {
 await m.set_beacon(YModule.BEACON_OFF);
 }

 WriteLine("serial: " + await m.get_serialNumber());
 WriteLine("logical name: " + await m.get_logicalName());
 WriteLine("luminosity: " + await m.get_luminosity());
 Write("beacon: ");
 if (await m.get_beacon() == YModule.BEACON_ON)
 WriteLine("ON");
 else
 WriteLine("OFF");
 WriteLine("upTime: " + (await m.get_upTime() / 1000) + " sec");
 WriteLine("USB current: " + await m.get_usbCurrent() + " mA");
 WriteLine("Logs:\r\n" + await m.get_lastLogs());
 } else {
 WriteLine(Target + " not connected on" + HubURL +
 "(check identification and USB cable)");
 }
 await YAPI.FreeAPI();
 return 0;
 }
 }
}

Each property xxx of the module can be read thanks to a method of type YModule.get_xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set_xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
YModule.set_xxx() function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash() method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash() method.
The short example below allows you to modify the logical name of a module.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
 public class Demo : DemoBase
 {

 public string HubURL { get; set; }

33. Using the Yocto-Pressure-C with Universal Windows Platform

262 www.yoctopuce.com

 public string Target { get; set; }
 public string LogicalName { get; set; }

 public override async Task<int> Run()
 {
 try {
 YModule m;

 await YAPI.RegisterHub(HubURL);

 m = YModule.FindModule(Target); // use serial or logical name
 if (await m.isOnline()) {
 if (!YAPI.CheckLogicalName(LogicalName)) {
 WriteLine("Invalid name (" + LogicalName + ")");
 return -1;
 }

 await m.set_logicalName(LogicalName);
 await m.saveToFlash(); // do not forget this
 Write("Module: serial= " + await m.get_serialNumber());
 WriteLine(" / name= " + await m.get_logicalName());
 } else {
 Write("not connected (check identification and USB cable");
 }
 } catch (YAPI_Exception ex) {
 WriteLine("RegisterHub error: " + ex.Message);
 }
 await YAPI.FreeAPI();
 return 0;
 }
 }
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash() function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the YModule.yFirstModule()
function which returns the first module found. Then, you only need to call the nextModule()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
 public class Demo : DemoBase
 {
 public string HubURL { get; set; }

 public override async Task<int> Run()
 {
 YModule m;
 try {
 await YAPI.RegisterHub(HubURL);

 WriteLine("Device list");
 m = YModule.FirstModule();
 while (m != null) {
 WriteLine(await m.get_serialNumber()
 + " (" + await m.get_productName() + ")");
 m = m.nextModule();
 }
 } catch (YAPI_Exception ex) {
 WriteLine("Error:" + ex.Message);
 }
 await YAPI.FreeAPI();

33. Using the Yocto-Pressure-C with Universal Windows Platform

www.yoctopuce.com 263

 return 0;
 }
 }
}

33.7. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software.

In the Universal Windows Platform library, error handling is implemented with exceptions. You must
therefore intercept and correctly handle these exceptions if you want to have a reliable project which
does not crash as soon as you disconnect a module.

Library thrown exceptions are always of the YAPI_Exception type, so you can easily separate them
from other exceptions in a try{...} catch{...} block.

Example:

try {

} catch (YAPI_Exception ex) {
 Debug.WriteLine("Exception from Yoctopuce lib:" + ex.Message);
} catch (Exception ex) {
 Debug.WriteLine("Other exceptions :" + ex.Message);
}

264 www.yoctopuce.com

www.yoctopuce.com 265

34. Using Yocto-Pressure-C with Objective-C
Objective-C is language of choice for programming on macOS, due to its integration with the Cocoa
framework. Yoctopuce supports the XCode versions supported by Apple. The Yoctopuce library is
ARC compatible. You can therefore implement your projects either using the traditional retain /
release method, or using the Automatic Reference Counting.

Yoctopuce Objective-C libraries1 are integrally provided as source files. A section of the low-level
library is written in pure C, but you should not need to interact directly with it: everything was done to
ensure the simplest possible interaction from Objective-C.

You will soon notice that the Objective-C API defines many functions which return objects. You do
not need to deallocate these objects yourself, the API does it automatically at the end of the
application.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface. You can find on Yoctopuce blog a detailed example2 with video
shots showing how to integrate the library into your projects.

34.1. Control of the Temperature function
A few lines of code are enough to use a Yocto-Pressure-C. Here is the skeleton of a Objective-C
code snipplet to use the Temperature function.

#import "yocto_api.h"
#import "yocto_temperature.h"

...
NSError *error;
[YAPI RegisterHub:@"usb": &error]
...
// On récupère l'objet représentant le module (ici connecté en local sur USB)
temperature = [YTemperature FindTemperature:@"PRSSMK1C-123456.temperature"];

// Pour gérer le hot-plug, on vérifie que le module est là
if([temperature isOnline])
{
 // Utiliser [temperature get_currentValue]
 ...
}

1 www.yoctopuce.com/EN/libraries.php
2 www.yoctopuce.com/EN/article/new-objective-c-library-for-mac-os-x

34. Using Yocto-Pressure-C with Objective-C

266 www.yoctopuce.com

Let's look at these lines in more details.

yocto_api.h and yocto_temperature.h
These two import files provide access to the functions allowing you to manage Yoctopuce modules.
yocto_api.h must always be used, yocto_temperature.h is necessary to manage modules
containing a temperature sensor, such as Yocto-Pressure-C.

[YAPI RegisterHub]
The [YAPI RegisterHub] function initializes the Yoctopuce API and indicates where the
modules should be looked for. When used with the parameter @"usb", it will use the modules
locally connected to the computer running the library. If the initialization does not succeed, this
function returns a value different from YAPI_SUCCESS and errmsg contains the error message.

[Temperature FindTemperature]
The [Temperature FindTemperature] function allows you to find a temperature sensor from
the serial number of the module on which it resides and from its function name. You can use logical
names as well, as long as you have initialized them. Let us imagine a Yocto-Pressure-C module with
serial number PRSSMK1C-123456 which you have named "MyModule", and for which you have
given the temperature function the name "MyFunction". The following five calls are strictly equivalent,
as long as "MyFunction" is defined only once.

YTemperature *temperature = [Temperature FindTemperature:@"PRSSMK1C-123456.temperature"];
YTemperature *temperature = [Temperature FindTemperature:@"PRSSMK1C-123456.MyFunction"];
YTemperature *temperature = [Temperature FindTemperature:@"MyModule.temperature"];
YTemperature *temperature = [Temperature FindTemperature:@"MyModule.MyFunction"];
YTemperature *temperature = [Temperature FindTemperature:@"MyFunction"];

[Temperature FindTemperature] returns an object which you can then use at will to control
the temperature sensor.

isOnline
The isOnline method of the object returned by [Temperature FindTemperature] allows
you to know if the corresponding module is present and in working order.

get_currentValue
The get_currentValue() method of the object returned by YPressure.FindPressure
provides the pressure currently measured by the sensor. The value returned is a floating number,
equal to the current number millibars.

A real example
Launch Xcode 4.2 and open the corresponding sample project provided in the directory Examples/
Doc-GettingStarted-Yocto-Pressure-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

#import <Foundation/Foundation.h>
#import "yocto_api.h"
#import "yocto_pressure.h"

static void usage(void)
{
 NSLog(@"usage: demo <serial_number> ");
 NSLog(@" demo <logical_name>");
 NSLog(@" demo any (use any discovered device)");
 exit(1);
}

int main(int argc, const char * argv[])
{
 NSError *error;

34. Using Yocto-Pressure-C with Objective-C

www.yoctopuce.com 267

 if (argc < 2) {
 usage();
 }

 @autoreleasepool {
 // Setup the API to use local USB devices
 if([YAPI RegisterHub:@"usb": &error] != YAPI_SUCCESS) {
 NSLog(@"RegisterHub error: %@", [error localizedDescription]);
 return 1;
 }
 NSString *target = [NSString stringWithUTF8String:argv[1]];
 YPressure *psensor;
 if ([target isEqualToString:@"any"]) {
 psensor = [YPressure FirstPressure];
 if (psensor == NULL) {
 NSLog(@"No module connected (check USB cable)");
 return 1;
 }
 } else {
 psensor = [YPressure FindPressure:[target stringByAppendingString:@".pressure"]];
 }

 while(1) {
 if(![psensor isOnline]) {
 NSLog(@"Module not connected (check identification and USB cable)\n");
 break;
 }

 NSLog(@"Current pressure: %f C\n", [psensor get_currentValue]);
 NSLog(@" (press Ctrl-C to exit)\n");
 [YAPI Sleep:1000:NULL];
 }
 [YAPI FreeAPI];
 }
 return 0;
}

34.2. Control of the module part
Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#import <Foundation/Foundation.h>
#import "yocto_api.h"

static void usage(const char *exe)
{
 NSLog(@"usage: %s <serial or logical name> [ON/OFF]\n", exe);
 exit(1);
}

int main (int argc, const char * argv[])
{
 NSError *error;

 @autoreleasepool {
 // Setup the API to use local USB devices
 if([YAPI RegisterHub:@"usb": &error] != YAPI_SUCCESS) {
 NSLog(@"RegisterHub error: %@", [error localizedDescription]);
 return 1;
 }
 if(argc < 2)
 usage(argv[0]);
 NSString *serial_or_name = [NSString stringWithUTF8String:argv[1]];
 // use serial or logical name
 YModule *module = [YModule FindModule:serial_or_name];
 if ([module isOnline]) {
 if (argc > 2) {
 if (strcmp(argv[2], "ON") == 0)
 [module setBeacon:Y_BEACON_ON];
 else

34. Using Yocto-Pressure-C with Objective-C

268 www.yoctopuce.com

 [module setBeacon:Y_BEACON_OFF];
 }
 NSLog(@"serial: %@\n", [module serialNumber]);
 NSLog(@"logical name: %@\n", [module logicalName]);
 NSLog(@"luminosity: %d\n", [module luminosity]);
 NSLog(@"beacon: ");
 if ([module beacon] == Y_BEACON_ON)
 NSLog(@"ON\n");
 else
 NSLog(@"OFF\n");
 NSLog(@"upTime: %ld sec\n", [module upTime] / 1000);
 NSLog(@"USB current: %d mA\n", [module usbCurrent]);
 NSLog(@"logs: %@\n", [module get_lastLogs]);
 } else {
 NSLog(@"%@ not connected (check identification and USB cable)\n",
 serial_or_name);
 }
 [YAPI FreeAPI];
 }
 return 0;
}

Each property xxx of the module can be read thanks to a method of type get_xxxx, and
properties which are not read-only can be modified with the help of the set_xxx: method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings
When you want to modify the settings of a module, you only need to call the corresponding
set_xxx: function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash method. The short example below
allows you to modify the logical name of a module.

#import <Foundation/Foundation.h>
#import "yocto_api.h"

static void usage(const char *exe)
{
 NSLog(@"usage: %s <serial> <newLogicalName>\n", exe);
 exit(1);
}

int main (int argc, const char * argv[])
{
 NSError *error;

 @autoreleasepool {
 // Setup the API to use local USB devices
 if([YAPI RegisterHub:@"usb" :&error] != YAPI_SUCCESS) {
 NSLog(@"RegisterHub error: %@", [error localizedDescription]);
 return 1;
 }

 if(argc < 2)
 usage(argv[0]);

 NSString *serial_or_name = [NSString stringWithUTF8String:argv[1]];
 // use serial or logical name
 YModule *module = [YModule FindModule:serial_or_name];

 if (module.isOnline) {
 if (argc >= 3) {
 NSString *newname = [NSString stringWithUTF8String:argv[2]];
 if (![YAPI CheckLogicalName:newname]) {
 NSLog(@"Invalid name (%@)\n", newname);
 usage(argv[0]);
 }
 module.logicalName = newname;
 [module saveToFlash];
 }

34. Using Yocto-Pressure-C with Objective-C

www.yoctopuce.com 269

 NSLog(@"Current name: %@\n", module.logicalName);
 } else {
 NSLog(@"%@ not connected (check identification and USB cable)\n",
 serial_or_name);
 }
 [YAPI FreeAPI];
 }
 return 0;
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash function only 100000 times in the life of the module. Make sure you
do not call this function within a loop.

Listing the modules
Obtaining the list of the connected modules is performed with the yFirstModule() function which
returns the first module found. Then, you only need to call the nextModule() function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

#import <Foundation/Foundation.h>
#import "yocto_api.h"

int main (int argc, const char * argv[])
{
 NSError *error;

 @autoreleasepool {
 // Setup the API to use local USB devices
 if([YAPI RegisterHub:@"usb" :&error] != YAPI_SUCCESS) {
 NSLog(@"RegisterHub error: %@\n", [error localizedDescription]);
 return 1;
 }

 NSLog(@"Device list:\n");

 YModule *module = [YModule FirstModule];
 while (module != nil) {
 NSLog(@"%@ %@", module.serialNumber, module.productName);
 module = [module nextModule];
 }
 [YAPI FreeAPI];
 }
 return 0;
}

34.3. Error handling
When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

34. Using Yocto-Pressure-C with Objective-C

270 www.yoctopuce.com

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

• If your code catches the exception and handles it, everything goes well.
• If your program is running in debug mode, you can relatively easily determine where the

problem happened and view the explanatory message linked to the exception.
• Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions() function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get_state() method returns a ClassName.STATE_INVALID value,
a get_currentValue method returns a ClassName.CURRENTVALUE_INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPI_SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType() and errMessage() methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 271

35. Using with unsupported languages
Yoctopuce modules can be driven from most common programming languages. New languages are
regularly added, depending on the interest expressed by Yoctopuce product users. Nevertheless,
some languages are not, and will never be, supported by Yoctopuce. There can be several reasons
for this: compilers which are not available anymore, unadapted environments, and so on.

However, there are alternative methods to access Yoctopuce modules from an unsupported
programming language.

35.1. Command line
The easiest method to drive Yoctopuce modules from an unsupported programming language is to
use the command line API through system calls. The command line API is in fact made of a group of
small executables which are easy to call. Their output is also easy to analyze. As most programming
languages allow you to make system calls, the issue is solved with a few lines of code.

However, if the command line API is the easiest solution, it is neither the fastest nor the most
efficient. For each call, the executable must initialize its own API and make an inventory of USB
connected modules. This requires about one second per call.

35.2. .NET Assembly
A .NET Assembly enables you to share a set of pre-compiled classes to offer a service, by stating
entry points which can be used by third-party applications. In our case, it's the whole Yoctopuce
library which is available in the .NET Assembly, so that it can be used in any environment which
supports .NET Assembly dynamic loading.

The Yoctopuce library as a .NET Assembly does not contain only the standard C# Yoctopuce library,
as this would not have allowed an optimal use in all environments. Indeed, we cannot expect host
applications to necessarily offer a thread system or a callback system, although they are very useful
to manage plug-and-play events and sensors with a high refresh rate. Likewise, we cannot expect
from external applications a transparent behavior in cases where a function call in Assembly creates
a delay because of network communications.

Therefore, we added to it an additional layer, called .NET Proxy library. This additional layer offers an
interface very similar to the standard library but somewhat simplified, as it internally manages all the
callback mechanisms. Instead, this library offers mirror objects, called Proxys, which publish through
Properties the main attributes of the Yoctopuce functions such as the current measure, configuration
parameters, the state, and so on.

35. Using with unsupported languages

272 www.yoctopuce.com

.NET Assembly Architecture

The callback mechanism automatically updates the properties of the Proxys objects, without the host
application needing to care for it. The later can thus, at any time and without any risk of latency,
display the value of all properties of Yoctopuce Proxy objects.

Pay attention to the fact that the yapi.dll low-level communication library is not included in
the .NET Assembly. You must therefore keep it together with DotNetProxyLibrary.dll. The
32 bit version must be located in the same directory as DotNetProxyLibrary.dll, while the 64
bit version must be in a subdirectory amd64.

Example of use with MATLAB
Here is how to load our Proxy .NET Assembly in MATLAB and how to read the value of the first
sensor connected by USB found on the machine:

NET.addAssembly("C:/Yoctopuce/DotNetProxyLibrary.dll");
import YoctoProxyAPI.*

errmsg = YAPIProxy.RegisterHub("usb");
sensor = YSensorProxy.FindSensor("");
measure = sprintf('%.3f %s', sensor.CurrentValue, sensor.Unit);

Example of use in PowerShell
PowerShell commands are a little stranger, but we can recognize the same structure:

Add-Type -Path "C:/Yoctopuce/DotNetProxyLibrary.dll"

$errmsg = [YoctoProxyAPI.YAPIProxy]::RegisterHub("usb")
$sensor = [YoctoProxyAPI.YSensorProxy]::FindSensor("")
$measure = "{0:n3} {1}" -f $sensor.CurrentValue, $sensor.Unit

Specificities of the .NET Proxy library
With regards to classic Yoctopuce libraries, the following differences in particular should be noted:

No FirstModule/nextModule method
To obtain an object referring to the first found module, we call YModuleProxy.FindModule
(""). If there is no connected module, this method returns an object with its module.IsOnline
property set to False. As soon as a module is connected, the property changes to True and the
module hardware identifier is updated.

To list modules, you can call the module.GetSimilarFunctions() method which returns an
array of character strings containing the identifiers of all the modules which were found.

No callback function
Callback functions are implemented internally and they update the object properties. You can
therefore simply poll the properties, without significant performance penalties. Be aware that if you

35. Using with unsupported languages

www.yoctopuce.com 273

use one of the function that disables callbacks, the automatic refresh of object properties may not
work anymore.

A new method YAPIProxy.GetLog makes it possible to retrieve low-level debug logs without
using callbacks.

Enumerated types
In order to maximize compatibility with host applications, the .NET Proxy library does not use
true .NET enumerated types, but simple integers. For each enumerated type, the library includes
public constants named according to the possible values. Contrarily to standard Yoctopuce libraries,
numeric values always start from 1, as the value 0 is reserved to return an invalid value, for instance
when the device is disconnected.

Invalid numeric results
For all numeric results, rather than using an arbitrary constant, the invalid value returned in case of
error is NaN. You should therefore use function isNaN() to detect this value.

Using .NET Assembly without the Proxy library
If for a reason or another you do not want to use the Proxy library, and if your environment allows it,
you can use the standard C# API as it is located in the Assembly, under the YoctoLib namespace.
Beware however not to mix both types of use: either you go through the Proxy library, or you use he
YoctoLib version directly, but not both!

Compatibility
For the LabVIEW Yoctopuce library to work correctly with your Yoctopuce modules, these modules
need to have firmware 37120, or higher.

In order to be compatible with as many versions of Windows as possible, including Windows XP, the
DotNetProxyLibrary.dll library is compiled in .NET 3.5, which is available by default on all the
Windows versions since XP. As of today, we have never met any non-Windows environment able to
load a .NET Assembly, so we only ship the low-level communication dll for Windows together with
the assembly.

35.3. VirtualHub and HTTP GET
VirtualHub is available on almost all current platforms. It is generally used as a gateway to provide
access to Yoctopuce modules from languages which prevent direct access to hardware layers of a
computer (JavaScript, PHP, Java, ...).

In fact, VirtualHub is a small web server able to route HTTP requests to Yoctopuce modules. This
means that if you can make an HTTP request from your programming language, you can drive
Yoctopuce modules, even if this language is not officially supported.

REST interface
At a low level, the modules are driven through a REST API. Thus, to control a module, you only need
to perform appropriate requests on the VirtualHub. By default, the VirtualHub HTTP port is 4444.

An important advantage of this technique is that preliminary tests are very easy to implement. You
only need a VirtualHub and a simple web browser. If you copy the following URL in your preferred
browser, while VirtualHub is running, you obtain the list of the connected modules.

http://127.0.0.1:4444/api/services/whitePages.txt

Note that the result is displayed as text, but if you request whitePages.xml, you obtain an XML result.
Likewise, whitePages.json allows you to obtain a JSON result. The html extension even allows you to
display a rough interface where you can modify values in real time. The whole REST API is available
in these different formats.

35. Using with unsupported languages

274 www.yoctopuce.com

Driving a module through the REST interface
Each Yoctopuce module has its own REST interface, available in several variants. Let us imagine a
Yocto-Pressure-C with the PRSSMK1C-12345 serial number and the myModule logical name. The
following URL allows you to know the state of the module.

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/api/module.txt

You can naturally also use the module logical name rather than its serial number.

http://127.0.0.1:4444/byName/myModule/api/module.txt

To retrieve the value of a module property, simply add the name of the property below module. For
example, if you want to know the signposting led luminosity, send the following request:

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/api/module/luminosity

To change the value of a property, modify the corresponding attribute. Thus, to modify the luminosity,
send the following request:

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/api/module?luminosity=100

Driving the module functions through the REST interface
The module functions can be manipulated in the same way. To know the state of the temperature
function, build the following URL:

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/api/temperature.txt

Note that if you can use logical names for the modules instead of their serial number, you cannot use
logical names for functions. Only hardware names are authorized to access functions.

You can retrieve a module function attribute in a way rather similar to that used with the modules. For
example:

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/api/temperature/logicalName

Rather logically, attributes can be modified in the same manner.

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/api/temperature?logicalName=myFunction

You can find the list of available attributes for your Yocto-Pressure-C at the beginning of the
Programming chapter.

Accessing Yoctopuce data logger through the REST interface
This section only applies to devices with a built-in data logger.

The preview of all recorded data streams can be retrieved in JSON format using the following URL:

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/dataLogger.json

Individual measures for any given stream can be obtained by appending the desired function
identifier as well as start time of the stream:

http://127.0.0.1:4444/bySerial/PRSSMK1C-12345/dataLogger.json?id=temperature&utc=1389801080

35. Using with unsupported languages

www.yoctopuce.com 275

35.4. Using dynamic libraries
The low level Yoctopuce API is available under several formats of dynamic libraries written in C. The
sources are available with the C++ API. If you use one of these low level libraries, you do not need
VirtualHub anymore.

Filename Platform
libyapi.dylib Max OS X
libyapi-amd64.so Linux Intel (64 bits)
libyapi-armel.so Linux ARM EL (32 bits)
libyapi-armhf.so Linux ARM HL (32 bits)
libyapi-aarch64.so Linux ARM (64 bits)
libyapi-i386.so Linux Intel (32 bits)
yapi64.dll Windows (64 bits)
yapi.dll Windows (32 bits)

These dynamic libraries contain all the functions necessary to completely rebuild the whole high level
API in any language able to integrate these libraries. This chapter nevertheless restrains itself to
describing basic use of the modules.

Driving a module
The three essential functions of the low level API are the following:

int yapiInitAPI(int connection_type, char *errmsg);
int yapiUpdateDeviceList(int forceupdate, char *errmsg);
int yapiHTTPRequest(char *device, char *request, char* buffer,int buffsize,int *fullsize,
char *errmsg);

The yapiInitAPI function initializes the API and must be called once at the beginning of the program.
For a USB type connection, the connection_type parameter takes value 1. The errmsg parameter
must point to a 255 character buffer to retrieve a potential error message. This pointer can also point
to null. The function returns a negative integer in case of error, zero otherwise.

The yapiUpdateDeviceList manages the inventory of connected Yoctopuce modules. It must be
called at least once. To manage hot plug and detect potential newly connected modules, this function
must be called at regular intervals. The forceupdate parameter must take value 1 to force a hardware
scan. The errmsg parameter must point to a 255 character buffer to retrieve a potential error
message. This pointer can also point to null. The function returns a negative integer in case of error,
zero otherwise.

Finally, the yapiHTTPRequest function sends HTTP requests to the module REST API. The device
parameter contains the serial number or the logical name of the module which you want to reach.
The request parameter contains the full HTTP request (including terminal line breaks). buffer points
to a character buffer long enough to contain the answer. buffsize is the size of the buffer. fullsize is a
pointer to an integer to which will be assigned the actual size of the answer. The errmsg parameter
must point to a 255 character buffer to retrieve a potential error message. This pointer can also point
to null. The function returns a negative integer in case of error, zero otherwise.

The format of the requests is the same as the one described in the VirtualHub et HTTP GET section.
All the character strings used by the API are strings made of 8-bit characters: Unicode and UTF8 are
not supported.

The resutlt returned in the buffer variable respects the HTTP protocol. It therefore includes an HTTP
header. This header ends with two empty lines, that is a sequence of four ASCII characters 13, 10,
13, 10.

Here is a sample program written in pascal using the yapi.dll DLL to read and then update the
luminosity of a module.

// Dll functions import
function yapiInitAPI(mode:integer;

35. Using with unsupported languages

276 www.yoctopuce.com

 errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiInitAPI';
function yapiUpdateDeviceList(force:integer;errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiUpdateDeviceList';
function yapiHTTPRequest(device:pansichar;url:pansichar; buffer:pansichar;
 buffsize:integer;var fullsize:integer;
 errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiHTTPRequest';

var
 errmsgBuffer : array [0..256] of ansichar;
 dataBuffer : array [0..1024] of ansichar;
 errmsg,data : pansichar;
 fullsize,p : integer;

const
 serial = 'PRSSMK1C-12345';
 getValue = 'GET /api/module/luminosity HTTP/1.1'#13#10#13#10;
 setValue = 'GET /api/module?luminosity=100 HTTP/1.1'#13#10#13#10;

begin
 errmsg := @errmsgBuffer;
 data := @dataBuffer;
 // API initialization
 if(yapiInitAPI(1,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

 // forces a device inventory
 if(yapiUpdateDeviceList(1,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

 // requests the module luminosity
 if (yapiHTTPRequest(serial,getValue,data,sizeof(dataBuffer),fullsize,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

 // searches for the HTTP header end
 p := pos(#13#10#13#10,data);

 // displays the response minus the HTTP header
 writeln(copy(data,p+4,length(data)-p-3));

 // changes the luminosity
 if (yapiHTTPRequest(serial,setValue,data,sizeof(dataBuffer),fullsize,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

end.

Module inventory
To perform an inventory of Yoctopuce modules, you need two functions from the dynamic library:

 int yapiGetAllDevices(int *buffer,int maxsize,int *neededsize,char *errmsg);
 int yapiGetDeviceInfo(int devdesc,yDeviceSt *infos, char *errmsg);

The yapiGetAllDevices function retrieves the list of all connected modules as a list of handles. buffer
points to a 32-bit integer array which contains the returned handles. maxsize is the size in bytes of
the buffer. To neededsize is assigned the necessary size to store all the handles. From this, you can
deduce either the number of connected modules or that the input buffer is too small. The errmsg
parameter must point to a 255 character buffer to retrieve a potential error message. This pointer can
also point to null. The function returns a negative integer in case of error, zero otherwise.

35. Using with unsupported languages

www.yoctopuce.com 277

The yapiGetDeviceInfo function retrieves the information related to a module from its handle.
devdesc is a 32-bit integer representing the module and which was obtained through
yapiGetAllDevices. infos points to a data structure in which the result is stored. This data structure
has the following format:

Name Type Size
(bytes)Description

vendorid int 4 Yoctopuce USB ID
deviceid int 4 Module USB ID
devrelease int 4 Module version
nbinbterfaces int 4 Number of USB interfaces used by the module
manufacturer char[] 20 Yoctopuce (null terminated)
productname char[] 28 Model (null terminated)
serial char[] 20 Serial number (null terminated)
logicalname char[] 20 Logical name (null terminated)
firmware char[] 22 Firmware version (null terminated)
beacon byte 1 Beacon state (0/1)

The errmsg parameter must point to a 255 character buffer to retrieve a potential error message.

Here is a sample program written in pascal using the yapi.dll DLL to list the connected modules.

// device description structure
type yDeviceSt = packed record
 vendorid : word;
 deviceid : word;
 devrelease : word;
 nbinbterfaces : word;
 manufacturer : array [0..19] of ansichar;
 productname : array [0..27] of ansichar;
 serial : array [0..19] of ansichar;
 logicalname : array [0..19] of ansichar;
 firmware : array [0..21] of ansichar;
 beacon : byte;
 end;

// Dll function import
function yapiInitAPI(mode:integer;
 errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiInitAPI';

function yapiUpdateDeviceList(force:integer;errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiUpdateDeviceList';

function yapiGetAllDevices(buffer:pointer;
 maxsize:integer;
 var neededsize:integer;
 errmsg : pansichar):integer; cdecl;
 external 'yapi.dll' name 'yapiGetAllDevices';

function apiGetDeviceInfo(d:integer; var infos:yDeviceSt;
 errmsg : pansichar):integer; cdecl;
 external 'yapi.dll' name 'yapiGetDeviceInfo';

var
 errmsgBuffer : array [0..256] of ansichar;
 dataBuffer : array [0..127] of integer; // max of 128 USB devices
 errmsg,data : pansichar;
 neededsize,i : integer;
 devinfos : yDeviceSt;

begin
 errmsg := @errmsgBuffer;

 // API initialization
 if(yapiInitAPI(1,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

35. Using with unsupported languages

278 www.yoctopuce.com

 // forces a device inventory
 if(yapiUpdateDeviceList(1,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

 // loads all device handles into dataBuffer
 if yapiGetAllDevices(@dataBuffer,sizeof(dataBuffer),neededsize,errmsg)<0 then
 begin
 writeln(errmsg);
 halt;
 end;

 // gets device info from each handle
 for i:=0 to neededsize div sizeof(integer)-1 do
 begin
 if (apiGetDeviceInfo(dataBuffer[i], devinfos, errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;
 writeln(pansichar(@devinfos.serial)+' ('+pansichar(@devinfos.productname)+')');
 end;

end.

VB6 and yapi.dll
Each entry point from the yapi.dll is duplicated. You will find one regular C-decl version and one
Visual Basic 6 compatible version, prefixed with vb6_.

35.5. Porting the high level library
As all the sources of the Yoctopuce API are fully provided, you can very well port the whole API in
the language of your choice. Note, however, that a large portion of the API source code is
automatically generated.

Therefore, it is not necessary for you to port the complete API. You only need to port the yocto_api
file and one file corresponding to a function, for example yocto_relay. After a little additional work,
Yoctopuce is then able to generate all other files. Therefore, we highly recommend that you contact
Yoctopuce support before undertaking to port the Yoctopuce library in another language.
Collaborative work is advantageous to both parties.

www.yoctopuce.com 279

36. Advanced programming
The preceding chapters have introduced, in each available language, the basic programming
functions which can be used with your Yocto-Pressure-C module. This chapter presents in a more
generic manner a more advanced use of your module. Examples are provided in the language which
is the most popular among Yoctopuce customers, that is C#. Nevertheless, you can find complete
examples illustrating the concepts presented here in the programming libraries of each language.

To remain as concise as possible, examples provided in this chapter do not perform any error
handling. Do not copy them "as is" in a production application.

36.1. Event programming
The methods to manage Yoctopuce modules which we presented to you in preceding chapters were
polling functions, consisting in permanently asking the API if something had changed. While easy to
understand, this programming technique is not the most efficient, nor the most reactive. Therefore,
the Yoctopuce programming API also provides an event programming model. This technique
consists in asking the API to signal by itself the important changes as soon as they are detected.
Each time a key parameter is modified, the API calls a callback function which you have defined in
advance.

Detecting module arrival and departure
Hot-plug management is important when you work with USB modules because, sooner or later, you
will have to connect or disconnect a module when your application is running. The API is designed to
manage module unexpected arrival or departure in a transparent way. But your application must take
this into account if it wants to avoid pretending to use a disconnected module.

Event programming is particularly useful to detect module connection/disconnection. Indeed, it is
simpler to be told of new connections rather than to have to permanently list the connected modules
to deduce which ones just arrived and which ones left. To be warned as soon as a module is
connected, you need three pieces of code.

The callback
The callback is the function which is called each time a new Yoctopuce module is connected. It takes
as parameter the relevant module.

 static void deviceArrival(YModule m)
{
 Console.WriteLine("New module : " + m.get_serialNumber());
}

36. Advanced programming

280 www.yoctopuce.com

Initialization
You must then tell the API that it must call the callback when a new module is connected.

YAPI.RegisterDeviceArrivalCallback(deviceArrival);

Note that if modules are already connected when the callback is registered, the callback is called for
each of the already connected modules.

Triggering callbacks
A classis issue of callback programming is that these callbacks can be triggered at any time,
including at times when the main program is not ready to receive them. This can have undesired side
effects, such as dead-locks and other race conditions. Therefore, in the Yoctopuce API, module
arrival/departure callbacks are called only when the UpdateDeviceList() function is running.
You only need to call UpdateDeviceList() at regular intervals from a timer or from a specific
thread to precisely control when the calls to these callbacks happen:

// waiting loop managing callbacks
while (true)
{
 // module arrival / departure callback
 YAPI.UpdateDeviceList(ref errmsg);
 // non active waiting time managing other callbacks
 YAPI.Sleep(500, ref errmsg);
}

In a similar way, it is possible to have a callback when a module is disconnected. You can find a
complete example implemented in your favorite programming language in the Examples/Prog-
EventBased directory of the corresponding library.

Be aware that in most programming languages, callbacks must be global procedures, and not
methods. If you wish for the callback to call the method of an object, define your callback as a global
procedure which then calls your method.

Detecting a modification in the value of a sensor
The Yoctopuce API also provides a callback system allowing you to be notified automatically with the
value of any sensor, either when the value has changed in a significant way or periodically at a
preset frequency. The code necessary to do so is rather similar to the code used to detect when a
new module has been connected.

This technique is useful in particular if you want to detect very quick value changes (within a few
milliseconds), as it is much more efficient than reading repeatedly the sensor value and therefore
gives better performances.

Calliback invocation
To enable a better control, value change callbacks are only called when the YAPI.Sleep() and
YAPI.HandleEvents() functions are running. Therefore, you must call one of these functions at
a regular interval, either from a timer or from a parallel thread.

while (true)
{
 // inactive waiting loop allowing you to trigger
 // value change callbacks
 YAPI.Sleep(500, ref errmsg);
}

In programming environments where only the interface thread is allowed to interact with the user, it is
often appropriate to call YAPI.HandleEvents() from this thread.

36. Advanced programming

www.yoctopuce.com 281

The value change callback
This type of callback is called when a pressure sensor changes in a significant way. It takes as
parameter the relevant function and the new value, as a character string.1

static void valueChangeCallback(YPressure fct, string value)
{
 Console.WriteLine(fct.get_hardwareId() + "=" + value);
}

In most programming languages, callbacks are global procedures, not methods. If you wish for the
callback to call a method of an object, define your callback as a global procedure which then calls
your method. If you need to keep a reference to your object, you can store it directly in the YPressure
object using function set_userData. You can then retrieve it in the global callback procedure
using get_userData.

Setting up a value change callback
The callback is set up for a given Pressure function with the help of the
registerValueCallback method. The following example sets up a callback for the first
available Pressure function.

YPressure f = YPressure.FirstPressure();
f.registerValueCallback(pressureChangeCallBack)

Note that each module function can thus have its own distinct callback. By the way, if you like to work
with value change callbacks, you will appreciate the fact that value change callbacks are not limited
to sensors, but are also available for all Yoctopuce devices (for instance, you can also receive a
callback any time a relay state changes).

The timed report callback
This type of callback is automatically called at a predefined time interval. The callback frequency can
be configured individually for each sensor, with frequencies going from hundred calls per seconds
down to one call per hour. The callback takes as parameter the relevant function and the measured
value, as an YMeasure object. Contrarily to the value change callback that only receives the latest
value, an YMeasure object provides both minimal, maximal and average values since the timed
report callback. Moreover, the measure includes precise timestamps, which makes it possible to use
timed reports for a time-based graph even when not handled immediately.

static void periodicCallback(YPressure fct, YMeasure measure)
{
 Console.WriteLine(fct.get_hardwareId() + "=" +
 measure.get_averageValue());
}

Setting up a timed report callback
The callback is set up for a given Pressure function with the help of the
registerTimedReportCallback method. The callback will only be invoked once a callback
frequency as been set using set_reportFrequency (which defaults to timed report callback
turned off). The frequency is specified as a string (same as for the data logger), by specifying the
number of calls per second (/s), per minute (/m) or per hour (/h). The maximal frequency is 100 times
per second (i.e. "100/s"), and the minimal frequency is 1 time per hour (i.e. "1/h"). When the
frequency is higher than or equal to 1/s, the measure represents an instant value. When the
frequency is below, the measure will include distinct minimal, maximal and average values based on
a sampling performed automatically by the device.

The following example sets up a timed report callback 4 times per minute for t he first available
Pressure function.

1 The value passed as parameter is the same as the value returned by the get_advertisedValue() method.

36. Advanced programming

282 www.yoctopuce.com

YPressure f = YPressure.FirstPressure();
f.set_reportFrequency("4/m");
f.registerTimedReportCallback(periodicCallback);

As for value change callbacks, each module function can thus have its own distinct timed report
callback.

Generic callback functions
It is sometimes desirable to use the same callback function for various types of sensors (e.g. for a
generic sensor graphing application). This is possible by defining the callback for an object of class
YSensor rather than YPressure. Thus, the same callback function will be usable with any
subclass of YSensor (and in particular with YPressure). With the callback function, you can use
the method get_unt() to get the physical unit of the sensor, if you need to display it.

A complete example
You can find a complete example implemented in your favorite programming language in the
Examples/Prog-EventBased directory of the corresponding library.

36.2. The data logger
Your Yocto-Pressure-C is equipped with a data logger able to store non-stop the measures
performed by the module. The maximal frequency is 100 times per second (i.e. "100/s"), and the
minimal frequency is 1 time per hour (i.e. "1/h"). When the frequency is higher than or equal to 1/s,
the measure represents an instant value. When the frequency is below, the measure will include
distinct minimal, maximal and average values based on a sampling performed automatically by the
device.

Note that is useless and counter-productive to set a recording frequency higher than the native
sampling frequency of the recorded sensor.

The data logger flash memory can store about 500'000 instant measures, or 125'000 averaged
measures. When the memory is about to be saturated, the oldest measures are automatically
erased.

Make sure not to leave the data logger running at high speed unless really needed: the flash memory
can only stand a limited number of erase cycles (typically 100'000 cycles). When running at full
speed, the datalogger can burn more than 100 cycles per day ! Also be aware that it is useless to
record measures at a frequency higher than the refresh frequency of the physical sensor itself.

Starting/stopping the datalogger
The data logger can be started with the set_recording() method.

YDataLogger l = YDataLogger.FirstDataLogger();
l.set_recording(YDataLogger.RECORDING_ON);

It is possible to make the data recording start automatically as soon as the module is powered on.

YDataLogger l = YDataLogger.FirstDataLogger();
l.set_autoStart(YDataLogger.AUTOSTART_ON);
l.get_module().saveToFlash(); // do not forget to save the setting

Note: Yoctopuce modules do not need an active USB connection to work: they start working as soon
as they are powered on. The Yocto-Pressure-C can store data without necessarily being connected
to a computer: you only need to activate the automatic start of the data logger and to power on the
module with a simple USB charger.

Erasing the memory
The memory of the data logger can be erased with the forgetAllDataStreams() function. Be
aware that erasing cannot be undone.

36. Advanced programming

www.yoctopuce.com 283

YDataLogger l = YDataLogger.FirstDataLogger();
l.forgetAllDataStreams();

Choosing the logging frequency
The logging frequency can be set up individually for each sensor, using the method
set_logFrequency(). The frequency is specified as a string (same as for timed report
callbacks), by specifying the number of calls per second (/s), per minute (/m) or per hour (/h). The
default value is "1/s".

The following example configures the logging frequency at 15 measures per minute for the first
sensor found, whatever its type:

YSensor sensor = YSensor.FirstSensor();
sensor.set_logFrequency("15/m");

To avoid wasting flash memory, it is possible to disable logging for specified functions. In order to do
so, simply use the value "OFF":

sensor.set_logFrequency("OFF");

Limitation: The Yocto-Pressure-C cannot use a different frequency for timed-report callbacks and for
recording data into the datalogger. You can disable either of them individually, but if you enable both
timed-report callbacks and logging for a given function, the two will work at the same frequency.

Retrieving the data
To load recorded measures from the Yocto-Pressure-C flash memory, you must call the
get_recordedData() method of the desired sensor, and specify the time interval for which you
want to retrieve measures. The time interval is given by the start and stop UNIX timestamp. You can
also specify 0 if you don't want any start or stop limit.

The get_recordedData() method does not return directly am array of measured values, since
in some cases it would cause a huge load that could affect the responsiveness of the application.
Instead, this function will return an YDataSet object that can be used to retrieve immediately an
overview of the measured data (summary), and then to load progressively the details when desired.

Here are the main methods used to retrieve recorded measures:

1. dataset = sensor.get_recordedData(0,0): select the desired time interval
2. dataset.loadMore(): load data from the device, progressively
3. dataset.get_summary(): get a single measure summarizing the full time interval
4. dataset.get_preview(): get an array of measures representing a condensed version of the

whole set of measures on the selected time interval (reduced by a factor of approx. 200)
5. dataset.get_measures(): get an array with all detailled measures (that grows while

loadMore is being called repeteadly)

Measures are instances of YMeasure 2. They store simultaneously the minimal, average and
maximal value at a given time, that you can retrieve using methods get_minValue(),
get_averageValue() and get_maxValue() respectively. Here is a small example that uses the
functions above:

// We will retrieve all measures, without time limit
YDataSet dataset = sensor.get_recordedData(0, 0);

// First call to loadMore() loads the summary/preview
dataset.loadMore();
YMeasure summary = dataset.get_summary();

2 The YMeasure objects used by the data logger are exactly the same kind as those passed as argument to the timed
report callbacks.

36. Advanced programming

284 www.yoctopuce.com

string timeFmt = "dd MMM yyyy hh:mm:ss,fff";
string logFmt = "from {0} to {1} : average={2:0.00}{3}";
Console.WriteLine(String.Format(logFmt,
 summary.get_startTimeUTC_asDateTime().ToString(timeFmt),
 summary.get_endTimeUTC_asDateTime().ToString(timeFmt),
 summary.get_averageValue(), sensor.get_unit()));

// Next calls to loadMore() will retrieve measures
Console.WriteLine("loading details");
int progress;
do {
 Console.Write(".");
 progress = dataset.loadMore();
} while(progress < 100);

// All measures have now been loaded
List<YMeasure> details = dataset.get_measures();
foreach (YMeasure m in details) {
 Console.WriteLine(String.Format(logFmt,
 m.get_startTimeUTC_asDateTime().ToString(timeFmt),
 m.get_endTimeUTC_asDateTime().ToString(timeFmt),
 m.get_averageValue(), sensor.get_unit()));
}

You will find a complete example demonstrating how to retrieve data from the logger for each
programming language directly in the Yoctopuce library. The example can be found in directory
Examples/Prog-DataLogger.

Timestamp
As the Yocto-Pressure-C does not have a battery, it cannot guess alone the current time when
powered on. Nevertheless, the Yocto-Pressure-C will automatically try to adjust its real-time
reference using the host to which it is connected, in order to properly attach a timestamp to each
measure in the datalogger:

• When the Yocto-Pressure-C is connected to a computer running either the VirtualHub or any
application using the Yoctopuce library, it will automatically receive the time from this
computer.

• When the Yocto-Pressure-C is connected to a YoctoHub-Ethernet, it will get the time that the
YoctoHub has obtained from the network (using a server from pool.ntp.org)

• When the Yocto-Pressure-C is connected to a YoctoHub-Wireless, it will get the time provided
by the YoctoHub based on its internal battery-powered real-time clock, which was itself
configured either from the network or from a computer

• When the Yocto-Pressure-C is connected to an Android mobile device, it will get the time from
the mobile device as long as an app using the Yoctopuce library is launched.

When none of these conditions applies (for instance if the module is simply connected to an USB
charger), the Yocto-Pressure-C will do its best effort to attach a reasonable timestamp to the
measures, using the timestamp found on the latest recorded measures. It is therefore possible to
"preset to the real time" an autonomous Yocto-Pressure-C by connecting it to an Android mobile
phone, starting the data logger, then connecting the device alone on an USB charger. Nevertheless,
be aware that without external time source, the internal clock of the Yocto-Pressure-C might be be
subject to a clock skew (theoretically up to 2%).

36.3. Sensor calibration
Your Yocto-Pressure-C module is equipped with a digital sensor calibrated at the factory. The values
it returns are supposed to be reasonably correct in most cases. There are, however, situations where
external conditions can impact the measures.

The Yoctopuce API provides the mean to re-caliber the values measured by your Yocto-Pressure-C.
You are not going to modify the hardware settings of the module, but rather to transform afterwards
the measures taken by the sensor. This transformation is controlled by parameters stored in the flash
memory of the module, making it specific for each module. This re-calibration is therefore a fully
software matter and remains perfectly reversible.

36. Advanced programming

www.yoctopuce.com 285

Before deciding to re-calibrate your Yocto-Pressure-C module, make sure you have well understood
the phenomena which impact the measures of your module, and that the differences between true
values and measured values do not result from a incorrect use or an inadequate location of the
module.

The Yoctopuce modules support two types of calibration. On the one hand, a linear interpolation
based on 1 to 5 reference points, which can be performed directly inside the Yocto-Pressure-C. On
the other hand, the API supports an external arbitrary calibration, implemented with callbacks.

1 to 5 point linear interpolation
These transformations are performed directly inside the Yocto-Pressure-C which means that you
only have to store the calibration points in the module flash memory, and all the correction
computations are done in a perfectly transparent manner: The function get_currentValue()
returns the corrected value while the function get_currentRawValue() keeps returning the
value before the correction.

Calibration points are simply (Raw_value, Corrected_value) couples. Let us look at the impact of the
number of calibration points on the corrections.

1 point correction
The 1 point correction only adds a shift to the measures. For example, if you provide the calibration
point (a, b), all the measured values are corrected by adding to them b-a, so that when the value
read on the sensor is a, the pressure function returns b.

Measure correction with 1 calibration point, here (5,10)

The application is very simple: you only need to call the calibrateFromPoints() method of the function
you wish to correct. The following code applies the correction illustrated on the graph above to the
first pressure function found. Note the call to the saveToFlash method of the module hosting the
function, so that the module does not forget the calibration as soon as it is disconnected.

Double[] ValuesBefore = {5};
Double[] ValuesAfter = {10};
YPressure f = YPressure.FirstPressure();
f.calibrateFromPoints(ValuesBefore, ValuesAfter);
f.get_module().saveToFlash();

2 point correction
2 point correction allows you to perform both a shift and a multiplication by a given factor between
two points. If you provide the two points (a, b) and (c, d), the function result is multiplied (d-b)/(c-a) in
the [a, c] range and shifted, so that when the value read by the sensor is a or c, the pressure function
returns respectively b and d. Outside of the [a, c] range, the values are simply shifted, so as to

36. Advanced programming

286 www.yoctopuce.com

preserve the continuity of the measures: an increase of 1 on the value read by the sensor induces an
increase of 1 on the returned value.

Measure correction with the two calibration points (10,5) and (25,10).

The code allowing you to program this calibration is very similar to the preceding code example.

Double[] ValuesBefore = {10,25};
Double[] ValuesAfter = {5,10};
YPressure f = YPressure.FirstPressure();
f.calibrateFromPoints(ValuesBefore, ValuesAfter);
f.get_module().saveToFlash();

Note that the values before correction must be sorted in a strictly ascending order, otherwise they
are simply ignored.

3 to 5 point correction
3 to 5 point corrections are only a generalization of the 2 point method, allowing you to create up to 4
correction ranges for an increased precision. These ranges cannot be disjoint.

Correction example with 3 calibration points

Back to normal
To cancel the effect of a calibration on a function, call the calibrateFromPoints() method with two
empty arrays.

36. Advanced programming

www.yoctopuce.com 287

Double[] ValuesBefore = {};
Double[] ValuesAfter = {};
YPressure f = YPressure.FirstPressure();
f.calibrateFromPoints(ValuesBefore, ValuesAfter);
f.get_module().saveToFlash();

You will find, in the Examples\Prog-Calibration directory of the Delphi, VB, and C# libraries, an
application allowing you to test the effects of the 1 to 5 point calibration.

Limitations
Due to storage and processing limitations of real values within Yoctopuce sensors, raw values and
corrected values must conform to a few numeric consraints:

• Only 3 decimals are taken into account (i.e. resolution is 0.001)
• The lowest allowed value is -2'100'000
• The highest allowed value is +2'100'000

Arbitrary interpolation
It is also possible to compute the interpolation instead of letting the module do it, in order to calculate
a spline interpolation, for instance. To do so, you only need to store a callback in the API. This
callback must specify the number of calibration points it is expecting.

public static double CustomInterpolation3Points(double rawValue, int calibType,
 int[] parameters, double[] beforeValues, double[] afterValues)
 { double result;
 // the value to be corrected is rawValue
 // calibration points are in beforeValues and afterValues
 result = // interpolation of your choice
 return result;
 }
YAPI.RegisterCalibrationHandler(3, CustomInterpolation3Points);

Note that these interpolation callbacks are global, and not specific to each function. Thus, each time
someone requests a value from a module which contains in its flash memory the correct number of
calibration points, the corresponding callback is called to correct the value before returning it,
enabling thus a perfectly transparent measure correction.

288 www.yoctopuce.com

www.yoctopuce.com 289

37. Firmware Update
There are multiples way to update the firmware of a Yoctopuce module.

37.1. VirtualHub or the YoctoHub
It is possible to update the firmware directly from the web interface of VirtualHub or of a YoctoHub.
The configuration panel of the module has an "upgrade" button to start a wizard that will guide you
through the firmware update procedure.

In case the firmware update fails for any reason, and the module does no start anymore, simply
unplug the module then plug it back while maintaining the Yocto-button down. The module will boot
in "firmware update" mode and will appear in the VirtualHub interface below the module list.

37.2. The command line library
All the command line tools can update Yoctopuce modules thanks to the downloadAndUpdate
command. The module selection mechanism works like for a traditional command. The [target] is the
name of the module that you want to update. You can also use the "any" or "all" aliases, or even a
name list, where the names are separated by commas, without spaces.

C:\>Executable [options] [target] command [parameters]

The following example updates all the Yoctopuce modules connected by USB.

C:\>YModule all downloadAndUpdate
ok: Yocto-PowerRelay RELAYHI1-266C8(rev=15430) is up to date.
ok: 0 / 0 hubs in 0.000000s.
ok: 0 / 0 shields in 0.000000s.
ok: 1 / 1 devices in 0.130000s 0.130000s per device.
ok: All devices are now up to date.
C:\>

37.3. The Android application Yocto-Firmware
You can update your module firmware from your Android phone or tablet with the Yocto-Firmware
application. This application lists all the Yoctopuce modules connected by USB and checks if a more
recent firmware is available on www.yoctopuce.com. If a more recent firmware is available, you can

37. Firmware Update

290 www.yoctopuce.com

update the module. The application is responsible for downloading and installing the new firmware
while preserving the module parameters.

Please note: while the firmware is being updated, the module restarts several times. Android
interprets a USB device reboot as a disconnection and reconnection of the USB device and asks the
authorization to use the USB port again. The user must click on OK for the update process to end
successfully.

37.4. Updating the firmware with the programming library
If you need to integrate firmware updates in your application, the libraries offer you an API to update
your modules.

Saving and restoring parameters
The get_allSettings() method returns a binary buffer enabling you to save a module
persistent parameters. This function is very useful to save the network configuration of a YoctoHub
for example.

YWireless wireless = YWireless.FindWireless("reference");
YModule m = wireless.get_module();
byte[] default_config = m.get_allSettings();
saveFile("default.bin", default_config);
...

You can then apply these parameters to other modules with the set_allSettings() method.

byte[] default_config = loadFile("default.bin");
YModule m = YModule.FirstModule();
while (m != null) {
 if (m.get_productName() == "YoctoHub-Wireless") {
 m.set_allSettings(default_config);
 }
 m = m.next();
}

Finding the correct firmware
The first step to update a Yoctopuce module is to find which firmware you must use. The
checkFirmware(path, onlynew) method of the YModule object does exactly this. The
method checks that the firmware given as argument (path) is compatible with the module. If the
onlynew parameter is set, this method checks that the firmware is more recent than the version
currently used by the module. When the file is not compatible (or if the file is older than the installed
version), this method returns an empty string. In the opposite, if the file is valid, the method returns a
file access path.

The following piece of code checks that the c:\tmp\METEOMK1.17328.byn is compatible with
the module stored in the m variable .

YModule m = YModule.FirstModule();
...
...
string path = "c:\\tmp\METEOMK1.17328.byn";
string newfirm = m.checkFirmware(path, false);
if (newfirm != "") {
 Console.WriteLine("firmware " + newfirm + " is compatible");
}
...

The argument can be a directory (instead of a file). In this case, the method checks all the files of the
directory recursively and returns the most recent compatible firmware. The following piece of code
checks whether there is a more recent firmware in the c:\tmp\ directory.

37. Firmware Update

www.yoctopuce.com 291

YModule m = YModule.FirstModule();
...
...
string path = "c:\\tmp";
string newfirm = m.checkFirmware(path, true);
if (newfirm != "") {
 Console.WriteLine("firmware " + newfirm + " is compatible and newer");
}
...

You can also give the "www.yoctopuce.com" string as argument to check whether there is a more
recent published firmware on Yoctopuce's web site. In this case, the method returns the firmware
URL. You can use this URL to download the firmware on your disk or use this URL when updating
the firmware (see below). Obviously, this possibility works only if your machine is connected to
Internet.

YModule m = YModule.FirstModule();
...
...
string url = m.checkFirmware("www.yoctopuce.com", true);
if (url != "") {
 Console.WriteLine("new firmware is available at " + url);
}
...

Updating the firmware
A firmware update can take several minutes. That is why the update process is run as a background
task and is driven by the user code thanks to the YFirmwareUdpate class.

To update a Yoctopuce module, you must obtain an instance of the YFirmwareUdpate class with
the updateFirmware method of a YModule object. The only parameter of this method is the path
of the firmware that you want to install. This method does not immediately start the update, but
returns a YFirmwareUdpate object configured to update the module.

string newfirm = m.checkFirmware("www.yoctopuce.com", true);
.....
YFirmwareUpdate fw_update = m.updateFirmware(newfirm);

The startUpdate() method starts the update as a background task. This background task
automatically takes care of

1. saving the module parameters
2. restarting the module in "update" mode
3. updating the firmware
4. starting the module with the new firmware version
5. restoring the parameters

The get_progress() and get_progressMessage() methods enable you to follow the
progression of the update. get_progress() returns the progression as a percentage (100 =
update complete). get_progressMessage() returns a character string describing the current
operation (deleting, writing, rebooting, ...). If the get_progress method returns a negative value,
the update process failed. In this case, the get_progressMessage() returns an error message.

The following piece of code starts the update and displays the progress on the standard output.

YFirmwareUpdate fw_update = m.updateFirmware(newfirm);
....
int status = fw_update.startUpdate();
while (status < 100 && status >= 0) {
 int newstatus = fw_update.get_progress();
 if (newstatus != status) {
 Console.WriteLine(status + "% "
 + fw_update.get_progressMessage());
 }

37. Firmware Update

292 www.yoctopuce.com

 YAPI.Sleep(500, ref errmsg);
 status = newstatus;
}

if (status < 0) {
 Console.WriteLine("Firmware Update failed: "
 + fw_update.get_progressMessage());
} else {
 Console.WriteLine("Firmware Updated Successfully!");
}

An Android characteristic
You can update a module firmware using the Android library. However, for modules connected by
USB, Android asks the user to authorize the application to access the USB port.

During firmware update, the module restarts several times. Android interprets a USB device reboot
as a disconnection and a reconnection to the USB port, and prevents all USB access as long as the
user has not closed the pop-up window. The use has to click on OK for the update process to
continue correctly. You cannot update a module connected by USB to an Android device
without having the user interacting with the device.

37.5. The "update" mode
If you want to erase all the parameters of a module or if your module does not start correctly
anymore, you can install a firmware from the "update" mode.

To force the module to work in "update" mode, disconnect it, wait a few seconds, and reconnect it
while maintaining the Yocto-button down. This will restart the module in "update" mode. This update
mode is protected against corruptions and is always available.

In this mode, the module is not detected by the YModule objects anymore. To obtain the list of
connected modules in "update" mode, you must use the YAPI.GetAllBootLoaders() function.
This function returns a character string array with the serial numbers of the modules in "update"
mode.

List<string> allBootLoader = YAPI.GetAllBootLoaders();

The update process is identical to the standard case (see the preceding section), but you must
manually instantiate the YFirmwareUpdate object instead of calling
module.updateFirmware(). The constructor takes as argument three parameters: the module
serial number, the path of the firmware to be installed, and a byte array with the parameters to be
restored at the end of the update (or null to restore default parameters).

YFirmwareUpdateupdate fw_update;
fw_update = new YFirmwareUpdate(allBootLoader[0], newfirm, null);
int status = fw_update.startUpdate();
.....

www.yoctopuce.com 293

38. High-level API Reference
This chapter summarizes the high-level API functions to drive your Yocto-Pressure-C. Syntax and
exact type names may vary from one language to another, but, unless otherwise stated, all the
functions are available in every language. For detailed information regarding the types of arguments
and return values for a given language, refer to the definition file for this language (yocto_api.*
as well as the other yocto_* files that define the function interfaces).

For languages which support exceptions, all of these functions throw exceptions in case of error by
default, rather than returning the documented error value for each function. This is by design, to
facilitate debugging. It is however possible to disable the use of exceptions using the
yDisableExceptions() function, in case you prefer to work with functions that return error
values.

This chapter does not repeat the programming concepts described earlier, in order to stay as concise
as possible. In case of doubt, do not hesitate to go back to the chapter describing in details all
configurable attributes.

38. High-level API Reference

294 www.yoctopuce.com

38.1. Class YAPI

General functions

These general functions should be used to initialize and configure the Yoctopuce library. In most cases,
a simple call to function yRegisterHub() should be enough. The module-specific functions
yFind...() or yFirst...() should then be used to retrieve an object that provides interaction
with the module.

In order to use the functions described here, you should include:

java import com.yoctopuce.YoctoAPI.YAPI;

dnp import YoctoProxyAPI.YAPIProxy

cp #include "yocto_api_proxy.h"

ml import YoctoProxyAPI.YAPIProxy"

cpp #include "yocto_api.h"

vb yocto_api.vb

cs yocto_api.cs

py from yocto_api import *

php require_once('yocto_api.php');

ts in HTML: import { YAPI, YErrorMsg, YModule, YSensor } from '../../dist/esm/yocto_api_browser.js';
in Node.js: import { YAPI, YErrorMsg, YModule, YSensor } from 'yoctolib-cjs/yocto_api_nodejs.js';

tpy from yoctolib.yocto_api import *

vi YModule.vi

pas uses yocto_api;

es in HTML: <script src="../../lib/yocto_api.js"></script>
in node.js: require('yoctolib-es2017/yocto_api.js');

Global functions
YAPI.AddTrustedCertificates(certificate)

Adds a TLS/SSL certificate to the list of trusted certificates.

cpp vb cs java py php ts tpy pas es

YAPI.AddUdevRule(force)

Adds a UDEV rule which authorizes all users to access Yoctopuce modules connected to the USB ports.

cpp vb cs java py php ts pas es

YAPI.CheckLogicalName(name)

Checks if a given string is valid as logical name for a module or a function.

cpp vb cs java py php ts tpy pas es

YAPI.ClearHTTPCallbackCacheDir(removeFiles)

Disables the HTTP callback cache.

java php

YAPI.DisableExceptions()

Disables the use of exceptions to report runtime errors.

cpp vb cs py php ts tpy pas es

YAPI.DownloadHostCertificate(url, mstimeout)

Download the TLS/SSL certificate from the hub.

cpp vb cs java py php ts tpy pas es

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.ClearHTTPCallbackCacheDir
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.ClearHTTPCallbackCacheDir
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.DownloadHostCertificate

38. High-level API Reference

www.yoctopuce.com 295

YAPI.EnableExceptions()

Re-enables the use of exceptions for runtime error handling.

cpp vb cs py php ts tpy pas es

YAPI.EnableUSBHost(osContext)

This function is used only on Android.

java

YAPI.FreeAPI()

Waits for all pending communications with Yoctopuce devices to be completed then frees dynamically
allocated resources used by the Yoctopuce library.

cpp vb cs java py php ts dnp tpy pas es

YAPI.GetAPIVersion()

Returns the version identifier for the Yoctopuce library in use.

cpp vb cs java py php ts dnp tpy pas es

YAPI.GetCacheValidity()

Returns the validity period of the data loaded by the library.

cpp vb cs java py php ts tpy pas es

YAPI.GetDeviceListValidity()

Returns the delay between each forced enumeration of the used YoctoHubs.

cpp vb cs java py php ts tpy pas es

YAPI.GetDllArchitecture()

Returns the system architecture for the Yoctopuce communication library in use.

dnp

YAPI.GetDllPath()

Returns the paths of the DLLs for the Yoctopuce library in use.

dnp

YAPI.GetLog(lastLogLine)

Retrieves Yoctopuce low-level library diagnostic logs.

dnp

YAPI.GetNetworkTimeout()

Returns the network connection delay for yRegisterHub() and yUpdateDeviceList().

cpp vb cs java py php ts dnp tpy pas es

YAPI.GetTickCount()

Returns the current value of a monotone millisecond-based time counter.

cpp vb cs java py php ts tpy pas es

YAPI.GetYAPISharedLibraryPath()

Returns the path to the dynamic YAPI library.

cpp vb cs java py php ts pas es

YAPI.HandleEvents(errmsg)

Maintains the device-to-library communication channel.

cpp vb cs java py php ts tpy pas es

YAPI.InitAPI(mode, errmsg)

Initializes the Yoctopuce programming library explicitly.

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.EnableUSBHost
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.GetDllArchitecture
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.GetDllPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.GetLog
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.HandleEvents

38. High-level API Reference

296 www.yoctopuce.com

cpp vb cs java py php ts tpy pas es

YAPI.PreregisterHub(url, errmsg)

Fault-tolerant alternative to yRegisterHub().

cpp vb cs java py php ts dnp tpy pas es

YAPI.RegisterDeviceArrivalCallback(arrivalCallback)

Register a callback function, to be called each time a device is plugged.

cpp vb cs java py php ts tpy pas es

YAPI.RegisterDeviceRemovalCallback(removalCallback)

Register a callback function, to be called each time a device is unplugged.

cpp vb cs java py php ts tpy pas es

YAPI.RegisterHub(url, errmsg)

Set up the Yoctopuce library to use modules connected on a given machine.

cpp vb cs java py php ts dnp tpy pas es

YAPI.RegisterHubDiscoveryCallback(hubDiscoveryCallback)

Register a callback function, to be called each time an Network Hub send an SSDP message.

cpp vb cs java py ts tpy pas es

YAPI.RegisterHubWebsocketCallback(ws, errmsg, authpwd)

Variant to yRegisterHub() used to initialize Yoctopuce API on an existing Websocket session, as
happens for incoming WebSocket callbacks.

YAPI.RegisterLogFunction(logfun)

Registers a log callback function.

cpp vb cs java py ts tpy pas es

YAPI.SelectArchitecture(arch)

Select the architecture or the library to be loaded to access to USB.

py

YAPI.SetCacheValidity(cacheValidityMs)

Change the validity period of the data loaded by the library.

cpp vb cs java py php ts tpy pas es

YAPI.SetDelegate(object)

(Objective-C only) Register an object that must follow the protocol YDeviceHotPlug.

YAPI.SetDeviceListValidity(deviceListValidity)

Modifies the delay between each forced enumeration of the used YoctoHubs.

cpp vb cs java py php ts tpy pas es

YAPI.SetHTTPCallbackCacheDir(directory)

Enables the HTTP callback cache.

java php

YAPI.SetNetworkSecurityOptions(opts)

Enables or disables certain TLS/SSL certificate checks.

cpp vb cs java py php ts tpy pas es

YAPI.SetNetworkTimeout(networkMsTimeout)

Modifies the network connection delay for yRegisterHub() and yUpdateDeviceList().

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.SelectArchitecture
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.SetHTTPCallbackCacheDir
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.SetHTTPCallbackCacheDir
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.SetNetworkSecurityOptions

38. High-level API Reference

www.yoctopuce.com 297

cpp vb cs java py php ts dnp tpy pas es

YAPI.SetTimeout(callback, ms_timeout, args)

Invoke the specified callback function after a given timeout.

ts es

YAPI.SetTrustedCertificatesList(certificatePath)

Set the path of Certificate Authority file on local filesystem.

cpp vb cs java py php ts tpy pas es

YAPI.SetUSBPacketAckMs(pktAckDelay)

Enables the acknowledge of every USB packet received by the Yoctopuce library.

java

YAPI.Sleep(ms_duration, errmsg)

Pauses the execution flow for a specified duration.

cpp vb cs java py php ts tpy pas es

YAPI.TestHub(url, mstimeout, errmsg)

Test if the hub is reachable.

cpp vb cs java py php ts dnp tpy pas es

YAPI.TriggerHubDiscovery(errmsg)

Force a hub discovery, if a callback as been registered with yRegisterHubDiscoveryCallback it
will be called for each net work hub that will respond to the discovery.

cpp vb cs java py ts tpy pas es

YAPI.UnregisterHub(url)

Set up the Yoctopuce library to no more use modules connected on a previously registered machine with
RegisterHub.

cpp vb cs java py php ts tpy pas es

YAPI.UpdateDeviceList(errmsg)

Triggers a (re)detection of connected Yoctopuce modules.

cpp vb cs java py php ts tpy pas es

YAPI.UpdateDeviceList_async(callback, context)

Triggers a (re)detection of connected Yoctopuce modules.

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.SetTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.SetTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.SetUSBPacketAckMs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.UpdateDeviceList

38. High-level API Reference

298 www.yoctopuce.com

38.2. Class YModule

Global parameters control interface for all Yoctopuce devices

The YModule class can be used with all Yoctopuce USB devices. It can be used to control the module
global parameters, and to enumerate the functions provided by each module.

In order to use the functions described here, you should include:

cpp #include "yocto_api.h"

vb yocto_api.vb

cs yocto_api.cs

java import com.yoctopuce.YoctoAPI.YModule;

py from yocto_api import *

php require_once('yocto_api.php');

ts in HTML: import { YAPI, YErrorMsg, YModule, YSensor } from '../../dist/esm/yocto_api_browser.js';
in Node.js: import { YAPI, YErrorMsg, YModule, YSensor } from 'yoctolib-cjs/yocto_api_nodejs.js';

dnp import YoctoProxyAPI.YModuleProxy

cp #include "yocto_module_proxy.h"

tpy from yoctolib.yocto_api import *

vi YModule.vi

ml import YoctoProxyAPI.YModuleProxy"

pas uses yocto_api;

es in HTML: <script src="../../lib/yocto_api.js"></script>
in node.js: require('yoctolib-es2017/yocto_api.js');

Global functions
YModule.FindModule(func)

Allows you to find a module from its serial number or from its logical name.

cpp vb cs java py php ts dnp tpy pas es

YModule.FindModuleInContext(yctx, func)

Retrieves a module for a given identifier in a YAPI context.

java ts tpy es

YModule.FirstModule()

Starts the enumeration of modules currently accessible.

cpp vb cs java py php ts tpy pas es

YModule properties
module→Beacon [writable]

State of the localization beacon.

dnp

module→FirmwareRelease [read-only]

Version of the firmware embedded in the module.

dnp

module→FunctionId [read-only]

Retrieves the hardware identifier of the nth function on the module.

dnp

module→HardwareId [read-only]

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.FindModuleInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.FindModuleInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.FindModuleInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.FindModuleInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.Beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.FirmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.FunctionId

38. High-level API Reference

www.yoctopuce.com 299

Unique hardware identifier of the module.

dnp

module→IsOnline [read-only]

Checks if the module is currently reachable.

dnp

module→LogicalName [writable]

Logical name of the module.

dnp

module→Luminosity [writable]

Luminosity of the module informative LEDs (from 0 to 100).

dnp

module→ProductId [read-only]

USB device identifier of the module.

dnp

module→ProductName [read-only]

Commercial name of the module, as set by the factory.

dnp

module→ProductRelease [read-only]

Release number of the module hardware, preprogrammed at the factory.

dnp

module→SerialNumber [read-only]

Serial number of the module, as set by the factory.

dnp

YModule methods
module→addFileToHTTPCallback(filename)

Adds a file to the uploaded data at the next HTTP callback.

cmd cpp vb cs java py php ts dnp pas es

module→checkFirmware(path, onlynew)

Tests whether the byn file is valid for this module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→clearCache()

Invalidates the cache.

cpp vb cs java py php ts tpy pas es

module→describe()

Returns a descriptive text that identifies the module.

cpp vb cs java py php ts pas es

module→download(pathname)

Downloads the specified built-in file and returns a binary buffer with its content.

cmd cpp vb cs java py php ts dnp tpy pas es

module→functionBaseType(functionIndex)

Retrieves the base type of the nth function on the module.

https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.HardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.IsOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.LogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.Luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.ProductId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.ProductName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.ProductRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.SerialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.download

38. High-level API Reference

300 www.yoctopuce.com

cpp vb cs java py php ts tpy pas es

module→functionCount()

Returns the number of functions (beside the "module" interface) available on the module.

cpp vb cs java py php ts tpy pas es

module→functionId(functionIndex)

Retrieves the hardware identifier of the nth function on the module.

cpp vb cs java py php ts tpy pas es

module→functionName(functionIndex)

Retrieves the logical name of the nth function on the module.

cpp vb cs java py php ts tpy pas es

module→functionType(functionIndex)

Retrieves the type of the nth function on the module.

cpp vb cs java py php ts tpy pas es

module→functionValue(functionIndex)

Retrieves the advertised value of the nth function on the module.

cpp vb cs java py php ts tpy pas es

module→get_allSettings()

Returns all the settings and uploaded files of the module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_beacon()

Returns the state of the localization beacon.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_errorMessage()

Returns the error message of the latest error with this module object.

cpp vb cs java py php ts tpy pas es

module→get_errorType()

Returns the numerical error code of the latest error with this module object.

cpp vb cs java py php ts tpy pas es

module→get_firmwareRelease()

Returns the version of the firmware embedded in the module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_functionIds(funType)

Retrieve all hardware identifier that match the type passed in argument.

cmd cpp vb cs java py php ts dnp pas es

module→get_hardwareId()

Returns the unique hardware identifier of the module.

cpp vb cs java py php ts dnp tpy es cmd pas

module→get_icon2d()

Returns the icon of the module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_lastLogs()

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_icon2d

38. High-level API Reference

www.yoctopuce.com 301

Returns a string with last logs of the module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_logicalName()

Returns the logical name of the module.

cpp vb cs java py php ts dnp tpy pas es cmd

module→get_luminosity()

Returns the luminosity of the module informative LEDs (from 0 to 100).

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_parentHub()

Returns the serial number of the YoctoHub on which this module is connected.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_persistentSettings()

Returns the current state of persistent module settings.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_productId()

Returns the USB device identifier of the module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_productName()

Returns the commercial name of the module, as set by the factory.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_productRelease()

Returns the release number of the module hardware, preprogrammed at the factory.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_rebootCountdown()

Returns the remaining number of seconds before the module restarts, or zero when no reboot has been
scheduled.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_serialNumber()

Returns the serial number of the module, as set by the factory.

cpp vb cs java py php ts dnp tpy pas es cmd

module→get_subDevices()

Returns a list of all the modules that are plugged into the current module.

cmd cpp vb cs java py php ts dnp pas es

module→get_upTime()

Returns the number of milliseconds spent since the module was powered on.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_url()

Returns the URL used to access the module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_usbCurrent()

Returns the current consumed by the module on the USB bus, in milli-amps.

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_url

38. High-level API Reference

302 www.yoctopuce.com

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_userData()

Returns the value of the userData attribute, as previously stored using method set_userData.

cpp vb cs java py php ts tpy pas es

module→get_userVar()

Returns the value previously stored in this attribute.

cmd cpp vb cs java py php ts dnp tpy pas es

module→hasFunction(funcId)

Tests if the device includes a specific function.

cmd cpp vb cs java py php ts dnp tpy pas es

module→isOnline()

Checks if the module is currently reachable, without raising any error.

cpp vb cs java py php ts dnp tpy pas es

module→isOnline_async(callback, context)

Checks if the module is currently reachable, without raising any error.

module→isReadOnly()

Indicates whether changes to the module are prohibited or allowed.

cpp vb cs java py php ts dnp tpy pas es cmd

module→load(msValidity)

Preloads the module cache with a specified validity duration.

cpp vb cs java py php ts tpy pas es

module→load_async(msValidity, callback, context)

Preloads the module cache with a specified validity duration (asynchronous version).

module→log(text)

Adds a text message to the device logs.

cmd cpp vb cs java py php ts dnp tpy pas es

module→nextModule()

Continues the module enumeration started using yFirstModule().

cpp vb cs java py php ts tpy pas es

module→reboot(secBeforeReboot)

Schedules a simple module reboot after the given number of seconds.

cmd cpp vb cs java py php ts dnp tpy pas es

module→registerBeaconCallback(callback)

Register a callback function, to be called when the localization beacon of the module has been changed.

cpp vb cs java py php ts tpy pas es

module→registerConfigChangeCallback(callback)

Register a callback function, to be called when a persistent settings in a device configuration has been
changed (e.g.

cpp vb cs java py php ts tpy pas es

module→registerLogCallback(callback)

Registers a device log callback function.

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.registerConfigChangeCallback

38. High-level API Reference

www.yoctopuce.com 303

cpp vb cs java py php ts tpy pas es

module→revertFromFlash()

Reloads the settings stored in the nonvolatile memory, as when the module is powered on.

cmd cpp vb cs java py php ts dnp tpy pas es

module→saveToFlash()

Saves current settings in the nonvolatile memory of the module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→set_allSettings(settings)

Restores all the settings of the device.

cmd cpp vb cs java py php ts dnp tpy pas es

module→set_allSettingsAndFiles(settings)

Restores all the settings and uploaded files to the module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→set_beacon(newval)

Turns on or off the module localization beacon.

cmd cpp vb cs java py php ts dnp tpy pas es

module→set_logicalName(newval)

Changes the logical name of the module.

cpp vb cs java py php ts dnp tpy pas es cmd

module→set_luminosity(newval)

Changes the luminosity of the module informative leds.

cmd cpp vb cs java py php ts dnp tpy pas es

module→set_userData(data)

Stores a user context provided as argument in the userData attribute of the function.

cpp vb cs java py php ts tpy pas es

module→set_userVar(newval)

Stores a 32 bit value in the device RAM.

cmd cpp vb cs java py php ts dnp tpy pas es

module→triggerConfigChangeCallback()

Triggers a configuration change callback, to check if they are supported or not.

cmd cpp vb cs java py php ts dnp tpy pas es

module→triggerFirmwareUpdate(secBeforeReboot)

Schedules a module reboot into special firmware update mode.

cmd cpp vb cs java py php ts dnp tpy pas es

module→updateFirmware(path)

Prepares a firmware update of the module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→updateFirmwareEx(path, force)

Prepares a firmware update of the module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→wait_async(callback, context)

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.updateFirmwareEx

38. High-level API Reference

304 www.yoctopuce.com

Waits for all pending asynchronous commands on the module to complete, and invoke the user-provided
callback function.

ts es

https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.wait_async
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.wait_async

38. High-level API Reference

www.yoctopuce.com 305

38.3. Class YPressure

Pressure sensor control interface, available for instance in the Yocto-Altimeter-V2, the Yocto-CO2-V2,
the Yocto-Meteo-V2 or the Yocto-Pressure

The YPressure class allows you to read and configure Yoctopuce pressure sensors. It inherits from
YSensor class the core functions to read measurements, to register callback functions, and to access
the autonomous datalogger.

In order to use the functions described here, you should include:

es in HTML: <script src="../../lib/yocto_pressure.js"></script>
in node.js: require('yoctolib-es2017/yocto_pressure.js');

cpp #include "yocto_pressure.h"

vb yocto_pressure.vb

cs yocto_pressure.cs

java import com.yoctopuce.YoctoAPI.YPressure;

py from yocto_pressure import *

php require_once('yocto_pressure.php');

ts in HTML: import { YPressure } from '../../dist/esm/yocto_pressure.js';
in Node.js: import { YPressure } from 'yoctolib-cjs/yocto_pressure.js';

dnp import YoctoProxyAPI.YPressureProxy

cp #include "yocto_pressure_proxy.h"

tpy from yoctolib.yocto_pressure import *

vi YPressure.vi

ml import YoctoProxyAPI.YPressureProxy

pas uses yocto_pressure;

Global functions
YPressure.FindPressure(func)

Retrieves a pressure sensor for a given identifier.

cpp vb cs java py php ts dnp tpy pas es

YPressure.FindPressureInContext(yctx, func)

Retrieves a pressure sensor for a given identifier in a YAPI context.

java ts tpy es

YPressure.FirstPressure()

Starts the enumeration of pressure sensors currently accessible.

cpp vb cs java py php ts tpy pas es

YPressure.FirstPressureInContext(yctx)

Starts the enumeration of pressure sensors currently accessible.

java ts tpy es

YPressure.GetSimilarFunctions()

Enumerates all functions of type Pressure available on the devices currently reachable by the library, and
returns their unique hardware ID.

dnp

YPressure properties
pressure→AdvMode [writable]

Measuring mode used for the advertised value pushed to the parent hub.

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.FindPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.FindPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.FindPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.FindPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.FindPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.FindPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.FindPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.FindPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.FindPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.FindPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.FindPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.FindPressureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.FindPressureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.FindPressureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.FindPressureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.FirstPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.FirstPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.FirstPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.FirstPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.FirstPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.FirstPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.FirstPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.FirstPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.FirstPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.FirstPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.FirstPressureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.FirstPressureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.FirstPressureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.FirstPressureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.GetSimilarFunctions

38. High-level API Reference

306 www.yoctopuce.com

dnp

pressure→AdvertisedValue [read-only]

Short string representing the current state of the function.

dnp

pressure→FriendlyName [read-only]

Global identifier of the function in the format MODULE_NAME.FUNCTION_NAME.

dnp

pressure→FunctionId [read-only]

Hardware identifier of the sensor, without reference to the module.

dnp

pressure→HardwareId [read-only]

Unique hardware identifier of the function in the form SERIAL.FUNCTIONID.

dnp

pressure→IsOnline [read-only]

Checks if the function is currently reachable.

dnp

pressure→LogFrequency [writable]

Datalogger recording frequency for this function, or "OFF" when measures are not stored in the data logger
flash memory.

dnp

pressure→LogicalName [writable]

Logical name of the function.

dnp

pressure→ReportFrequency [writable]

Timed value notification frequency, or "OFF" if timed value notifications are disabled for this function.

dnp

pressure→Resolution [writable]

Resolution of the measured values.

dnp

pressure→SerialNumber [read-only]

Serial number of the module, as set by the factory.

dnp

YPressure methods
pressure→calibrateFromPoints(rawValues, refValues)

Configures error correction data points, in particular to compensate for a possible perturbation of the measure
caused by an enclosure.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→clearCache()

Invalidates the cache.

cpp vb cs java py php ts tpy pas es

pressure→describe()

https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.AdvMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.AdvertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.FriendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.FunctionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.HardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.IsOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.LogFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.LogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.ReportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.Resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.SerialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.clearCache

38. High-level API Reference

www.yoctopuce.com 307

Returns a short text that describes unambiguously the instance of the pressure sensor in the form
TYPE(NAME)=SERIAL.FUNCTIONID.

cpp vb cs java py php ts pas es

pressure→get_advMode()

Returns the measuring mode used for the advertised value pushed to the parent hub.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→get_advertisedValue()

Returns the current value of the pressure sensor (no more than 6 characters).

cpp vb cs java py php ts dnp tpy pas es cmd

pressure→get_currentRawValue()

Returns the uncalibrated, unrounded raw value returned by the sensor, in millibar (hPa), as a floating point
number.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→get_currentValue()

Returns the current value of the pressure, in millibar (hPa), as a floating point number.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→get_dataLogger()

Returns the YDatalogger object of the device hosting the sensor.

cpp vb cs java py php ts dnp tpy pas es

pressure→get_errorMessage()

Returns the error message of the latest error with the pressure sensor.

cpp vb cs java py php ts tpy pas es

pressure→get_errorType()

Returns the numerical error code of the latest error with the pressure sensor.

cpp vb cs java py php ts tpy pas es

pressure→get_friendlyName()

Returns a global identifier of the pressure sensor in the format MODULE_NAME.FUNCTION_NAME.

cpp cs java py php ts dnp tpy es

pressure→get_functionDescriptor()

Returns a unique identifier of type YFUN_DESCR corresponding to the function.

cpp vb cs java py php ts pas es

pressure→get_functionId()

Returns the hardware identifier of the pressure sensor, without reference to the module.

cpp vb cs java py php ts dnp tpy es

pressure→get_hardwareId()

Returns the unique hardware identifier of the pressure sensor in the form SERIAL.FUNCTIONID.

cpp vb cs java py php ts dnp tpy es

pressure→get_highestValue()

Returns the maximal value observed for the pressure since the device was started.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→get_logFrequency()

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_highestValue

38. High-level API Reference

308 www.yoctopuce.com

Returns the datalogger recording frequency for this function, or "OFF" when measures are not stored in the
data logger flash memory.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→get_logicalName()

Returns the logical name of the pressure sensor.

cpp vb cs java py php ts dnp tpy pas es cmd

pressure→get_lowestValue()

Returns the minimal value observed for the pressure since the device was started.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→get_module()

Gets the YModule object for the device on which the function is located.

cpp vb cs java py php ts dnp tpy pas es

pressure→get_module_async(callback, context)

Gets the YModule object for the device on which the function is located (asynchronous version).

pressure→get_recordedData(startTime, endTime)

Retrieves a YDataSet object holding historical data for this sensor, for a specified time interval.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→get_reportFrequency()

Returns the timed value notification frequency, or "OFF" if timed value notifications are disabled for this
function.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→get_resolution()

Returns the resolution of the measured values.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→get_sensorState()

Returns the sensor state code, which is zero when there is an up-to-date measure available or a positive code
if the sensor is not able to provide a measure right now.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→get_serialNumber()

Returns the serial number of the module, as set by the factory.

cpp vb cs java py php ts dnp tpy pas es cmd

pressure→get_unit()

Returns the measuring unit for the pressure.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→get_userData()

Returns the value of the userData attribute, as previously stored using method set_userData.

cpp vb cs java py php ts tpy pas es

pressure→isOnline()

Checks if the pressure sensor is currently reachable, without raising any error.

cpp vb cs java py php ts dnp tpy pas es

pressure→isOnline_async(callback, context)

Checks if the pressure sensor is currently reachable, without raising any error (asynchronous version).

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.isOnline

38. High-level API Reference

www.yoctopuce.com 309

pressure→isReadOnly()

Indicates whether changes to the function are prohibited or allowed.

cpp vb cs java py php ts dnp tpy pas es cmd

pressure→isSensorReady()

Checks if the sensor is currently able to provide an up-to-date measure.

cmd

pressure→load(msValidity)

Preloads the pressure sensor cache with a specified validity duration.

cpp vb cs java py php ts tpy pas es

pressure→loadAttribute(attrName)

Returns the current value of a single function attribute, as a text string, as quickly as possible but without using
the cached value.

cpp vb cs java py php ts dnp tpy pas es

pressure→loadCalibrationPoints(rawValues, refValues)

Retrieves error correction data points previously entered using the method calibrateFromPoints.

cmd cpp vb cs java py php ts tpy pas es

pressure→load_async(msValidity, callback, context)

Preloads the pressure sensor cache with a specified validity duration (asynchronous version).

pressure→muteValueCallbacks()

Disables the propagation of every new advertised value to the parent hub.

cpp vb cs java py php ts dnp tpy pas es cmd

pressure→nextPressure()

Continues the enumeration of pressure sensors started using yFirstPressure().

cpp vb cs java py php ts tpy pas es

pressure→registerTimedReportCallback(callback)

Registers the callback function that is invoked on every periodic timed notification.

cpp vb cs java py php ts tpy pas es

pressure→registerValueCallback(callback)

Registers the callback function that is invoked on every change of advertised value.

cpp vb cs java py php ts tpy pas es

pressure→set_advMode(newval)

Changes the measuring mode used for the advertised value pushed to the parent hub.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→set_highestValue(newval)

Changes the recorded maximal value observed.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→set_logFrequency(newval)

Changes the datalogger recording frequency for this function.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→set_logicalName(newval)

Changes the logical name of the pressure sensor.

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.isSensorReady
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.nextPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.nextPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.nextPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.nextPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.nextPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.nextPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.nextPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.nextPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.nextPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.nextPressure
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.set_logFrequency

38. High-level API Reference

310 www.yoctopuce.com

cpp vb cs java py php ts dnp tpy pas es cmd

pressure→set_lowestValue(newval)

Changes the recorded minimal value observed.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→set_reportFrequency(newval)

Changes the timed value notification frequency for this function.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→set_resolution(newval)

Changes the resolution of the measured physical values.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→set_userData(data)

Stores a user context provided as argument in the userData attribute of the function.

cpp vb cs java py php ts tpy pas es

pressure→startDataLogger()

Starts the data logger on the device.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→stopDataLogger()

Stops the datalogger on the device.

cmd cpp vb cs java py php ts dnp tpy pas es

pressure→unmuteValueCallbacks()

Re-enables the propagation of every new advertised value to the parent hub.

cpp vb cs java py php ts dnp tpy pas es cmd

pressure→wait_async(callback, context)

Waits for all pending asynchronous commands on the module to complete, and invoke the user-provided
callback function.

ts es

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Pressure.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Pressure.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Pressure.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Pressure.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Pressure.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Pressure.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Pressure.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Pressure.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Pressure.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Pressure.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Pressure.wait_async
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Pressure.wait_async

38. High-level API Reference

www.yoctopuce.com 311

38.4. Class YTemperature

Temperature sensor control interface, available for instance in the Yocto-Meteo-V2, the Yocto-PT100,
the Yocto-Temperature or the Yocto-Thermocouple

The YTemperature class allows you to read and configure Yoctopuce temperature sensors. It
inherits from YSensor class the core functions to read measurements, to register callback functions,
and to access the autonomous datalogger. This class adds the ability to configure some specific
parameters for some sensors (connection type, temperature mapping table).

In order to use the functions described here, you should include:

cpp #include "yocto_temperature.h"

vb yocto_temperature.vb

cs yocto_temperature.cs

java import com.yoctopuce.YoctoAPI.YTemperature;

py from yocto_temperature import *

php require_once('yocto_temperature.php');

ts in HTML: import { YTemperature } from '../../dist/esm/yocto_temperature.js';
in Node.js: import { YTemperature } from 'yoctolib-cjs/yocto_temperature.js';

dnp import YoctoProxyAPI.YTemperatureProxy

cp #include "yocto_temperature_proxy.h"

tpy from yoctolib.yocto_temperature import *

vi YTemperature.vi

ml import YoctoProxyAPI.YTemperatureProxy

pas uses yocto_temperature;

es in HTML: <script src="../../lib/yocto_temperature.js"></script>
in node.js: require('yoctolib-es2017/yocto_temperature.js');

Global functions
YTemperature.FindTemperature(func)

Retrieves a temperature sensor for a given identifier.

cpp vb cs java py php ts dnp tpy pas es

YTemperature.FindTemperatureInContext(yctx, func)

Retrieves a temperature sensor for a given identifier in a YAPI context.

java ts tpy es

YTemperature.FirstTemperature()

Starts the enumeration of temperature sensors currently accessible.

cpp vb cs java py php ts tpy pas es

YTemperature.FirstTemperatureInContext(yctx)

Starts the enumeration of temperature sensors currently accessible.

java ts tpy es

YTemperature.GetSimilarFunctions()

Enumerates all functions of type Temperature available on the devices currently reachable by the library, and
returns their unique hardware ID.

dnp

YTemperature properties
temperature→AdvMode [writable]

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.FindTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.FindTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.FindTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.FindTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.FindTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.FindTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.FindTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.FindTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.FindTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.FindTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.FindTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.FindTemperatureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.FindTemperatureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.FindTemperatureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.FindTemperatureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.FirstTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.FirstTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.FirstTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.FirstTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.FirstTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.FirstTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.FirstTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.FirstTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.FirstTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.FirstTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.FirstTemperatureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.FirstTemperatureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.FirstTemperatureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.FirstTemperatureInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.GetSimilarFunctions

38. High-level API Reference

312 www.yoctopuce.com

Measuring mode used for the advertised value pushed to the parent hub.

dnp

temperature→AdvertisedValue [read-only]

Short string representing the current state of the function.

dnp

temperature→FriendlyName [read-only]

Global identifier of the function in the format MODULE_NAME.FUNCTION_NAME.

dnp

temperature→FunctionId [read-only]

Hardware identifier of the sensor, without reference to the module.

dnp

temperature→HardwareId [read-only]

Unique hardware identifier of the function in the form SERIAL.FUNCTIONID.

dnp

temperature→IsOnline [read-only]

Checks if the function is currently reachable.

dnp

temperature→LogFrequency [writable]

Datalogger recording frequency for this function, or "OFF" when measures are not stored in the data logger
flash memory.

dnp

temperature→LogicalName [writable]

Logical name of the function.

dnp

temperature→ReportFrequency [writable]

Timed value notification frequency, or "OFF" if timed value notifications are disabled for this function.

dnp

temperature→Resolution [writable]

Resolution of the measured values.

dnp

temperature→SensorType [writable]

Temperature sensor type.

dnp

temperature→SerialNumber [read-only]

Serial number of the module, as set by the factory.

dnp

temperature→SignalUnit [read-only]

Measuring unit of the electrical signal used by the sensor.

dnp

YTemperature methods
temperature→calibrateFromPoints(rawValues, refValues)

https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.AdvMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.AdvertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.FriendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.FunctionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.HardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.IsOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.LogFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.LogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.ReportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.Resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.SensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.SerialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.SignalUnit

38. High-level API Reference

www.yoctopuce.com 313

Configures error correction data points, in particular to compensate for a possible perturbation of the measure
caused by an enclosure.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→clearCache()

Invalidates the cache.

cpp vb cs java py php ts tpy pas es

temperature→describe()

Returns a short text that describes unambiguously the instance of the temperature sensor in the form
TYPE(NAME)=SERIAL.FUNCTIONID.

cpp vb cs java py php ts pas es

temperature→get_advMode()

Returns the measuring mode used for the advertised value pushed to the parent hub.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→get_advertisedValue()

Returns the current value of the temperature sensor (no more than 6 characters).

cpp vb cs java py php ts dnp tpy pas es cmd

temperature→get_currentRawValue()

Returns the uncalibrated, unrounded raw value returned by the sensor, in Celsius, as a floating point number.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→get_currentValue()

Returns the current value of the temperature, in Celsius, as a floating point number.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→get_dataLogger()

Returns the YDatalogger object of the device hosting the sensor.

cpp vb cs java py php ts dnp tpy pas es

temperature→get_errorMessage()

Returns the error message of the latest error with the temperature sensor.

cpp vb cs java py php ts tpy pas es

temperature→get_errorType()

Returns the numerical error code of the latest error with the temperature sensor.

cpp vb cs java py php ts tpy pas es

temperature→get_friendlyName()

Returns a global identifier of the temperature sensor in the format MODULE_NAME.FUNCTION_NAME.

cpp cs java py php ts dnp tpy es

temperature→get_functionDescriptor()

Returns a unique identifier of type YFUN_DESCR corresponding to the function.

cpp vb cs java py php ts pas es

temperature→get_functionId()

Returns the hardware identifier of the temperature sensor, without reference to the module.

cpp vb cs java py php ts dnp tpy es

temperature→get_hardwareId()

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_functionId

38. High-level API Reference

314 www.yoctopuce.com

Returns the unique hardware identifier of the temperature sensor in the form SERIAL.FUNCTIONID.

cpp vb cs java py php ts dnp tpy es

temperature→get_highestValue()

Returns the maximal value observed for the temperature since the device was started.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→get_logFrequency()

Returns the datalogger recording frequency for this function, or "OFF" when measures are not stored in the
data logger flash memory.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→get_logicalName()

Returns the logical name of the temperature sensor.

cpp vb cs java py php ts dnp tpy pas es cmd

temperature→get_lowestValue()

Returns the minimal value observed for the temperature since the device was started.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→get_module()

Gets the YModule object for the device on which the function is located.

cpp vb cs java py php ts dnp tpy pas es

temperature→get_module_async(callback, context)

Gets the YModule object for the device on which the function is located (asynchronous version).

temperature→get_recordedData(startTime, endTime)

Retrieves a YDataSet object holding historical data for this sensor, for a specified time interval.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→get_reportFrequency()

Returns the timed value notification frequency, or "OFF" if timed value notifications are disabled for this
function.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→get_resolution()

Returns the resolution of the measured values.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→get_sensorState()

Returns the sensor state code, which is zero when there is an up-to-date measure available or a positive code
if the sensor is not able to provide a measure right now.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→get_sensorType()

Returns the temperature sensor type.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→get_serialNumber()

Returns the serial number of the module, as set by the factory.

cpp vb cs java py php ts dnp tpy pas es cmd

temperature→get_signalUnit()

Returns the measuring unit of the electrical signal used by the sensor.

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_serialNumber

38. High-level API Reference

www.yoctopuce.com 315

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→get_signalValue()

Returns the current value of the electrical signal measured by the sensor.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→get_unit()

Returns the measuring unit for the temperature.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→get_userData()

Returns the value of the userData attribute, as previously stored using method set_userData.

cpp vb cs java py php ts tpy pas es

temperature→isOnline()

Checks if the temperature sensor is currently reachable, without raising any error.

cpp vb cs java py php ts dnp tpy pas es

temperature→isOnline_async(callback, context)

Checks if the temperature sensor is currently reachable, without raising any error (asynchronous version).

temperature→isReadOnly()

Indicates whether changes to the function are prohibited or allowed.

cpp vb cs java py php ts dnp tpy pas es cmd

temperature→isSensorReady()

Checks if the sensor is currently able to provide an up-to-date measure.

cmd

temperature→load(msValidity)

Preloads the temperature sensor cache with a specified validity duration.

cpp vb cs java py php ts tpy pas es

temperature→loadAttribute(attrName)

Returns the current value of a single function attribute, as a text string, as quickly as possible but without using
the cached value.

cpp vb cs java py php ts dnp tpy pas es

temperature→loadCalibrationPoints(rawValues, refValues)

Retrieves error correction data points previously entered using the method calibrateFromPoints.

cmd cpp vb cs java py php ts tpy pas es

temperature→loadThermistorResponseTable(tempValues, resValues)

R e t r i e v e s t h e t h e r m i s t o r r e s p o n s e t a b l e p r e v i o u s l y c o n f i g u r e d u s i n g t h e
set_thermistorResponseTable funct ion.

cmd cpp vb cs java py php ts tpy pas es

temperature→load_async(msValidity, callback, context)

Preloads the temperature sensor cache with a specified validity duration (asynchronous version).

temperature→muteValueCallbacks()

Disables the propagation of every new advertised value to the parent hub.

cpp vb cs java py php ts dnp tpy pas es cmd

temperature→nextTemperature()

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_signalUnit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_signalUnit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_signalUnit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_signalUnit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_signalUnit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_signalUnit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_signalUnit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_signalUnit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_signalUnit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_signalUnit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_signalUnit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_signalUnit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_signalValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_signalValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_signalValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_signalValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_signalValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_signalValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_signalValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_signalValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_signalValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_signalValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_signalValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_signalValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.isSensorReady
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.loadThermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.loadThermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.loadThermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.loadThermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.loadThermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.loadThermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.loadThermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.loadThermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.loadThermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.loadThermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.loadThermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.muteValueCallbacks

38. High-level API Reference

316 www.yoctopuce.com

Continues the enumeration of temperature sensors started using yFirstTemperature().

cpp vb cs java py php ts tpy pas es

temperature→registerTimedReportCallback(callback)

Registers the callback function that is invoked on every periodic timed notification.

cpp vb cs java py php ts tpy pas es

temperature→registerValueCallback(callback)

Registers the callback function that is invoked on every change of advertised value.

cpp vb cs java py php ts tpy pas es

temperature→set_advMode(newval)

Changes the measuring mode used for the advertised value pushed to the parent hub.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→set_highestValue(newval)

Changes the recorded maximal value observed.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→set_logFrequency(newval)

Changes the datalogger recording frequency for this function.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→set_logicalName(newval)

Changes the logical name of the temperature sensor.

cpp vb cs java py php ts dnp tpy pas es cmd

temperature→set_lowestValue(newval)

Changes the recorded minimal value observed.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→set_ntcParameters(res25, beta)

Configures NTC thermistor parameters in order to properly compute the temperature from the measured
resistance.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→set_reportFrequency(newval)

Changes the timed value notification frequency for this function.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→set_resolution(newval)

Changes the resolution of the measured physical values.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→set_sensorType(newval)

Changes the temperature sensor type.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→set_thermistorResponseTable(tempValues, resValues)

Records a thermistor response table, in order to interpolate the temperature from the measured resistance.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→set_unit(newval)

Changes the measuring unit for the measured temperature.

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.nextTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.nextTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.nextTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.nextTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.nextTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.nextTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.nextTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.nextTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.nextTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.nextTemperature
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.set_ntcParameters
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.set_ntcParameters
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.set_ntcParameters
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.set_ntcParameters
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.set_ntcParameters
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.set_ntcParameters
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.set_ntcParameters
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.set_ntcParameters
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.set_ntcParameters
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.set_ntcParameters
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.set_ntcParameters
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.set_ntcParameters
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.set_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.set_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.set_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.set_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.set_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.set_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.set_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.set_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.set_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.set_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.set_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.set_sensorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.set_thermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.set_thermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.set_thermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.set_thermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.set_thermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.set_thermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.set_thermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.set_thermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.set_thermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.set_thermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.set_thermistorResponseTable
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.set_thermistorResponseTable

38. High-level API Reference

www.yoctopuce.com 317

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→set_userData(data)

Stores a user context provided as argument in the userData attribute of the function.

cpp vb cs java py php ts tpy pas es

temperature→startDataLogger()

Starts the data logger on the device.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→stopDataLogger()

Stops the datalogger on the device.

cmd cpp vb cs java py php ts dnp tpy pas es

temperature→unmuteValueCallbacks()

Re-enables the propagation of every new advertised value to the parent hub.

cpp vb cs java py php ts dnp tpy pas es cmd

temperature→wait_async(callback, context)

Waits for all pending asynchronous commands on the module to complete, and invoke the user-provided
callback function.

ts es

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Temperature.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Temperature.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Temperature.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Temperature.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Temperature.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Temperature.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Temperature.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Temperature.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Temperature.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Temperature.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Temperature.wait_async
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Temperature.wait_async

38. High-level API Reference

318 www.yoctopuce.com

38.5. Class YDataLogger

DataLogger control interface, available on most Yoctopuce sensors.

A non-volatile memory for storing ongoing measured data is available on most Yoctopuce sensors.
Recording can happen automatically, without requiring a permanent connection to a computer. The
YDataLogger class controls the global parameters of the internal data logger. Recording control
(start/stop) as well as data retrieval is done at sensor objects level.

In order to use the functions described here, you should include:

cpp #include "yocto_module.h"

vb yocto_module.vb

cs yocto_module.cs

java import com.yoctopuce.YoctoAPI.YDataLogger;

py from yocto_module import *

php require_once('yocto_module.php');

ts in HTML: import { YDataLogger } from '../../dist/esm/yocto_module.js';
in Node.js: import { YDataLogger } from 'yoctolib-cjs/yocto_module.js';

dnp import YoctoProxyAPI.YDataLoggerProxy

cp #include "yocto_module_proxy.h"

tpy from yoctolib.yocto_module import *

vi YDataLogger.vi

ml import YoctoProxyAPI.YDataLoggerProxy

pas uses yocto_module;

es in HTML: <script src="../../lib/yocto_module.js"></script>
in node.js: require('yoctolib-es2017/yocto_module.js');

Global functions
YDataLogger.FindDataLogger(func)

Retrieves a data logger for a given identifier.

cpp vb cs java py php ts dnp tpy pas es

YDataLogger.FindDataLoggerInContext(yctx, func)

Retrieves a data logger for a given identifier in a YAPI context.

java ts tpy es

YDataLogger.FirstDataLogger()

Starts the enumeration of data loggers currently accessible.

cpp vb cs java py php ts tpy pas es

YDataLogger.FirstDataLoggerInContext(yctx)

Starts the enumeration of data loggers currently accessible.

java ts tpy es

YDataLogger.GetSimilarFunctions()

Enumerates all functions of type DataLogger available on the devices currently reachable by the library, and
returns their unique hardware ID.

dnp

YDataLogger properties
datalogger→AdvertisedValue [read-only]

Short string representing the current state of the function.

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.FindDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.FindDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.FindDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.FindDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.FindDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.FindDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.FindDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.FindDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.FindDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.FindDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.FindDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.FindDataLoggerInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.FindDataLoggerInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.FindDataLoggerInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.FindDataLoggerInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.FirstDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.FirstDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.FirstDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.FirstDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.FirstDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.FirstDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.FirstDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.FirstDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.FirstDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.FirstDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.FirstDataLoggerInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.FirstDataLoggerInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.FirstDataLoggerInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.FirstDataLoggerInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.GetSimilarFunctions

38. High-level API Reference

www.yoctopuce.com 319

dnp

datalogger→AutoStart [writable]

Default activation state of the data logger on power up.

dnp

datalogger→BeaconDriven [writable]

True if the data logger is synchronised with the localization beacon.

dnp

datalogger→FriendlyName [read-only]

Global identifier of the function in the format MODULE_NAME.FUNCTION_NAME.

dnp

datalogger→FunctionId [read-only]

Hardware identifier of the data logger, without reference to the module.

dnp

datalogger→HardwareId [read-only]

Unique hardware identifier of the function in the form SERIAL.FUNCTIONID.

dnp

datalogger→IsOnline [read-only]

Checks if the function is currently reachable.

dnp

datalogger→LogicalName [writable]

Logical name of the function.

dnp

datalogger→Recording [writable]

Current activation state of the data logger.

dnp

datalogger→SerialNumber [read-only]

Serial number of the module, as set by the factory.

dnp

YDataLogger methods
datalogger→clearCache()

Invalidates the cache.

cpp vb cs java py php ts tpy pas es

datalogger→describe()

Returns a short text that describes unambiguously the instance of the data logger in the form
TYPE(NAME)=SERIAL.FUNCTIONID.

cpp vb cs java py php ts pas es

datalogger→forgetAllDataStreams()

Clears the data logger memory and discards all recorded data streams.

cmd cpp vb cs java py php ts dnp tpy pas es

datalogger→get_advertisedValue()

Returns the current value of the data logger (no more than 6 characters).

https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.AdvertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.AutoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.BeaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.FriendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.FunctionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.HardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.IsOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.LogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.Recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.SerialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.forgetAllDataStreams
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.forgetAllDataStreams
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.forgetAllDataStreams
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.forgetAllDataStreams
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.forgetAllDataStreams
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.forgetAllDataStreams
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.forgetAllDataStreams
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.forgetAllDataStreams
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.forgetAllDataStreams
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.forgetAllDataStreams
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.forgetAllDataStreams
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.forgetAllDataStreams

38. High-level API Reference

320 www.yoctopuce.com

cpp vb cs java py php ts dnp tpy pas es cmd

datalogger→get_autoStart()

Returns the default activation state of the data logger on power up.

cmd cpp vb cs java py php ts dnp tpy pas es

datalogger→get_beaconDriven()

Returns true if the data logger is synchronised with the localization beacon.

cmd cpp vb cs java py php ts dnp tpy pas es

datalogger→get_currentRunIndex()

Returns the current run number, corresponding to the number of times the module was powered on with the
dataLogger enabled at some point.

cmd cpp vb cs java py php ts dnp tpy pas es

datalogger→get_dataSets()

Returns a list of YDataSet objects that can be used to retrieve all measures stored by the data logger.

cmd cpp vb cs java py php ts dnp pas es

datalogger→get_errorMessage()

Returns the error message of the latest error with the data logger.

cpp vb cs java py php ts tpy pas es

datalogger→get_errorType()

Returns the numerical error code of the latest error with the data logger.

cpp vb cs java py php ts tpy pas es

datalogger→get_friendlyName()

Returns a global identifier of the data logger in the format MODULE_NAME.FUNCTION_NAME.

cpp cs java py php ts dnp tpy es

datalogger→get_functionDescriptor()

Returns a unique identifier of type YFUN_DESCR corresponding to the function.

cpp vb cs java py php ts pas es

datalogger→get_functionId()

Returns the hardware identifier of the data logger, without reference to the module.

cpp vb cs java py php ts dnp tpy es

datalogger→get_hardwareId()

Returns the unique hardware identifier of the data logger in the form SERIAL.FUNCTIONID.

cpp vb cs java py php ts dnp tpy es

datalogger→get_logicalName()

Returns the logical name of the data logger.

cpp vb cs java py php ts dnp tpy pas es cmd

datalogger→get_module()

Gets the YModule object for the device on which the function is located.

cpp vb cs java py php ts dnp tpy pas es

datalogger→get_module_async(callback, context)

Gets the YModule object for the device on which the function is located (asynchronous version).

datalogger→get_recording()

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.get_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.get_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.get_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.get_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.get_currentRunIndex
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_currentRunIndex
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_currentRunIndex
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_currentRunIndex
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_currentRunIndex
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_currentRunIndex
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_currentRunIndex
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_currentRunIndex
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.get_currentRunIndex
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_currentRunIndex
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_currentRunIndex
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_currentRunIndex
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.get_dataSets
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_dataSets
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_dataSets
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_dataSets
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_dataSets
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_dataSets
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_dataSets
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_dataSets
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.get_dataSets
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_dataSets
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_dataSets
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_module

38. High-level API Reference

www.yoctopuce.com 321

Returns the current activation state of the data logger.

cmd cpp vb cs java py php ts dnp tpy pas es

datalogger→get_serialNumber()

Returns the serial number of the module, as set by the factory.

cpp vb cs java py php ts dnp tpy pas es cmd

datalogger→get_timeUTC()

Returns the Unix timestamp for current UTC time, if known.

cmd cpp vb cs java py php ts dnp tpy pas es

datalogger→get_usage()

Returns the percentage of datalogger memory in use.

cmd cpp vb cs java py php ts dnp tpy pas es

datalogger→get_userData()

Returns the value of the userData attribute, as previously stored using method set_userData.

cpp vb cs java py php ts tpy pas es

datalogger→isOnline()

Checks if the data logger is currently reachable, without raising any error.

cpp vb cs java py php ts dnp tpy pas es

datalogger→isOnline_async(callback, context)

Checks if the data logger is currently reachable, without raising any error (asynchronous version).

datalogger→isReadOnly()

Indicates whether changes to the function are prohibited or allowed.

cpp vb cs java py php ts dnp tpy pas es cmd

datalogger→load(msValidity)

Preloads the data logger cache with a specified validity duration.

cpp vb cs java py php ts tpy pas es

datalogger→loadAttribute(attrName)

Returns the current value of a single function attribute, as a text string, as quickly as possible but without using
the cached value.

cpp vb cs java py php ts dnp tpy pas es

datalogger→load_async(msValidity, callback, context)

Preloads the data logger cache with a specified validity duration (asynchronous version).

datalogger→muteValueCallbacks()

Disables the propagation of every new advertised value to the parent hub.

cpp vb cs java py php ts dnp tpy pas es cmd

datalogger→nextDataLogger()

Continues the enumeration of data loggers started using yFirstDataLogger().

cpp vb cs java py php ts tpy pas es

datalogger→registerValueCallback(callback)

Registers the callback function that is invoked on every change of advertised value.

cpp vb cs java py php ts tpy pas es

datalogger→set_autoStart(newval)

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.get_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.get_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.get_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.get_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.get_usage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_usage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_usage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_usage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_usage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_usage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_usage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_usage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.get_usage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_usage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_usage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_usage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.nextDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.nextDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.nextDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.nextDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.nextDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.nextDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.nextDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.nextDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.nextDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.nextDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.registerValueCallback

38. High-level API Reference

322 www.yoctopuce.com

Changes the default activation state of the data logger on power up.

cmd cpp vb cs java py php ts dnp tpy pas es

datalogger→set_beaconDriven(newval)

Changes the type of synchronisation of the data logger.

cmd cpp vb cs java py php ts dnp tpy pas es

datalogger→set_logicalName(newval)

Changes the logical name of the data logger.

cpp vb cs java py php ts dnp tpy pas es cmd

datalogger→set_recording(newval)

Changes the activation state of the data logger to start/stop recording data.

cmd cpp vb cs java py php ts dnp tpy pas es

datalogger→set_timeUTC(newval)

Changes the current UTC time reference used for recorded data.

cmd cpp vb cs java py php ts dnp tpy pas es

datalogger→set_userData(data)

Stores a user context provided as argument in the userData attribute of the function.

cpp vb cs java py php ts tpy pas es

datalogger→unmuteValueCallbacks()

Re-enables the propagation of every new advertised value to the parent hub.

cpp vb cs java py php ts dnp tpy pas es cmd

datalogger→wait_async(callback, context)

Waits for all pending asynchronous commands on the module to complete, and invoke the user-provided
callback function.

ts es

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.set_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.set_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.set_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.set_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.set_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.set_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.set_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.set_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.set_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.set_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.set_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.set_autoStart
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.set_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.set_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.set_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.set_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.set_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.set_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.set_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.set_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.set_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.set_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.set_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.set_beaconDriven
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.set_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.set_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.set_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.set_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.set_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.set_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.set_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.set_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.set_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.set_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.set_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.set_recording
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.set_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.set_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.set_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.set_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.set_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.set_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.set_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.set_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.set_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.set_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.set_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.set_timeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataLogger.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataLogger.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataLogger.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataLogger.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataLogger.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataLogger.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataLogger.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataLogger.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataLogger.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#DataLogger.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataLogger.wait_async
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataLogger.wait_async

38. High-level API Reference

www.yoctopuce.com 323

38.6. Class YDataSet

Recorded data sequence, as returned by sensor.get_recordedData()

YDataSet objects make it possible to retrieve a set of recorded measures for a given sensor and a
specified time interval. They can be used to load data points with a progress report. When the
YDataSet object is instantiated by the sensor.get_recordedData() function, no data is yet
loaded from the module. It is only when the loadMore() method is called over and over than data will
be effectively loaded from the dataLogger.

A preview of available measures is available using the function get_preview() as soon as
loadMore() has been called once. Measures themselves are available using function
get_measures() when loaded by subsequent calls to loadMore().

This class can only be used on devices that use a relatively recent firmware, as YDataSet objects are
not supported by firmwares older than version 13000.

In order to use the functions described here, you should include:

cpp #include "yocto_module.h"

vb yocto_module.vb

cs yocto_module.cs

java import com.yoctopuce.YoctoAPI.YDataSet;

py from yocto_module import *

php require_once('yocto_module.php');

ts in HTML: import { YDataSet } from '../../dist/esm/yocto_module.js';
in Node.js: import { YDataSet } from 'yoctolib-cjs/yocto_module.js';

dnp import YoctoProxyAPI.YDataSetProxy

cp #include "yocto_module_proxy.h"

tpy from yoctolib.yocto_module import *

ml import YoctoProxyAPI.YDataSetProxy

pas uses yocto_module;

es in HTML: <script src="../../lib/yocto_module.js"></script>
in node.js: require('yoctolib-es2017/yocto_module.js');

Global functions
YDataSet.Init(sensorName, startTime, endTime)

Retrieves a YDataSet object holding historical data for a sensor given by its name or hardware identifier,
for a specified time interval.

YDataSet methods
dataset→get_endTimeUTC()

Returns the end time of the dataset, relative to the Jan 1, 1970.

cpp vb cs java py php ts dnp tpy pas es

dataset→get_functionId()

Returns the hardware identifier of the function that performed the measure, without reference to the module.

cpp vb cs java py php ts dnp tpy pas es

dataset→get_hardwareId()

Returns the unique hardware identifier of the function who performed the measures, in the form
SERIAL.FUNCTIONID.

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataSet.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataSet.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataSet.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataSet.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataSet.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataSet.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataSet.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataSet.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataSet.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataSet.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataSet.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataSet.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataSet.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataSet.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataSet.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataSet.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataSet.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataSet.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataSet.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataSet.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataSet.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataSet.get_functionId

38. High-level API Reference

324 www.yoctopuce.com

cpp vb cs java py php ts dnp tpy pas es

dataset→get_measures()

Returns all measured values currently available for this DataSet, as a list of YMeasure objects.

cpp vb cs java py php ts dnp pas es

dataset→get_measuresAt(measure)

Returns the detailed set of measures for the time interval corresponding to a given condensed measures
previously returned by get_preview().

cpp vb cs java py php ts dnp pas es

dataset→get_measuresAvgAt(index)

Returns the average value observed during the time interval covered by the specified entry in the preview.

dataset→get_measuresEndTimeAt(index)

Returns the end time of the specified entry in the preview, relative to the Jan 1, 1970 UTC (Unix timestamp).

dataset→get_measuresMaxAt(index)

Returns the largest value observed during the time interval covered by the specified entry in the preview.

dataset→get_measuresMinAt(index)

Returns the smallest value observed during the time interval covered by the specified entry in the preview.

dataset→get_measuresRecordCount()

Returns the number of measurements currently loaded for this data set.

dataset→get_measuresStartTimeAt(index)

Returns the start time of the specified entry in the preview, relative to the Jan 1, 1970 UTC (Unix timestamp).

dataset→get_preview()

Returns a condensed version of the measures that can retrieved in this YDataSet, as a list of YMeasure
objects.

cpp vb cs java py php ts dnp pas es

dataset→get_previewAvgAt(index)

Returns the average value observed during the time interval covered by the specified entry in the preview.

dataset→get_previewEndTimeAt(index)

Returns the end time of the specified entry in the preview, relative to the Jan 1, 1970 UTC (Unix timestamp).

dataset→get_previewMaxAt(index)

Returns the largest value observed during the time interval covered by the specified entry in the preview.

dataset→get_previewMinAt(index)

Returns the smallest value observed during the time interval covered by the specified entry in the preview.

dataset→get_previewRecordCount()

Returns the number of entries in the preview summarizing this data set

dataset→get_previewStartTimeAt(index)

Returns the start time of the specified entry in the preview, relative to the Jan 1, 1970 UTC (Unix timestamp).

dataset→get_progress()

Returns the progress of the downloads of the measures from the data logger, on a scale from 0 to 100.

cpp vb cs java py php ts dnp tpy pas es

dataset→get_startTimeUTC()

Returns the start time of the dataset, relative to the Jan 1, 1970.

cpp vb cs java py php ts dnp tpy pas es

dataset→get_summary()

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataSet.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataSet.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataSet.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataSet.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataSet.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataSet.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataSet.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataSet.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataSet.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataSet.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataSet.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataSet.get_measures
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataSet.get_measures
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataSet.get_measures
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataSet.get_measures
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataSet.get_measures
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataSet.get_measures
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataSet.get_measures
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataSet.get_measures
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataSet.get_measures
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataSet.get_measures
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataSet.get_measuresAt
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataSet.get_measuresAt
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataSet.get_measuresAt
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataSet.get_measuresAt
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataSet.get_measuresAt
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataSet.get_measuresAt
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataSet.get_measuresAt
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataSet.get_measuresAt
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataSet.get_measuresAt
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataSet.get_measuresAt
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataSet.get_preview
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataSet.get_preview
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataSet.get_preview
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataSet.get_preview
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataSet.get_preview
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataSet.get_preview
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataSet.get_preview
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataSet.get_preview
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataSet.get_preview
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataSet.get_preview
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataSet.get_progress
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataSet.get_progress
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataSet.get_progress
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataSet.get_progress
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataSet.get_progress
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataSet.get_progress
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataSet.get_progress
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataSet.get_progress
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataSet.get_progress
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataSet.get_progress
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataSet.get_progress
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataSet.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataSet.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataSet.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataSet.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataSet.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataSet.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataSet.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataSet.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataSet.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataSet.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataSet.get_startTimeUTC

38. High-level API Reference

www.yoctopuce.com 325

Returns an YMeasure object which summarizes the whole YDataSet.

cpp vb cs java py php ts dnp tpy pas es

dataset→get_summaryAvg()

Returns the average value observed during the time interval covered by this data set.

dataset→get_summaryEndTime()

Returns the end time of the last measure in the data set, relative to the Jan 1, 1970 UTC (Unix timestamp).

dataset→get_summaryMax()

Returns the largest value observed during the time interval covered by this data set.

dataset→get_summaryMin()

Returns the smallest value observed during the time interval covered by this data set.

dataset→get_summaryStartTime()

Returns the start time of the first measure in the data set, relative to the Jan 1, 1970 UTC (Unix timestamp).

dataset→get_unit()

Returns the measuring unit for the measured value.

cpp vb cs java py php ts dnp tpy pas es

dataset→loadMore()

Loads the next block of measures from the dataLogger, and updates the progress indicator.

cpp vb cs java py php ts dnp tpy pas es

dataset→loadMore_async(callback, context)

Loads the next block of measures from the dataLogger asynchronously.

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataSet.get_summary
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataSet.get_summary
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataSet.get_summary
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataSet.get_summary
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataSet.get_summary
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataSet.get_summary
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataSet.get_summary
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataSet.get_summary
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataSet.get_summary
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataSet.get_summary
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataSet.get_summary
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataSet.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataSet.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataSet.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataSet.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataSet.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataSet.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataSet.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataSet.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataSet.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataSet.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataSet.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#DataSet.loadMore
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#DataSet.loadMore
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#DataSet.loadMore
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#DataSet.loadMore
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#DataSet.loadMore
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#DataSet.loadMore
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#DataSet.loadMore
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#DataSet.loadMore
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#DataSet.loadMore
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#DataSet.loadMore
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#DataSet.loadMore

38. High-level API Reference

326 www.yoctopuce.com

38.7. Class YMeasure

Measured value, returned in particular by the methods of the YDataSet class.

YMeasure objects are used within the API to represent a value measured at a specified time. These
objects are used in particular in conjunction with the YDataSet class, but also for sensors periodic
timed reports (see sensor.registerTimedReportCallback).

In order to use the functions described here, you should include:

cpp #include "yocto_module.h"

vb yocto_module.vb

cs yocto_module.cs

java import com.yoctopuce.YoctoAPI.YMeasure;

py from yocto_module import *

php require_once('yocto_module.php');

ts in HTML: import { YMeasure } from '../../dist/esm/yocto_module.js';
in Node.js: import { YMeasure } from 'yoctolib-cjs/yocto_module.js';

tpy from yoctolib.yocto_module import *

pas uses yocto_module;

es in HTML: <script src="../../lib/yocto_module.js"></script>
in node.js: require('yoctolib-es2017/yocto_module.js');

YMeasure methods
measure→get_averageValue()

Returns the average value observed during the time interval covered by this measure.

cpp vb cs java py php ts tpy pas es

measure→get_endTimeUTC()

Returns the end time of the measure, relative to the Jan 1, 1970 UTC (Unix timestamp).

cpp vb cs java py php ts tpy pas es

measure→get_maxValue()

Returns the largest value observed during the time interval covered by this measure.

cpp vb cs java py php ts tpy pas es

measure→get_minValue()

Returns the smallest value observed during the time interval covered by this measure.

cpp vb cs java py php ts tpy pas es

measure→get_startTimeUTC()

Returns the start time of the measure, relative to the Jan 1, 1970 UTC (Unix timestamp).

cpp vb cs java py php ts tpy pas es

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Measure.get_averageValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Measure.get_averageValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Measure.get_averageValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Measure.get_averageValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Measure.get_averageValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Measure.get_averageValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Measure.get_averageValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Measure.get_averageValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Measure.get_averageValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Measure.get_averageValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Measure.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Measure.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Measure.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Measure.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Measure.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Measure.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Measure.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Measure.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Measure.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Measure.get_endTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Measure.get_maxValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Measure.get_maxValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Measure.get_maxValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Measure.get_maxValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Measure.get_maxValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Measure.get_maxValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Measure.get_maxValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Measure.get_maxValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Measure.get_maxValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Measure.get_maxValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Measure.get_minValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Measure.get_minValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Measure.get_minValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Measure.get_minValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Measure.get_minValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Measure.get_minValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Measure.get_minValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Measure.get_minValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Measure.get_minValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Measure.get_minValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Measure.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Measure.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Measure.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Measure.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Measure.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Measure.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Measure.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Measure.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Measure.get_startTimeUTC
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Measure.get_startTimeUTC

www.yoctopuce.com 327

39. Troubleshooting
39.1. Where to start?
If it is the first time that you use a Yoctopuce module and you do not really know where to start, have
a look at the Yoctopuce blog. There is a section dedicated to beginners 1.

39.2. Programming examples don't seem to work
Most of Yoctopuce API programming examples are command line programs and require some
parameters to work properly. You have to start them from your operating system command prompt,
or configure your IDE to run them with the proper parameters. 2.

39.3. Linux and USB
To work correctly under Linux, the library needs to have write access to all the Yoctopuce USB
peripherals. However, by default under Linux, USB privileges of the non-root users are limited to read
access. To avoid having to run the library as root, you need to create a new udev rule to authorize
one or several users to have write access to the Yoctopuce peripherals.

To add a new udev rule to your installation, you must add a file with a name following the "##-
arbitraryName.rules" format, in the "/etc/udev/rules.d" directory. When the system is
starting, udev reads all the files with a ".rules" extension in this directory, respecting the
alphabetical order (for example, the "51-custom.rules" file is interpreted AFTER the "50-
udev-default.rules" file).

The "50-udev-default" file contains the system default udev rules. To modify the default
behavior, you therefore need to create a file with a name that starts with a number larger than 50,
that will override the system default rules. Note that to add a rule, you need a root access on the
system.

In the udev_conf directory of the VirtualHub for Linux3 archive, there are two rule examples which
you can use as a basis.

1 see: http://www.yoctopuce.com/EN/blog_by_categories/for-the-beginners
2 see: http://www.yoctopuce.com/EN/article/about-programming-examples
3 http://www.yoctopuce.com/FR/virtualhub.php

39. Troubleshooting

328 www.yoctopuce.com

Example 1: 51-yoctopuce.rules
This rule provides all the users with read and write access to the Yoctopuce USB devices. Access
rights for all other devices are not modified. If this scenario suits you, you only need to copy the "51-
yoctopuce_all.rules" file into the "/etc/udev/rules.d" directory and to restart your
system.

udev rules to allow write access to all users
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0666"

Example 2: 51-yoctopuce_group.rules
This rule authorizes the "yoctogroup" group to have read and write access to Yoctopuce USB
peripherals. Access rights for all other peripherals are not modified. If this scenario suits you, you
only need to copy the "51-yoctopuce_group.rules" file into the "/etc/udev/rules.d"
directory and restart your system.

udev rules to allow write access to all users of "yoctogroup"
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0664", GROUP="yoctogroup"

39.4. ARM Platforms: HF and EL
There are two main flavors of executable on ARM: HF (Hard Float) binaries, and EL (EABI Little
Endian) binaries. These two families are not compatible at all. The compatibility of a given ARM
platform with of one of these two families depends on the hardware and on the OS build. ArmHL and
ArmEL compatibility problems are quite difficult to detect. Most of the time, the OS itself is unable to
make a difference between an HF and an EL executable and will return meaningless messages
when you try to use the wrong type of binary.

All pre-compiled Yoctopuce binaries are provided in both formats, as two separate ArmHF et ArmEL
executables. If you do not know what family your ARM platform belongs to, just try one executable
from each family.

39.5. Powered module but invisible for the OS
If your Yocto-Pressure-C is connected by USB, if its blue led is on, but if the operating system cannot
see the module, check that you are using a true USB cable with data wires, and not a charging cable.
Charging cables have only power wires.

39.6. Another process named xxx is already using yAPI
If when initializing the Yoctopuce API, you obtain the "Another process named xxx is already using
yAPI" error message, it means that another application is already using Yoctopuce USB modules. On
a single machine only one process can access Yoctopuce modules by USB at a time. You can easily
work around this limitation by using VirtualHub and the network mode 4.

39.7. Disconnections, erratic behavior
If your Yocto-Pressure-C behaves erratically and/or disconnects itself from the USB bus without
apparent reason, check that it is correctly powered. Avoid cables with a length above 2 meters. If
needed, insert a powered USB hub 5 6.

4 see: http://www.yoctopuce.com/EN/article/error-message-another-process-is-already-using-yapi
5 see: http://www.yoctopuce.com/EN/article/usb-cables-size-matters
6 see: http://www.yoctopuce.com/EN/article/how-many-usb-devices-can-you-connect

39. Troubleshooting

www.yoctopuce.com 329

39.8. After a failed firmware update, the device stopped
working
If a firmware update of your Yocto-Pressure-C fails, it is possible that the module is no longer
working. If this is the case, plug in your module while holding down the Yocto-Button. The Yocto-LED
should light up brightly and remain steady. Release the button. Your Yocto-Pressure-C should then
appear at the bottom of the VirtualHub user interface as a module waiting to be flashed. This
operation also reverts the module to its factory configuration.

39.9. The web interface shows errors after a firmware update
After an update, the windows corresponding to Yocto-Pressure-C in the VirtualHub user interface
report errors. This might be a bug, but it is more likely that your web browser has cached part of the
interface code from the previous firmware. Perform a shift-reload or clear your browser cache and
everything should be back to normal.

39.10. Registering VirtualHub disconnects another instance
If, when performing a call to RegisterHub() with a VirtualHub address, another previously registered
VirtualHub disconnects, make sure the machine running these VirtualHubs do not have the same
Hostname. Same Hostname can happen very easily when the operating system is installed from a
monolithic image, Raspberry Pi are the best example. The Yoctopuce API uses serial numbers to
communicate with devices and VirtualHub serial numbers are created on the fly based the hostname
of the machine running VirtualHub.

39.11. Dropped commands
If, after sending a bunch of commands to a Yoctopuce device, you are under the impression that the
last ones have been ignored, a typical example is a quick and dirty program meant to configure a
device, make sure you used a YAPI.FreeAPI() at the end of the program. Commands are sent to
Yoctopuce modules asynchronously thanks to a background thread. When the main program
terminates, that thread is killed no matter if some command are left to be sent. However API.FreeAPI
() waits until there is no more command to send before freeing the API resources and returning.

39.12. Damaged device
Yoctopuce strives to reduce the production of electronic waste. If you believe that your Yocto-
Pressure-C is not working anymore, start by contacting Yoctopuce support by e-mail to diagnose the
failure. Even if you know that the device was damaged by mistake, Yoctopuce engineers might be
able to repair it, and thus avoid creating electronic waste.

Waste Electrical and Electronic Equipment (WEEE) If you really want to get rid of
your Yocto-Pressure-C, do not throw it away in a trash bin but bring it to your local
WEEE recycling point. In this way, it will be disposed properly by a specialized WEEE
recycling center.

330 www.yoctopuce.com

www.yoctopuce.com 331

40. Characteristics
You can find below a summary of the main technical characteristics of your Yocto-Pressure-C
module.

Product ID PRSSMK1C

Hardware release†

USB connector USB-C

Thickness 23 mm

Width 20 mm

Length 60 mm

Weight 10.6 g

Sensor MS583730BA01-50

Refresh rate 10 Hz

Measuring range 0...10 bar

Accuracy 100 mbar

Sensitivity 0.2 mbar

Protection class, according to IEC 61140 class III

Normal operating temperature 5...40 °C

Extended operating temperature‡ -5...60 °C

RoHS compliance RoHS III (2011/65/UE+2015/863)

USB Vendor ID 0x24E0

USB Device ID 0x00EC

Suggested enclosure YoctoBox-Long-Thick-Black-Press

Harmonized tariff code 9032.9000

Made in Switzerland
† These specifications are for the current hardware revision. Specifications for earlier revisions may
differ.

‡ The extended temperature range is defined based on components specifications and has been
tested during a limited duration (1h). When using the device in harsh environments for a long period
of time, we strongly advise to run extensive tests before going to production.

40. Characteristics

332 www.yoctopuce.com

	Table of contents
	1. Introduction
	1.1. Safety Information
	1.2. Environmental conditions

	2. Presentation
	2.1. Common elements
	2.2. Specific elements
	2.3. Optional accessories

	3. First steps
	3.1. Prerequisites
	3.2. Testing USB connectivity
	3.3. Localization
	3.4. Test of the module
	3.5. Configuration

	4. Assembly and connections
	4.1. Fixing
	4.2. Connecting to a tube
	4.3. Moving the sensor away
	4.4. USB power distribution
	4.5. Electromagnetic compatibility (EMI)

	5. Programming, general concepts
	5.1. Programming paradigm
	5.2. The Yocto-Pressure-C module
	5.3. Module
	5.4. Pressure
	5.5. Temperature
	5.6. DataLogger
	5.7. What interface: Native, DLL or Service ?
	5.8. Accessing modules through a hub
	5.9. Programming, where to start?

	6. Using the Yocto-Pressure-C in command line
	6.1. Installing
	6.2. Use: general description
	6.3. Control of the Pressure function
	6.4. Control of the module part
	6.5. Limitations

	7. Using the Yocto-Pressure-C with Python
	7.1. Source files
	7.2. Dynamic library
	7.3. Control of the Pressure function
	7.4. Control of the module part
	7.5. Error handling

	8. Using Yocto-Pressure-C with C++
	8.1. Control of the Pressure function
	8.2. Control of the module part
	8.3. Error handling
	8.4. Integration variants for the C++ Yoctopuce library

	9. Using Yocto-Pressure-C with C#
	9.1. Installation
	9.2. Using the Yoctopuce API in a Visual C# project
	9.3. Control of the Pressure function
	9.4. Control of the module part
	9.5. Error handling

	10. Using the Yocto-Pressure-C with LabVIEW
	10.1. Architecture
	10.2. Compatibility
	10.3. Installation
	10.4. Presentation of Yoctopuce VIs
	10.5. Functioning and use of VIs
	10.6. Using
	10.7. Managing the data logger
	10.8. Function list
	10.9. A word on performances
	10.10. A full example of a LabVIEW program
	10.11. Differences from other Yoctopuce APIs

	11. Using the Yocto-Pressure-C with Java
	11.1. Getting ready
	11.2. Control of the Pressure function
	11.3. Control of the module part
	11.4. Error handling

	12. Using the Yocto-Pressure-C with Android
	12.1. Native access and VirtualHub
	12.2. Getting ready
	12.3. Compatibility
	12.4. Activating the USB port under Android
	12.5. Control of the Pressure function
	12.6. Control of the module part
	12.7. Error handling

	13. Using Yocto-Pressure-C with TypeScript
	13.1. Using the Yoctopuce library for TypeScript
	13.2. Refresher on asynchronous I/O in JavaScript
	13.3. Control of the Pressure function
	13.4. Control of the module part
	13.5. Error handling

	14. Using Yocto-Pressure-C with JavaScript / EcmaScript
	14.1. Blocking I/O versus Asynchronous I/O in JavaScript
	14.2. Using Yoctopuce library for JavaScript / EcmaScript 2017
	14.3. Control of the Pressure function
	14.4. Control of the module part
	14.5. Error handling

	15. Using Yocto-Pressure-C with PHP
	15.1. Getting ready
	15.2. Control of the Pressure function
	15.3. Control of the module part
	15.4. HTTP callback API and NAT filters
	15.5. Error handling

	16. Using Yocto-Pressure-C with Visual Basic .NET
	16.1. Installation
	16.2. Using the Yoctopuce API in a Visual Basic project
	16.3. Control of the Pressure function
	16.4. Control of the module part
	16.5. Error handling

	17. Using Yocto-Pressure-C with Delphi or Lazarus
	17.1. Preparation
	17.2. About examples
	17.3. Control of the Pressure function
	17.4. Control of the module part
	17.5. Error handling

	18. Using the Yocto-Pressure-C with Universal Windows Platform
	18.1. Blocking and asynchronous functions
	18.2. Installation
	18.3. Using the Yoctopuce API in a Visual Studio project
	18.4. Control of the Pressure function
	18.5. A real example
	18.6. Control of the module part
	18.7. Error handling

	19. Using Yocto-Pressure-C with Objective-C
	19.1. Control of the Pressure function
	19.2. Control of the module part
	19.3. Error handling

	20. Using with unsupported languages
	20.1. Command line
	20.2. .NET Assembly
	20.3. VirtualHub and HTTP GET
	20.4. Using dynamic libraries
	20.5. Porting the high level library

	21. Using the Yocto-Pressure-C in command line
	21.1. Installing
	21.2. Use: general description
	21.3. Control of the Temperature function
	21.4. Control of the module part
	21.5. Limitations

	22. Using the Yocto-Pressure-C with Python
	22.1. Source files
	22.2. Dynamic library
	22.3. Control of the Temperature function
	22.4. Control of the module part
	22.5. Error handling

	23. Using Yocto-Pressure-C with C++
	23.1. Control of the Temperature function
	23.2. Control of the module part
	23.3. Error handling
	23.4. Integration variants for the C++ Yoctopuce library

	24. Using Yocto-Pressure-C with C#
	24.1. Installation
	24.2. Using the Yoctopuce API in a Visual C# project
	24.3. Control of the Temperature function
	24.4. Control of the module part
	24.5. Error handling

	25. Using the Yocto-Pressure-C with LabVIEW
	25.1. Architecture
	25.2. Compatibility
	25.3. Installation
	25.4. Presentation of Yoctopuce VIs
	25.5. Functioning and use of VIs
	25.6. Using
	25.7. Managing the data logger
	25.8. Function list
	25.9. A word on performances
	25.10. A full example of a LabVIEW program
	25.11. Differences from other Yoctopuce APIs

	26. Using the Yocto-Pressure-C with Java
	26.1. Getting ready
	26.2. Control of the Temperature function
	26.3. Control of the module part
	26.4. Error handling

	27. Using the Yocto-Pressure-C with Android
	27.1. Native access and VirtualHub
	27.2. Getting ready
	27.3. Compatibility
	27.4. Activating the USB port under Android
	27.5. Control of the Temperature function
	27.6. Control of the module part
	27.7. Error handling

	28. Using Yocto-Pressure-C with TypeScript
	28.1. Using the Yoctopuce library for TypeScript
	28.2. Refresher on asynchronous I/O in JavaScript
	28.3. Control of the Temperature function
	28.4. Control of the module part
	28.5. Error handling

	29. Using Yocto-Pressure-C with JavaScript / EcmaScript
	29.1. Blocking I/O versus Asynchronous I/O in JavaScript
	29.2. Using Yoctopuce library for JavaScript / EcmaScript 2017
	29.3. Control of the Temperature function
	29.4. Control of the module part
	29.5. Error handling

	30. Using Yocto-Pressure-C with PHP
	30.1. Getting ready
	30.2. Control of the Temperature function
	30.3. Control of the module part
	30.4. HTTP callback API and NAT filters
	30.5. Error handling

	31. Using Yocto-Pressure-C with Visual Basic .NET
	31.1. Installation
	31.2. Using the Yoctopuce API in a Visual Basic project
	31.3. Control of the Temperature function
	31.4. Control of the module part
	31.5. Error handling

	32. Using Yocto-Pressure-C with Delphi or Lazarus
	32.1. Preparation
	32.2. About examples
	32.3. Control of the Temperature function
	32.4. Control of the module part
	32.5. Error handling

	33. Using the Yocto-Pressure-C with Universal Windows Platform
	33.1. Blocking and asynchronous functions
	33.2. Installation
	33.3. Using the Yoctopuce API in a Visual Studio project
	33.4. Control of the Temperature function
	33.5. A real example
	33.6. Control of the module part
	33.7. Error handling

	34. Using Yocto-Pressure-C with Objective-C
	34.1. Control of the Temperature function
	34.2. Control of the module part
	34.3. Error handling

	35. Using with unsupported languages
	35.1. Command line
	35.2. .NET Assembly
	35.3. VirtualHub and HTTP GET
	35.4. Using dynamic libraries
	35.5. Porting the high level library

	36. Advanced programming
	36.1. Event programming
	36.2. The data logger
	36.3. Sensor calibration

	37. Firmware Update
	37.1. VirtualHub or the YoctoHub
	37.2. The command line library
	37.3. The Android application Yocto-Firmware
	37.4. Updating the firmware with the programming library
	37.5. The "update" mode

	38. High-level API Reference
	38.1. Class YAPI
	38.2. Class YModule
	38.3. Class YPressure
	38.4. Class YTemperature
	38.5. Class YDataLogger
	38.6. Class YDataSet
	38.7. Class YMeasure

	39. Troubleshooting
	39.1. Where to start?
	39.2. Programming examples don't seem to work
	39.3. Linux and USB
	39.4. ARM Platforms: HF and EL
	39.5. Powered module but invisible for the OS
	39.6. Another process named xxx is already using yAPI
	39.7. Disconnections, erratic behavior
	39.8. After a failed firmware update, the device stopped working
	39.9. The web interface shows errors after a firmware update
	39.10. Registering VirtualHub disconnects another instance
	39.11. Dropped commands
	39.12. Damaged device

	40. Characteristics
	Blueprint

