
Yocto-Knob-C

Mode d'emploi

Table des matières

1. Introduction 1 ...

1.1. Informations de sécurité 2 ...
1.2. Conditions environnementales 3 ..

2. Présentation 5 ..

2.1. Les éléments communs 5 ..
2.2. Les éléments spécifiques 7 ...
2.3. Accessoires optionnels 7 ..

3. Premiers pas 9 ...

3.1. Prérequis 9 ..
3.2. Test de la connectivité USB 11 ..
3.3. Localisation 11 ..
3.4. Test du module 11 ..
3.5. Configuration 12 ...

4. Montage et connectique 15 ..

4.1. Fixation 15 ...
4.2. Contraintes d'alimentation par USB 16 ..
4.3. Compatibilité électromagnétique (EMI) 16 ...

5. Programmation, concepts généraux 19 ..

5.1. Paradigme de programmation 19 ..
5.2. Le module Yocto-Knob-C 21 ..
5.3. Module 22 ..
5.4. AnButton 23 ..
5.5. Quelle interface: Native, DLL ou Service? 25 ...
5.6. Accéder aux modules à travers un hub 27 ...
5.7. Programmation, par où commencer? 28 ..

6. Utilisation du Yocto-Knob-C en ligne de commande 29

6.1. Installation 29 ..
6.2. Utilisation: description générale 29 ..
6.3. Contrôle de la fonction AnButton 30 ..

6.4. Contrôle de la partie module 31 ..
6.5. Limitations 31 ..

7. Utilisation du Yocto-Knob-C en Python 33 ..

7.1. Fichiers sources 33 ..
7.2. Librairie dynamique 33 ...
7.3. Contrôle de la fonction AnButton 33 ..
7.4. Contrôle de la partie module 36 ..
7.5. Gestion des erreurs 38 ...

8. Utilisation du Yocto-Knob-C en C++ 39 ...

8.1. Contrôle de la fonction AnButton 39 ..
8.2. Contrôle de la partie module 42 ..
8.3. Gestion des erreurs 44 ...
8.4. Intégration de la librairie Yoctopuce en C++ 45 ...

9. Utilisation du Yocto-Knob-C en C# 47 ..

9.1. Installation 47 ..
9.2. Utilisation l'API yoctopuce dans un projet Visual C# 47 ...
9.3. Contrôle de la fonction AnButton 48 ..
9.4. Contrôle de la partie module 50 ..
9.5. Gestion des erreurs 53 ...

10. Utilisation du Yocto-Knob-C avec LabVIEW 55 ..

10.1. Architecture 55 ..
10.2. Compatibilité 56 ..
10.3. Installation 56 ..
10.4. Présentation des VIs Yoctopuce 61 ..
10.5. Fonctionnement et utilisation des VIs 64 ...
10.6. Utilisation des objets 66 ...
10.7. Gestion du datalogger 68 ...
10.8. Énumération de fonctions 69 ...
10.9. Un mot sur les performances 70 ...
10.10. Un exemple complet de programme LabVIEW 70 ...
10.11. Différences avec les autres API Yoctopuce 71 ..

11. Utilisation du Yocto-Knob-C en Java 73 ...

11.1. Préparation 73 ...
11.2. Contrôle de la fonction AnButton 73 ..
11.3. Contrôle de la partie module 75 ..
11.4. Gestion des erreurs 78 ...

12. Utilisation du Yocto-Knob-C avec Android 79 ..

12.1. Accès Natif et VirtualHub 79 ..
12.2. Préparation 79 ...
12.3. Compatibilité 79 ..
12.4. Activer le port USB sous Android 80 ..
12.5. Contrôle de la fonction AnButton 81 ..
12.6. Contrôle de la partie module 84 ..
12.7. Gestion des erreurs 89 ...

13. Utilisation du Yocto-Knob-C en TypeScript 91 ...

13.1. Utiliser la librairie Yoctopuce pour TypeScript 92 ...
13.2. Petit rappel sur les fonctions asynchrones en JavaScript 92 ..
13.3. Contrôle de la fonction AnButton 93 ..
13.4. Contrôle de la partie module 96 ..
13.5. Gestion des erreurs 99 ...

14. Utilisation du Yocto-Knob-C en JavaScript / EcmaScript 101

14.1. Fonctions bloquantes et fonctions asynchrones en JavaScript 102
14.2. Utiliser la librairie Yoctopuce pour JavaScript / EcmaScript 2017 103
14.3. Contrôle de la fonction AnButton 105 ..
14.4. Contrôle de la partie module 108 ..
14.5. Gestion des erreurs 110 ...

15. Utilisation du Yocto-Knob-C en PHP 113 ...

15.1. Préparation 113 ...
15.2. Contrôle de la fonction AnButton 114 ..
15.3. Contrôle de la partie module 116 ..
15.4. API par callback HTTP et filtres NAT 118 ...
15.5. Gestion des erreurs 122 ...

16. Utilisation du Yocto-Knob-C en VisualBasic .NET 123

16.1. Installation 123 ..
16.2. Utilisation l'API yoctopuce dans un projet Visual Basic 123 ..
16.3. Contrôle de la fonction AnButton 124 ..
16.4. Contrôle de la partie module 126 ..
16.5. Gestion des erreurs 128 ...

17. Utilisation du Yocto-Knob-C en Delphi / Lazarus 131 ...

17.1. Préparation 131 ...
17.2. Contrôle de la fonction AnButton 132 ..
17.3. Contrôle de la partie module 135 ..
17.4. Gestion des erreurs 137 ...

18. Utilisation du Yocto-Knob-C avec Universal Windows Platform 139

18.1. Fonctions bloquantes et fonctions asynchrones 139 ...
18.2. Installation 140 ..
18.3. Utilisation l'API Yoctopuce dans un projet Visual Studio 140 ..
18.4. Contrôle de la fonction AnButton 141 ..
18.5. Un exemple concret 142 ...
18.6. Contrôle de la partie module 143 ..
18.7. Gestion des erreurs 145 ...

19. Utilisation du Yocto-Knob-C en Objective-C 147 ...

19.1. Contrôle de la fonction AnButton 147 ..
19.2. Contrôle de la partie module 150 ..
19.3. Gestion des erreurs 152 ...

20. Utilisation avec des langages non supportés 155 ..

20.1. Utilisation en ligne de commande 155 ..
20.2. Assembly .NET 155 ...
20.3. Virtual Hub et HTTP GET 157 ...
20.4. Utilisation des librairies dynamiques 159 ..

20.5. Port de la librairie haut niveau 162 ..

21. Programmation avancée 163 ..

21.1. Programmation par événements 163 ..

22. Mise à jour du firmware 165 ...

22.1. Le VirtualHub ou le YoctoHub 165 ..
22.2. La librairie ligne de commandes 165 ..
22.3. L'application Android Yocto-Firmware 165 ..
22.4. La librairie de programmation 166 ..
22.5. Le mode "mise à jour" 168 ...

23. Référence de l'API de haut niveau 169 ..

23.1. La classe YAPI 170 ...
23.2. La classe YModule 174 ...
23.3. La classe YAnButton 181 ...

24. Problèmes courants 187 ..

24.1. Par où commencer ? 187 ...
24.2. Linux et USB 187 ..
24.3. Plateformes ARM: HF et EL 188 ..
24.4. Les exemples de programmation n'ont pas l'air de marcher 188
24.5. Module alimenté mais invisible pour l'OS 188 ...
24.6. Another process named xxx is already using yAPI 188 ..
24.7. Déconnexions, comportement erratique 189 ...
24.8. Le module ne marche plus après une mise à jour ratée 189 ..
24.9. L'interface web montre des erreurs après une mise à jour de firmware 189
24.10. RegisterHub d'une instance de VirtualHub déconnecte la précédente 189
24.11. Commandes ignorées 189 ...
24.12. Module endommagé 189 ..

25. Caractéristiques 191 ..

Blueprint 193 ..

www.yoctopuce.com 1

1. Introduction
Le Yocto-Knob-C est un module électronique de 45x20mm qui permet de mesurer l'état
d'interrupteurs, boutons poussoir, ou encore de potentiomètres. Il dispose de 5 canaux
indépendants.

Le module Yocto-Knob-C

Le Yocto-Knob-C n'est pas en lui-même un produit complet. C'est un composant destiné à être
intégré dans une solution d'automatisation en laboratoire, ou pour le contrôle de procédés
industriels, ou pour des applications similaires en milieu résidentiel ou commercial. Pour pouvoir
l'utiliser, il faut au minimum l'installer à l'intérieur d'un boîtier de protection et le raccorder à un
ordinateur de contrôle.

Yoctopuce vous remercie d'avoir fait l'acquisition de ce Yocto-Knob-C et espère sincèrement qu'il
vous donnera entière satisfaction. Les ingénieurs Yoctopuce se sont donné beaucoup de mal pour
que votre Yocto-Knob-C soit facile à installer n'importe où et soit facile à piloter depuis un maximum
de langages de programmation. Néanmoins, si ce module venait à vous décevoir, ou si vous avez
besoin d'informations supplémentaires, n'hésitez pas à contacter Yoctopuce:

Adresse e-mail: support@yoctopuce.com

Site Internet: www.yoctopuce.com

Adresse postale: Route de Cartigny 33

Localité: 1236 Cartigny

Pays: Suisse

1. Introduction

2 www.yoctopuce.com

1.1. Informations de sécurité
Le Yocto-Knob-C est conçu pour respecter la norme de sécurité IEC 61010-1:2010. Il ne causera
pas de danger majeur pour l'opérateur et la zone environnante, même en condition de premier
défaut, pour autant qu'il soit intégré et utilisé conformément aux instructions contenues dans cette
documentation, et en particulier dans cette section.

Boîtier de protection
Le Yocto-Knob-C ne doit pas être utilisé sans boîtier de protection, en raison des composants
électriques à nu. Pour une sécurité optimale, il devrait être mis dans un boîtier non métallique, non-
inflammable, résistant à un choc de 5 J, par exemple en polycarbonate (LEXAN ou autre) d'indice de
protection IK08 et classifié V-1 ou mieux selon la norme IEC 60695-11-10. L'utilisation d'un boîtier de
qualité inférieure peut nécessiter des avertissements spécifiques pour l'utilisateur et/ou
compromettre la conformité avec la norme de sécurité.

Entretien
Si un dégat est constaté sur le circuit électronique ou sur le boîtier, il doit être remplacé afin de ne
pas compromettre la sécurité d'utilisation et d'éviter d'endommager d'autres parties du système par
les surcharges éventuelles que pourrait causer un court-circuit.

Identification
Pour faciliter l'entretien du circuit et l'identification des risques lors de la maintenance, vous devriez
coller l'étiquette autocollante synthétique identifiant le Yocto-Knob-C, fournie avec le circuit
électronique, à proximité immédiate du module. Si le module est dans un boîtier dédié, l'étiquette
devrait être collée sur la surface extérieur du boîtier. L'étiquette est résistante à l'humidité et au
frottement usuel qui peut survenir durant un entretien normal.

L'étiquette d'identification est intégrée à l'étiquette de l'emballage.

Applications
La norme de sécurité vérifiée correspond aux instruments de laboratoire, pour le contrôle de
procédés industriels, ou pour des applications similaires en milieu résidentiel ou commercial. Si vous
comptez utiliser le Yocto-Knob-C pour un autre type d'applications, vous devrez vérifier les critères
de conformité en fonction de la norme applicable à votre application.

En particulier, le Yocto-Knob-C n'est pas certifié pour utilisation dans un environnement médical, ni
pour les applications critiques à la santé, ni pour toute autre application menaçant la vie humaine.

Environnement
Le Yocto-Knob-C n'est pas certifié pour utilisation dans les zones dangereuses, ni pour les
environnements explosifs. Les conditions environnementales assignées sont décrites ci-dessous.

1. Introduction

www.yoctopuce.com 3

Classe de protection III (IEC 61140)
Le module Yocto-Knob-C a été conçu pour travailler uniquement avec des très basses
tension de sécurité. Ne dépassez pas les tensions indiquées dans ce manuel, et ne
raccordez en aucun cas sur le bornier du Yocto-Knob-C un fil susceptible d'être
connecté au réseau secteur.

1.2. Conditions environnementales
Les produits Yoctopuce sont conçus pour une utilisation intérieure dans un environnement usuel de
bureau ou de laboratoire (degré de pollution 2 selon IEC 60664): la pollution de l'air doit être faible et
essentiellement non conductrice. L'humidité relative prévue est de 10% à 90% RH, sans
condensation. L'utilisation dans un environnement avec une pollution solide ou conductrice
significative exige de protéger le module contre cette pollution par un boîtier certifié IP67 ou IP68.
Les produits Yoctopuce sont conçus pour une utilisation jusqu'à une altitude de 2000m.

Le fonctionnement de tous les modules Yoctopuce est garanti conforme à la documentation et aux
spécifications de précision pour des conditions de température ambiante normales selon
IEC61010-1, soit 5°C à 40°C. De plus, la plupart des modules peuvent aussi être utilisés sur une
plage de température étendue, à laquelle quelques limitations peuvent s'appliquer selon les cas.

La plage de température de fonctionnement étendue du Yocto-Knob-C est -30...85°C. Cette plage de
température a été déterminée en fonction des recommandations officielles des fabricants des
composants utilisés dans le Yocto-Knob-C, et par des tests de durée limitée (1h) dans les conditions
extrêmes, en environnement controllé. Si vous envisagez d'utiliser le Yocto-Knob-C dans des
conditions de température extrêmes pour une période prolongée, il est recommandé de faire des
tests extensifs avant la mise en production.

4 www.yoctopuce.com

www.yoctopuce.com 5

2. Présentation

1: Prise USB-C 7: Canal 3
2: Yocto-bouton 8: Canal 4
3: Yocto-led 9: Canal 5
4: Masse commune 10: Leds canaux 1 à 5
5: Canal 1 11: Boutons test canaux 1 à 5
6: Canal 2

2.1. Les éléments communs
Tous les Yocto-modules ont un certain nombre de fonctionnalités en commun.

Le connecteur USB
Le Yocto-Knob-C est équipé d'une connectique USB au format type-C mais il utilise le protocole USB
1.1, il est donc compatible avec n'importe quel hôte USB . Alternativement vous pouvez souder un
câble USB ou un connecteur au pas 1.27mm directement dans les trous prévus à cet effet, derrière
le connecteur USB-C.

Si, lorsque que vous branchez votre Yocto-Knob-C au bout d'un câble USB-C, votre module s'allume
mais n'est pas détecté par votre ordinateur, vérifiez que la fiche USB-C est bien enfoncée et que
vous utilisez un câble USB normal et non pas un câble de charge sans lignes de données.

2. Présentation

6 www.yoctopuce.com

Si vous utilisez une source de tension autre qu'un port USB hôte standard pour alimenter le module
par le connecteur USB, vous devez respecter les caractéristiques assignées par le standard USB
2.0:

• Tension min.: 4.75 V DC
• Tension max.: 5.25 V DC
• Protection contre les surintensités: max. 5.0 A

En cas de tension supérieure, le module risque fort d'être détruit. En cas de tension inférieure, le
comportement n'est pas déterminé, mais il peut conduire à une corruption du firmware.

Le Yocto-bouton
Le Yocto-bouton a deux fonctions. Premièrement, il permet d'activer la Yocto-balise (voir la Yocto-led
ci-dessous). Deuxièmement, si vous branchez un Yocto-module en maintenant ce bouton appuyé, il
vous sera possible de reprogrammer son firmware avec une nouvelle version. Notez qu'il existe une
méthode plus simple pour mettre à jour le firmware depuis l'interface utilisateur, mais cette méthode-
là peut fonctionner même lorsque le firmware chargé sur le module est incomplet ou corrompu.

La Yocto-Led
En temps normal la Yocto-Led sert à indiquer le bon fonctionnement du module: elle émet alors une
faible lumière bleue qui varie lentement mimant ainsi une respiration. La Yocto-Led cesse de respirer
lorsque le module ne communique plus, par exemple s'il est alimenté par un hub sans connexion
avec un ordinateur allumé.

Lorsque vous appuyez sur le Yocto-bouton, la Led passe en mode Yocto-balise: elle se met alors à
flasher plus vite et beaucoup plus fort, dans le but de permettre une localisation facile d'un module
lorsqu'on en a plusieurs identiques. Il est en effet possible de déclencher la Yocto-balise par logiciel,
tout comme il est possible de détecter par logiciel une Yocto-balise allumée.

La Yocto-Led a une troisième fonctionnalité moins plaisante: lorsque ce logiciel interne qui contrôle
le module rencontre une erreur fatale, elle se met à flasher SOS en morse1. Si cela arrivait
débranchez puis rebranchez le module. Si le problème venait à se reproduire vérifiez que le module
contient bien la dernière version du firmware, et dans l'affirmative contactez le support Yoctopuce2.

La sonde de courant
Chaque Yocto-module est capable de mesurer sa propre consommation de courant sur le bus USB.
La distribution du courant sur un bus USB étant relativement critique, cette fonctionnalité peut être
d'un grand secours. La consommation de courant du module est consultable par logiciel uniquement.

Le numéro de série
Chaque Yocto-module a un numéro de série unique attribué en usine, pour les modules Yocto-Knob-
C ce numéro commence par YBUTTN1C. Le module peut être piloté par logiciel en utilisant ce
numéro de série. Ce numéro de série ne peut pas être changé.

Le nom logique
Le nom logique est similaire au numéro de série, c'est une chaîne de caractères sensée être unique
qui permet référencer le module par logiciel. Cependant, contrairement au numéro de série, le nom
logique peut être modifié à volonté. L'intérêt est de pouvoir fabriquer plusieurs exemplaires du même
projet sans avoir à modifier le logiciel de pilotage. Il suffit de programmer les mêmes noms logiques
dans chaque exemplaire. Attention, le comportement d'un projet devient imprévisible s'il contient
plusieurs modules avec le même nom logique et que le logiciel de pilotage essaye d'accéder à l'un
de ces module à l'aide de son nom logique. A leur sortie d'usine, les modules n'ont pas de nom
logique assigné, c'est à vous de le définir.

1 court-court-court long-long-long court-court-court
2 support@yoctopuce.com

2. Présentation

www.yoctopuce.com 7

2.2. Les éléments spécifiques
Les canaux 1 à 5
Le module Yocto-Knob-C dispose de cinq entrées avec une masse commune, cela signifie que
chaque interrupteur / bouton poussoir / potentiomètre doit être relié à la fois à l'entrée
correspondante et à la masse. Vous pouvez utiliser n'importe quelle valeur de potentiomètre entre
1KΩ et 200 KΩ

Câblage d'un potentiomètre, d'un interrupteur et d'un bouton poussoir, en masse commune.

Votre module Yocto-Knob-C est capable de mesurer si les boutons poussoirs et les interrupteurs qui
lui sont raccordés sont ouverts ou fermés. Il est aussi capable de mesurer la position relative des
potentiomètres qui lui reliés. En fait le module se contente de mesurer la résistance de chaque circuit
qui est raccordé.

Le circuit de mesure est un circuit de très basse tension de sécurité (TBTS). Il ne doit pas être
connecté à une quelconque source de tension, mais uniquement être raccordé à des composants
passifs. Il ne doit en aucun cas être mis en commun avec un circuit d'alimentation réseau.

Potentiomètres et calibration
Ce module vous permet d'utiliser une grande plage de valeurs de potentiomètres. Mais pour qu'il soit
capable de vous donner des mesures cohérentes pour le modèle que vous utiliserez, vous devrez
calibrer les canaux correspondant. Cela peut être fait très simplement grâce l'interface de
configuration. Il n'est pas nécessaire de faire une calibration si vous utilisez de simple interrupteurs
ou encore des boutons poussoirs.

Les leds de test
Chaque canal dispose de sa led de test qui s'allume lorsque le circuit correspondant est considéré
comme fermé, ces leds sont là pour vous aider à debugger vos projets, une fois votre projet au point
vous n'aurez qu'à baisser la luminosité du module si vous souhaitez qu'il soit plus discret.

Les boutons poussoirs
Chaque canal dispose d'un petit bouton poussoir qui permet de fermer artificiellement le circuit
correspondant. Ce qui vous vous aidera probablement à débugger vos projets.

2.3. Accessoires optionnels
Les accessoires ci-dessous ne sont pas nécessaires à l'utilisation du module Yocto-Knob-C, mais
pourraient vous être utiles selon l'utilisation que vous en faites. Il s'agit en général de produits
courants que vous pouvez vous procurer chez vos fournisseurs habituels de matériel de bricolage.
Pour vous éviter des recherches, ces produits sont en général aussi disponibles sur le shop de
Yoctopuce.

Vis et entretoises
Pour fixer le module Yocto-Knob-C à un support, vous pouvez placer des petites vis de 2.5mm avec
une tête de 4.5mm au maximum dans les trous prévus. Il est conseillé de les visser dans des
entretoises filetées, que vous pourrez fixer sur le support. Vous trouverez plus de détail à ce sujet
dans le chapitre concernant le montage et la connectique.

2. Présentation

8 www.yoctopuce.com

Micro-hub USB
Si vous désirez placer plusieurs modules Yoctopuce dans un espace très restreint, vous pouvez les
connecter ensemble à l'aide d'un micro-hub USB. Yoctopuce fabrique des hubs multi-TT
particulièrement petits précisément destinés à cet usage, dont la taille peut être réduite à 20mm par
36mm, et qui se montent en soudant directement les modules au hub via des connecteurs droits ou
des câbles nappe. Pour plus de détails, consulter la fiche produit du micro-hub USB.

YoctoHub-Ethernet, YoctoHub-Wireless and YoctoHub-GSM
Vous pouvez ajouter une connectivité réseau à votre Yocto-Knob-C grâce aux hubs YoctoHub-
Ethernet, YoctoHub-Wireless et YoctoHub-GSM qui offrent respectivement une connectivité
Ethernet, Wifi et GSM. Chacun de ces hubs peut piloter jusqu'à trois modules Yoctopuce et se
comporte exactement comme un ordinateur normal qui ferait tourner l'application VirtualHub3.

Connecteurs 1.27mm (ou 1.25mm)
Si vous désirez raccorder le module Yocto-Knob-C à un Micro-hub USB ou a un YoctoHub en évitant
l'encombrement d'un vrai cable USB, vous pouvez utiliser les 4 pads au pas 1.27mm juste derrière le
connecteur USB. Vous avez alors deux possibilités.

Vous pouvez monter directement le module sur le hub à l'aide d'un jeu de vis et entretoises, et les
connecter à l'aide de connecteurs board-to-board au pas 1.27mm. Pour éviter les court-circuits,
soudez de préférence le connecteur femelle sur le hub et le connecteur mâle sur le Yocto-Knob-C.

Vous pouvez aussi utiliser un petit câble à 4 fils doté de connecteurs au pas 1.27mm (ou 1.25mm, la
différence est négligeable pour 4 pins), ce qui vous permet de déporter le module d'une dizaine de
centimètres. N'allongez pas trop la distance si vous utilisez ce genre de câble, car il n'est pas blindé
et risque donc de provoquer des émissions électromagnétiques indésirables.

Boîtier
Votre Yocto-Knob-C a été conçu pour pouvoir être installé tel quel dans votre projet. Néanmoins
Yoctopuce commercialise des boîtiers spécialement conçus pour les modules Yoctopuce. Ces
boîtiers sont munis de pattes de fixation amovibles et d'aimants de fixation. Vous trouverez plus
d'informations à propos de ces boîtiers sur le site de Yoctopuce4. Le boîtier recommandé pour votre
Yocto-Knob-C est le modèle YoctoBox-Short-Thick-Black

Vous pouvez installer votre Yocto-Knob-C dans un boîtier optionnel.

3 http://www.yoctopuce.com/FR/virtualhub.php
4 https://www.yoctopuce.com/FR/products/category/boitiers

www.yoctopuce.com 9

3. Premiers pas
Par design, tous les modules Yoctopuce se pilotent de la même façon, c'est pourquoi les
documentations des modules de la gamme sont très semblables. Si vous avez déjà épluché la
documentation d'un autre module Yoctopuce, vous pouvez directement sauter à la description de sa
configuration.

3.1. Prérequis
Pour pouvoir profiter pleinement de votre module Yocto-Knob-C, vous devriez disposer des éléments
suivants.

Un ordinateur
Les modules de Yoctopuce sont destinés à être pilotés par un ordinateur (ou éventuellement un
microprocesseur embarqué). Vous écrirez vous-même le programme qui pilotera le module selon
vos besoins, à l'aide des informations fournies dans ce manuel.

Yoctopuce fourni les librairies logicielles permettant de piloter ses modules pour les systèmes
d'exploitation suivants: Windows, Linux, macOS et Android. Les modules Yoctopuce ne
nécessitent pas l'installation de driver (ou pilote) spécifiques, car ils utilisent le driver HID1 fourni en
standard dans tous les systèmes d'exploitation.

La règle générale concernant les versions de système d'exploitation supportées est la suivante: les
outils de développement Yoctopuce sont supportés pour toutes les versions couvertes par le support
de l'éditeur du système d'exploitation, y compris la durée du support étendu (long term support ou
LTS). Yoctopuce attache une attention particulière au support à long terme, et lorsque c'est possible
avec un effort raisonnable, nos outils sont construits de sorte à pouvoir être utilisés sur des anciens
systèmes même plusieurs années encore après la fin du support étendu par le fabricant.

De plus, les librairies de programmation pour piloter nos modules étant disponibles en code source,
il vous est en généralement possible de les recompiler pour fonctionner sur des systèmes
d'exploitation encore plus anciens. A ce jour, notre librairie de programmation peut toujours être
compilée pour fonctionner sur des systèmes d'exploitation publiés en 2008, tels que Windows XP
SP3 ou Linux Debian Squeeze.

Les architectures supportées par les librairies logicielles de Yoctopuce sont les suivantes:

• Windows: Intel 64 bits et 32 bits

1 Le driver HID est celui qui gère les périphériques tels que la souris, le clavier, etc.

3. Premiers pas

10 www.yoctopuce.com

• Linux: Intel 64 bits et 32 bits, ARM 64 bits et 32 bits, y compris Raspberry Pi OS.
• macOS: Intel 64 bits et Apple Silicon (ARM)

Sous Linux, la communication avec nos modules USB requiert impérativement la librairie libusb en
version 1.0 ou plus récente, qui est disponible sur toutes les distributions courantes. Les librairies et
les outils en ligne de commande devraient pouvoir être facilement recompilés sur n'importe quelle
variante d'UNIX (Linux, FreeBSD, ...) datant des quinze dernières années pour laquelle libusb-1.0
est disponible et fonctionnel.

Sous Android, la possibilité de connecter un module USB dépend du fait que la tablette ou le
téléphone supporte le mode USB Host.

Un cable USB type A-USB-C
Il existe plusieurs formes de connecteurs USB. La taille "normale" correspond à celle que vous
utilisez probablement pour brancher votre imprimante. La taille "mini" a plus ou moins disparu. La
taille "micro" était la plus petite au moment où les premier modules Yoctopuce ont été conçus.
Depuis quelques années, les connecteurs USB-C sont apparus et sont en passe de supplanter tous
les autres. C'est pourquoi, depuis 2024, Yoctopuce a entrepris de migrer progressivement ses
produits vers USB-C2.

Les connecteurs USB 2.0 les plus courants: A, B, Mini B, Micro B et USB-C.

Pour connecter votre module Yocto-Knob-C à un ordinateur, vous avez donc besoin d'un cable USB
de type A-USB-C ou éventuellement type C- USB-C. Vous trouverez ce cable en vente à des prix
très variables selon les sources, sous la dénomination USB A to USB-C Data cable. Prenez garde à
ne pas acheter par mégarde un simple câble de charge, qui ne fournirait que le courant mais sans
les fils de données. Le bon câble est disponible sur le shop de Yoctopuce.

Vous devez raccorder votre module Yocto-Knob-C à l'aide d'un cable USB 2.0 de type A - USB-C

Si vous branchez un hub USB entre l'ordinateur et le module Yocto-Knob-C, prenez garde à ne pas
dépasser les limites de courant imposées par USB, sous peine de faire face des comportements
instables non prévisibles. Vous trouverez plus de détails à ce sujet dans le chapitre concernant le
montage et la connectique.

2 www.yoctopuce.com/FR/article/etes-vous-interesse-par-usb-c

3. Premiers pas

www.yoctopuce.com 11

3.2. Test de la connectivité USB
Arrivé à ce point, votre Yocto-Knob-C devrait être branché à votre ordinateur, qui devrait l'avoir
reconnu. Il est temps de le faire fonctionner.

Rendez-vous sur le site de Yoctopuce et téléchargez le programme VirtualHub3, Il est disponible
pour Windows, Linux et macOS. En temps normal le programme VirtualHub sert de couche
d'abstraction pour les langages qui ne peuvent pas accéder aux couches matérielles de votre
ordinateur. Mais il offre aussi une interface sommaire pour configurer vos modules et tester les
fonctions de base, on accède à cette interface à l'aide d'un simple browser web 4. Lancez VirtualHub
en ligne de commande, ouvrez votre browser préféré et tapez l'adresse http://127.0.0.1:4444. Vous
devriez voir apparaître la liste des modules Yoctopuce raccordés à votre ordinateur.

Liste des modules telle qu'elle apparaît dans votre browser.

3.3. Localisation
Il est alors possible de localiser physiquement chacun des modules affichés en cliquant sur le bouton
beacon, cela a pour effet de mettre la Yocto-Led du module correspondant en mode "balise", elle se
met alors à clignoter ce qui permet de la localiser facilement. Cela a aussi pour effet d'afficher une
petite pastille bleue à l'écran. Vous obtiendrez le même comportement en appuyant sur le Yocto-
bouton d'un module.

3.4. Test du module
La première chose à vérifier est le bon fonctionnement de votre module: cliquez sur le numéro de
série correspondant à votre module, et une fenêtre résumant les propriétés de votre Yocto-Knob-C.

Propriétés du module Yocto-Knob-C.

3 www.yoctopuce.com/FR/virtualhub.php
4 L'interface est testée avec Chrome, FireFox, Safari, Edge et IE 11.

3. Premiers pas

12 www.yoctopuce.com

Cette fenêtre vous permet entre autres de tester le fonctionnement de votre module. Si vous
maintenez un de boutons de test bouton pressé, vous verrez l'état du canal correspondant changer.

3.5. Configuration
Si, dans la liste de modules, vous cliquez sur le bouton configure correspondant à votre module, la
fenêtre de configuration apparaît.

Configuration du module Yocto-Knob-C.

Firmware
Le firmware du module peut être facilement mis à jour à l'aide de l'interface. Les firmwares destinés
aux modules Yoctopuce se présentent sous la forme de fichiers .byn et peuvent être téléchargés
depuis le site web de Yoctopuce.

Pour mettre à jour un firmware, cliquez simplement sur le bouton upgrade de la fenêtre de
configuration et suivez les instructions. Si pour une raison ou une autre, la mise à jour venait à
échouer, débranchez puis rebranchez le module. Recommencer la procédure devrait résoudre alors
le problème. Si le module a été débranché alors qu'il était en cours de reprogrammation, il ne
fonctionnera probablement plus et ne sera plus listé dans l'interface. Mais il sera toujours possible de
le reprogrammer correctement en utilisant le programme VirtualHub5 en ligne de commande 6.

Nom logique du module
Le nom logique est un nom choisi par vous, qui vous permettra d'accéder à votre module, de la
même manière qu'un nom de fichier vous permet d'accéder à son contenu. Un nom logique doit faire
au maximum 19 caractères, les caractères autorisés sont les caractères A..Z a..z 0..9 _ et -. Si
vous donnez le même nom logique à deux modules raccordés au même ordinateur, et que vous
tentez d'accéder à l'un des modules à l'aide de ce nom logique, le comportement est indéterminé:
vous n'avez aucun moyen de savoir lequel des deux va répondre.

Luminosité
Ce paramètre vous permet d'agir sur l'intensité maximale des leds présentes sur le module. Ce qui
vous permet, si nécessaire, de le rendre un peu plus discret tout en limitant sa consommation. Notez
que ce paramètre agit sur toutes les leds de signalisation du module, y compris la Yocto-Led. Si vous

5 www.yoctopuce.com/FR/virtualhub.php
6 Consultez la documentation de VirtualHub pour plus de détails

3. Premiers pas

www.yoctopuce.com 13

branchez un module et que rien ne s'allume, cela veut peut être dire que sa luminosité a été réglée à
zéro.

Nom logique des fonctions
Chaque module Yoctopuce a un numéro de série, et un nom logique. De manière analogue, chaque
fonction présente sur chaque module Yoctopuce a un nom matériel et un nom logique, ce dernier
pouvant être librement choisi par l'utilisateur. Utiliser des noms logiques pour les fonctions permet
une plus grande flexibilité au niveau de la programmation des modules

La seule fonction fournie par le module Yocto-Knob-C est la fonction anbutton, dont il existe 5
instances instances: anButton1 à anButton5. Pour renommer l'une d'entre elles cliquez simplement
sur le bouton rename et entrez un nouveau nom dans la fenêtre qui apparaît alors.

Calibration des fonctions anButtons
Si vous utilisez un potentiomètre sur un des canaux, les mesures de votre module ne seront pas
linéaires à moins que vous n'effectuiez une calibration. Cela se fait de manière similaire à la
calibration d'un joystick analogique. Pour lancer la calibration d'un canal, cliquez que le bouton start
calibration, puis faites faire plusieurs aller-retour au potentiomètre branché sur le canal en question,
veillez à bien atteindre les deux butées. Enfin, cliquez sur stop calibration c'est tout. Attention, si
vous lancez une calibration puis la stoppez aussitôt sans changer l'état du canal, les valeurs qui
seront lues ultérieurement seront probablement aléatoires. Vous pouvez récupérer cette situation en
faisant une calibration pendant laquelle vous appuyez plusieurs fois sur le bouton de test
correspondant.

14 www.yoctopuce.com

www.yoctopuce.com 15

4. Montage et connectique
Ce chapitre fournit des explications importantes pour utiliser votre module Yocto-Knob-C en situation
réelle. Prenez soin de le lire avant d'aller trop loin dans votre projet si vous voulez éviter les
mauvaises surprises.

4.1. Fixation
Pendant la mise au point de votre projet vous pouvez vous contenter de laisser le module se
promener au bout de son câble. Veillez simplement à ce qu'il ne soit pas en contact avec quoi que
soit de conducteur (comme vos outils). Une fois votre projet pratiquement terminé il faudra penser à
faire en sorte que vos modules ne puissent pas se promener à l'intérieur.

Exemples de montage sur un support.

Le module Yocto-Knob-C dispose de trous de montage 2.5mm. Vous pouvez utiliser ces trous pour y
passer des vis. Le diamètre de la tête de ces vis ne devra pas dépasser 4.5mm, sous peine
d'endommager les circuits du module. Veillez à que la surface inférieure du module ne soit pas en
contact avec le support. La méthode recommandée consiste à utiliser des entretoises, mais il en
existe d'autres. Rien ne vous empêche de le fixer au pistolet à colle; ça ne sera pas très joli mais ça
tiendra.

Si vous comptez visser votre module directement contre une paroi conductrice, un chassis
métallique par exemple, intercalez une couche isolante entre les deux. Sinon vous aller à coup sûr
provoquer un court-circuit: il y a des pads à nu sous votre module. Du simple ruban adhésif isolant
devrait faire l'affaire.

4. Montage et connectique

16 www.yoctopuce.com

4.2. Contraintes d'alimentation par USB
Bien que USB signifie Universal Serial BUS, les périphériques USB ne sont pas organisés
physiquement en bus mais en arbre, avec des connections point-à-point. Cela a des conséquences
en termes de distribution électrique: en simplifiant, chaque port USB doit alimenter électriquement
tous les périphériques qui lui sont directement ou indirectement connectés. Et USB impose des
limites.

En théorie, un port USB fournit 100mA, et peut lui fournir (à sa guise) jusqu'à 500mA si le
périphérique les réclame explicitement. Dans le cas d'un hub non-alimenté, il a droit à 100mA pour
lui-même et doit permettre à chacun de ses 4 ports d'utiliser 100mA au maximum. C'est tout, et c'est
pas beaucoup. Cela veut dire en particulier qu'en théorie, brancher deux hub USB non-alimentés en
cascade ne marche pas. Pour cascader des hubs USB, il faut utiliser des hubs USB alimentés, qui
offriront 500mA sur chaque port.

En pratique, USB n'aurait pas eu le succès qu'il a s'il était si contraignant. Il se trouve que par
économie, les fabricants de hubs omettent presque toujours d'implémenter la limitation de courant
sur les ports: ils se contentent de connecter l'alimentation de tous les ports directement à
l'ordinateur, tout en se déclarant comme hub alimenté même lorsqu'ils ne le sont pas (afin de
désactiver tous les contrôles de consommation dans le système d'exploitation). C'est assez
malpropre, mais dans la mesure où les ports des ordinateurs sont eux en général protégés par une
limitation de courant matérielle vers 2000mA, ça ne marche pas trop mal, et cela fait rarement des
dégâts.

Ce que vous devez en retenir: si vous branchez des modules Yoctopuce via un ou des hubs non
alimentés, vous n'aurez aucun garde-fou et dépendrez entièrement du soin qu'aura mis le fabricant
de votre ordinateur pour fournir un maximum de courant sur les ports USB et signaler les excès
avant qu'ils ne conduisent à des pannes ou des dégâts matériels. Si les modules sont sous-
alimentés, ils pourraient avoir un comportement bizarre et produire des pannes ou des bugs peu
reproductibles. Si vous voulez éviter tout risque, ne cascadez pas les hubs non-alimentés, et ne
branchez pas de périphérique consommant plus de 100mA derrière un hub non-alimenté.

Pour vous faciliter le contrôle et la planification de la consommation totale de votre projet, tous les
modules Yoctopuce sont équipés d'une sonde de courant qui indique (à 5mA près) la consommation
du module sur le bus USB.

Notez enfin que le câble USB lui-même peut aussi représenter une cause de problème
d'alimentation, en particulier si les fils sont trop fins ou si le câble est trop long 1. Les bons câbles
utilisent en général des fils AWG 26 ou AWG 28 pour les fils de données et des fils AWG 24 pour les
fils d'alimentation.

4.3. Compatibilité électromagnétique (EMI)
Les choix de connectique pour intégrer le Yocto-Knob-C ont naturellement une incidence sur les
émissions électromagnétiques du système, et donc sur la conformité avec les normes concernées.

Les mesures de référence que nous effectuons pour valider la conformité avec la norme IEC CISPR
11 sont faites sans aucun boîtier, mais en raccordant les modules par un câble USB blindé,
conforme à la spécification USB 2.0: le blindage du câble est relié au blindage des deux
connecteurs, et la résistance totale entre le blindage des deux connecteurs est inférieure 0.6Ω. Le
câble utilisé fait 3m, de sorte à exposer un segment d'un mètre horizontal, un segment d'un mètre
vertical et de garder le dernier mètre le plus proche de l'ordinateur hôte à l'intérieur d'un bloc de
ferrite.

Si vous utilisez un câble non blindé ou incorrectement blindé, votre système fonctionnera sans
problème mais vous risquez de n'être pas conforme à la norme. Dans le cadre de systèmes
composés de plusieurs modules raccordés par des câbles au pas 1.27mm, ou de capteurs déportés,

1 www.yoctopuce.com/FR/article/cables-usb-la-taille-compte

4. Montage et connectique

www.yoctopuce.com 17

vous pourrez en général récupérer la conformité avec la norme d'émission en utilisant un boîtier
métallique offrant une enveloppe de blindage externe.

Toujours par rapport aux normes de compatibilité électromagnétique, la longueur maximale
supportée du câble USB est de 3m. En plus de pouvoir causer des problèmes de chute de tension,
l'utilisation de câbles plus long aurait des incidences sur les tests d'immunité électromagnétique à
effectuer pour respecter les normes.

18 www.yoctopuce.com

www.yoctopuce.com 19

5. Programmation, concepts généraux
L'API Yoctopuce a été pensée pour être à la fois simple à utiliser, et suffisamment générique pour
que les concepts utilisés soient valables pour tous les modules de la gamme Yoctopuce et ce dans
tous les langages de programmation disponibles. Ainsi, une fois que vous aurez compris comment
piloter votre Yocto-Knob-C dans votre langage de programmation favori, il est très probable
qu'apprendre à utiliser un autre module, même dans un autre langage, ne vous prendra qu'un
minimum de temps.

5.1. Paradigme de programmation
L'API Yoctopuce est une API orientée objet. Mais, dans un souci de simplicité, seules les bases de la
programmation objet ont été utilisées. Même si la programmation objet ne vous est pas familière, il
est peu probable que cela vous soit un obstacle à l'utilisation des produits Yoctopuce. Notez que
vous n'aurez jamais à allouer ou désallouer un objet lié à l'API Yoctopuce: cela est géré
automatiquement.

Il existe une classe par type de fonctionnalité Yoctopuce. Le nom de ces classes commence toujours
par un Y suivi du nom de la fonctionnalité, par exemple YTemperature, YRelay, YPressure, etc.. Il
existe aussi une classe YModule, dédiée à la gestion des modules en temps que tels, et enfin il
existe la classe statique YAPI, qui supervise le fonctionnement global de l'API et gère les
communications à bas niveau.

Structure de l'API Yoctopuce.

5. Programmation, concepts généraux

20 www.yoctopuce.com

La classe YSensor
A chaque fonctionnalité d'un module Yoctopuce, correspond une classe: YTemperature pour
mesurer la température, YVoltage pour mesurer une tension, YRelay pour contrôler un relais, etc. Il
existe cependant une classe spéciale qui peut faire plus: YSensor.

Cette classe YSensor est la classe parente de tous les senseurs Yoctopuce, elle permet de contrôler
n'importe quel senseur, quel que soit son type, en donnant accès au fonctions communes à tous les
senseurs. Cette classe permet de simplifier la programmation d'applications qui utilisent beaucoup
de senseurs différents. Mieux encore, si vous programmez une application basée sur la classe
YSensor, elle sera compatible avec tous les senseurs Yoctopuce, y compris ceux qui n'existent pas
encore.

Programmation
Dans l'API Yoctopuce, la priorité a été mise sur la facilité d'accès aux fonctionnalités des modules en
offrant la possibilité de faire abstraction des modules qui les implémentent. Ainsi, il est parfaitement
possible de travailler avec un ensemble de fonctionnalités sans jamais savoir exactement quel
module les héberge au niveau matériel. Cela permet de considérablement simplifier la
programmation de projets comprenant un nombre important de modules.

Du point de vue programmation, votre Yocto-Knob-C se présente sous la forme d'un module
hébergeant un certain nombre de fonctionnalités. Dans l'API , ces fonctionnalités se présentent sous
la forme d'objets qui peuvent être retrouvés de manière indépendante, et ce de plusieurs manières.

Accès aux fonctionnalités d'un module

Accès par nom logique
Chacune des fonctionnalités peut se voir assigner un nom logique arbitraire et persistant: il restera
stocké dans la mémoire flash du module, même si ce dernier est débranché. Un objet correspondant
à une fonctionnalité Xxx munie d'un nom logique pourra ensuite être retrouvée directement à l'aide
de ce nom logique et de la méthode YXxx.FindXxx. Notez cependant qu'un nom logique doit être
unique parmi tous les modules connectés.

Accès par énumération
Vous pouvez énumérer toutes les fonctionnalités d'un même type sur l'ensemble des modules
connectés à l'aide des fonctions classiques d'énumération FirstXxx et nextXxxx disponibles dans
chacune des classes YXxx.

Accès par nom hardware
Chaque fonctionnalité d'un module dispose d'un nom hardware, assigné en usine qui ne peut être
modifié. Les fonctionnalités d'un module peuvent aussi être retrouvées directement à l'aide de ce
nom hardware et de la fonction YXxx.FindXxx de la classe correspondante.

Différence entre Find et First
Les méthodes YXxx.FindXxxx et YXxx.FirstXxxx ne fonctionnent pas exactement de la même
manière. Si aucun module n'est disponible YXxx.FirstXxxx renvoie une valeur nulle. En revanche,
même si aucun module ne correspond, YXxx.FindXxxx renverra objet valide, qui ne sera pas "online"
mais qui pourra le devenir, si le module correspondant est connecté plus tard.

Manipulation des fonctionnalités
Une fois l'objet correspondant à une fonctionnalité retrouvé, ses méthodes sont disponibles de
manière tout à fait classique. Notez que la plupart de ces sous-fonctions nécessitent que le module
hébergeant la fonctionnalité soit branché pour pouvoir être manipulées. Ce qui n'est en général
jamais garanti, puisqu'un module USB peut être débranché après le démarrage du programme de
contrôle. La méthode isOnline(), disponible dans chaque classe, vous sera alors d'un grand secours.

5. Programmation, concepts généraux

www.yoctopuce.com 21

Accès aux modules
Bien qu'il soit parfaitement possible de construire un projet en faisant abstraction de la répartition des
fonctionnalités sur les différents modules, ces derniers peuvent être facilement retrouvés à l'aide de
l'API. En fait, ils se manipulent d'une manière assez semblable aux fonctionnalités. Ils disposent d'un
numéro de série affecté en usine qui permet de retrouver l'objet correspondant à l'aide de
YModule.Find(). Les modules peuvent aussi se voir affecter un nom logique arbitraire qui permettra
de les retrouver ensuite plus facilement. Et enfin la classe YModule comprend les méthodes
d'énumération YModule.FirstModule() et nextModule() qui permettent de dresser la liste des modules
connectés.

Interaction Function / Module
Du point de vue de l'API, les modules et leurs fonctionnalités sont donc fortement décorrélés à
dessein. Mais l'API offre néanmoins la possibilité de passer de l'un à l'autre. Ainsi la méthode
get_module(), disponible dans chaque classe de fonctionnalité, permet de retrouver l'objet
correspondant au module hébergeant cette fonctionnalité. Inversement, la classe YModule dispose
d'un certain nombre de méthodes permettant d'énumérer les fonctionnalités disponibles sur un
module.

5.2. Le module Yocto-Knob-C
Le module Yocto-Knob-C offre cinq instances de la fonction AnButton, correspondant aux cinq
entrées analogiques (lecture de potentiomètre ou de bouton) présentes sur le module.

module : Module

attribut type modifiable ?
productName Texte lecture seule
serialNumber Texte lecture seule
logicalName Texte modifiable
productId Entier (hexadécimal) lecture seule
productRelease Entier (hexadécimal) lecture seule
firmwareRelease Texte lecture seule
persistentSettings Type énuméré modifiable
luminosity 0..100% modifiable
beacon On/Off modifiable
upTime Temps lecture seule
usbCurrent Courant consommé (en mA) lecture seule
rebootCountdown Nombre entier modifiable
userVar Nombre entier modifiable

anButton1 : AnButton
anButton2 : AnButton
anButton3 : AnButton
anButton4 : AnButton
anButton5 : AnButton

attribut type modifiable ?
logicalName Texte modifiable
advertisedValue Texte modifiable
calibratedValue Nombre entier lecture seule
rawValue Nombre entier lecture seule
analogCalibration On/Off modifiable
calibrationMax Nombre entier modifiable
calibrationMin Nombre entier modifiable
sensitivity Nombre entier modifiable
isPressed Booléen lecture seule
lastTimePressed Temps lecture seule
lastTimeReleased Temps lecture seule

5. Programmation, concepts généraux

22 www.yoctopuce.com

pulseCounter Nombre entier modifiable
pulseTimer Temps lecture seule
inputType Type énuméré modifiable

quadratureDecoder1 : QuadratureDecoder
quadratureDecoder2 : QuadratureDecoder

attribut type modifiable ?
logicalName Texte modifiable
advertisedValue Texte modifiable
unit Texte lecture seule
currentValue Nombre (virgule fixe) modifiable
lowestValue Nombre (virgule fixe) modifiable
highestValue Nombre (virgule fixe) modifiable
currentRawValue Nombre (virgule fixe) lecture seule
logFrequency Fréquence modifiable
reportFrequency Fréquence modifiable
advMode Type énuméré modifiable
calibrationParam Paramètrs de calibration modifiable
resolution Nombre (virgule fixe) modifiable
sensorState Nombre entier lecture seule
speed Nombre (virgule fixe) lecture seule
decoding On/Off modifiable
edgesPerCycle Nombre entier modifiable

5.3. Module
Interface de contrôle des paramètres généraux des modules Yoctopuce

La classe YModule est utilisable avec tous les modules USB de Yoctopuce. Elle permet de
contrôler les paramètres généraux du module, et d'énumérer les fonctions fournies par chaque
module.

productName
Chaîne de caractères contenant le nom commercial du module, préprogrammé en usine.

serialNumber
Chaîne de caractères contenant le numéro de série, unique et préprogrammé en usine. Pour un
module Yocto-Knob-C, ce numéro de série commence toujours par YBUTTN1C. Il peut servir
comme point de départ pour accéder par programmation à un module particulier.

logicalName
Chaîne de caractères contenant le nom logique du module, initialement vide. Cet attribut peut être
changé au bon vouloir de l'utilisateur. Une fois initialisé à une valeur non vide, il peut servir de point
de départ pour accéder à un module particulier. Si deux modules avec le même nom logique se
trouvent sur le même montage, il n'y a pas moyen de déterminer lequel va répondre si l'on tente un
accès par ce nom logique. Le nom logique du module est limité à 19 caractères parmi A..Z,a..z,0..
9,_ et -.

productId
Identifiant USB du module, préprogrammé à la valeur 227 en usine.

productRelease
Numéro de révision du module hardware, préprogrammé en usine. La révision originale du retourne
la valeur 1, la révision B retourne la valeur 2, etc.

5. Programmation, concepts généraux

www.yoctopuce.com 23

firmwareRelease
Version du logiciel embarqué du module, elle change à chaque fois que le logiciel embarqué est mis
à jour.

persistentSettings
Etat des réglages persistants du module: chargés depuis la mémoire non-volatile, modifiés par
l'utilisateur ou sauvegardés dans la mémoire non volatile.

luminosity
Intensité lumineuse maximale des leds informatives (comme la Yocto-Led) présentes sur le module.
C'est une valeur entière variant entre 0 (leds éteintes) et 100 (leds à l'intensité maximum). La valeur
par défaut est 50. Pour changer l'intensité maximale des leds de signalisation du module, ou les
éteindre complètement, il suffit donc de modifier cette valeur.

beacon
Etat de la balise de localisation du module.

upTime
Temps écoulé depuis la dernière mise sous tension du module.

usbCurrent
Courant consommé par le module sur le bus USB, en milli-ampères.

rebootCountdown
Compte à rebours pour déclencher un redémarrage spontané du module.

userVar
Attribut de type entier 32 bits à disposition de l'utilisateur.

5.4. AnButton
Interface pour intéragir avec les entrées analogiques, disponibles par exemple dans le Yocto-Buzzer,
le Yocto-Knob, le Yocto-MaxiBuzzer et le Yocto-MaxiDisplay

La classe YAnButton permet d'accéder à une entrée résistive simple. Cela permet aussi bien de
mesurer l'état d'un simple bouton que de lire un potentiomètre analogique (résistance variable),
comme par exmple un bouton rotatif continu, une poignée de commande de gaz ou un joystick. Le
module est capable de se calibrer sur les valeurs minimales et maximales du potentiomètre, et de
restituer une valeur calibrée variant proportionnellement avec la position du potentiomètre,
indépendant de sa résistance totale.

logicalName
Chaîne de caractères contenant le nom logique de l'entrée analogique, initialement vide. Cet attribut
peut être changé au bon vouloir de l'utilisateur. Un fois initialisé à une valeur non vide, il peut servir
de point de départ pour accéder à directement à l'entrée analogique. Si deux entrées analogiques
portent le même nom logique dans un projet, il n'y a pas moyen de déterminer lequel va répondre si
l'on tente un accès par ce nom logique. Le nom logique du module est limité à 19 caractères parmi
A..Z,a..z,0..9,_ et -.

advertisedValue
Courte chaîne de caractères résumant l'état actuel de l'entrée analogique, et qui sera publiée
automatiquement jusqu'au hub parent. Pour une entrée analogique, la valeur publiée est la valeur
mesurée recalibrée (a number between 0 and 1000).

5. Programmation, concepts généraux

24 www.yoctopuce.com

calibratedValue
Valeur recalibrée de l'entrée analogique, sous forme d'un entier variant entre 0 et 1000 inclus. Si
aucune calibration n'est été faite, la valeur recalibrée est simplement la valeur mesurée ramenée
dans l'intervalle 0...1000, sans correction de linéarité.

rawValue
Valeur mesurée de l'entrée analogique telle-quelle, sous forme d'un entier variant entre 0 et 4095.
Elle vaut zéro lorsque la résistance à l'entrée est nulle (contact fermé), et tends vers 4095 lorsque la
résistance à l'entrée tends vers l'infini (contact ouvert). Attention, cette valeur ne varie pas
proportionnellement à la résistance (donc à la position du potentiomètre). Pour obtenir une valeur
proportionnelle, lancez une calibration et utilisez la valeur calculée calibratedValue.

analogCalibration
Permet d'enclencher et de déclencher la procédure de calibration automatique de l'entrée
analogique. Lorsque la calibration est enclenchée, le module enregistre les valeurs mesurées
minimales et maximales dans calibrationMin et calibrationMax. Une fois la calibration
terminée (déclenchée), le module peut calculer automatiquement en permanence une valeur
recalibrée de la mesure, variant linéairement avec la valeur de résistance mesurée.

calibrationMax
Valeur mesurée maximale observée durant la calibration. Vous pouvez aussi changer cette valeur
par logiciel pour imposer une calibration théorique.

calibrationMin
Valeur mesurée minimale observée durant la calibration. Vous pouvez aussi changer cette valeur par
logiciel pour imposer une calibration théorique.

sensitivity
Sensibilité de l'entrée analogique pour le déclenchement de callbacks utilisateur. La sensibilité
correspond à la différence de valeur nécessaire pour déclencher la propagation d'une nouvelle
valeur publiée et l'appel du callback utilisateur correspondant. Une valeur trop petite peut pourrait
causer des appels inutiles si l'entrée mesurée n'est pas suffisamment stable.

isPressed
Etat logique de l'entrée, si on la traite comme une entrée binaire (bouton on/off). L'état logique est
pressé lorsque l'entrée est fermée, et non pressé lorsque l'entrée est ouverte. Le module implémente
un léger lissage et un schmitt trigger qui permettent une mesure logique convenable.

lastTimePressed
Temps absolu de la dernière occurrence de "pression de bouton" observée sur l'entrée (transition du
contact de ouvert à fermé). La base de temps est la même que l'attribut upTime du module, c'est à
dire le temps écoulé depuis la dernière mise sous tension du module.

lastTimeReleased
Temps absolu de la dernière occurrence de "relâchement de bouton" observée sur l'entrée
(transition du contact de fermé à ouvert). La base de temps est la même que l'attribut upTime du
module, c'est à dire le temps écoulé depuis la dernière mise sous tension du module. Si on soustrait
à cette valeur le lastTimePressed, on obtien la durée de la dernière pression.

pulseCounter
Compteur d'impulsions 32 bits, incrémenté à chaque fois que l'état du bouton passe chaque d'état
(PRESSED / RELEASED) ce qui signifie que le compteur est incrémenté de deux après chaque
impulsion. Ce compteur commence à zéro à chaque redémarage du module, il peut aussi être
réinitialisé avec resetCounter().

5. Programmation, concepts généraux

www.yoctopuce.com 25

pulseTimer
Temps écoulé depuis la dernière initilialisation du compteur d'impulsion (millisecondes)

inputType
Type de dispositif connecté à l'entrée (entrée analogique ou entrées binaires multiplexées)

5.5. Quelle interface: Native, DLL ou Service?
Il y existe plusieurs méthodes pour contrôler un module USB Yoctopuce depuis un programme.

Contrôle natif
Dans ce cas de figure le programme pilotant votre projet est directement compilé avec une librairie
qui offre le contrôle des modules. C'est objectivement la solution la plus simple et la plus élégante
pour l'utilisateur final. Il lui suffira de brancher le câble USB et de lancer votre programme pour que
tout fonctionne. Malheureusement, cette technique n'est pas toujours disponible ou même possible.

L'application utilise la librairie native pour contrôler le module connecté en local

Contrôle natif par DLL
Ici l'essentiel du code permettant de contrôler les modules se trouve dans une DLL, et le programme
est compilé avec une petite librairie permettant de contrôler cette DLL. C'est la manière la plus
rapide pour coder le support des modules dans un language particulier. En effet la partie "utile" du
code de contrôle se trouve dans la DLL qui est la même pour tous les langages, offrir le support pour
un nouveau langage se limite à coder la petite librairie qui contrôle la DLL. Du point de de l'utilisateur
final, il y a peu de différences: il faut simplement être sûr que la DLL sera installée sur son ordinateur
en même temps que le programme principal.

L'application utilise la DLL pour contrôler nativement le module connecté en local

5. Programmation, concepts généraux

26 www.yoctopuce.com

Contrôle par un service
Certains langages ne permettent tout simplement pas d'accéder facilement au niveau matériel de la
machine. C'est le cas de Javascript par exemple. Pour gérer ce cas, Yoctopuce offre la solution sous
la forme d'un petit service, appelé VirtualHub qui, lui, est capable d'accéder aux modules, et votre
application n'a plus qu'à utiliser une librairie qui offrira toutes les fonctions nécessaires au contrôle
des modules en passant par l'intermédiaire de ce VirtualHub. L'utilisateur final se verra obligé de
lancer VirtualHub avant de lancer le programme de contrôle du projet proprement dit, à moins qu'il
ne décide d'installer VirtualHub sous la forme d'un service/démon, auquel cas VirtualHub se lancera
automatiquement au démarrage de la machine..

L'application se connecte au service VirtualHub pour connecter le module.

En revanche la méthode de contrôle par un service offre un avantage non négligeable: l'application
n'est pas n'obligée de tourner sur la machine où se trouvent les modules: elle peut parfaitement se
trouver sur un autre machine qui se connectera au service pour piloter les modules. De plus, les
librairie natives et DLL évoquées plus haut sont aussi capables de se connecter à distance à une ou
plusieurs instances de VirtualHub.

Lorsqu'on utilise VirtualHub, l'application de contrôle n'a plus besoin d'être sur la même machine que le module.

Quel que soit langage de programmation choisi et le paradigme de contrôle utilisé, la programmation
reste strictement identique. D'un langage à l'autre les fonctions ont exactement le même nom,
prennent les mêmes paramètres. Les seules différences sont liées aux contraintes des langages
eux-mêmes.

5. Programmation, concepts généraux

www.yoctopuce.com 27

Language Natif Natif avec .DLL/.so VirtualHub
Ligne de commande ✔ - ✔
Python - ✔ ✔
C++ ✔ ✔ ✔
C# .Net - ✔ ✔
C# UWP ✔ - ✔
LabVIEW - ✔ ✔
Java - ✔ ✔
Java pour Android ✔ - ✔
TypeScript - - ✔
JavaScript / ECMAScript - - ✔
PHP - - ✔
VisualBasic .Net - ✔ ✔
Delphi - ✔ ✔
Objective-C ✔ - ✔

Méthode de support pour les différents langages.

5.6. Accéder aux modules à travers un hub
VirtualHub pour contourner la limitation d'accès à USB
Une seule application à la fois peut avoir accès nativement aux modules Yoctopuce. Cette limitation
est liée au fait que deux processus différents ne peuvent pas parler en même temps à un
périphérique USB. En général, ce type de problème est réglé par un driver qui se charge de faire la
police pour éviter que plusieurs processus ne se battent pour le même périphérique. Mais les
produits Yoctopuce n'utilisent pas de drivers. Par conséquent, le premier processus qui arrive à
accéder au mode natif le garde pour lui jusqu'à ce que UnregisterHub ou FreeApi soit appelé.

Si votre application essaie de communiquer en mode natif avec les modules Yoctopuce, mais qu'une
autre application vous empêche d'y accéder, vous revecrez le message d'erreur suivant:

Another process is already using yAPI

La solution est d'utiliser VirtualHub localement sur votre machine et de vous en servir comme
passerelle pour vos applications. Ainsi, si toutes vos application utilisent VirtualHub, vous n'aurez
plus de conflit et vous pourrez accéder en tout temps à tous vos modules.

Pour passer du mode natif au mode réseau sur votre machine locale, il vous suffit de changer le
paramètre de l'appel à YAPI.RegisterHub et d'indiquer 127.0.0.1 à la place de usb.

Avec un YoctoHub

Un YoctoHub se comporte exactement comme un ordinateur faisant tourner VirtualHub. La seule
différence entre un programme utilisant l'API Yoctopuce utilisant des modules en USB natif et ce
même programme utilisant des modules Yoctopuce connectés à un YoctoHub se situe au niveau de
l'appel à RegisterHub. Pour utiliser des modules USB connectés en natif, le paramètre de
RegisterHub est usb, pour utiliser des modules connectés à un YoctoHub, il suffit de remplacer
ce paramètre par l'adresse IP du YoctoHub.

Il y a donc trois cas de figure: le mode natif, le mode réseau à travers VirtualHub sur votre machine
locale, ou à travers un YoctoHub. Pour passer de l'un à l'autre, il vous suffit de changer le paramètre
de l'appel à YAPI.RegisterHub comme dans les exemples ci-dessous:

YAPI.RegisterHub("usb",errmsg); // utilisation en mode natif USB

YAPI.RegisterHub("127.0.0.1",errmsg); // utilisation en mode réseau local avec VirtualHub

YAPI.RegisterHub("192.168.0.10",errmsg); // utilisation avec YoctoHub dont l'adresse IP est
192.168.0.10

5. Programmation, concepts généraux

28 www.yoctopuce.com

5.7. Programmation, par où commencer?
Arrivé à ce point du manuel, vous devriez connaître l'essentiel de la théorie à propos de votre Yocto-
Knob-C. Il est temps de passer à la pratique. Il vous faut télécharger la librairie Yoctopuce pour votre
language de programmation favori depuis le site web de Yoctopuce1. Puis sautez directement au
chapitre correspondant au langage de programmation que vous avez choisi.

Tous les exemples décrits dans ce manuel sont présents dans les librairies de programmation. Dans
certains langages, les librairies comprennent aussi quelques applications graphiques complètes avec
leur code source.

Une fois que vous maîtriserez la programmation de base de votre module, vous pourrez vous
intéresser au chapitre concernant la programmation avancée qui décrit certaines techniques qui vous
permettront d'exploiter au mieux votre Yocto-Knob-C.

1 http://www.yoctopuce.com/FR/libraries.php

www.yoctopuce.com 29

6. Utilisation du Yocto-Knob-C en ligne de
commande
Lorsque vous désirez effectuer une opération ponctuelle sur votre Yocto-Knob-C, comme la lecture
d'une valeur, le changement d'un nom logique, etc.. vous pouvez bien sur utiliser VirtualHub, mais il
existe une méthode encore plus simple, rapide et efficace: l'API en ligne de commande.

L'API en ligne de commande se présente sous la forme d'un ensemble d'exécutables, un par type de
fonctionnalité offerte par l'ensemble des produits Yoctopuce. Ces exécutables sont fournis pré-
compilés pour toutes les plateformes/OS officiellement supportés par Yoctopuce. Bien entendu, les
sources de ces exécutables sont aussi fournies1.

6.1. Installation
Téléchargez l'API en ligne de commande2. Il n'y a pas de programme d'installation à lancer, copiez
simplement les exécutables correspondant à votre plateforme/OS dans le répertoire de votre choix.
Ajoutez éventuellement ce répertoire à votre variable environnement PATH pour avoir accès aux
exécutables depuis n'importe où. C'est tout, il ne vous reste plus qu'à brancher votre Yocto-Knob-C,
ouvrir un shell et commencer à travailler en tapant par exemple:

C:\>YAnButton any get_ispressed
C:\>YLed any set_power on
C:\>YLed any set_blinking PANIC
C:\>YBuzzer any pulse 1000 500

Sous Linux, pour utiliser l'API en ligne de commande, vous devez soit être root, soit définir une règle
udev pour votre système. Vous trouverez plus de détails au chapitre Problèmes courants.

6.2. Utilisation: description générale
Tous les exécutables de l'API en ligne de commande fonctionnent sur le même principe: ils doivent
être appelés de la manière suivante:

C:\>Executable [options] [cible] commande [paramètres]

1 Si vous souhaitez recompiler l'API en ligne de commande, vous aurez aussi besoin de l'API C++
2 http://www.yoctopuce.com/FR/libraries.php

6. Utilisation du Yocto-Knob-C en ligne de commande

30 www.yoctopuce.com

Les [options] gèrent le fonctionnement global des commandes , elles permettent par exemple de
piloter des modules à distance à travers le réseau, ou encore elles peuvent forcer les modules à
sauver leur configuration après l'exécution de la commande.

La [cible] est le nom du module ou de la fonction auquel la commande va s'appliquer. Certaines
commandes très génériques n'ont pas besoin de cible. Vous pouvez aussi utiliser les alias "any" ou
"all", ou encore une liste de noms, séparés par des virgules, sans espace.

La commande est la commande que l'on souhaite exécuter. La quasi-totalité des fonctions
disponibles dans les API de programmation classiques sont disponibles sous forme de commandes.
Vous n'êtes pas obligé des respecter les minuscules/majuscules et les caractères soulignés dans le
nom de la commande.

Les [paramètres] sont, assez logiquement, les paramètres dont la commande a besoin.

A tout moment les exécutables de l'API en ligne de commande sont capables de fournir une aide
assez détaillée: Utilisez par exemple

C:\>executable /help

pour connaître la liste de commandes disponibles pour un exécutable particulier de l'API en ligne de
commande, ou encore:

C:\>executable commande /help

Pour obtenir une description détaillée des paramètres d'une commande.

6.3. Contrôle de la fonction AnButton
Pour contrôler la fonction AnButton de votre Yocto-Knob-C, vous avez besoin de l'exécutable
YAnButton.

Vous pouvez par exemple lancer:

C:\>YAnButton any get_ispressed
C:\>YLed any set_power on
C:\>YLed any set_blinking PANIC
C:\>YBuzzer any pulse 1000 500

Cet exemple utilise la cible "any" pour signifier que l'on désire travailler sur la première fonction
AnButton trouvée parmi toutes celles disponibles sur les modules Yoctopuce accessibles au moment
de l'exécution. Cela vous évite d'avoir à connaître le nom exact de votre fonction et celui de votre
module.

Mais vous pouvez tout aussi bien utiliser des noms logiques que vous auriez préalablement
configurés. Imaginons un module Yocto-Knob-C avec le numéros de série YBUTTN1C-123456 que
vous auriez appelé "MonModule" et dont vous auriez nommé la fonction anButton1 "MaFonction", les
cinq appels suivants seront strictement équivalents (pour autant que MaFonction ne soit définie
qu'une fois, pour éviter toute ambiguïté).

C:\>YAnButton YBUTTN1C-123456.anButton1 describe

C:\>YAnButton YBUTTN1C-123456.MaFonction describe

C:\>YAnButton MonModule.anButton1 describe

C:\>YAnButton MonModule.MaFonction describe

C:\>YAnButton MaFonction describe

Pour travailler sur toutes les fonctions AnButton à la fois, utilisez la cible "all".

6. Utilisation du Yocto-Knob-C en ligne de commande

www.yoctopuce.com 31

C:\>YAnButton all describe

Pour plus de détails sur les possibilités de l'exécutableYAnButton, utilisez:

C:\>YAnButton /help

6.4. Contrôle de la partie module
Chaque module peut être contrôlé d'une manière similaire à l'aide de l'exécutable YModule. Par
exemple, pour obtenir la liste de tous les modules connectés, utilisez:

C:\>YModule inventory

Vous pouvez aussi utiliser la commande suivante pour obtenir une liste encore plus détaillée des
modules connectés:

C:\>YModule all describe

Chaque propriété xxx du module peut être obtenue grâce à une commande du type get_xxxx(),
et les propriétés qui ne sont pas en lecture seule peuvent être modifiées à l'aide de la commande
set_xxx(). Par exemple:

C:\>YModule YBUTTN1C-12346 set_logicalName MonPremierModule

C:\>YModule YBUTTN1C-12346 get_logicalName

Modifications des réglages du module

Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'utiliser la commande
set_xxx correspondante, cependant cette modification n'a lieu que dans la mémoire vive du
module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées
de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration
courante dans sa mémoire non volatile. Pour cela il faut utiliser la commande saveToFlash.
Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la
méthode revertFromFlash. Par exemple:

C:\>YModule YBUTTN1C-12346 set_logicalName MonPremierModule
C:\>YModule YBUTTN1C-12346 saveToFlash

Notez que vous pouvez faire la même chose en seule fois à l'aide de l'option -s

C:\>YModule -s YBUTTN1C-12346 set_logicalName MonPremierModule

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette
limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite,
liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000
cycles. Pour résumer vous ne pouvez employer la commande saveToFlash que 100000 fois au
cours de la vie du module. Veillez donc à ne pas appeler cette commande depuis l'intérieur d'une
boucle.

6.5. Limitations
L'API en ligne de commande est sujette à la même limitation que les autres API: il ne peut y avoir
q'une seule application à la fois qui accède aux modules de manière native. Par défaut l'API en ligne
de commande fonctionne en natif.

6. Utilisation du Yocto-Knob-C en ligne de commande

32 www.yoctopuce.com

Cette limitation peut aisément être contournée en utilisant VirtualHub: il suffit de faire tourner
VirtualHub3 sur la machine concernée et d'utiliser les executables de l'API en ligne de commande
avec l'option -r par exemple, si vous utilisez:

C:\>YModule inventory

Vous obtenez un inventaire des modules connectés par USB, en utilisant un accès natif. Si il y a déjà
une autre commande en cours qui accède aux modules en natif, cela ne fonctionnera pas. Mais si
vous lancez VirtualHub et que vous lancez votre commande sous la forme:

C:\>YModule -r 127.0.0.1 inventory

cela marchera parce que la commande ne sera plus exécutée nativement, mais à travers VirtualHub.
Notez que VirtualHub compte comme une application native.

3 http://www.yoctopuce.com/FR/virtualhub.php

www.yoctopuce.com 33

7. Utilisation du Yocto-Knob-C en Python
Python est un langage interprété orienté objet développé par Guido van Rossum. Il offre l'avantage
d'être gratuit et d'être disponible pour la plupart de plate-formes tant Windows qu'Unix. C'est un
language idéal pour écrire des petits scripts sur un coin de table. La librairie Yoctopuce est
compatible avec Python 2.7 et 3.x jusqu'aux toutes dernières versions officielles. Elle fonctionne
sous Windows, macOS et Linux tant Intel qu'ARM. Les interpréteurs Python sont disponibles sur le
site de Python 1.

7.1. Fichiers sources
Les classes de la librairie Yoctopuce2 pour Python que vous utiliserez vous sont fournies au format
source. Copiez tout le contenu du répertoire Sources dans le répertoire de votre choix et ajoutez ce
répertoire à la variable d'environnement PYTHONPATH. Si vous utilisez un IDE pour programmer en
Python, référez-vous à sa documentation afin le configurer de manière à ce qu'il retrouve
automatiquement les fichiers sources de l'API.

7.2. Librairie dynamique
Une partie de la librairie de bas-niveau est écrite en C, mais vous n'aurez a priori pas besoin
d'interagir directement avec elle: cette partie est fournie sous forme de DLL sous Windows, de fichier .so
sous Unix et de fichier .dylib sous macOS. Tout a été fait pour que l'interaction avec cette librairie se
fasse aussi simplement que possible depuis Python: les différentes versions de la librairie
dynamique correspondant aux différents systèmes d'exploitation et architectures sont stockées dans
le répertoire cdll. L'API va charger automatiquement le bon fichier lors de son initialisation. Vous
n'aurez donc pas à vous en soucier.

Si un jour vous deviez vouloir recompiler la librairie dynamique, vous trouverez tout son code source
dans la librairie Yoctopuce pour le C++.

Afin de les garder simples, tous les exemples fournis dans cette documentation sont des applications
consoles. Il va de soit que que le fonctionnement des librairies est strictement identiques si vous les
intégrez dans une application dotée d'une interface graphique.

7.3. Contrôle de la fonction AnButton

1 http://www.python.org/download/
2 www.yoctopuce.com/FR/libraries.php

7. Utilisation du Yocto-Knob-C en Python

34 www.yoctopuce.com

Il suffit de quelques lignes de code pour piloter un Yocto-Knob-C. Voici le squelette d'un fragment de
code Python qui utilise la fonction AnButton.

[...]
On active la détection des modules sur USB
errmsg=YRefParam()
YAPI.RegisterHub("usb",errmsg)
[...]

On récupère l'objet permettant d'intéragir avec le module
anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1")

Pour gérer le hot-plug, on vérifie que le module est là
if anbutton.isOnline():
 # use anbutton.get_calibratedValue()
 [...]

[...]

Voyons maintenant en détail ce que font ces quelques lignes.

YAPI.RegisterHub
La fonction YAPI.RegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent
être recherchés. Utilisée avec le paramètre "usb", elle permet de travailler avec les modules
connectés localement à la machine. Si l'initialisation se passe mal, cette fonction renverra une valeur
différente de YAPI.SUCCESS, et retournera via l'objet errmsg une explication du problème.

YAnButton.FindAnButton
La fonction YAnButton.FindAnButton permet de retrouver une entrée analogique en fonction
du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi
bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module
Yocto-Knob-C avec le numéros de série YBUTTN1C-123456 que vous auriez appelé "MonModule"
et dont vous auriez nommé la fonction anButton1 "MaFonction", les cinq appels suivants seront
strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute
ambiguïté):

anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1")
anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.MaFonction")
anbutton = YAnButton.FindAnButton("MonModule.anButton1")
anbutton = YAnButton.FindAnButton("MonModule.MaFonction")
anbutton = YAnButton.FindAnButton("MaFonction")

YAnButton.FindAnButton renvoie un objet que vous pouvez ensuite utiliser à loisir pour
contrôler l'entrée analogique.

isOnline
La méthode isOnline() de l'objet renvoyé par YAnButton.FindAnButton permet de savoir
si le module correspondant est présent et en état de marche.

A propos des imports Python
Cette documentation suppose que vous utilisez la librairie Python téléchargée directement depuis le
site web de Yoctopuce, mais si vous avez installé la librairie Yoctopuce avec PIP, alors vous devrez
préfixer tous les imports avec yoctopuce.. Ainsi tous les exemples donnés dans la documentation,
tels que:

from yocto_api import *

doivent être convertis, lorsque que la librairie Yoctopuce a été installée par PIP, en:

from yoctopuce.yocto_api import *

7. Utilisation du Yocto-Knob-C en Python

www.yoctopuce.com 35

get_isPressed
La méthode get_isPressed() de l'objet renvoyé par YAnButton.FindAnButton permet de
connaître l'état d'un interrupteur on/off qui serait branché sur l'entrée correspondante du module. Les
valeurs possibles retournées sont YAnButton.ISPRESSED_TRUE (si le contact est fermé) et
YAnButton.ISPRESSED_FALSE (si le contact est ouvert). Pour lire une valeur analogique plutôt
qu'une valeur binaire, on utilise à la place la méthode ci-dessous.

get_calibratedValue
La méthode get_calibratedValue() de l'objet renvoyé par YAnButton.FindAnButton
permet de connaître la position d'un potentiomètre analogique qui serait branché sur l'entrée
correspondante du module. Une fois que vous avez calibré l'entrée analogique pour votre
potentiomètre, la valeur retournée est un entier entre 0 et 1000.

Un exemple réel
Lancez votre interpréteur Python et ouvrez le script correspondant, fourni dans le répertoire
Examples/Doc-GettingStarted-Yocto-Knob-C de la librairie Yoctopuce.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois
utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

#!/usr/bin/python
-*- coding: utf-8 -*-
import os, sys

from yocto_api import *
from yocto_anbutton import *

def usage():
 scriptname = os.path.basename(sys.argv[0])
 print("Usage:")
 print(scriptname + ' <serial_number>')
 print(scriptname + ' <logical_name>')
 print(scriptname + ' any ')
 sys.exit()

def die(msg):
 sys.exit(msg + ' (check USB cable)')

errmsg = YRefParam()

if len(sys.argv) < 2:
 usage()

target = sys.argv[1]

Setup the API to use local USB devices
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
 sys.exit("init error" + errmsg.value)

if target == 'any':
 # retreive any button
 channel = YAnButton.FirstAnButton()
 if channel is None:
 die('No module connected')
else:
 channel = YAnButton.FindAnButton(target + '.anButton1')

if not (channel.isOnline()):
 die('device not connected')
else:
 m = channel.get_module()
 channel1 = YAnButton.FindAnButton(m.get_serialNumber() + '.anButton1')
 channel5 = YAnButton.FindAnButton(m.get_serialNumber() + '.anButton5')

done = False
while not done:
 line = ""

7. Utilisation du Yocto-Knob-C en Python

36 www.yoctopuce.com

 if channel1.get_isPressed() == YAnButton.ISPRESSED_TRUE:
 line = "Button 1 pressed "
 else:
 line = "Button 1 not pressed "
 line += ' - analog value: ' + str(channel1.get_calibratedValue())
 print(line)

 if channel5.get_isPressed() == YAnButton.ISPRESSED_TRUE:
 line = "Button 5 pressed "
 else:
 line = "Button 5 not pressed "
 line += ' - analog value: ' + str(channel5.get_calibratedValue())
 print(line)

 print('(press both buttons simultaneously to exit)')
 done = (channel1.get_isPressed() == YAnButton.ISPRESSED_TRUE) and \
 (channel5.get_isPressed() == YAnButton.ISPRESSED_TRUE)
 YAPI.Sleep(1000)
YAPI.FreeAPI()

7.4. Contrôle de la partie module
Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci-dessous un simple
programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la
balise de localisation.

#!/usr/bin/python
-*- coding: utf-8 -*-
import os, sys

from yocto_api import *

def usage():
 sys.exit("usage: demo <serial or logical name> [ON/OFF]")

errmsg = YRefParam()
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
 sys.exit("RegisterHub error: " + str(errmsg))

if len(sys.argv) < 2:
 usage()

m = YModule.FindModule(sys.argv[1]) # # use serial or logical name

if m.isOnline():
 if len(sys.argv) > 2:
 if sys.argv[2].upper() == "ON":
 m.set_beacon(YModule.BEACON_ON)
 if sys.argv[2].upper() == "OFF":
 m.set_beacon(YModule.BEACON_OFF)

 print("serial: " + m.get_serialNumber())
 print("logical name: " + m.get_logicalName())
 print("luminosity: " + str(m.get_luminosity()))
 if m.get_beacon() == YModule.BEACON_ON:
 print("beacon: ON")
 else:
 print("beacon: OFF")
 print("upTime: " + str(m.get_upTime() / 1000) + " sec")
 print("USB current: " + str(m.get_usbCurrent()) + " mA")
 print("logs:\n" + m.get_lastLogs())
else:
 print(sys.argv[1] + " not connected (check identification and USB cable)")
YAPI.FreeAPI()

Chaque propriété xxx du module peut être lue grâce à une méthode du type YModule.get_xxxx
(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode
YModule.set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux
chapitre API

7. Utilisation du Yocto-Knob-C en Python

www.yoctopuce.com 37

Modifications des réglages du module
Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction
YModule.set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire
vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient
mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa
configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode
YModule.saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages
courants en utilisant la méthode YModule.revertFromFlash(). Ce petit exemple ci-dessous
vous permet changer le nom logique d'un module.

#!/usr/bin/python
-*- coding: utf-8 -*-
import os, sys

from yocto_api import *

def usage():
 sys.exit("usage: demo <serial or logical name> <new logical name>")

if len(sys.argv) != 3:
 usage()

errmsg = YRefParam()
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
 sys.exit("RegisterHub error: " + str(errmsg))

m = YModule.FindModule(sys.argv[1]) # use serial or logical name
if m.isOnline():
 newname = sys.argv[2]
 if not YAPI.CheckLogicalName(newname):
 sys.exit("Invalid name (" + newname + ")")
 m.set_logicalName(newname)
 m.saveToFlash() # do not forget this
 print("Module: serial= " + m.get_serialNumber() + " / name= " + m.get_logicalName())
else:
 sys.exit("not connected (check identification and USB cable")
YAPI.FreeAPI()

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette
limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite,
liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000
cycles. Pour résumer vous ne pouvez employer la fonction YModule.saveToFlash() que
100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis
l'intérieur d'une boucle.

Enumeration des modules
Obtenir la liste des modules connectés se fait à l'aide de la fonction YModule.yFirstModule()
qui renvoie le premier module trouvé, il suffit ensuite d'appeler la mehode nextModule() de cet
objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un null. Ci-dessous un
petit exemple listant les module connectés

#!/usr/bin/python
-*- coding: utf-8 -*-
import os, sys

from yocto_api import *

errmsg = YRefParam()

Setup the API to use local USB devices
if YAPI.RegisterHub("usb", errmsg) != YAPI.SUCCESS:
 sys.exit("init error" + str(errmsg))

print('Device list')

module = YModule.FirstModule()
while module is not None:

7. Utilisation du Yocto-Knob-C en Python

38 www.yoctopuce.com

 print(module.get_serialNumber() + ' (' + module.get_productName() + ')')
 module = module.nextModule()
YAPI.FreeAPI()

7.5. Gestion des erreurs
Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez
pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur
aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération.
La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais
votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées
par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les
petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne
avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de
seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut
suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une
erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule
manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-
dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des
erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie
Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer
une exception. Dans ce cas, de trois choses l'une:

• Si votre code attrape l'exception au vol et la gère, et tout se passe bien.
• Si votre programme tourne dans le debugger, vous pourrez relativement facilement déterminer

où le problème s'est produit, et voir le message explicatif lié à l'exception.
• Sinon... l'exception va crasher votre programme, boum!

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre
alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir
attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction
YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de
chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui
peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas
d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il
suit toujours la même logique: une méthode get_state() retournera une valeur
NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur
NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du
type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire,
si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée.
Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera
YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message
expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des
méthodes errType() et errMessage(). Ce sont les même informations qui auraient été
associées à l'exception si elles avaient été actives.

www.yoctopuce.com 39

8. Utilisation du Yocto-Knob-C en C++
Le C++ n'est pas le langage le plus simple à maîtriser. Pourtant, si on prend soin à se limiter aux
fonctionnalités essentielles, c'est un langage tout à fait utilisable pour des petits programmes vite
faits, et qui a l'avantage d'être très portable d'un système d'exploitation à l'autre. Sous Windows, C++
est supporté avec Microsoft Visual Studio 2017 et les versions plus récentes. Sous macOS, nous
supportons les versions de XCode supportées par Apple. Sous Linux, nous supportons toutes les
versions de gcc publiées depuis 2008. Par ailleurs, aussi bien sous macOS que sous Linux, vous
pouvez compiler les exemples en ligne de commande avec GCC en utilisant le GNUmakefile
fourni. De même, sous Windows, un Makefile vous permet de compiler les exemples en ligne de
commande, en pleine connaissance des arguments de compilation et link.

Les librairies Yoctopuce1 pour C++ vous sont fournies au format source dans leur intégralité. Une
partie de la librairie de bas-niveau est écrite en C pur sucre, mais vous n'aurez à priori pas besoin
d'interagir directement avec elle: tout a été fait pour que l'interaction soit le plus simple possible
depuis le C++. La librairie vous est fournie bien entendu aussi sous forme binaire, de sorte à pouvoir
la linker directement si vous le préférez.

Vous allez rapidement vous rendre compte que l'API C++ defini beaucoup de fonctions qui
retournent des objets. Vous ne devez jamais désallouer ces objets vous-même. Ils seront désalloués
automatiquement par l'API à la fin de l'application.

Afin des les garder simples, tous les exemples fournis dans cette documentation sont des
applications consoles. Il va de soit que que les fonctionnement des librairies est strictement
identiques si vous les intégrez dans une application dotée d'une interface graphique. Vous trouverez
dans la dernière section de ce chapitre toutes les informations nécessaires à la création d'un projet à
neuf linké avec les librairies Yoctopuce.

8.1. Contrôle de la fonction AnButton
Il suffit de quelques lignes de code pour piloter un Yocto-Knob-C. Voici le squelette d'un fragment de
code C++ qui utilise la fonction AnButton.

#include "yocto_api.h"
#include "yocto_anbutton.h"

[...]
// On active la détection des modules sur USB
String errmsg;
YAPI::RegisterHub("usb", errmsg);

1 www.yoctopuce.com/FR/libraries.php

8. Utilisation du Yocto-Knob-C en C++

40 www.yoctopuce.com

[...]

// On récupère l'objet permettant d'intéragir avec le module
YAnButton *anbutton;
anbutton = YAnButton::FindAnButton("YBUTTN1C-123456.anButton1");

// Pour gérer le hot-plug, on vérifie que le module est là
if(anbutton->isOnline())
{
 // Utiliser anbutton->get_calibratedValue()
 [...]
}

Voyons maintenant en détail ce que font ces quelques lignes.

yocto_api.h et yocto_anbutton.h
Ces deux fichiers inclus permettent d'avoir accès aux fonctions permettant de gérer les modules
Yoctopuce. yocto_api.h doit toujours être utilisé, yocto_anbutton.h est nécessaire pour
gérer les modules contenant une entrée analogique, comme le Yocto-Knob-C.

YAPI::RegisterHub
La fonction YAPI::RegisterHub initialise l'API de Yoctopuce en indiquant où les modules
doivent être recherchés. Utilisée avec le paramètre "usb", elle permet de travailler avec les
modules connectés localement à la machine. Si l'initialisation se passe mal, cette fonction renverra
une valeur différente de YAPI_SUCCESS, et retournera via le paramètre errmsg un explication du
problème.

YAnButton::FindAnButton
La fonction YAnButton::FindAnButton permet de retrouver une entrée analogique en fonction
du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi
bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module
Yocto-Knob-C avec le numéros de série YBUTTN1C-123456 que vous auriez appelé "MonModule"
et dont vous auriez nommé la fonction anButton1 "MaFonction", les cinq appels suivants seront
strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute
ambiguïté):

YAnButton *anbutton = YAnButton::FindAnButton("YBUTTN1C-123456.anButton1");
YAnButton *anbutton = YAnButton::FindAnButton("YBUTTN1C-123456.MaFonction");
YAnButton *anbutton = YAnButton::FindAnButton("MonModule.anButton1");
YAnButton *anbutton = YAnButton::FindAnButton("MonModule.MaFonction");
YAnButton *anbutton = YAnButton::FindAnButton("MaFonction");

YAnButton::FindAnButton renvoie un objet que vous pouvez ensuite utiliser à loisir pour
contrôler l'entrée analogique.

isOnline
La méthode isOnline() de l'objet renvoyé par YAnButton::FindAnButton permet de savoir
si le module correspondant est présent et en état de marche.

get_isPressed
La méthode get_isPressed() de l'objet renvoyé par yFindAnButton permet de connaître
l'état d'un interrupteur on/off qui serait branché sur l'entrée correspondante du module. Les valeurs
possibles retournées sont Y_ISPRESSED_TRUE (si le contact est fermé) et
Y_ISPRESSED_FALSE (si le contact est ouvert). Pour lire une valeur analogique plutôt qu'une
valeur binaire, on utilise à la place la méthode ci-dessous.

get_calibratedValue
La méthode get_calibratedValue() de l'objet renvoyé par yFindAnButton permet de
connaître la position d'un potentiomètre analogique qui serait branché sur l'entrée correspondante du

8. Utilisation du Yocto-Knob-C en C++

www.yoctopuce.com 41

module. Une fois que vous avez calibré l'entrée analogique pour votre potentiomètre, la valeur
retournée est un entier entre 0 et 1000.

Un exemple réel
Lancez votre environnement C++ et ouvrez le projet exemple correspondant, fourni dans le
répertoire Examples/Doc-GettingStarted-Yocto-Knob-C de la librairie Yoctopuce. Si vous préférez
travailler avec votre éditeur de texte préféré, ouvrez le fichier main.cpp, vous taperez simplement
make dans le répertoire de l'exemple pour le compiler.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois
utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

#include "yocto_api.h"
#include "yocto_anbutton.h"
#include <iostream>
#include <stdlib.h>

using namespace std;

static void usage(void)
{
 cout << "usage: demo <serial_number> " << endl;
 cout << " demo <logical_name>" << endl;
 cout << " demo any" << endl;
 u64 now = YAPI::GetTickCount();
 while (YAPI::GetTickCount() - now < 3000) {
 // wait 3 sec to show the message
 }
 exit(1);
}

int main(int argc, const char * argv[])
{
 string errmsg;
 YAnButton *input1;
 YAnButton *input5;
 string target;

 if (argc < 2) {
 usage();
 }
 target = (string) argv[1];

 // Setup the API to use local USB devices
 if (YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
 cerr << "RegisterHub error: " << errmsg << endl;
 return 1;
 }

 if (target == "any") {
 YAnButton *anbutton = YAnButton::FirstAnButton();
 if (anbutton == NULL) {
 cout << "No module connected (check USB cable)" << endl;
 return 1;
 }
 target = anbutton->module()->get_serialNumber();
 }
 input1 = YAnButton::FindAnButton(target + ".anButton1");
 input5 = YAnButton::FindAnButton(target + ".anButton5");

 while(1) {
 if (!input1->isOnline()) {
 cout << "Module not connected (check identification and USB cable)" << endl;
 break;
 }

 if (input1->get_isPressed())
 cout << "Button1: pressed ";
 else
 cout << "Button1: not pressed";
 cout << " - analog value: " << input1->get_calibratedValue() << endl;

 if (input5->get_isPressed())
 cout << "Button5: pressed ";

8. Utilisation du Yocto-Knob-C en C++

42 www.yoctopuce.com

 else
 cout << "Button5: not pressed";
 cout << " - analog value: " << input5->get_calibratedValue() << endl;

 cout << "(press both buttons simultaneously to exit)" << endl;
 if (input1->get_isPressed() == Y_ISPRESSED_TRUE &&
 input5->get_isPressed() == Y_ISPRESSED_TRUE)
 break;
 YAPI::Sleep(1000, errmsg);
 };
 YAPI::FreeAPI();

 return 0;
}

8.2. Contrôle de la partie module
Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci dessous un simple
programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la
balise de localisation.

#include <iostream>
#include <stdlib.h>

#include "yocto_api.h"

using namespace std;

static void usage(const char *exe)
{
 cout << "usage: " << exe << " <serial or logical name> [ON/OFF]" << endl;
 exit(1);
}

int main(int argc, const char * argv[])
{
 string errmsg;

 // Setup the API to use local USB devices
 if(YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
 cerr << "RegisterHub error: " << errmsg << endl;
 return 1;
 }

 if(argc < 2)
 usage(argv[0]);

 YModule *module = YModule::FindModule(argv[1]); // use serial or logical name

 if (module->isOnline()) {
 if (argc > 2) {
 if (string(argv[2]) == "ON")
 module->set_beacon(Y_BEACON_ON);
 else
 module->set_beacon(Y_BEACON_OFF);
 }
 cout << "serial: " << module->get_serialNumber() << endl;
 cout << "logical name: " << module->get_logicalName() << endl;
 cout << "luminosity: " << module->get_luminosity() << endl;
 cout << "beacon: ";
 if (module->get_beacon() == Y_BEACON_ON)
 cout << "ON" << endl;
 else
 cout << "OFF" << endl;
 cout << "upTime: " << module->get_upTime() / 1000 << " sec" << endl;
 cout << "USB current: " << module->get_usbCurrent() << " mA" << endl;
 cout << "Logs:" << endl << module->get_lastLogs() << endl;
 } else {
 cout << argv[1] << " not connected (check identification and USB cable)"
 << endl;
 }
 YAPI::FreeAPI();

8. Utilisation du Yocto-Knob-C en C++

www.yoctopuce.com 43

 return 0;
}

Chaque propriété xxx du module peut être lue grâce à une méthode du type get_xxxx(), et les
propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode set_xxx
() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module
Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction
set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du
module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées
de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration
courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode saveToFlash().
Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la
méthode revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique
d'un module.

#include <iostream>
#include <stdlib.h>

#include "yocto_api.h"

using namespace std;

static void usage(const char *exe)
{
 cerr << "usage: " << exe << " <serial> <newLogicalName>" << endl;
 exit(1);
}

int main(int argc, const char * argv[])
{
 string errmsg;

 // Setup the API to use local USB devices
 if(YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
 cerr << "RegisterHub error: " << errmsg << endl;
 return 1;
 }

 if(argc < 2)
 usage(argv[0]);

 YModule *module = YModule::FindModule(argv[1]); // use serial or logical name

 if (module->isOnline()) {
 if (argc >= 3) {
 string newname = argv[2];
 if (!yCheckLogicalName(newname)) {
 cerr << "Invalid name (" << newname << ")" << endl;
 usage(argv[0]);
 }
 module->set_logicalName(newname);
 module->saveToFlash();
 }
 cout << "Current name: " << module->get_logicalName() << endl;
 } else {
 cout << argv[1] << " not connected (check identification and USB cable)"
 << endl;
 }
 YAPI::FreeAPI();
 return 0;
}

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette
limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite,
liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000
cycles. Pour résumer vous ne pouvez employer la fonction saveToFlash() que 100000 fois au
cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une
boucle.

8. Utilisation du Yocto-Knob-C en C++

44 www.yoctopuce.com

Enumeration des modules
Obtenir la liste des modules connectés se fait à l'aide de la fonction yFirstModule() qui renvoie
le premier module trouvé, il suffit ensuite d'appeler la fonction nextModule() de cet objet pour
trouver les modules suivants, et ce tant que la réponse n'est pas un NULL. Ci-dessous un petit
exemple listant les module connectés

#include <iostream>

#include "yocto_api.h"

using namespace std;

int main(int argc, const char * argv[])
{
 string errmsg;

 // Setup the API to use local USB devices
 if(YAPI::RegisterHub("usb", errmsg) != YAPI::SUCCESS) {
 cerr << "RegisterHub error: " << errmsg << endl;
 return 1;
 }

 cout << "Device list: " << endl;

 YModule *module = YModule::FirstModule();
 while (module != NULL) {
 cout << module->get_serialNumber() << " ";
 cout << module->get_productName() << endl;
 module = module->nextModule();
 }
 YAPI::FreeAPI();
 return 0;
}

8.3. Gestion des erreurs
Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez
pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur
aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération.
La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais
votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées
par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les
petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne
avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de
seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut
suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une
erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule
manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-
dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des
erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie
Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer
une exception. Dans ce cas, de trois choses l'une:

• Si votre code attrape l'exception au vol et la gère, et tout se passe bien.
• Si votre programme tourne dans le debugger, vous pourrez relativement facilement déterminer

où le problème s'est produit, et voir le message explicatif lié à l'exception.
• Sinon... l'exception va crasher votre programme, boum!

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre
alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir

8. Utilisation du Yocto-Knob-C en C++

www.yoctopuce.com 45

attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction
YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de
chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui
peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas
d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il
suit toujours la même logique: une méthode get_state() retournera une valeur
NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur
NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du
type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire,
si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée.
Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera
YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message
expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des
méthodes errType() et errMessage(). Ce sont les même informations qui auraient été
associées à l'exception si elles avaient été actives.

8.4. Intégration de la librairie Yoctopuce en C++
Selon vos besoins et vos préférences, vous pouvez être mené à intégrer de différentes manières la
librairie à vos projets. Cette section explique comment implémenter les différentes options.

Intégration au format source (recommandé)
L'intégration de toutes les sources de la librairie dans vos projets a plusieurs avantages:

• Elle garanti le respect des conventions de compilation de votre projet (32/64 bits, inclusion des
symboles de debug, caractères unicode ou ASCII, etc.);

• Elle facilite le déboggage si vous cherchez la cause d'un problème lié à la librairie Yoctopuce
• Elle réduit les dépendances sur des composants tiers, par exemple pour parer au cas où vous

pourriez être mené à recompiler ce projet pour une architecture différente dans de
nombreuses années.

• Elle ne requiert pas l'installation d'une librairie dynamique spécifique à Yoctopuce sur le
système final, tout est dans l'exécutable.

Pour intégrer le code source, le plus simple est d'inclure simplement le répertoire Sources de la
librairie Yoctopuce à votre IncludePath, et d'ajouter tous les fichiers de ce répertoire (y compris le
sous-répertoire yapi) à votre projet.

Pour que votre projet se construise ensuite correctement, il faudra linker avec votre projet les
librairies systèmes requises, à savoir:

• Pour Windows: les librairies sont mises automatiquement
• Pour macOS: IOKit.framework et CoreFoundation.framework
• Pour Linux: libm, libpthread, libusb1.0 et libstdc++

Intégration en librairie statique
L'intégration de de la librairie Yoctopuce sous forme de librairie statique permet une compilation
rapide du programme en une seule commande. Elle ne requiert pas non plus l'installation d'une
librairie dynamique spécifique à Yoctopuce sur le système final, tout est dans l'exécutable.

Pour utiliser la librairie statique, il faut la compiler à l'aide du shell script build.sh sous UNIX, ou
build.bat sous Windows. Ce script qui se situe à la racine de la librairie, détecte l'OS et
recompile toutes les librairies ainsi que les exemples correspondants.

Ensuite, pour intégrer la librairie statique Yoctopuce à votre projet, vous devez inclure le répertoire
Sources de la librairie Yoctopuce à votre IncludePath, et ajouter le sous-répertoire de
Binaries/... correspondant à votre système d'exploitation à votre LibPath.

8. Utilisation du Yocto-Knob-C en C++

46 www.yoctopuce.com

Finalement, pour que votre projet se construise ensuite correctement, il faudra linker avec votre
projet la librairie Yoctopuce et les librairies systèmes requises:

• Pour Windows: yocto-static.lib
• Pour macOS: libyocto-static.a. IOKit.framework et CoreFoundation.framework
• Pour Linux: libyocto-static.a, libm, libpthread, libusb1.0 et libstdc++.

Attention, sous Linux, si vous voulez compiler en ligne de commande avec GCC, il est en général
souhaitable de linker les librairies systèmes en dynamique et non en statique. Pour mélanger sur la
même ligne de commande des librairies statiques et dynamiques, il faut passer les arguments
suivants:

gcc (...) -Wl,-Bstatic -lyocto-static -Wl,-Bdynamic -lm -lpthread -lusb-1.0 -lstdc++

Intégration en librairie dynamique
L'intégration de la librairie Yoctopuce sous forme de librairie dynamique permet de produire un
exécutable plus petit que les deux méthodes précédentes, et de mettre éventuellement à jour cette
librairie si un correctif s'avérait nécessaire sans devoir recompiler le code source de l'application. Par
contre, c'est un mode d'intégration qui exigera systématiquement de copier la librairie dynamique sur
la machine cible ou l'application devra être lancée (yocto.dll sous Windows, libyocto.so.1.0.1 sous
macOS et Linux).

Pour utiliser la librairie dynamique, il faut la compiler à l'aide du shell script build.sh sous UNIX,
ou build.bat sous Windows. Ce script qui se situe à la racine de la librairie, détecte l'OS et
recompile toutes les librairies ainsi que les exemples correspondant.

Ensuite, pour intégrer la librairie dynamique Yoctopuce à votre projet, vous devez inclure le
répertoire Sources de la librairie Yoctopuce à votre IncludePath, et ajouter le sous-répertoire de
Binaries/... correspondant à votre système d'exploitation à votre LibPath.

Finalement, pour que votre projet se construise ensuite correctement, il faudra linker avec votre
projet la librairie dynamique Yoctopuce et les librairies systèmes requises:

• Pour Windows: yocto.lib
• Pour macOS: libyocto, IOKit.framework et CoreFoundation.framework
• Pour Linux: libyocto, libm, libpthread, libusb1.0 et libstdc++.

Avec GCC, la ligne de commande de compilation est simplement:

gcc (...) -lyocto -lm -lpthread -lusb-1.0 -lstdc++

www.yoctopuce.com 47

9. Utilisation du Yocto-Knob-C en C#
C# (prononcez C-Sharp) est un langage orienté objet promu par Microsoft qui n'est pas sans
rappeller Java. Tout comme Visual Basic et Delphi, il permet de créer des applications Windows
relativement facilement. C# est supporté sous Windows Visual Studio 2017 et ses versions plus
récentes.

Notre librairie est aussi compatible avec Mono, la version open source de C# qui fonctionne sous
Linux et macOS. Sous Linux, utilisez la version 5.20 ou plus récente. Le support de Mono sous
macOS est limité aux systèmes 32bits, ce qui le rend de nos jours à peu près inutile.Vous trouverez
sur notre site web différents articles qui décrivent comment indiquer à Mono comment accéder à
notre librairie.

9.1. Installation
Téléchargez la librairie Yoctopuce pour Visual C# depuis le site web de Yoctopuce1. Il n'y a pas de
programme d'installation, copiez simplement de contenu du fichier zip dans le répertoire de votre
choix. Vous avez besoin essentiellement du contenu du répertoire Sources. Les autres répertoires
contiennent la documentation et quelques programmes d'exemple. Les projets d'exemple sont des
projets Visual C# 2010, si vous utilisez une version antérieure, il est possible que vous ayez à
reconstruire la structure de ces projets.

9.2. Utilisation l'API yoctopuce dans un projet Visual C#
La librairie Yoctopuce pour Visual C# .NET se présente sous la forme d'une DLL et de fichiers
sources en Visual C#. La DLL n'est pas une DLL .NET mais une DLL classique, écrite en C, qui gère
les communications à bas niveau avec les modules2. Les fichiers sources en Visual C# gèrent la
partie haut niveau de l'API. Vous avez donc besoin de cette DLL et des fichiers .cs du répertoire
Sources pour créer un projet gérant des modules Yoctopuce.

Configuration d'un projet Visual C#
Les indications ci-dessous sont fournies pour Visual Studio express 2010, mais la procédure est
semblable pour les autres versions.

Commencez par créer votre projet, puis depuis le panneau Explorateur de solutions effectuez un
clic droit sur votre projet, et choisissez Ajouter puis Elément existant.

1 www.yoctopuce.com/FR/libraries.php
2 Les sources de cette DLL sont disponibles dans l'API C++

9. Utilisation du Yocto-Knob-C en C#

48 www.yoctopuce.com

Une fenêtre de sélection de fichiers apparaît: sélectionnez le fichier yocto_api.cs et les fichiers
correspondant aux fonctions des modules Yoctopuce que votre projet va gérer. Dans le doute, vous
pouvez aussi sélectionner tous les fichiers.

Vous avez alors le choix entre simplement ajouter ces fichiers à votre projet, ou les ajouter en tant
que lien (le bouton Ajouter est en fait un menu déroulant). Dans le premier cas, Visual Studio va
copier les fichiers choisis dans votre projet, dans le second Visual Studio va simplement garder un
lien sur les fichiers originaux. Il est recommandé d'utiliser des liens, une éventuelle mise à jour de la
librairie sera ainsi beaucoup plus facile.

Ensuite, ajoutez de la même manière la dll yapi.dll, qui se trouve dans le répertoire Sources/
dll3. Puis depuis la fenêtre Explorateur de solutions, effectuez un clic droit sur la DLL, choisissez
Propriété et dans le panneau Propriétés, mettez l'option Copier dans le répertoire de sortie à
toujours copier. Vous êtes maintenant prêt à utiliser vos modules Yoctopuce depuis votre
environnement Visual Studio.

Afin de les garder simples, tous les exemples fournis dans cette documentation sont des applications
consoles. Il va de soit que que les fonctionnement des librairies est strictement identiques si vous les
intégrez dans une application dotée d'une interface graphique.

9.3. Contrôle de la fonction AnButton
Il suffit de quelques lignes de code pour piloter un Yocto-Knob-C. Voici le squelette d'un fragment de
code C# qui utilise la fonction AnButton.

[...]
// On active la détection des modules sur USB
string errmsg = "";
YAPI.RegisterHub("usb", errmsg);
[...]

// On récupère l'objet permettant d'intéragir avec le module
YAnButton anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1");

// Pour gérer le hot-plug, on vérifie que le module est là
if (anbutton.isOnline())
{
 // Utiliser anbutton.get_calibratedValue()
 [...]
}

Voyons maintenant en détail ce que font ces quelques lignes.

YAPI.RegisterHub
La fonction YAPI.RegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent
être recherchés. Utilisée avec le paramètre "usb", elle permet de travailler avec les modules
connectés localement à la machine. Si l'initialisation se passe mal, cette fonction renverra une valeur
différente de YAPI.SUCCESS, et retournera via le paramètre errmsg une explication du problème.

YAnButton.FindAnButton
La fonction YAnButton.FindAnButton permet de retrouver une entrée analogique en fonction
du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi
bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module
Yocto-Knob-C avec le numéros de série YBUTTN1C-123456 que vous auriez appelé "MonModule"
et dont vous auriez nommé la fonction anButton1 "MaFonction", les cinq appels suivants seront
strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute
ambiguïté):

anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1");

3 Pensez à changer le filtre de la fenêtre de sélection de fichiers, sinon la DLL n'apparaîtra pas

9. Utilisation du Yocto-Knob-C en C#

www.yoctopuce.com 49

anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.MaFonction");
anbutton = YAnButton.FindAnButton("MonModule.anButton1");
anbutton = YAnButton.FindAnButton("MonModule.MaFonction");
anbutton = YAnButton.FindAnButton("MaFonction");

YAnButton.FindAnButton renvoie un objet que vous pouvez ensuite utiliser à loisir pour
contrôler l'entrée analogique.

isOnline
La méthode isOnline() de l'objet renvoyé par YAnButton.FindAnButton permet de savoir
si le module correspondant est présent et en état de marche.

get_isPressed
La méthode get_isPressed() de l'objet renvoyé par YAnButton.FindAnButton permet de
connaître l'état d'un interrupteur on/off qui serait branché sur l'entrée correspondante du module. Les
valeurs possibles retournées sont YAnButton.ISPRESSED_TRUE (si le contact est fermé) et
YAnButton.ISPRESSED_FALSE (si le contact est ouvert). Pour lire une valeur analogique plutôt
qu'une valeur binaire, on utilise à la place la méthode ci-dessous.

get_calibratedValue
La méthode get_calibratedValue() de l'objet renvoyé par YAnButton.FindAnButton
permet de connaître la position d'un potentiomètre analogique qui serait branché sur l'entrée
correspondante du module. Une fois que vous avez calibré l'entrée analogique pour votre
potentiomètre, la valeur retournée est un entier entre 0 et 1000.

Un exemple réel
Lancez Visual C# et ouvrez le projet exemple correspondant, fourni dans le répertoire Examples/
Doc-GettingStarted-Yocto-Knob-C de la librairie Yoctopuce.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois
utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void usage()
 {
 string execname = System.AppDomain.CurrentDomain.FriendlyName;
 Console.WriteLine("Usage:");
 Console.WriteLine(execname + " <serial_number>");
 Console.WriteLine(execname + " <logical_name>");
 Console.WriteLine(execname + " any ");
 System.Threading.Thread.Sleep(2500);
 Environment.Exit(0);
 }

 static void Main(string[] args)
 {
 string errmsg = "";
 string target;
 YAnButton input1;
 YAnButton input5;

 if (args.Length < 1) usage();
 target = args[0].ToUpper();

 if (YAPI.RegisterHub("usb", ref errmsg) != YAPI.SUCCESS) {
 Console.WriteLine("RegisterHub error: " + errmsg);
 Environment.Exit(0);
 }

9. Utilisation du Yocto-Knob-C en C#

50 www.yoctopuce.com

 if (target == "ANY") {
 input1 = YAnButton.FirstAnButton();
 if (input1 == null) {
 Console.WriteLine("No module connected (check USB cable) ");
 Environment.Exit(0);
 }

 target = input1.get_module().get_serialNumber();
 }

 input1 = YAnButton.FindAnButton(target + ".anButton1");
 input5 = YAnButton.FindAnButton(target + ".anButton5");

 if (!input1.isOnline()) {
 Console.WriteLine("Module not connected");
 Console.WriteLine("check identification and USB cable");
 Environment.Exit(0);
 }
 while (input1.isOnline()) {
 if (input1.get_isPressed() == YAnButton.ISPRESSED_TRUE)
 Console.Write("Button 1: pressed ");
 else
 Console.Write("Button 1: not pressed ");
 Console.WriteLine("- analog value: " + input1.get_calibratedValue().ToString());
 if (input5.get_isPressed() == YAnButton.ISPRESSED_TRUE)
 Console.Write("Button 5: pressed ");
 else
 Console.Write("Button 5: not pressed ");
 Console.WriteLine("- analog value: " + input5.get_calibratedValue().ToString());

 YAPI.Sleep(1000, ref errmsg);
 }
 YAPI.FreeAPI();
 }
 }
}

9.4. Contrôle de la partie module
Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci-dessous un simple
programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la
balise de localisation.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void usage()
 {
 string execname = System.AppDomain.CurrentDomain.FriendlyName;
 Console.WriteLine("Usage:");
 Console.WriteLine(execname + " <serial or logical name> [ON/OFF]");
 System.Threading.Thread.Sleep(2500);
 Environment.Exit(0);
 }

 static void Main(string[] args)
 {
 YModule m;
 string errmsg = "";

 if (YAPI.RegisterHub("usb", ref errmsg) != YAPI.SUCCESS) {
 Console.WriteLine("RegisterHub error: " + errmsg);
 Environment.Exit(0);
 }

 if (args.Length < 1) usage();

9. Utilisation du Yocto-Knob-C en C#

www.yoctopuce.com 51

 m = YModule.FindModule(args[0]); // use serial or logical name

 if (m.isOnline()) {
 if (args.Length >= 2) {
 if (args[1].ToUpper() == "ON") {
 m.set_beacon(YModule.BEACON_ON);
 }
 if (args[1].ToUpper() == "OFF") {
 m.set_beacon(YModule.BEACON_OFF);
 }
 }

 Console.WriteLine("serial: " + m.get_serialNumber());
 Console.WriteLine("logical name: " + m.get_logicalName());
 Console.WriteLine("luminosity: " + m.get_luminosity().ToString());
 Console.Write("beacon: ");
 if (m.get_beacon() == YModule.BEACON_ON)
 Console.WriteLine("ON");
 else
 Console.WriteLine("OFF");
 Console.WriteLine("upTime: " + (m.get_upTime() / 1000).ToString() + " sec");
 Console.WriteLine("USB current: " + m.get_usbCurrent().ToString() + " mA");
 Console.WriteLine("Logs:\r\n" + m.get_lastLogs());

 } else {
 Console.WriteLine(args[0] + " not connected (check identification and USB cable)");
 }
 YAPI.FreeAPI();
 }
 }
}

Chaque propriété xxx du module peut être lue grâce à une méthode du type YModule.get_xxxx
(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode
YModule.set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux
chapitre API

Modifications des réglages du module
Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction
YModule.set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire
vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient
mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa
configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode
YModule.saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages
courants en utilisant la méthode YModule.revertFromFlash(). Ce petit exemple ci-dessous
vous permet changer le nom logique d'un module.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void usage()
 {
 string execname = System.AppDomain.CurrentDomain.FriendlyName;
 Console.WriteLine("Usage:");
 Console.WriteLine("usage: demo <serial or logical name> <new logical name>");
 System.Threading.Thread.Sleep(2500);
 Environment.Exit(0);
 }

 static void Main(string[] args)
 {
 YModule m;
 string errmsg = "";
 string newname;

9. Utilisation du Yocto-Knob-C en C#

52 www.yoctopuce.com

 if (args.Length != 2) usage();

 if (YAPI.RegisterHub("usb", ref errmsg) != YAPI.SUCCESS) {
 Console.WriteLine("RegisterHub error: " + errmsg);
 Environment.Exit(0);
 }

 m = YModule.FindModule(args[0]); // use serial or logical name

 if (m.isOnline()) {
 newname = args[1];
 if (!YAPI.CheckLogicalName(newname)) {
 Console.WriteLine("Invalid name (" + newname + ")");
 Environment.Exit(0);
 }

 m.set_logicalName(newname);
 m.saveToFlash(); // do not forget this

 Console.Write("Module: serial= " + m.get_serialNumber());
 Console.WriteLine(" / name= " + m.get_logicalName());
 } else {
 Console.Write("not connected (check identification and USB cable");
 }
 YAPI.FreeAPI();
 }
 }
}

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette
limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite,
liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000
cycles. Pour résumer vous ne pouvez employer la fonction YModule.saveToFlash() que
100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis
l'intérieur d'une boucle.

Enumeration des modules
Obtenir la liste des modules connectés se fait à l'aide de la fonction YModule.yFirstModule()
qui renvoie le premier module trouvé, il suffit ensuite d'appeler la méthode nextModule() de cet
objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un null. Ci-dessous un
petit exemple listant les module connectés

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 YModule m;
 string errmsg = "";

 if (YAPI.RegisterHub("usb", ref errmsg) != YAPI.SUCCESS) {
 Console.WriteLine("RegisterHub error: " + errmsg);
 Environment.Exit(0);
 }

 Console.WriteLine("Device list");
 m = YModule.FirstModule();
 while (m != null) {
 Console.WriteLine(m.get_serialNumber() + " (" + m.get_productName() + ")");
 m = m.nextModule();
 }
 YAPI.FreeAPI();
 }
 }
}

9. Utilisation du Yocto-Knob-C en C#

www.yoctopuce.com 53

9.5. Gestion des erreurs
Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez
pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur
aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération.
La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais
votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées
par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les
petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne
avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de
seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut
suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une
erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule
manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-
dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des
erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie
Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer
une exception. Dans ce cas, de trois choses l'une:

• Si votre code attrape l'exception au vol et la gère, et tout se passe bien.
• Si votre programme tourne dans le debugger, vous pourrez relativement facilement déterminer

où le problème s'est produit, et voir le message explicatif lié à l'exception.
• Sinon... l'exception va crasher votre programme, boum!

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre
alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir
attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction
YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de
chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui
peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas
d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il
suit toujours la même logique: une méthode get_state() retournera une valeur
NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur
NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du
type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire,
si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée.
Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera
YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message
expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des
méthodes errType() et errMessage(). Ce sont les même informations qui auraient été
associées à l'exception si elles avaient été actives.

54 www.yoctopuce.com

www.yoctopuce.com 55

10. Utilisation du Yocto-Knob-C avec LabVIEW
LabVIEW est édité par National Instruments depuis 1986. C'est un environnement de
développement graphique: plutôt que d'écrire des lignes de code, l'utilisateur dessine son
programme, un peu comme un organigramme. LabVIEW est surtout pensé pour interfacer des
instruments de mesures d'où le nom Virtual Instruments (VI) des programmes LabVIEW. Avec la
programmation visuelle, dessiner des algorithmes complexes devient très vite fastidieux, c'est
pourquoi la librairie Yoctopuce pour LabVIEW a été pensée pour être aussi simple de possible à
utiliser. Autrement dit, LabVIEW étant un environnement extrêmement différent des autres langages
supportés par l'API Yoctopuce, vous rencontrerez des différences majeures entre l'API LabVIEW et
les autres API.

10.1. Architecture
La librairie LabVIEW est basée sur la librairie Yoctopuce DotNetProxy contenue dans la DLL
DotNetProxyLibrary.dll. C'est en fait cette librairie DotNetProxy qui se charge du gros du travail en
s'appuyant sur la librairie Yoctopuce C# qui, elle, utilise l'API bas niveau codée dans yapi.dll (32bits)
et amd64\yapi.dll (64bits).

Architecture de l'API Yoctopuce pour LabVIEW

Vos applications LabVIEW utilisant l'API Yoctopuce devront donc impérativement être distribuées
avec les DLL DotNetProxyLibrary.dll, yapi.dll et amd64\yapi.dll

Si besoin est, vous trouverez les sources de l'API bas niveau dans la librairie C# et les sources de
DotNetProxyLibrary.dll dans la librairie DotNetProxy.

10. Utilisation du Yocto-Knob-C avec LabVIEW

56 www.yoctopuce.com

10.2. Compatibilité
Firmwares
Pour que la librairie Yoctopuce pour LabVIEW fonctionne convenablement avec vos modules
Yoctopuce, ces derniers doivent avoir au moins le firmware 37120

LabVIEW pour Linux et MacOS
Au moment de l'écriture de ce manuel, l'API Yoctopuce pour LabVIEW n'a été testée que sous
Windows. Il y a donc de fortes chances pour qu'elle ne fonctionne tout simplement pas avec les
versions Linux et MacOS de LabVIEW.

LabVIEW NXG
La librairie Yoctopuce pour LabVIEW faisant appel à de nombreuses techniques qui ne sont pas
encore disponibles dans la nouvelle génération de LabVIEW, elle n'est absolument pas compatible
avec LabVIEW NXG.

A propos de DotNetProxyLibrary.dll

Afin d'être compatible avec un maximum de version de Windows, y compris Windows XP, la librairie
DotNetProxyLibrary.dll est compilée en .NET 3.5, qui est disponible par défaut sur toutes les
versions de Windows depuis XP.

10.3. Installation
Téléchargez la librairie pour LabVIEW depuis le site web de Yoctopuce1. Il s'agit d'un fichier ZIP
dans lequel vous trouverez un répertoire par version de LabVIEW. Chacun de ses répertoires
contient deux sous-répertoires. Le premier contient des exemples de programmation pour chaque
produit Yoctopuce; le second, nommé VIs, contient tous les VI de l'API et les DLL nécessaires.

Suivant la configuration de Windows et la méthode utilisée pour la copier, la DLL
DotNetProxyLibrary.dll peut se faire bloquer par Windows parce que ce dernier aura détecté qu'elle
provient d'une autre machine. Un cas typique est la décompression de l'archive de la librairie avec
l'explorateur de fichier de Windows. Si la DLL est bloquée, LabVIEW ne pourra pas la charger, ce qui
entrainera une erreur 1386 lors de l'exécution de n'importe quel VI de la librairie Yoctopuce.

Il y a deux manières de corriger le problème. La plus simple consiste à utiliser l'explorateur de fichier
de Windows pour afficher les propriétés de la DLL et la débloquer. Mais cette manipulation devra
être répété à chaque fois qu'une nouvelle version de la DLL sera copiée sur votre système.

1 http://www.yoctopuce.com/FR/libraries.php

10. Utilisation du Yocto-Knob-C avec LabVIEW

www.yoctopuce.com 57

Débloquer la DLL DotNetProxyLibrary.dll.

La seconde méthode consiste à créer dans le même répertoire que l'exécutable labview.exe un
fichier XML nommé labview.exe.config et contenant le code suivant :

<?xml version ="1.0"?>
<configuration>
 <runtime>
 <loadFromRemoteSources enabled="true" />
 </runtime>
</configuration>

Veillez à choisir le bon répertoire en fonction de la version de LabVIEW que vous utilisez (32 bits vs
64 bits). Vous trouverez plus d'information à propos de ce fichier sur le site web de National
Instrument2.

Pour installer l'API Yoctopuce pour LabVIEW vous avez plusieurs méthodes à votre disposition.

Méthode 1 : Installation "à l'emporter"
La manière la plus simple pour installer la librairie Yoctopuce consiste à copier le contenu du
répertoire VIs où bon vous semble, et à utiliser les VIs dans LabVIEW avec une simple opération de
Drag and Drop.

Pour pouvoir utiliser les exemples fournis avec l'API, vous aurez avantage à ajouter le répertoire des
VIs Yoctopuce dans la liste des répertoires où LabVIEW doit chercher les VIs qu'il n'a pas trouvé.
Cette liste est accessible via le menu Tools > Options > Paths > VI Search Path.

2 https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P8XnSAK

10. Utilisation du Yocto-Knob-C avec LabVIEW

58 www.yoctopuce.com

Configuration du "VI Search Path"

Méthode 2 : Installeur fourni avec la librairie
Dans chaque répertoire LabVIEW200xx de la librairie, vous trouverez un VI appelé "Install.vi".
Ouvrez simplement celui qui correspond à votre version de LabVIEW.

L'installeur fourni avec la librairie

Cet installeur offre trois options d'installation:

Install: Keep VI and documentation files where they are.
Avec cette option, les VI sont conservés à l'endroit où la librairie à été décompressée. Vous aurez
donc à faire en sorte qu'ils ne soit pas effacés tant que vous en aurez besoin. Voici ce que fait
exactement l'installeur quand cette option est choisie:

• Toute référence à des répertoires contenant une version quelconque de la librairie Yoctopuce
sont supprimés de l'option viSearchPath dans le fichier labview.ini.

• Un fichier de palette dir.mnu référençant les VIs est créé dans le répertoire:
C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce

• Une référence au répertoire contenants les VIs sera inséré dans l'option viSearchPath du
fichier labview.ini.

Install: Copy VI and documentation files into LabVIEW's vi.lib folder
Dans ce cas, tous les fichiers nécessaires au bon fonctionnement de la librairie sont copiés dans le
répertoire d'installation de LabVIEW. Vous pourrez donc effacer les fichiers originaux une fois

10. Utilisation du Yocto-Knob-C avec LabVIEW

www.yoctopuce.com 59

l'installation terminée. Notez cependant que les exemples de programmation ne sont pas copiés.
Voici ce que fait l'installeur exactement:

• Toute référence à des répertoires contenant une version quelconque de la librairie Yoctopuce
sont supprimés de l'option viSearchPath dans le fichier labview.ini.

• Tous les VIs, DLL et fichiers d'aide sont copiés dans:
C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\Yoctopuce

• Les VIs sont modifiés pour que leur aide pointe sur les nouveaux fichiers d'aide.
• un fichier palette dir.mnu référençant les VIs copiés sera créé dans le répertoire:

C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce

Uninstall Yoctopuce Library
Cette option supprime la Librairie Yoctopuce de votre installation LabVIEW:

• Toute référence à des répertoires contenant une version quelconque de la librairie Yoctopuce
sont supprimés de l'option viSearchPath dans le fichier labview.ini.

• Les répertoires suivants seront supprimé s'ils existent:
C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce
C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\Yoctopuce

Dans tous les cas, si le fichier labview.ini a besoin d'être modifié, une copie de backup est
automatiquement réalisée avant.

L'installeur reconnait les répertoires contenant la librairie Yoctopuce en testant l'existence du fichier
YRegisterHub.vi.

Une fois l'installation terminée, vous trouverez une palette Yoctopuce dans le menu Fonction/
Suppléments.

Méthode 3 Installation manuelle dans la palette LabVIEW
Les étapes pour installer manuellement les VIs directement dans la Palette LabView sont un peu
plus complexes, vous trouverez la procédure complète sur le site de National Instruments3, mais
voici un résumé:

1. Créez un répertoire Yoctopuce\API dans le répertoire C:\Program Files\National Instruments
\LabVIEW xxxx\vi.lib, et copiez tous les VIs et les DLL du répertoire VIs dedans.

2. Créez un répertoire Yoctopuce dans le répertoire C:\Program Files\National Instruments
\LabVIEW xxxx\menus\Categories

3. Lancez LabVIEW, et choisissez l'option Tools>Advanced>Edit Palette Set

3 https://forums.ni.com/t5/Developer-Center-Resources/Creating-a-LabVIEW-Palette/ta-p/3520557

10. Utilisation du Yocto-Knob-C avec LabVIEW

60 www.yoctopuce.com

Trois fenêtres vont apparaître:

◦ "Edit Controls and Functions Palette Set"
◦ "Functions"
◦ "Controls"

.
Dans la fenêtre Function, vous trouverez une icône Yoctopuce. Double-cliquez dessus, ce qui
fera apparaitre une fenêtre "Yoctopuce" vide.

4. Dans la fenêtre Yoctopuce, faites un Clic Droit>Insert>Vi(s)..

ce qui fera apparaître un sélecteur de fichier. Placer le sélecteur dans le répertoire vi.lib
\Yoctopuce\API que vous avez créé au point 1 et cliquez sur Current Folder

Tous les VIs Yoctopuce vont apparaitre dans la fenêtre Yoctopuce. Par défaut, ils sont triés
dans l'ordre alphabétique, mais vous pouvez les arranger comme bon vous semble en les
glissant avec la souris. Pour que la palette soit bien utilisable, nous vous suggérons de
réorganiser les icônes sur 8 colonnes.

5. Dans la fenêtre "Edit Controls and Functions Palette Set", cliquez sur le bouton "Save
Changes", la fenêtre va vous indiquer qu'elle a créé un fichier dir.mnu dans votre répertoire
Documents.

10. Utilisation du Yocto-Knob-C avec LabVIEW

www.yoctopuce.com 61

Copiez ce fichier dans le répertoire "menus\Categories\Yoctopuce" que vous avez
créé au point 2.

6. Redémarrez LabVIEW, la palette de LabVIEW contient maintenant une sous-palette
Yoctopuce et avec tous les VIs de l'API

10.4. Présentation des VIs Yoctopuce
La librairie Yoctopuce pour LabVIEW comprend un VI par classe de l'API Yoctopuce, plus quelques
VI spéciaux. Tous les VIs disposent des connecteurs traditionnels Error IN et Error Out.

YRegisterHub
Le VI YRegisterHub permet d'initialiser l'API. Ce VI doit impérativement être appelé une fois
avant de faire quoi que ce soit qui soit en relation avec des modules Yoctopuce

Le VI YRegisterHub

10. Utilisation du Yocto-Knob-C avec LabVIEW

62 www.yoctopuce.com

Le VI YRegisterHub prend un paramètre url qui peut être soit:

• La chaîne de caractères "usb" pour indiquer que l'on souhaite travailler avec des modules
locaux directement par USB

• Une addresse IP pour indiquer que l'on souhaite travailler avec des modules accessibles via
une connexion réseau. Cette adresse IP peut être celle d'un YoctoHub4 ou encore celle d'une
machine sur laquelle tourne l'application VirtualHub5.

Dans le cas d'une adresse IP, le VI YRegisterHub va essayer de contacter cette adresse et
génèrera une erreur s'il n'y arrive pas, à moins que le paramètre async ne soit mis à TRUE. Si async
est mis à TRUE, aucune erreur ne sera générée, et les modules Yoctopuce correspondant à cette
adresse IP seront automatiquement mis à disposition dès que la machine concernée sera joignable.

Si tout s'est bien passé, la sortie successful contiendra la valeur TRUE. Dans le cas contraire elle
contiendra la valeur FALSE et la sortie error msg contiendra une chaîne de caractères contenant une
description de l'erreur

Vous pouvez utiliser plusieurs VI YRegisterHub avec des urls différentes si vous le souhaitez. En
revanche, sur la même machine, il ne peut y avoir qu'un seul processus qui accède aux modules
Yoctopuce locaux directement par USB (url mis à "usb"). Cette limitation peut facilement être
contournée en faisant tourner le logiciel VirtualHub sur la machine locale et en utilisant l'url
"127.0.0.1".

YFreeAPI
Le VI YFreeAPI permet de libérer les ressources allouée par l'API Yoctopuce.

Le VI YFreeAPI

Le VI YFreeAPI doit être appelé une fois que votre code en a fini avec l'API Yoctopuce, faute de
quoi l'accès direct par USB (url mis à "usb") pourrait rester bloqué une fois l'exécution de votre VI
terminé, et ce tant que LabVIEW n'aura pas été complètement fermé.

Structure des VI correspondant à une classe
Les autres VIs correspondent à une fonction/classe de l'API Yoctopuce, ils ont tous la même
structure:

Structure de la plupart des VIs de l'API.

• Connecteur [11]: name doit contenir le nom hardware ou le nom logique de la fonction visée.
• Connecteur [10] et [9]: paramètres d'entrée qui dépendent de la nature du VI
• Connecteur [8] et [0] : error in et error out.
• Connecteur [7] : Nom hardware unique de la fonction trouvée.
• Connecteur [5] : is online contient TRUE si la fonction est accessible, FALSE sinon.
• Connecteur [2] et [1]: valeurs de sortie qui dépendent de la nature du VI.
• Connecteur [6]: Si cette entré est mise à TRUE, le connecteur [3] contiendra une référence à

l'objet Proxy implémenté par le VI6. Cette entrée est initialisée à FALSE par défaut.

4 www.yoctopuce.com/FR/products/category/extensions-and-networking
5 http://www.yoctopuce.com/EN/virtualhub.php
6 voir section Utilisation objets Proxy

10. Utilisation du Yocto-Knob-C avec LabVIEW

www.yoctopuce.com 63

• Connecteur [3]: Référence sur l'objet Proxy implémenté par le VI si l'entrée [6] contient TRUE.
Cet objet permet d'accéder à des fonctionnalités supplémentaires.

Vous trouverez la liste des fonctions disponibles sur votre Yocto-Knob-C au chapitre Programmation,
concepts généraux.

Si la fonction recherchée (paramètre name) n'est pas accessible, cela ne génèrera pas d'erreur mais
la sortie is online contiendra FALSE et toutes les sorties contiendront les valeurs "N/A" quand c'est
possible. Si la fonction recherchée devient disponible plus tard dans la vie de votre programme, is
online passera à TRUE.

Si le paramètre name contient une chaîne vide, le VI ciblera la première fonction disponible du même
type qu'il trouvera. Si aucune fonction n'est disponible, is online contiendra FALSE.

Le VI YModule

Le module YModule permet d'interfacer la partie "module" de chaque module Yoctopuce. Il permet
de piloter la balise du module et de connaître le numéro de série d'un module.

Le VI YModule

L'entrée name fonctionne de manière légèrement différente des autres VIs. S'il est appelé avec le
paramètre name correspondant à un nom de fonction, le VI YModule trouvera la fonction Module du
module hébergeant la fonction. Il est donc possible de trouver facilement le numéro de série du
module d'une fonction quelconque. Cela permet de construire le nom d'autres fonctions qui se
trouveraient sur le même module. L'exemple ci dessous trouve la première fonction YHumidity
disponible et construit le nom de la fonction YTemperature qui se trouve sur le même module. Les
exemples fournis avec l'API Yoctopuce font un usage extensif de cette technique.

Utilisation du VI YModule pour retrouver les fonctions hébergés sur le même module

Les VI senseurs
Tous les VI correspondant à des senseurs Yoctopuce ont exactement la même géométrie. Les deux
sorties permettent de récupérer la valeur mesurée par le capteur correspondant ainsi que l'unité
utilisée.

Les VI senseurs ont tous exactement la même géométrie

Le paramètre d'entrée update freq est une chaîne de caractères qui permet de configurer la façon
dont la valeur de sortie est mis à jour:

• "auto" : la valeur du VI est mise à jour dès que le capteur détecte un changement significatif
de valeur. C'est le fonctionnement par défaut.

10. Utilisation du Yocto-Knob-C avec LabVIEW

64 www.yoctopuce.com

• "x/s": la valeur du VI est mise à jour x fois par seconde avec la valeur instantanée du capteur.
• "x/m","x/h": la valeur du VI est mise à jour x fois par minute, (resp. heure) avec la valeur

moyenne sur la dernière période. Attention les fréquences maximum sont (60/m) et (3600/h),
pour des fréquence plus élevés utiliser la syntaxe (x/s).

La fréquence de mise à jour du VI est un paramètre géré par le module Yoctopuce physique. Si
plusieurs VI essayent de changer la fréquence d'un même capteur, la configuration retenue sera
celle du dernier appel. Par contre, il est tout à fait possible de configurer des fréquences différentes
pour des capteurs du même module Yoctopuce.

Changement de la fréquence de mise à jour du même module

La fréquence de mise à jour du VI est complètement indépendante de la fréquence d'échantillonnage
du capteur qui n'est généralement pas modifiable. Il est inutile et contre-productif de définir une
fréquence de mise à jour supérieure à la fréquence d'échantillonnage du capteur.

10.5. Fonctionnement et utilisation des VIs
Voici un exemple parmi les plus simples de VI utilisant l'API Yoctopuce.

Exemple minimal d'utilisation de l'API Yoctopuce pour LabVIEW

Cet exemple s'appuie sur le VI YSensor qui est un VI générique qui permet d'interfacer n'importe
quelle fonction senseur d'un module Yoctopuce. Vous pouvez remplacer ce VI par n'importe quel
autre de l'API Yoctopuce, ils ont tous la même géométrie et fonctionnent tous de la même manière.
Cet exemple se contente de faire trois choses:

1. Il initialise l'API en mode natif ("usb") avec le VI YRegisterHub
2. Il affiche la valeur du premier capteur Yoctopuce qu'il trouve à l'aide du VI YSensor
3. Il libère l'API grâce au VI YFreeAPI

Cet exemple cherche automatiquement un senseur disponible, si un tel senseur est trouvé on pourra
connaitre son nom via la sortie hardware name et la sortie isOnline sera à TRUE. Si aucun senseur
n'est disponible, le VI ne génèrera pas d'erreur mais émulera un senseur fantôme qui sera "offline".
Par contre si plus tard, dans la vie de l'application, un senseur devient disponible parce qu'il à été
branché, isOnline passera à TRUE et le hardware name contiendra le nom du capteur. On peut donc
facilement ajouter quelques indicateurs à l'exemple précédent pour savoir comment se passe
l'exécution.

10. Utilisation du Yocto-Knob-C avec LabVIEW

www.yoctopuce.com 65

Utilisation des sorties hardware name et isOnline

Les VIs de l'API Yoctopuce ne sont qu'une porte d'entrée sur la mécanique interne de la librairie
Yoctopuce. Cette mécanique fonctionne indépendamment des VIs Yoctopuce. En effet, la plupart
des communications avec les modules électroniques sont gérées automatiquement en arrière plan.
C'est pourquoi vous n'avez pas forcément besoin de prendre de précaution particulière pour utiliser
les VI Yoctopuce, vous pouvez par exemple les utiliser dans une boucle non temporisée sans que
cela pose de problème particulier à l'API.

Les VIs Yoctopuce peuvent être utilisés dans une boucle non temporisée

Notez que le VI YRegisterHub n'est pas dans la boucle. Le VI YRegisterHub sert à l'initialiser
l'API, donc à moins que vous n'ayez plusieurs url à enregistrer, il n'est pas souhaitable de l'appeler
plusieurs fois.

Lorsque que le paramètre name est initialisé à une chaîne vide, les VI Yoctopuce recherchent
automatiquement la fonction avec laquelle ils peuvent travailler, ce qui est très pratique lorsqu'on sait
qu'il n'y a qu'une seule fonction du même type disponible que qu'on ne souhaite pas se soucier de
gérer som nom. Si le paramètre name contient un nom matériel ou un nom logique, le VI cherchera
la fonction correspondante, si il ne la trouve pas il émulera une fonction qui sera offline en attendant
que la vraie fonction devienne disponible.

Utilisation de noms pour identifier les fonctions à utiliser

10. Utilisation du Yocto-Knob-C avec LabVIEW

66 www.yoctopuce.com

Gestion des erreurs
L'API Yoctopuce pour LabVIEW est codée pour gérer les erreurs d'une manière aussi gracieuse que
possible: par exemple si vous utilisez un VI pour accéder à une fonction qui n'existe pas, sa sortie
isOnline sera à FALSE, les autres sorties seront affecté à NaN et les entrées n'auront pas d'effet.
Les erreurs fatales sont propagée à travers le canal traditionnel error in, error out.

Cependant, le VI YRegisterHub gère les erreurs de connexion de manière un peu différente. Afin
de les rendre plus faciles à gérer, les erreurs de connexions sont signalées à l'aide de sorties
Success et error msg. Si un problème apparait lors de l'appel au VI YRegisterHub, success
contiendra FALSE et error msg contiendra une description de l'erreur.

Gestion des erreurs

Le message d'erreur le plus courant est "Another process is already using yAPI". Il signifie qu'une
autre application, LabVIEW ou autre, utilise déjà l'API en module USB natif. En effet, pour des raison
techniques, l'API USB native ne peut être utilisée que par une seule application à la fois sur la même
machine. Cette limitation peut être facilement contourné en utilisant le mode réseau.

10.6. Utilisation des objets Proxy
L'API Yoctopuce contient des centaines de méthodes, fonctions et propriétés. Il n'était ni possible, ni
souhaitable de créer un VI pour chacune d'entre elles. C'est pourquoi il y a un VI par classe qui
expose les deux propriétés que Yoctopuce a jugé les plus utiles, mais cela ne veut pas dire que les
autres ne sont pas accessibles.

Chaque VI correspondant à une classe dispose de deux connecteurs create ref et optional ref qui
permettent d'obtenir une référence sur l'objet Proxy de l'API .NET Proxy sur laquelle est construite la
librairie LabVIEW.

Les connecteurs pour obtenir une référence sur l'objet Proxy correspondant au VI

Pour obtenir cette référence, il suffit de mettre optional ref à TRUE. Attention, il est impératif de
fermer toute référence créée de cette manière, sous peine de saturer rapidement la mémoire de
l'ordinateur.

Voici un exemple qui utilise cette technique pour modifier la luminosité des LEDs d'un module
Yoctopuce

10. Utilisation du Yocto-Knob-C avec LabVIEW

www.yoctopuce.com 67

Contrôle de la luminosité des LEDs d'un module

Notez que chaque référence permet d'obtenir aussi bien des propriétés (noeud property) que des
méthodes (noeud invoke). Par convention, les propriétés sont optimisées pour générer un minimum
de communication avec les modules, c'est pourquoi il est recommandé de les utiliser plutôt les
méthodes get_xxx et set_xxx correspondantes qui pourraient sembler équivalentes mais qui ne sont
pas optimisées. Les propriétés permettent aussi récupérer les différentes constantes de l'API, qui
sont préfixées avec le caractère "_". Pour des raisons techniques, les méthodes get_xxx et set_xxx
ne sont pas toutes disponibles sous forme de propriétés.

Noeuds Property et Invoke: Utilisation de propriétés, méthodes et constantes

Vous trouverez la description de toutes les propriétés, fonctions et méthodes disponibles dans la
documentation de l'API .NET Proxy.

Utilisation en réseau
Sur une même machine, il ne peut y avoir qu'un seul processus qui accède aux modules Yoctopuce
locaux directement par USB (url mis à "usb"). Par contre, plusieurs processus peuvent se
connecter en parallèle à des YoctoHubs7 ou à une machine sur laquelle tourne le logiciel
VirtualHub8, y compris la machine locale. Si vous utilisez l'adresse réseau locale de votre machine
(127.0.0.1) et qu'un VirtualHub tourne dessus, vous pourrez ainsi contourner la limitation qui
empêche l'utilisation en parallèle de l'API native USB.

Utilisation en mode réseau

7 www.yoctopuce.com/FR/products/category/extensions-et-reseau
8 www.yoctopuce.com/FR/virtualhub.php

10. Utilisation du Yocto-Knob-C avec LabVIEW

68 www.yoctopuce.com

Il n'y a pas non plus de limitation sur le nombre d'interfaces réseau auxquels l'API peut se connecter
en parallèle. Autrement dit, il est tout à fait possible de faire des appels multiples au VI
YRegisterHub. C'est le seul cas où il y a un intérêt à appeler le VI YRegisterHub plusieurs fois
au cours de la vie de l'application.

Les connexions réseau multiples sont possibles

Par défaut, le VI YRegisterHub essaye se connecter sur l'adresse donnée en paramètre et
génère une erreur (success=FALSE) s'il n'y arrive pas parce que personne ne répond. Mais si le
paramètre async est initialisé à TRUE, aucune erreur ne sera générée en cas d'erreur de connexion,
mais si la connexion devient possible plus tard dans la vie de l'application, les modules
correspondants seront automatiquement accessibles.

Connexion asynchrone

10.7. Gestion du datalogger
Quasiment tous les senseurs Yoctopuce disposent d'un enregistreur de données qui permet de
stocker les mesures des senseurs dans la mémoire non volatile du module. La configuration de
l'enregistreur de données peut être réalisée avec le VirtualHub, mais aussi à l'aide d'un peu de code
LabVIEW

Enregistrement
Pour ce faire, il faut configurer la fréquence d'enregistrement en utilisant la propriété "LogFrequency"
que l'on atteint avec une référence sur l'objet Proxy du senseur utilisé, puis il faut mettre en marche
l'enregistreur grâce au VI YDataLogger. Noter qu'à la manière du VI YModule, le VI
YDataLogger correspondant à un module peut être obtenu avec son propre nom, mais aussi avec
le nom de n'importe laquelle des fonctions présentes sur le même module.

Enclenchement de l'enregistrement de données dans le datalogger

Lecture
La récupération des données de l'enregistreur se fait l'aide du VI YDataLoggerContents.

10. Utilisation du Yocto-Knob-C avec LabVIEW

www.yoctopuce.com 69

Le VI YDataLoggerContents

Extraire les données de l'enregistreur d'un module Yoctopuce est un processus lent qui peut prendre
plusieurs dizaines de secondes. C'est pourquoi le VI qui permet cette opération a été conçu pour
fonctionner de manière itérative.

Dans un premier temps le VI doit être appelé avec un nom de senseur, une date de début et une
date de fin (timestamp UNIX en UTC). Le couple (0,0) permet d'obtenir la totalité du contenu de
l'enregistreur. Ce premier appel permet d'obtenir un résumé du contenu du datalogger et un
contexte.

Dans un deuxième temps, il faut rappeler le VI YDataLoggerContents en boucle avec le
paramètre contexte, jusqu'à ce que la sortie progress atteigne la valeur 100. A ce moment la sortie
data représente le contenu de l'enregistreur

Récupération du contenu de l'engistreur de données

Les résultats et le résumé sont rendus sous la forme d'un tableau de structures qui contiennent les
champs suivants:

• startTime: début de la période de mesure
• endTime: fin de la période de mesure
• averageValue: valeur moyenne pour la période
• minValue: valeur minimum sur la période
• maxValue: valeur maximum sur la période

Notez que si la fréquence d'enregistrement est supérieure à 1 Hz, l'enregistreur ne mémorise que
des valeurs instantanées, dans ce cas averageValue, minValue, et maxValue auront la même valeur.

10.8. Énumération de fonctions
Chaque VI correspondant à un objet de l'API .NET Proxy permet de faire une énumération de toutes
les fonctions de la même classe via la méthode getSimilarfunctions() de l'objet Proxy correspondant.
Ainsi il est ainsi aisé de faire un inventaire de tous les modules connectés, de tous les capteurs
connectés, de tous les relais connectés, etc....

10. Utilisation du Yocto-Knob-C avec LabVIEW

70 www.yoctopuce.com

Récupération de la liste de tous les modules connectés

10.9. Un mot sur les performances
L'API Yoctopuce pour LabVIEW été optimisée de manière à ce que les tous les VIs et les propriétés
de objets Proxy génèrent un minimum de communication avec les modules Yoctopuce. Ainsi vous
pouvez les utiliser dans des boucles sans prendre de précaution particulière: vous n'êtes pas obligés
de ralentir les boucles avec un timer.

Ces deux boucles génèrent peu de communications USB et n'ont pas besoin d'être ralenties

En revanche, presque toutes les méthodes des objets Proxy disponibles vont générer une
communication avec les modules Yoctopuce à chaque fois qu'elles seront appelées, il conviendra
donc d'éviter de les appeler trop souvent inutilement.

Cette boucle, qui utilise une méthode, doit être ralentie

10.10. Un exemple complet de programme LabVIEW
Voici un exemple qui illustre l'utilisation d'un Yocto-Knob-C dans LabVIEW. Après un appel au VI
RegisterHub, le VI YAnButton trouve le première entrée analogique disponible, et utilise le VI
YModule pour trouver le numéro de série du module. Ce numéro de série est utilisé pour construire
le nom hardware de tous les autres entrées hébergées par le module. Ces noms sont utilisés comme
paramètres pour initialiser les VI correspondant à chaque entrée. Cette technique évite les
ambigüités au cas où plusieurs Yocto-Knob-C seraient branchés. Une fois les VIs correspondants
aux entrés initialisés, il ne reste plus qu'à afficher leur valeur. Une fois l'application terminée, l'API
Yoctopuce est libérée à l'aide du du VI YFreeAPI.

10. Utilisation du Yocto-Knob-C avec LabVIEW

www.yoctopuce.com 71

Exemple d'utilisation du Yocto-Knob-C dans LabVIEW

Si vous lisez cette documentation sur un écran, vous pouvez zoomer sur l'image ci-dessus. Vous
pourrez aussi retrouver cet exemple dans la librairie Yoctopuce pour LabVIEW

10.11. Différences avec les autres API Yoctopuce
Yoctopuce fait tout son possible pour maintenir une forte cohérence entre les différentes librairies de
programmation. Cependant, LabVIEW étant un environnement clairement à part, il en résulte des
différences importantes avec les autres librairies.

Ces différences ont aussi été introduites pour rendre l'utilisation des modules aussi facile et intuitive
que possible en nécessitant un minimum de code LabVIEW.

YFreeAPI
Contrairement aux autres langages, il est indispensable de libérer l'API native en appelant le VI
YFreeApi lorsque votre code n'a plus besoin d'utiliser l'API. Si cet appel est omis, l'API native
risque de rester bloquée pour les autres applications tant que LabVIEW ne sera pas complètement
fermé.

Propriétés
Contrairement aux classes des autres API, les classes disponibles dans LabVIEW implémentent des
propriétés. Par convention, ces propriétés sont optimisées pour générer un minimum de
communication avec les modules tout en se rafraichissant automatiquement. En revanche, les
méthodes de type get_xxx et set_xxx génèrent systématiquement des communications avec les
modules Yoctopuce et doivent être appelées à bon escient.

Callback vs Propriétés
Il n'y a pas de callbacks dans l'API Yoctopuce pour LabVIEW, les VIs se rafraichissenti
automatiquement: ils sont basés sur les propriétés des objets de l'API .NET Proxy.

72 www.yoctopuce.com

www.yoctopuce.com 73

11. Utilisation du Yocto-Knob-C en Java
Java est un langage orienté objet développé par Sun Microsystem. Son principal avantage est la
portabilité, mais cette portabilité a un coût. Java fait une telle abstraction des couches matérielles
qu'il est très difficile d'interagir directement avec elles. C'est pourquoi l'API java standard de
Yoctopuce ne fonctionne pas en natif: elle doit passer par l'intermédiaire de VirtualHub pour pouvoir
communiquer avec les modules Yoctopuce.

11.1. Préparation
Connectez vous sur le site de Yoctopuce et téléchargez les éléments suivants:

• La librairie de programmation pour Java1

• VirtualHub2 pour Windows, macOS ou Linux selon l'OS que vous utilisez

La librairie est disponible en fichier sources, mais elle aussi disponible sous la forme d'un fichier jar.
Branchez vos modules, Décompressez les fichiers de la librairie dans un répertoire de votre choix.
Lancez VirtualHub et vous pouvez commencer vos premiers tests. Vous n'avez pas besoin d'installer
de driver.

Afin de les garder simples, tous les exemples fournis dans cette documentation sont des applications
consoles. Il va de soit que que le fonctionnement des librairies est strictement identiques si vous les
intégrez dans une application dotée d'une interface graphique.

11.2. Contrôle de la fonction AnButton
Il suffit de quelques lignes de code pour piloter un Yocto-Knob-C. Voici le squelette d'un fragment de
code Java qui utilise la fonction AnButton.

[...]
// On active l'accès aux modules locaux à travers le VirtualHub
YAPI.RegisterHub("127.0.0.1");
[...]

// On récupère l'objet permettant d'intéragir avec le module
anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1");

// Pour gérer le hot-plug, on vérifie que le module est là
if (anbutton.isOnline())

1 www.yoctopuce.com/FR/libraries.php
2 www.yoctopuce.com/FR/virtualhub.php

11. Utilisation du Yocto-Knob-C en Java

74 www.yoctopuce.com

{
 // Utiliser anbutton.get_calibratedValue()
 [...]
}

[...]

Voyons maintenant en détail ce que font ces quelques lignes.

YAPI.RegisterHub
La fonction YAPI.RegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent
être recherchés. Le paramètre est l'adresse du virtual hub capable de voir les modules. Si
l'initialisation se passe mal, une exception sera générée.

YAnButton.FindAnButton
La fonction YAnButton.FindAnButton permet de retrouver une entrée analogique en fonction
du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi
bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module
Yocto-Knob-C avec le numéros de série YBUTTN1C-123456 que vous auriez appelé "MonModule"
et dont vous auriez nommé la fonction anButton1 "MaFonction", les cinq appels suivants seront
strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute
ambiguïté):

anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1")
anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.MaFonction")
anbutton = YAnButton.FindAnButton("MonModule.anButton1")
anbutton = YAnButton.FindAnButton("MonModule.MaFonction")
anbutton = YAnButton.FindAnButton("MaFonction")

YAnButton.FindAnButton renvoie un objet que vous pouvez ensuite utiliser à loisir pour
contrôler l'entrée analogique.

isOnline
La méthode isOnline() de l'objet renvoyé par YAnButton.FindAnButton permet de savoir
si le module correspondant est présent et en état de marche.

get_isPressed
La méthode get_isPressed() de l'objet renvoyé par YAnButton.FindAnButton permet de
connaître l'état d'un interrupteur on/off qui serait branché sur l'entrée correspondante du module. Les
valeurs possibles retournées sont YAnButton.ISPRESSED_TRUE (si le contact est fermé) et
YAnButton.ISPRESSED_FALSE (si le contact est ouvert). Pour lire une valeur analogique plutôt
qu'une valeur binaire, on utilise à la place la méthode ci-dessous.

get_calibratedValue
La méthode get_calibratedValue() de l'objet renvoyé par YAnButton.FindAnButton
permet de connaître la position d'un potentiomètre analogique qui serait branché sur l'entrée
correspondante du module. Une fois que vous avez calibré l'entrée analogique pour votre
potentiomètre, la valeur retournée est un entier entre 0 et 1000.

Un exemple réel
Lancez votre environnement java et ouvrez le projet correspondant, fourni dans le répertoire
Examples/Doc-GettingStarted-Yocto-Knob-C de la librairie Yoctopuce.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois
utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

import com.yoctopuce.YoctoAPI.*;

public class Demo {

11. Utilisation du Yocto-Knob-C en Java

www.yoctopuce.com 75

 public static void main(String[] args)
 {
 try {
 // setup the API to use local VirtualHub
 YAPI.RegisterHub("127.0.0.1");
 } catch (YAPI_Exception ex) {
 System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage() + ")");
 System.out.println("Ensure that the VirtualHub application is running");
 System.exit(1);
 }
 String serial = "";
 if (args.length > 0) {
 serial = args[0];
 } else {
 YAnButton tmp = YAnButton.FirstAnButton();
 if (tmp == null) {
 System.out.println("No module connected (check USB cable)");
 System.exit(1);
 }
 try {
 serial = tmp.module().get_serialNumber();
 } catch (YAPI_Exception ex) {
 System.out.println("No module connected (check USB cable)");
 System.exit(1);
 }
 }
 YAnButton input1 = YAnButton.FindAnButton(serial + ".anButton1");
 YAnButton input5 = YAnButton.FindAnButton(serial + ".anButton5");

 while (true) {
 try {
 if (input1.get_isPressed() == YAnButton.ISPRESSED_TRUE) {
 System.out.print("Button 1: pressed ");
 } else {
 System.out.print("Button 1: not pressed ");
 }
 System.out.println("- analog value: " + input1.get_calibratedValue());
 if (input5.get_isPressed() == YAnButton.ISPRESSED_TRUE) {
 System.out.print("Button 5: pressed ");
 } else {
 System.out.print("Button 5: not pressed ");
 }
 System.out.println("- analog value: " + input5.get_calibratedValue());
 System.out.println("(press both buttons simultaneously to exit)");
 if (input1.get_isPressed() == YAnButton.ISPRESSED_TRUE &&
 input5.get_isPressed() == YAnButton.ISPRESSED_TRUE)
 break;
 YAPI.Sleep(1000);
 } catch (YAPI_Exception ex) {
 System.out.println("Module not connected (check identification and USB
cable)");
 break;
 }

 }

 YAPI.FreeAPI();
 }
}

11.3. Contrôle de la partie module
Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci-dessous un simple
programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la
balise de localisation.

import com.yoctopuce.YoctoAPI.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class Demo {

11. Utilisation du Yocto-Knob-C en Java

76 www.yoctopuce.com

 public static void main(String[] args)
 {
 try {
 // setup the API to use local VirtualHub
 YAPI.RegisterHub("127.0.0.1");
 } catch (YAPI_Exception ex) {
 System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage() + ")");
 System.out.println("Ensure that the VirtualHub application is running");
 System.exit(1);
 }
 System.out.println("usage: demo [serial or logical name] [ON/OFF]");

 YModule module;
 if (args.length == 0) {
 module = YModule.FirstModule();
 if (module == null) {
 System.out.println("No module connected (check USB cable)");
 System.exit(1);
 }
 } else {
 module = YModule.FindModule(args[0]); // use serial or logical name
 }

 try {
 if (args.length > 1) {
 if (args[1].equalsIgnoreCase("ON")) {
 module.setBeacon(YModule.BEACON_ON);
 } else {
 module.setBeacon(YModule.BEACON_OFF);
 }
 }
 System.out.println("serial: " + module.get_serialNumber());
 System.out.println("logical name: " + module.get_logicalName());
 System.out.println("luminosity: " + module.get_luminosity());
 if (module.get_beacon() == YModule.BEACON_ON) {
 System.out.println("beacon: ON");
 } else {
 System.out.println("beacon: OFF");
 }
 System.out.println("upTime: " + module.get_upTime() / 1000 + " sec");
 System.out.println("USB current: " + module.get_usbCurrent() + " mA");
 System.out.println("logs:\n" + module.get_lastLogs());
 } catch (YAPI_Exception ex) {
 System.out.println(args[1] + " not connected (check identification and USB
cable)");
 }
 YAPI.FreeAPI();
 }
}

Chaque propriété xxx du module peut être lue grâce à une méthode du type YModule.get_xxxx
(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode
YModule.set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux
chapitre API

Modifications des réglages du module
Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction
YModule.set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire
vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient
mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa
configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode
YModule.saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages
courants en utilisant la méthode YModule.revertFromFlash(). Ce petit exemple ci-dessous
vous permet changer le nom logique d'un module.

import com.yoctopuce.YoctoAPI.*;

public class Demo {

 public static void main(String[] args)

11. Utilisation du Yocto-Knob-C en Java

www.yoctopuce.com 77

 {
 try {
 // setup the API to use local VirtualHub
 YAPI.RegisterHub("127.0.0.1");
 } catch (YAPI_Exception ex) {
 System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage() + ")");
 System.out.println("Ensure that the VirtualHub application is running");
 System.exit(1);
 }

 if (args.length != 2) {
 System.out.println("usage: demo <serial or logical name> <new logical name>");
 System.exit(1);
 }

 YModule m;
 String newname;

 m = YModule.FindModule(args[0]); // use serial or logical name

 try {
 newname = args[1];
 if (!YAPI.CheckLogicalName(newname))
 {
 System.out.println("Invalid name (" + newname + ")");
 System.exit(1);
 }

 m.set_logicalName(newname);
 m.saveToFlash(); // do not forget this

 System.out.println("Module: serial= " + m.get_serialNumber());
 System.out.println(" / name= " + m.get_logicalName());
 } catch (YAPI_Exception ex) {
 System.out.println("Module " + args[0] + "not connected (check identification
and USB cable)");
 System.out.println(ex.getMessage());
 System.exit(1);
 }

 YAPI.FreeAPI();
 }
}

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette
limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite,
liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000
cycles. Pour résumer vous ne pouvez employer la fonction YModule.saveToFlash() que
100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis
l'intérieur d'une boucle.

Enumeration des modules
Obtenir la liste des modules connectés se fait à l'aide de la fonction YModule.yFirstModule()
qui renvoie le premier module trouvé, il suffit ensuite d'appeler la mehode nextModule() de cet
objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un null. Ci-dessous un
petit exemple listant les module connectés

import com.yoctopuce.YoctoAPI.*;

public class Demo {

 public static void main(String[] args)
 {
 try {
 // setup the API to use local VirtualHub
 YAPI.RegisterHub("127.0.0.1");
 } catch (YAPI_Exception ex) {
 System.out.println("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage() + ")");
 System.out.println("Ensure that the VirtualHub application is running");
 System.exit(1);
 }

11. Utilisation du Yocto-Knob-C en Java

78 www.yoctopuce.com

 System.out.println("Device list");
 YModule module = YModule.FirstModule();
 while (module != null) {
 try {
 System.out.println(module.get_serialNumber() + " (" +
module.get_productName() + ")");
 } catch (YAPI_Exception ex) {
 break;
 }
 module = module.nextModule();
 }
 YAPI.FreeAPI();
 }
}

11.4. Gestion des erreurs
Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez
pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur
aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération.
La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais
votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées
par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les
petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne
avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de
seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut
suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une
erreur se produisant après le isOnline(), qui pourrait faire planter le programme.

Dans l'API java, le traitement d'erreur est implémenté au moyen d'exceptions. Vous devrez donc
intercepter et traiter correctement ces exceptions si vous souhaitez avoir un projet fiable qui ne
crashera pas des que vous débrancherez un module.

www.yoctopuce.com 79

12. Utilisation du Yocto-Knob-C avec Android
A vrai dire, Android n'est pas un langage de programmation, c'est un système d'exploitation
développé par Google pour les appareils portables tels que smart phones et tablettes. Mais il se
trouve que sous Android tout est programmé avec le même langage de programmation: Java. En
revanche les paradigmes de programmation et les possibilités d'accès au hardware sont légèrement
différentes par rapport au Java classique, ce qui justifie un chapitre à part sur la programmation
Android.

12.1. Accès Natif et VirtualHub
Contrairement à l'API Java classique, l'API Java pour Android accède aux modules USB de manière
native. En revanche, comme il n'existe pas de VirtualHub tournant sous Android, il n'est pas possible
de prendre le contrôle à distance de modules Yoctopuce pilotés par une machine sous Android. Bien
sûr, l'API Java pour Android reste parfaitement capable de se connecter à VirtualHub tournant sur un
autre OS.

12.2. Préparation
Connectez-vous sur le site de Yoctopuce et téléchargez la librairie de programmation pour Java pour
Android1. La librairie est disponible en fichiers sources, mais elle aussi disponible sous la forme d'un
fichier jar. Branchez vos modules, décompressez les fichiers de la librairie dans le répertoire de votre
choix. Et configurez votre environnement de programmation Android pour qu'il puisse les trouver.

Afin de les garder simples, tous les exemples fournis dans cette documentation sont des fragments
d'application Android. Vous devrez les intégrer dans vos propres applications Android pour les faire
fonctionner. En revanche vous pourrez trouver des applications complètes dans les exemples fournis
avec la librairie Java pour Android.

12.3. Compatibilité
Dans un monde idéal, il suffirait d'avoir un téléphone sous Android pour pouvoir faire fonctionner des
modules Yoctopuce. Malheureusement, la réalité est légèrement différente, un appareil tournant
sous Android doit répondre à un certain nombre d'exigences pour pouvoir faire fonctionner des
modules USB Yoctopuce en natif.

1 www.yoctopuce.com/FR/libraries.php

12. Utilisation du Yocto-Knob-C avec Android

80 www.yoctopuce.com

Version d'Android
Notre librairie peut être compilée pour fonctionner avec les anciennes versions aussi longtemps que
les outils Android nous permettent de les supporter, soit environ les versions des dix dernières
années.

Support USB host
Il faut bien sûr que votre machine dispose non seulement d'un port USB, mais il faut aussi que ce
port soit capable de tourner en mode host. En mode host, la machine prend littéralement le contrôle
des périphériques qui lui sont raccordés. Les ports USB d'un ordinateur bureau, par exemple,
fonctionnent mode host. Le pendant du mode host est le mode device. Les clefs USB par exemple
fonctionnent en mode device: elles ne peuvent qu'être contrôlées par un host. Certains ports USB
sont capables de fonctionner dans les deux modes, ils s'agit de ports OTG (On The Go). Il se trouve
que beaucoup d'appareils portables ne fonctionnent qu'en mode "device": ils sont conçus pour être
branchés à chargeur ou un ordinateur de bureau, rien de plus. Il est donc fortement recommandé de
lire attentivement les spécifications techniques d'un produit fonctionnant sous Android avant
d'espérer le voir fonctionner avec des modules Yoctopuce.

Disposer d'une version correcte d'Android et de ports USB fonctionnant en mode host ne suffit
malheureusement pas pour garantir un bon fonctionnement avec des modules Yoctopuce sous
Android. En effet certains constructeurs configurent leur image Android afin que les périphériques
autres que clavier et mass storage soit ignorés, et cette configuration est difficilement détectable. En
l'état actuel des choses, le meilleur moyen de savoir avec certitude si un matériel Android spécifique
fonctionne avec les modules Yoctopuce consiste à essayer.

12.4. Activer le port USB sous Android
Par défaut Android nautorise pas une application à accéder aux périphériques connectés au port
USB. Pour que votre application puisse interagir avec un module Yoctopuce branché directement sur
votre tablette sur un port USB quelques étapes supplémentaires sont nécessaires. Si vous comptez
uniquement interagir avec des modules connectés sur une autre machine par IP, vous pouvez
ignorer cette section.

Il faut déclarer dans son AndroidManifest.xml l'utilisation de la fonctionnalité "USB Host" en
ajoutant le tag <uses-feature android:name="android.hardware.usb.host" />
dans la section manifest.

<manifest ...>
 ...
 <uses-feature android:name="android.hardware.usb.host" />;
 ...
</manifest>

Lors du premier accès à un module Yoctopuce, Android va ouvrir une fenêtre pour informer
l'utilisateur que l'application va accéder module connecté. L'utilisateur peut refuser ou autoriser
laccès au périphérique. Si l'utilisateur accepte, l'application pourra accéder au périphérique
connecté jusqu'à la prochaine déconnexion du périphérique. Pour que la librairie Yoctopuce puisse
gérer correctement ces autorisations, il faut lui fournir un pointeur sur le contexte de l'application en
appelant la méthode EnableUSBHost de la classe YAPI avant le premier accès USB. Cette fonction
prend en argument un objet de la classe android.content.Context (ou d'une sous-classe).
Comme la classe Activity est une sous-classe de Context, le plus simple est de d'appeler
YAPI.EnableUSBHost(this); dans la méthode onCreate de votre application. Si l'objet
passé en paramètre n'est pas du bon type, une exception YAPI_Exception sera générée.

...
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 try {
 // Pass the application Context to the Yoctopuce Library
 YAPI.EnableUSBHost(this);

12. Utilisation du Yocto-Knob-C avec Android

www.yoctopuce.com 81

 } catch (YAPI_Exception e) {
 Log.e("Yocto",e.getLocalizedMessage());
 }
}
...

Lancement automatique
Il est possible d'enregistrer son application comme application par défaut pour un module USB, dans
ce cas des qu'un module sera connecté au système, l'application sera lancée automatiquement. Il
faut ajouter <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"/> dans
la section <intent-filter> de l'activité principale. La section <activity> doit contenir un pointeur sur un
fichier xml qui contient la liste des modules USB qui peuvent lancer l'application.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 ...
 <uses-feature android:name="android.hardware.usb.host" />
 ...
 <application ... >
 <activity
 android:name=".MainActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

 <meta-data
 android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"
 android:resource="@xml/device_filter" />
 </activity>
 </application>

</manifest>

Le fichier XML qui contient la liste des modules qui peuvent lancer l'application doit être sauvé dans
le répertoire res/xml. Ce fichier contient une liste de vendorId et deviceID USB en décimal.
L'exemple suivant lance l'application dès qu'un Yocto-Relay ou un Yocto-PowerRelay est connecté.
Vous pouvez trouver le vendorId et deviceId des modules Yoctopuce dans la section caractéristiques
de la documentation.

<?xml version="1.0" encoding="utf-8"?>

<resources>
 <usb-device vendor-id="9440" product-id="12" />
 <usb-device vendor-id="9440" product-id="13" />
</resources>

12.5. Contrôle de la fonction AnButton
Il suffit de quelques lignes de code pour piloter un Yocto-Knob-C. Voici le squelette d'un fragment de
code Java qui utilise la fonction AnButton.

[...]
// On active la détection des modules sur USB
YAPI.EnableUSBHost(this);
YAPI.RegisterHub("usb");
[...]
// On récupère l'objet permettant de communiquer avec le module
anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1");

// Pour gérer le hot-plug, on vérifie que le module est là
if (anbutton.isOnline())
{
 // Utilisez anbutton.get_calibratedValue()
 [...]
}

12. Utilisation du Yocto-Knob-C avec Android

82 www.yoctopuce.com

[...]

Voyons maintenant en détail ce que font ces quelques lignes.

YAPI.EnableUSBHost
La fonction YAPI.EnableUSBHost initialise l'API avec le Context de l'application courante. Cette
fonction prend en argument un objet de la classe android.content.Context (ou d'une sous-
classe). Si vous comptez uniquement vous connecter à d'autres machines par IP vous cette fonction
est factultative.

YAPI.RegisterHub
La fonction YAPI.RegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent
être recherchés. Le paramètre est l'adresse du virtual hub capable de voir les modules. Si l'on passe
la chaine de caractère "usb", l'API va travailler avec les modules connectés localement à la
machine. Si l'initialisation se passe mal, une exception sera générée.

YAnButton.FindAnButton
La fonction YAnButton.FindAnButton permet de retrouver une entrée analogique en fonction
du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi
bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module
Yocto-Knob-C avec le numéros de série YBUTTN1C-123456 que vous auriez appelé "MonModule"
et dont vous auriez nommé la fonction anButton1 "MaFonction", les cinq appels suivants seront
strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute
ambiguïté):

anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1")
anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.MaFonction")
anbutton = YAnButton.FindAnButton("MonModule.anButton1")
anbutton = YAnButton.FindAnButton("MonModule.MaFonction")
anbutton = YAnButton.FindAnButton("MaFonction")

YAnButton.FindAnButton renvoie un objet que vous pouvez ensuite utiliser à loisir pour
contrôler l'entrée analogique.

isOnline
La méthode isOnline() de l'objet renvoyé par YAnButton.FindAnButton permet de savoir
si le module correspondant est présent et en état de marche.

get_isPressed
La méthode get_isPressed() de l'objet renvoyé par YAnButton.FindAnButton permet de
connaître l'état d'un interrupteur on/off qui serait branché sur l'entrée correspondante du module. Les
valeurs possibles retournées sont YAnButton.ISPRESSED_TRUE (si le contact est fermé) et
YAnButton.ISPRESSED_FALSE (si le contact est ouvert). Pour lire une valeur analogique plutôt
qu'une valeur binaire, on utilise à la place la méthode ci-dessous.

get_calibratedValue
La méthode get_calibratedValue() de l'objet renvoyé par YAnButton.FindAnButton
permet de connaître la position d'un potentiomètre analogique qui serait branché sur l'entrée
correspondante du module. Une fois que vous avez calibré l'entrée analogique pour votre
potentiomètre, la valeur retournée est un entier entre 0 et 1000.

Un exemple réel
Lancez votre environnement java et ouvrez le projet correspondant, fourni dans le répertoire
Examples/Doc-Examples de la librairie Yoctopuce.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois
utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

12. Utilisation du Yocto-Knob-C avec Android

www.yoctopuce.com 83

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;
import android.widget.Spinner;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YAnButton;
import com.yoctopuce.YoctoAPI.YModule;

public class GettingStarted_Yocto_Knob extends Activity implements OnItemSelectedListener
{

 private ArrayAdapter<String> aa;
 private String serial = "";
 private Handler handler = null;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.gettingstarted_yocto_knob);
 Spinner my_spin = (Spinner) findViewById(R.id.spinner1);
 my_spin.setOnItemSelectedListener(this);
 aa = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item);
 aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
 my_spin.setAdapter(aa);
 handler = new Handler();
 }

 @Override
 protected void onStart()
 {
 super.onStart();
 try {
 aa.clear();
 YAPI.EnableUSBHost(this);
 YAPI.RegisterHub("usb");
 YModule module = YModule.FirstModule();
 while (module != null) {
 if (module.get_productName().equals("Yocto-Knob")) {
 String serial = module.get_serialNumber();
 aa.add(serial);
 }
 module = module.nextModule();
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 aa.notifyDataSetChanged();
 handler.postDelayed(r, 500);
 }

 @Override
 protected void onStop()
 {
 super.onStop();
 handler.removeCallbacks(r);
 YAPI.FreeAPI();
 }

 @Override
 public void onItemSelected(AdapterView<?> parent, View view, int pos, long id)
 {
 serial = parent.getItemAtPosition(pos).toString();
 }

 @Override
 public void onNothingSelected(AdapterView<?> arg0)
 {
 }

12. Utilisation du Yocto-Knob-C avec Android

84 www.yoctopuce.com

 final Runnable r = new Runnable()
 {
 public void run()
 {
 if (serial != null) {
 YAnButton input1 = YAnButton.FindAnButton(serial + ".anButton1");
 try {
 TextView view = (TextView) findViewById(R.id.pressedfield1);
 if (input1.get_isPressed() == YAnButton.ISPRESSED_TRUE) {
 view.setText("pressed");
 } else {
 view.setText("not pressed");
 }
 view = (TextView) findViewById(R.id.valuefield1);
 view.setText(String.valueOf(input1.get_calibratedValue()));
 } catch (YAPI_Exception e) {
 e.printStackTrace();

 }
 YAnButton input5 = YAnButton.FindAnButton(serial + ".anButton5");
 try {
 TextView view = (TextView) findViewById(R.id.pressedfield5);
 if (input5.get_isPressed() == YAnButton.ISPRESSED_TRUE) {
 view.setText("pressed");
 } else {
 view.setText("not pressed");
 }
 view = (TextView) findViewById(R.id.valuefield5);
 view.setText(String.valueOf(input5.get_calibratedValue()));
 } catch (YAPI_Exception e) {
 e.printStackTrace();

 }
 }
 handler.postDelayed(this, 1000);
 }
 };
}

12.6. Contrôle de la partie module
Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci-dessous un simple
programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la
balise de localisation.

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;
import android.widget.Spinner;
import android.widget.Switch;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class ModuleControl extends Activity implements OnItemSelectedListener
{

 private ArrayAdapter<String> aa;
 private YModule module = null;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.modulecontrol);

12. Utilisation du Yocto-Knob-C avec Android

www.yoctopuce.com 85

 Spinner my_spin = (Spinner) findViewById(R.id.spinner1);
 my_spin.setOnItemSelectedListener(this);
 aa = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item);
 aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
 my_spin.setAdapter(aa);
 }

 @Override
 protected void onStart()
 {
 super.onStart();

 try {
 aa.clear();
 YAPI.EnableUSBHost(this);
 YAPI.RegisterHub("usb");
 YModule r = YModule.FirstModule();
 while (r != null) {
 String hwid = r.get_hardwareId();
 aa.add(hwid);
 r = r.nextModule();
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 // refresh Spinner with detected relay
 aa.notifyDataSetChanged();
 }

 @Override
 protected void onStop()
 {
 super.onStop();
 YAPI.FreeAPI();
 }

 private void DisplayModuleInfo()
 {
 TextView field;
 if (module == null)
 return;
 try {
 field = (TextView) findViewById(R.id.serialfield);
 field.setText(module.getSerialNumber());
 field = (TextView) findViewById(R.id.logicalnamefield);
 field.setText(module.getLogicalName());
 field = (TextView) findViewById(R.id.luminosityfield);
 field.setText(String.format("%d%%", module.getLuminosity()));
 field = (TextView) findViewById(R.id.uptimefield);
 field.setText(module.getUpTime() / 1000 + " sec");
 field = (TextView) findViewById(R.id.usbcurrentfield);
 field.setText(module.getUsbCurrent() + " mA");
 Switch sw = (Switch) findViewById(R.id.beaconswitch);
 sw.setChecked(module.getBeacon() == YModule.BEACON_ON);
 field = (TextView) findViewById(R.id.logs);
 field.setText(module.get_lastLogs());

 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 public void onItemSelected(AdapterView<?> parent, View view, int pos, long id)
 {
 String hwid = parent.getItemAtPosition(pos).toString();
 module = YModule.FindModule(hwid);
 DisplayModuleInfo();
 }

 @Override
 public void onNothingSelected(AdapterView<?> arg0)
 {
 }

 public void refreshInfo(View view)
 {
 DisplayModuleInfo();

12. Utilisation du Yocto-Knob-C avec Android

86 www.yoctopuce.com

 }

 public void toggleBeacon(View view)
 {
 if (module == null)
 return;
 boolean on = ((Switch) view).isChecked();

 try {
 if (on) {
 module.setBeacon(YModule.BEACON_ON);
 } else {
 module.setBeacon(YModule.BEACON_OFF);
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 }
}

Chaque propriété xxx du module peut être lue grâce à une méthode du type YModule.get_xxxx
(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode
YModule.set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux
chapitre API

Modifications des réglages du module
Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction
YModule.set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire
vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient
mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa
configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode
YModule.saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages
courants en utilisant la méthode YModule.revertFromFlash(). Ce petit exemple ci-dessous
vous permet changer le nom logique d'un module.

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;
import android.widget.EditText;
import android.widget.Spinner;
import android.widget.TextView;
import android.widget.Toast;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class SaveSettings extends Activity implements OnItemSelectedListener
{

 private ArrayAdapter<String> aa;
 private YModule module = null;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.savesettings);
 Spinner my_spin = (Spinner) findViewById(R.id.spinner1);
 my_spin.setOnItemSelectedListener(this);
 aa = new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item);
 aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
 my_spin.setAdapter(aa);
 }

 @Override
 protected void onStart()

12. Utilisation du Yocto-Knob-C avec Android

www.yoctopuce.com 87

 {
 super.onStart();

 try {
 aa.clear();
 YAPI.EnableUSBHost(this);
 YAPI.RegisterHub("usb");
 YModule r = YModule.FirstModule();
 while (r != null) {
 String hwid = r.get_hardwareId();
 aa.add(hwid);
 r = r.nextModule();
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 // refresh Spinner with detected relay
 aa.notifyDataSetChanged();
 }

 @Override
 protected void onStop()
 {
 super.onStop();
 YAPI.FreeAPI();
 }

 private void DisplayModuleInfo()
 {
 TextView field;
 if (module == null)
 return;
 try {
 YAPI.UpdateDeviceList();// fixme
 field = (TextView) findViewById(R.id.logicalnamefield);
 field.setText(module.getLogicalName());
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 public void onItemSelected(AdapterView<?> parent, View view, int pos, long id)
 {
 String hwid = parent.getItemAtPosition(pos).toString();
 module = YModule.FindModule(hwid);
 DisplayModuleInfo();
 }

 @Override
 public void onNothingSelected(AdapterView<?> arg0)
 {
 }

 public void saveName(View view)
 {
 if (module == null)
 return;

 EditText edit = (EditText) findViewById(R.id.newname);
 String newname = edit.getText().toString();
 try {
 if (!YAPI.CheckLogicalName(newname)) {
 Toast.makeText(getApplicationContext(), "Invalid name (" + newname + ")",
Toast.LENGTH_LONG).show();
 return;
 }
 module.set_logicalName(newname);
 module.saveToFlash(); // do not forget this
 edit.setText("");
 } catch (YAPI_Exception ex) {
 ex.printStackTrace();
 }
 DisplayModuleInfo();
 }

}

12. Utilisation du Yocto-Knob-C avec Android

88 www.yoctopuce.com

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette
limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite,
liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000
cycles. Pour résumer vous ne pouvez employer la fonction YModule.saveToFlash() que
100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis
l'intérieur d'une boucle.

Enumeration des modules
Obtenir la liste des modules connectés se fait à l'aide de la fonction YModule.yFirstModule()
qui renvoie le premier module trouvé, il suffit ensuite d'appeler la mehode nextModule() de cet
objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un null. Ci-dessous un
petit exemple listant les module connectés

package com.yoctopuce.doc_examples;

import android.app.Activity;
import android.os.Bundle;
import android.util.TypedValue;
import android.view.View;
import android.widget.LinearLayout;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI_Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class Inventory extends Activity
{

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.inventory);
 }

 public void refreshInventory(View view)
 {
 LinearLayout layout = (LinearLayout) findViewById(R.id.inventoryList);
 layout.removeAllViews();

 try {
 YAPI.UpdateDeviceList();
 YModule module = YModule.FirstModule();
 while (module != null) {
 String line = module.get_serialNumber() + " (" + module.get_productName() +
")";
 TextView tx = new TextView(this);
 tx.setText(line);
 tx.setTextSize(TypedValue.COMPLEX_UNIT_SP, 20);
 layout.addView(tx);
 module = module.nextModule();
 }
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 protected void onStart()
 {
 super.onStart();
 try {
 YAPI.EnableUSBHost(this);
 YAPI.RegisterHub("usb");
 } catch (YAPI_Exception e) {
 e.printStackTrace();
 }
 refreshInventory(null);
 }

 @Override
 protected void onStop()
 {

12. Utilisation du Yocto-Knob-C avec Android

www.yoctopuce.com 89

 super.onStop();
 YAPI.FreeAPI();
 }

}

12.7. Gestion des erreurs
Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez
pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur
aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération.
La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais
votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées
par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les
petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne
avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de
seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut
suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une
erreur se produisant après le isOnline(), qui pourrait faire planter le programme.

Dans l'API java pour Android, le traitement d'erreur est implémenté au moyen d'exceptions. Vous
devrez donc intercepter et traiter correctement ces exceptions si vous souhaitez avoir un projet fiable
qui ne crashera pas des que vous débrancherez un module.

90 www.yoctopuce.com

www.yoctopuce.com 91

13. Utilisation du Yocto-Knob-C en TypeScript
TypeScript est une version améliorée du langage de programmation JavaScript. Il s'agit d'un sur-
ensemble syntaxique avec typage fort, permettant d'améliorer la fiabilité du code, mais qui est
transcompilé en JavaScript avant l'exécution, pour être ensuite interprêté par n'importe quel
navigateur Web ou par Node.js.

Cette librairie de programmation Yoctopuce permet donc de coder des applications JavaScript tout
en bénéficiant d'un typage fort. Comme notre librairie EcmaScript, elle utilise les fonctionnalités
asynchrones introduites dans la version ECMAScript 2017 et qui sont maintenant disponibles
nativement dans tous les environnements JavaScript modernes. Néanmoins, à ce jour, le code
TypeScript n'est pas utilisable directement dans un navigateur Web ou Node.js, donc il est
nécessaire de le compiler en JavaScript avant l'exécution.

La librairie peut travailler aussi bien dans un navigateur internet que dans un environnement Node.js.
Pour satisfaire aux exigences de résolution statique des dépendances, et pour éviter les ambiguïtés
qui surgiraient lors de l'utilisation d'environnements hybrides tels qu'Electron, la sélection de
l'environnement doit être faite explicitement à l'import de la librairie, en important dans le projet soit
yocto_api_nodejs.js, soit yocto_api_html.js.

La librairie peut être intégrée à vos projets de plusieurs manières, selon ce qui convient le mieux à
votre projet:

• en copiant directement les fichiers sources TypeScript de notre librairie dans votre projet, et
en les ajoutant à votre script de build. Il suffit en général de peu de fichiers pour couvrir la
plupart des utilisations. Vous les trouverez dans le sous-répertoire src de notre librairie.

• en utilisant la résolution de modules CommonJS, supportée par TypeScript, avec un
gestionnaire de packages comme npm. Vous trouverez une version transpilée au standard
CommonJS dans le sous-répertoire dist/cjs de la librairie, y compris les fichiers de
définition de type (extension .d.ts) et les fichiers de debug (extension .js.map)
permettant le traçage des erreurs dans les fichiers sources TypeScript. Nous avons aussi
publié ces fichiers sur npmjs sous le nom yoctolib-cjs.

• en utilisant la résolution de modules ECMAScript 2015, aussi supportée par TypeScript, et
utilisable directement depuis une page HTML par un référencement relatif. Vous trouverez une
version transpilée en module ECMAScript 2015 dans le sous-répertoire dist/esm de la
librairie, y compris les fichiers de définition de type (extension .d.ts) et les fichiers de debug
(extension .js.map) permettant le traçage des erreurs dans les fichiers sources TypeScript.
Nous avons aussi publié ces fichiers sur npmjs sous le nom yoctolib-esm.

13. Utilisation du Yocto-Knob-C en TypeScript

92 www.yoctopuce.com

13.1. Utiliser la librairie Yoctopuce pour TypeScript
1. Commencez par installer TypeScript sur votre machine si cela n'est pas déjà fait. Pour cela:

• Installez sur votre machine de développement une version raisonnablement récente de
Node.js (version 10 ou plus récente). Vous pouvez l'obtenir gratuitement sur le site officiel:
http://nodejs.org. Assurez vous de l'installer entièrement, y compris npm, et de l'ajouter à votre
system path.

• Installez ensuite TypeScript sur votre machine à l'aide de la commande:

npm install -g typescript

2. Connectez-vous ensuite sur le site Web de Yoctopuce et téléchargez les éléments suivants:

• La librairie de programmation pour TypeScript1
• Le programme VirtualHub2 pour Windows, macOS ou Linux selon l'OS que vous utilisez. En

effet, TypeScript et JavaScript font partie de ces langages qui ne vous permettront pas
d'accéder directement aux périphériques USB. C'est pourquoi si vous désirez travailler avec
des modules branchés par USB, vous devrez faire tourner la passerelle de Yoctopuce appelée
VirtualHub sur la machine à laquelle sont branchés les modules. Vous n'avez en revanche pas
besoin d'installer de driver.

3. Décompressez les fichiers de la librairie dans un répertoire de votre choix, et ouvrez une fenêtre
de commande dans le répertoire où vous l'avez installée. Lancez la commande suivante pour
installer les quelques dépendances qui sont nécessaires au lancement des exemples:

npm install

Une fois cette commande terminée sans erreur, vous êtes prêt pour l'exploration des exemples.
Ceux-ci sont fournis dans deux exemples différents, selon l'environnement d'exécution choisi:
example_html pour l'exécution de la librairie Yoctopuce dans un navigateur Web, ou
example_nodejs si vous provoyez d'utiliser la librairie dans un environnement Node.js.

La manière de lancer les exemples dépend de l'environnement choisi. Vous trouverez les
instructions détaillées un peu plus loin.

13.2. Petit rappel sur les fonctions asynchrones en JavaScript
JavaScript a été conçu pour éviter toute situation de concurrence durant l'exécution. Il n'y a jamais
qu'un seul thread en JavaScript. Pour gérer les attentes dans les entrées/sorties, JavaScript utilise
les opérations asynchrones: lorsqu'une fonction potentiellement bloquante doit être appelée,
l'opération est déclenchée mais le flot d'exécution est immédiatement suspendu. Le moteur
JavaScript est alors libre pour exécuter d'autres tâches, comme la gestion de l'interface utilisateur
par exemple. Lorsque l'opération bloquante se termine finalement, le système relance le code en
appelant une fonction de callback, en passant en paramètre le résultat de l'opération, pour permettre
de continuer la tâche originale.

L'utilisation d'opérations asynchrones avec des fonctions de callback a la fâcheuse tendance de
rentre le code illisible puisqu'elle découpe systématiquement le flot du code en petites fonctions de
callback déconnectées les unes des autres. Heureusement, le standard ECMAScript 2015 a apporté
les objets Promise et la syntaxe async / await pour la gestion des appels asynchrones:

• une fonction déclarée async encapsule automatiquement son résultat dans une promesse

1 www.yoctopuce.com/FR/libraries.php
2 www.yoctopuce.com/FR/virtualhub.php

13. Utilisation du Yocto-Knob-C en TypeScript

www.yoctopuce.com 93

• dans une fonction async, tout appel préfixé par await a pour effet de chaîner automatiquement
la promesses retournées par la fonction appelée à une promesse de continue l'exécution de
l'appelant

• tout exception durant l'exécution d'une fonction async déclenche le flot de traitement d'erreur
de la promesse.

En clair, async et await permettent d'écrire du code TypeScript avec tous les avantages des entrées/
sorties asynchrones, mais sans interrompre le flot d'écriture du code. Cela revient quasiment à une
exécution multi-tâche, mais en garantissant que le passage de contrôle d'une tâche à l'autre ne se
produira que là où le mot-clé await apparaît.

Cette librairie TypeScript utilise donc les objets Promise et des méthodes async, pour vous permettre
d'utiliser la notation await si pratique. Et pour ne pas devoir vous poser la question pour chaque
méthode de savoir si elle est asynchrone ou pas, la convention est la suivante: en principe toutes les
méthodes publiques de la librairie TypeScript sont async, c'est-à-dire qu'elles retournent un objet
Promise, sauf:

• GetTickCount(), parce que mesurer le temps de manière asynchrone n'a pas beaucoup
de sens...

• FindModule(), FirstModule(), nextModule(), ... parce que la détection et
l'énumération des modules est faite en tâche de fond sur des structures internes qui sont
gérées de manière transparente, et qu'il n'est donc pas nécessaire de faire des opérations
bloquantes durant le simple parcours de ces listes de modules.

Dans la plupart des cas, le typage fort de TypeScript sera là pour vous rappeler d'utiliser await lors
de l'appel d'une méthode asynchrone.

13.3. Contrôle de la fonction AnButton
Il suffit de quelques lignes de code pour piloter un Yocto-Knob-C. Voici le squelette d'un fragment de
code TypeScript qui utilise la fonction AnButton.

// En Node.js, on référence la librairie via son package NPM
// En HTML, on utiliserait plutôt un path relatif (selon l'environnement)
import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';
import { YAnButton } from 'yoctolib-cjs/yocto_anbutton.js';

[...]
// On active l'accès aux modules locaux à travers le VirtualHub
await YAPI.RegisterHub('127.0.0.1');
[...]

// On récupère l'objet permettant d'intéragir avec le module
let anbutton: YAnButton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1");

// Pour gérer le hot-plug, on vérifie que le module est là
if(await anbutton.isOnline())
{
 // Utiliser anbutton.get_calibratedValue()
 [...]
}

Voyons maintenant en détail ce que font ces quelques lignes.

Import de yocto_api et yocto_anbutton
Ces deux imports permettent d'avoir accès aux fonctions permettant de gérer les modules
Yoctopuce. yocto_api doit toujours être inclus, et yocto_anbutton est nécessaire pour gérer
les modules contenant une entrée analogique, comme le Yocto-Knob-C. D'autres classes peuvent
être utiles dans d'autres cas, comme YModule qui vous permet de faire une énumération de
n'importe quel type de module Yoctopuce.

Pour que yocto_api soit correctement lié aux librairies réseau à utiliser pour établir la connexion
(soit celles de Node.js, soit celles du navigateur dans le cas d'une application HTML), il faut que

13. Utilisation du Yocto-Knob-C en TypeScript

94 www.yoctopuce.com

vous référenciez au moins une fois dans votre projet soit la variante yocto_api_nodejs.js, soit
yocto_api_html.js.

Notez que cet exemple importe la librairie au format CommonJS, le plus utilisé avec Node.JS à ce
jour, mais si votre projet est construit pour utiliser les modules natifs EcmaScript, il suffit de remplace
dans l'import le préfix yoctolib-cjs par yoctolib-esm.

YAPI.RegisterHub
La méthode RegisterHub permet d'indiquer sur quelle machine se trouvent les modules
Yoctopuce, ou plus exactement la machine sur laquelle tourne le programme VirtualHub. Dans notre
cas l'adresse 127.0.0.1:4444 indique la machine locale, en utilisant le port 4444 (le port
standard utilisé par Yoctopuce). Vous pouvez parfaitement changer cette adresse, et mettre
l'adresse d'une autre machine sur laquelle tournerait un autre VirtualHub, ou d'un YoctoHub. Si l'hôte
n'est pas joignable, la fonction déclanche une exception.

Comme expliqué précédemment, il n'est pas possible d'utiliser directement RegisterHub
("usb") en TypeScript, car la machine virtuelle JavaScript n'a pas accès directement aux
périphériques USB. Elle doit nécessairement passer par le programme VirtualHub via une
connection par l'adresse 127.0.0.1.

YAnButton.FindAnButton
La méthode FindAnButton permet de retrouver une entrée analogique en fonction du numéro de
série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des
noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Knob-C avec
le numéros de série YBUTTN1C-123456 que vous auriez appelé "MonModule" et dont vous auriez
nommé la fonction anButton1 "MaFonction", les cinq appels suivants seront strictement équivalents
(pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):

anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1")
anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.MaFonction")
anbutton = YAnButton.FindAnButton("MonModule.anButton1")
anbutton = YAnButton.FindAnButton("MonModule.MaFonction")
anbutton = YAnButton.FindAnButton("MaFonction")

YAnButton.FindAnButton renvoie un objet que vous pouvez ensuite utiliser à loisir pour
contrôler l'entrée analogique.

isOnline
La méthode isOnline() de l'objet renvoyé par FindAnButton permet de savoir si le module
correspondant est présent et en état de marche.

get_isPressed
La méthode get_isPressed() de l'objet renvoyé par YAnButton.FindAnButton permet de
connaître l'état d'un interrupteur on/off qui serait branché sur l'entrée correspondante du module. Les
valeurs possibles retournées sont YAnButton.ISPRESSED_TRUE (si le contact est fermé) et
YAnButton.ISPRESSED_FALSE (si le contact est ouvert). Pour lire une valeur analogique plutôt
qu'une valeur binaire, on utilise à la place la méthode ci-dessous.

get_calibratedValue
La méthode get_calibratedValue() de l'objet renvoyé par YAnButton.FindAnButton
permet de connaître la position d'un potentiomètre analogique qui serait branché sur l'entrée
correspondante du module. Une fois que vous avez calibré l'entrée analogique pour votre
potentiomètre, la valeur retournée est un entier entre 0 et 1000.

Un exemple concret, en Node.js
Ouvrez une fenêtre de commande (un terminal, un shell...) et allez dans le répertoire
example_nodejs/Doc-GettingStarted-Yocto-Knob-C de la librairie Yoctopuce pour TypeScript.
Vous y trouverez un fichier nommé demo.ts avec le code d'exemple ci-dessous, qui reprend les

13. Utilisation du Yocto-Knob-C en TypeScript

www.yoctopuce.com 95

fonctions expliquées précédemment, mais cette fois utilisées avec le décorum nécessaire à en faire
un petit programme d'exemple concret.

Si le Yocto-Knob-C n'est pas branché sur la machine où fonctionne le navigateur internet, remplacez
dans l'exemple l'adresse 127.0.0.1 par l'adresse IP de la machine où est branché le Yocto-Knob-
C et où vous avez lancé le VirtualHub.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';
import { YAnButton } from 'yoctolib-cjs/yocto_anbutton.js'

let input1: YAnButton;
let input5: YAnButton;

async function startDemo(): Promise<void>
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg: YErrorMsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select specified device, or use first available one
 let serial: string = process.argv[process.argv.length-1];
 if(serial[8] != '-') {
 // by default use any connected module suitable for the demo
 let anyInput = YAnButton.FirstAnButton();
 if(anyInput) {
 let module: YModule = await anyInput.get_module();
 serial = await module.get_serialNumber();
 } else {
 console.log('No Yocto-Knob connected, check cable !');
 await YAPI.FreeAPI();
 return;
 }
 }
 console.log('Using device '+serial);
 input1 = YAnButton.FindAnButton(serial+'.anButton1');
 input5 = YAnButton.FindAnButton(serial+'.anButton5');

 refresh();
}

async function refresh(): Promise<void>
{
 if (await input1.isOnline()) {
 let line: string = 'Button 1: ';
 line += (await input1.get_isPressed() ? 'pressed' : 'released');
 line += ' ('+(await input1.get_calibratedValue())+')';
 console.log(line);
 line = 'Button 5: ';
 line += (await input5.get_isPressed() ? 'pressed' : 'released');
 line += ' ('+(await input5.get_calibratedValue())+')';
 console.log(line);
 } else {
 console.log('Module not connected');
 }
 setTimeout(refresh, 500);
}

startDemo();

Comme décrit au début de ce chapitre, vous devez avoir installé le complateur TypeScript sur votre
machine pour essayer ces exemples, et installé les dépendances de la librairie TypeScript. Si vous
l'avez fait, vous pouvez maintenant taper la commande suivantes dans le répertoire de l'exemple lui-
même, pour finaliser la résolution de ses dépendances:

npm install

13. Utilisation du Yocto-Knob-C en TypeScript

96 www.yoctopuce.com

Vous êtes maintenant prêt pour lancer le code d'exemple dans Node.js. La manière la plus simple de
le faire est d'utiliser la commande suivante, en remplaçant les [...] par les arguments que vous voulez
passer au programme:

npm run demo [...]

Cette commande, définie dans le fichier package.json, a pour effet de compiler le code source
TypeScript à l'aide de la simple commande tsc, puis de lancer le code compilé dans Node.js.

La compilation utilise les paramètres spécifiés dans le fichier tsconfig.json, et produit

• un fichier JavaScript demo.js, que Node.js pourra exécuter
• un fichier de debug demo.js.map, qui permettra le cas échéant à Node.js de signaler les

erreurs en référançant leur origine dans le fichier d'origine en TypeScript.

Notez que le fichier package.json de nos exemples référence directement la version locale de la
librairie par un path relatif, pour éviter de dupliquer la librairie dans chaque exemple. Bien sur, pour
votre application de production, vous pourrez utiliser le package directement depuis le repository
npm en l'ajoutant à votre projet à l'aide de la commande:

npm install yoctolib-cjs

Le même exemple, mais dans un navigateur
Si vous voulez voir comment utiliser la librairie dans un navigateur plutôt que dans Node.js, changez
de répertoire et allez dans example_html/Doc-GettingStarted-Yocto-Knob-C. Vous y trouverez un
fichier html app.html, et un fichier TypeScript app.ts similaire au code ci-dessus, mais avec
quelques variantes pour permettre une interaction à travers la page HTML plutôt que sur la console
JavaScript.

Aucune installation n'est nécessaire pout utiliser cet exemple HTML, puisqu'il référence la librairie
TypeScript via un chemin relatif. Par contre, pour que le navigateur puisse exécuter le code, il faut
que la page HTML soit publié par un serveur Web. Nous fournissons un petit serveur de test pour cet
usage, que vous pouvez lancer avec la commande:

npm run app-server

Cette commande va compiler le code d'exemple TypeScript, le mettre à disposition via un serveur
HTTP sur le port 3000 et ouvrir un navigateur sur cet exemple. Si vous modifiez le code d'exemple, il
sera automatiquement recompilé et il vous suffira de recharger la page sur le navigateur pour
retester.

Comme pour l'exemple Node.js, la compilation produit un fichier .js.map qui permet de debugger
dans le navigateur directement sur le fichier source TypeScript. Notez qu'au moment où cette
documentation est rédigée, le debug en format source dans le navigateur fonctionne pour les
browsers basés sur Chromium, mais pas encore dans Firefox.

13.4. Contrôle de la partie module
Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci dessous un simple
programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la
balise de localisation.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';

async function startDemo(args: string[]): Promise<void>
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg: YErrorMsg = new YErrorMsg();
 if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {

13. Utilisation du Yocto-Knob-C en TypeScript

www.yoctopuce.com 97

 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select the device to use
 let module: YModule = YModule.FindModule(args[0]);
 if(await module.isOnline()) {
 if(args.length > 1) {
 if(args[1] == 'ON') {
 await module.set_beacon(YModule.BEACON_ON);
 } else {
 await module.set_beacon(YModule.BEACON_OFF);
 }
 }
 console.log('serial: '+await module.get_serialNumber());
 console.log('logical name: '+await module.get_logicalName());
 console.log('luminosity: '+await module.get_luminosity()+'%');
 console.log('beacon: '+
 (await module.get_beacon() == YModule.BEACON_ON ? 'ON' : 'OFF'));
 console.log('upTime: '+
 ((await module.get_upTime()/1000)>>0) +' sec');
 console.log('USB current: '+await module.get_usbCurrent()+' mA');
 console.log('logs:');
 console.log(await module.get_lastLogs());
 } else {
 console.log("Module not connected (check identification and USB cable)\n");
 }
 await YAPI.FreeAPI();
}

if(process.argv.length < 3) {
 console.log("usage: npm run demo <serial or logicalname> [ON | OFF]");
} else {
 startDemo(process.argv.slice(2));
}

Chaque propriété xxx du module peut être lue grâce à une méthode du type get_xxxx(), et les
propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode set_xxx
() Pour plus de détails concernant ces méthodes utilisées, reportez-vous aux chapitre API

Modifications des réglages du module
Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la méthode
set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du
module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées
de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration
courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode saveToFlash().
Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la
méthode revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique
d'un module.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';

async function startDemo(args: string[]): Promise<void>
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg: YErrorMsg = new YErrorMsg();
 if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select the device to use
 let module: YModule = YModule.FindModule(args[0]);
 if(await module.isOnline()) {
 if(args.length > 1) {
 let newname: string = args[1];
 if (!await YAPI.CheckLogicalName(newname)) {
 console.log("Invalid name (" + newname + ")");
 process.exit(1);
 }

13. Utilisation du Yocto-Knob-C en TypeScript

98 www.yoctopuce.com

 await module.set_logicalName(newname);
 await module.saveToFlash();
 }
 console.log('Current name: '+await module.get_logicalName());
 } else {
 console.log("Module not connected (check identification and USB cable)\n");
 }
 await YAPI.FreeAPI();
}

if(process.argv.length < 3) {
 console.log("usage: npm run demo <serial> [newLogicalName]");
} else {
 startDemo(process.argv.slice(2));
}

Attention, le nombre de cycle d'écriture de la mémoire non volatile du module est limité. Passé cette
limite plus rien ne garantit de que la sauvegarde des réglages se passera correctement. Cette limite,
liée à la technologie employé par le micro-processeur du module se situe aux alentour de 100000
cycles. Pour résumer vous ne pouvez employer la méthode saveToFlash() que 100000 fois au
cours de la vie du module. Veillez donc à ne pas appeler cette méthode depuis l'intérieur d'une
boucle.

Énumération des modules
Obtenir la liste des modules connectés se fait à l'aide de la méthode YModule.FirstModule()
qui renvoie le premier module trouvé, il suffit ensuite d'appeler la méthode nextModule() de cet
objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un null. Ci-dessous un
petit exemple listant les module connectés

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto_api_nodejs.js';

async function startDemo(): Promise<void>
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1');
 return;
 }
 refresh();
}

async function refresh(): Promise<void>
{
 try {
 let errmsg: YErrorMsg = new YErrorMsg();
 await YAPI.UpdateDeviceList(errmsg);

 let module = YModule.FirstModule();
 while(module) {
 let line: string = await module.get_serialNumber();
 line += '(' + (await module.get_productName()) + ')';
 console.log(line);
 module = module.nextModule();
 }
 setTimeout(refresh, 500);
 } catch(e) {
 console.log(e);
 }
}

startDemo();

13. Utilisation du Yocto-Knob-C en TypeScript

www.yoctopuce.com 99

13.5. Gestion des erreurs
Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez
pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur
aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération.
La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais
votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées
par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les
petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne
avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de
seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut
suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une
erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule
manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-
dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des
erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie
Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer
une exception. Dans ce cas, de trois choses l'une:

• Si votre code attrape l'exception au vol et la gère, et tout se passe bien.
• Si votre programme tourne dans le debugger, vous pourrez relativement facilement déterminer

où le problème s'est produit, et voir le message explicatif lié à l'exception.
• Sinon... l'exception va crasher votre programme, boum!

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre
alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir
attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction
YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de
chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui
peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas
d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il
suit toujours la même logique: une méthode get_state() retournera une valeur
NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur
NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du
type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire,
si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée.
Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera
YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message
expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des
méthodes errType() et errMessage(). Ce sont les même informations qui auraient été
associées à l'exception si elles avaient été actives.

100 www.yoctopuce.com

www.yoctopuce.com 101

14. Utilisation du Yocto-Knob-C en JavaScript /
EcmaScript
EcmaScript est le nom officiel de la version standardisée du langage de programmation
communément appelé JavaScript. Cette librairie de programmation Yoctopuce utilise les nouvelles
fonctionnalités introduites dans la version EcmaScript 2017. La librairie porte ainsi le nom Librairie
pour JavaScript / EcmaScript 2017, afin de la différentier de la précédente Librairie pour JavaScript
qu'elle remplace.

Cette librairie permet d'accéder aux modules Yoctopuce depuis tous les environnements JavaScript
modernes. Elle fonctionne aussi bien depuis un navigateur internet que dans un environnement
Node.js. La librairie détecte automatiquement à l'initialisation si le contexte d'utilisation est un
browser ou une machine virtuelle Node.js, et utilise les librairies systèmes les plus appropriées en
conséquence.

Les communications asynchrones avec les modules sont gérées dans toute la librairie à l'aide
d'objets Promise, en utilisant la nouvelle syntaxe EcmaScript 2017 async / await non bloquante
pour la gestion des entrées/sorties asynchrones (voir ci-dessous). Cette syntaxe est désormais
disponible sans autres dans la plupart des moteurs JavaScript: il n'est plus nécessaire de transpiler
le code avec Babel ou jspm. Voici la version minimum requise de vos moteurs JavaScript préférés,
tous disponibles au téléchargement:

• Node.js v7.6 and later
• Firefox 52
• Opera 42 (incl. Android version)
• Chrome 55 (incl. Android version)
• Safari 10.1 (incl. iOS version)
• Android WebView 55
• Google V8 Javascript engine v5.5

Si vous avez besoin de la compatibilité avec des anciennes versions, vous pouvez toujours utiliser
Babel pour transpiler votre code et la libriairie vers un standard antérieur de JavaScript, comme
décrit un peu plus bas.

Nous ne recommendons plus l'utilisation de jspm dès lors que async / await sont standardisés.

14. Utilisation du Yocto-Knob-C en JavaScript / EcmaScript

102 www.yoctopuce.com

14.1. Fonctions bloquantes et fonctions asynchrones en
JavaScript
JavaScript a été conçu pour éviter toute situation de concurrence durant l'exécution. Il n'y a jamais
qu'un seul thread en JavaScript. Cela signifie que si un programme effectue une attente active
durant une communication réseau, par exemple pour lire un capteur, le programme entier se trouve
bloqué. Dans un navigateur, cela peut se traduire par un blocage complet de l'interface utilisateur.
C'est pourquoi l'utilisation de fonctions d'entrée/sortie bloquantes en JavaScript est sévèrement
découragée de nos jours, et les API bloquantes se font toutes déclarer deprecated.

Plutôt que d'utiliser des threads parallèles, JavaScript utilise les opérations asynchrones pour gérer
les attentes dans les entrées/sorties: lorsqu'une fonction potentiellement bloquante doit être appelée,
l'opération est uniquement déclenchée mais le flot d'exécution est immédiatement terminé. La
moteur JavaScript est alors libre pour exécuter d'autres tâches, comme la gestion de l'interface
utilisateur par exemple. Lorsque l'opération bloquante se termine finalement, le système relance le
code en appelant une fonction de callback, en passant en paramètre le résultat de l'opération, pour
permettre de continuer la tâche originale.

Lorsqu'on les utilises avec des simples fonctions de callback, comme c'est fait quasi
systématiquement dans les librairies Node.js, les opérations asynchrones ont la fâcheuse tendance
de rentre le code illisible puisqu'elles découpent systématiquement le flot du code en petites
fonctions de callback déconnectées les unes des autres. Heureusement, de nouvelles idées sont
apparues récemment pour améliorer la situation. En particulier, l'utilisation d'objets Promise pour
travailler avec les opérations asynchrones aide beaucoup. N'importe quelle fonction qui effectue une
opération potentiellement longue peut retourner une promesse de se terminer, et cet objet Promise
peut être utilisé par l'appelant pour chaîner d'autres opérations en un flot d'exécution. La classe
Promise fait partie du standard EcmaScript 2015.

Les objets Promise sont utiles, mais ce qui les rend vraiment pratique est la nouvelle syntaxe
async / await pour la gestion des appels asynchrones:

• une fonction déclarée async encapsule automatiquement son résultat dans une promesse
• dans une fonction async, tout appel préfixé par await a pour effet de chaîner automatiquement

la promesses retournées par la fonction appelée à une promesse de continue l'exécution de
l'appelant

• tout exception durant l'exécution d'une fonction async déclenche le flot de traitrment d'erreur
de la promesse.

En clair, async et await permettent d'écrire du code EcmaScript avec tous les avantages des
entrées/sorties asynchrones, mais sans interrompre le flot d'écriture du code. Cela revient quasiment
à une exécution multi-tâche, mais en garantissant que le passage de contrôle d'une tâche à l'autre
ne se produira que là où le mot-clé await apparaît.

Nous avons donc décidé d'écrire cette nouvelle librairie EcmaScript en utilisant les objets Promise et
des fonctions async, pour vous permettre d'utiliser la notation await si pratique. Et pour ne pas devoir
vous poser la question pour chaque méthode de savoir si elle est asynchrone ou pas, la convention
est la suivante: toutes les méthodes publiques de la librairie EcmaScript sont async, c'est-à-dire
qu'elles retournent un objet Promise, sauf:

• GetTickCount(), parce que mesurer le temps de manière asynchrone n'a pas beaucoup
de sens...

• FindModule(), FirstModule(), nextModule(), ... parce que la détection et
l'énumération des modules est faite en tâche de fond sur des structures internes qui sont
gérées de manière transparente, et qu'il n'est donc pas nécessaire de faire des opérations
bloquantes durant le simple parcours de ces listes de modules.

14. Utilisation du Yocto-Knob-C en JavaScript / EcmaScript

www.yoctopuce.com 103

14.2. Utiliser la librairie Yoctopuce pour JavaScript /
EcmaScript 2017
JavaScript fait partie de ces langages qui ne vous permettront pas d'accéder directement aux
couches matérielles de votre ordinateur. C'est pourquoi si vous désirez travailler avec des modules
USB branchés par USB, vous devrez faire tourner la passerelle de Yoctopuce appelée VirtualHub
sur la machine à laquelle sont branchés les modules.

Connectez vous sur le site de Yoctopuce et téléchargez les éléments suivants:

• La librairie de programmation pour Javascript / EcmaScript 20171

• VirtualHub2 pour Windows, macOS ou Linux selon l'OS que vous utilisez

Décompressez les fichiers de la librairie dans un répertoire de votre choix, branchez vos modules et
lancez le programme VirtualHub. Vous n'avez pas besoin d'installer de driver.

Utiliser la librairie Yoctopuce officielle pour node.js
Commencez par installer sur votre machine de développement la version actuelle de Node.js (7.6 ou
plus récente), C'est très simple. Vous pouvez l'obtenir sur le site officiel: http://nodejs.org. Assurez
vous de l'installer entièrement, y compris npm, et de l'ajouter à votre system path.

Vous pouvez ensuite prendre l'exemple de votre choix dans le répertoire example_nodejs (par
exemple example_nodejs/Doc-Inventory). Allez dans ce répertoire. Vous y trouverez un
fichier décrivant l'application (package.json) et le code source de l'application (demo.js). Pour
charger automatiquement et configurer les librairies nécessaires à l'exemple, tapez simplement:

npm install

Une fois que c'est fait, vous pouvez directement lancer le code de l'application:

node demo.js

Utiliser une copie locale de la librairie Yoctopuce avec node.js
Si pour une raison ou une autre vous devez faire des modifications au code de la librairie, vous
pouvez facilement configurer votre projet pour utiliser le code source de la librairie qui se trouve dans
le répertoire lib/ plutôt que le package npm officiel. Pour cela, lancez simplement la commande
suivante dans le répertoire de votre projet:

npm link ../../lib

Utiliser la librairie Yoctopuce dans un navigateur (HTML)
Pour les exemples HTML, c'est encore plus simple: il n'y a rien à installer. Chaque exemple est un
simple fichier HTML que vous pouvez ouvrir directement avec un navigateur pour l'essayer.
L'inclusion de la librairie Yoctopuce ne demande rien de plus qu'un simple tag HTML <script>.

Utiliser la librairie Yoctopuce avec des anciennes version de JavaScript
Si vous avez besoin d'utiliser cette librairie avec des moteurs JavaScript plus anciens, vous pouvez
utiliser Babel3 pour transpiler votre code et la librairie dans une version antérieure du langage. Pour
installer Babel avec les réglages usuels, tapez:

1 www.yoctopuce.com/FR/libraries.php
2 www.yoctopuce.com/FR/virtualhub.php
3 http://babeljs.io

14. Utilisation du Yocto-Knob-C en JavaScript / EcmaScript

104 www.yoctopuce.com

npm instal -g babel-cli
npm instal babel-preset-env

Normalement vous demanderez à Babel de poser les fichiers transpilés dans un autre répertoire,
nommé comopat par exemple. Pour ce faire, utilisez par exemple les commandes suivantes:

babel --presets env demo.js --out-dir compat/
babel --presets env ../../lib --out-dir compat/

Bien que ces outils de transpilation soient basés sur node.js, ils fonctionnent en réalité pour traduire
n'importe quel type de fichier JavaScript, y compris du code destiné à fonctionner dans un
navigateur. La seule chose qui ne peut pas être faite aussi facilement est la transpilation de sciptes
codés en dure à l'intérieur même d'une page HTML. Il vous faudra donc sortir ce code dans un
fichier .js externe si il utiliser la syntaxe EcmaScript 2017, afin de le transpiler séparément avec
Babel.

Babel dipose de nombreuses fonctionnalités intéressantes, comme un mode de surveillance qui
traduite automatiquement au vol vos fichiers dès qu'il détecte qu'un fichier source a changé.
Consultez les détails dans la documentation de Babel.

Compatibilité avec l'ancienne librairie JavaScript
Cette nouvelle librairie n'est pas compatible avec l'ancienne librairie JavaScript, car il n'existe pas de
possibilité d'implémenter l'ancienne API bloquante sur la base d'une API asynchrone. Toutefois, les
noms des méthodes sont les mêmes, et l'ancien code source synchrone peut facilement être rendu
asynchrone simplement en ajoutant le mot-clé await devant les appels de méthode. Remplacez
par exemple:

beaconState = module.get_beacon();

par

beaconState = await module.get_beacon();

Mis à part quelques exceptions, la plupart des méthodes redondantes XXX_async ont été
supprimées, car elles auraient introduit de la confusion sur la manière correcte de gérer les appels
asynchrones. Si toutefois vous avez besoin d'appeler un callback explicitement, il est très facile de
faire appeler une fonction de callback à la résolution d'une méthode async, en utilisant l'objet
Promise retourné. Par exemple, vous pouvez réécrire:

module.get_beacon_async(callback, myContext);

par

module.get_beacon().then(function(res) { callback(myContext, module, res); });

Si vous portez une application vers la nouvelle librairie, vous pourriez être amené à désirer des
méthodes synchrones similaires à l'ancienne librairie (sans objet Promise), quitte à ce qu'elles
retournent la dernière valeur reçue du capteur telle que stockée en cache, puisqu'il n'est pas
possible de faire des communications bloquantes. Pour cela, la nouvelle librairie introduit un
nouveau type de classes appelés proxys synchrones. Un proxy synchrone est un objet qui reflète la
dernière value connue d'un objet d'interface, mais peut être accédé à l'aide de fonctions synchrones
habituelles. Par exemple, plutôt que d'utiliser:

async function logInfo(module)
{
 console.log('Name: '+await module.get_logicalName());
 console.log('Beacon: '+await module.get_beacon());
}

...

14. Utilisation du Yocto-Knob-C en JavaScript / EcmaScript

www.yoctopuce.com 105

logInfo(myModule);
...

on peut utiliser:

function logInfoProxy(moduleSyncProxy)
{
 console.log('Name: '+moduleProxy.get_logicalName());
 console.log('Beacon: '+moduleProxy.get_beacon());
}

logInfoSync(await myModule.get_syncProxy());

Ce dernier appel asynchrone peut aussi être formulé comme:

myModule.get_syncProxy().then(logInfoProxy);

14.3. Contrôle de la fonction AnButton
Il suffit de quelques lignes de code pour piloter un Yocto-Knob-C. Voici le squelette d'un fragment de
code JavaScript qui utilise la fonction AnButton.

// En Node.js, on utilise la fonction require()
// En HTML, on utiliserait <script src="...">
require('yoctolib-es2017/yocto_api.js');
require('yoctolib-es2017/yocto_anbutton.js');

[...]
// On active l'accès aux modules locaux à travers le VirtualHub
await YAPI.RegisterHub('127.0.0.1');
[...]

// On récupère l'objet permettant d'intéragir avec le module
let anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1");

// Pour gérer le hot-plug, on vérifie que le module est là
if(await anbutton.isOnline())
{
 // Utiliser anbutton.get_calibratedValue()
 [...]
}

Voyons maintenant en détail ce que font ces quelques lignes.

Require de yocto_api et yocto_anbutton
Ces deux imports permettent d'avoir accès aux fonctions permettant de gérer les modules
Yoctopuce. yocto_api doit toujours être inclus, yocto_anbutton est nécessaire pour gérer les
modules contenant une entrée analogique, comme le Yocto-Knob-C. D'autres classes peuvent être
utiles dans d'autres cas, comme YModule qui vous permet de faire une énumération de n'importe
quel type de module Yoctopuce.

YAPI.RegisterHub
La méthode RegisterHub permet d'indiquer sur quelle machine se trouvent les modules
Yoctopuce, ou plus exactement la machine sur laquelle tourne le programme VirtualHub. Dans notre
cas l'adresse 127.0.0.1:4444 indique la machine locale, en utilisant le port 4444 (le port
standard utilisé par Yoctopuce). Vous pouvez parfaitement changer cette adresse, et mettre
l'adresse d'une autre machine sur laquelle tournerait un autre VirtualHub, ou d'un YoctoHub. Si l'hôte
n'est pas joignable, la fonction déclanche une exception.

YAnButton.FindAnButton
La méthode FindAnButton permet de retrouver une entrée analogique en fonction du numéro de
série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des

14. Utilisation du Yocto-Knob-C en JavaScript / EcmaScript

106 www.yoctopuce.com

noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Knob-C avec
le numéros de série YBUTTN1C-123456 que vous auriez appelé "MonModule" et dont vous auriez
nommé la fonction anButton1 "MaFonction", les cinq appels suivants seront strictement équivalents
(pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):

anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1")
anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.MaFonction")
anbutton = YAnButton.FindAnButton("MonModule.anButton1")
anbutton = YAnButton.FindAnButton("MonModule.MaFonction")
anbutton = YAnButton.FindAnButton("MaFonction")

YAnButton.FindAnButton renvoie un objet que vous pouvez ensuite utiliser à loisir pour
contrôler l'entrée analogique.

isOnline
La méthode isOnline() de l'objet renvoyé par FindAnButton permet de savoir si le module
correspondant est présent et en état de marche.

get_isPressed
La méthode get_isPressed() de l'objet renvoyé par YAnButton.FindAnButton permet de
connaître l'état d'un interrupteur on/off qui serait branché sur l'entrée correspondante du module. Les
valeurs possibles retournées sont YAnButton.ISPRESSED_TRUE (si le contact est fermé) et
YAnButton.ISPRESSED_FALSE (si le contact est ouvert). Pour lire une valeur analogique plutôt
qu'une valeur binaire, on utilise à la place la méthode ci-dessous.

get_calibratedValue
La méthode get_calibratedValue() de l'objet renvoyé par YAnButton.FindAnButton
permet de connaître la position d'un potentiomètre analogique qui serait branché sur l'entrée
correspondante du module. Une fois que vous avez calibré l'entrée analogique pour votre
potentiomètre, la valeur retournée est un entier entre 0 et 1000.

Un exemple concret, en Node.js
Ouvrez une fenêtre de commande (un terminal, un shell...) et allez dans le répertoire
example_nodejs/Doc-GettingStarted-Yocto-Knob-C de la librairie Yoctopuce pour JavaScript /
EcmaScript 2017. Vous y trouverez un fichier nommé demo.js avec le code d'exemple ci-dessous,
qui reprend les fonctions expliquées précédemment, mais cette fois utilisées avec le décorum
nécessaire à en faire un petit programme d'exemple concret.

Si le Yocto-Knob-C n'est pas branché sur la machine où fonctionne le navigateur internet, remplacez
dans l'exemple l'adresse 127.0.0.1 par l'adresse IP de la machine où est branché le Yocto-Knob-
C et où vous avez lancé le VirtualHub.

"use strict";

require('yoctolib-es2017/yocto_api.js');
require('yoctolib-es2017/yocto_anbutton.js');

let input1, input5;

async function startDemo()
{
 await YAPI.LogUnhandledPromiseRejections();
 await YAPI.DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select specified device, or use first available one
 let serial = process.argv[process.argv.length-1];
 if(serial[8] != '-') {

14. Utilisation du Yocto-Knob-C en JavaScript / EcmaScript

www.yoctopuce.com 107

 // by default use any connected module suitable for the demo
 let anyInput = YAnButton.FirstAnButton();
 if(anyInput) {
 let module = await anyInput.module();
 serial = await module.get_serialNumber();
 } else {
 console.log('No Yocto-Knob connected, check cable !');
 return;
 }
 }
 console.log('Using device '+serial);
 input1 = YAnButton.FindAnButton(serial+'.anButton1');
 input5 = YAnButton.FindAnButton(serial+'.anButton5');

 refresh();
}

async function refresh()
{
 if (await input1.isOnline()) {
 let line = 'Button 1: ';
 line += (await input1.get_isPressed() ? 'pressed' : 'released');
 line += ' ('+(await input1.get_calibratedValue())+')';
 console.log(line);
 line = 'Button 5: ';
 line += (await input5.get_isPressed() ? 'pressed' : 'released');
 line += ' ('+(await input5.get_calibratedValue())+')';
 console.log(line);
 } else {
 console.log('Module not connected');
 }
 setTimeout(refresh, 500);
}

startDemo();

Comme décrit au début de ce chapitre, vous devez avoir installé Node.js v7.6 ou suivant pour
essayer ces exemples. Si vous l'avez fait, vous pouvez maintenant taper les deux commandes
suivantes pour télécharger automatiquement les librairies dont cet exemple dépend:

npm install

Une fois terminé, vous pouvez lancer votre code d'exemple dans Node.js avec la commande
suivante, en remplaçant les [...] par les arguments que vous voulez passer au programme:

node demo.js [...]

Le même exemple, mais dans un navigateur
Si vous voulez voir comment utiliser la librairie dans un navigateur plutôt que dans Node.js, changez
de répertoire et allez dans example_html/Doc-GettingStarted-Yocto-Knob-C. Vous y trouverez un
fichier html, avec une section JavaScript similaire au code précédent, mais avec quelques variantes
pour permettre une interaction à travers la page HTML plutôt que sur la console JavaScript

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>Hello World</title>
 <script src="../../lib/yocto_api.js"></script>
 <script src="../../lib/yocto_anbutton.js"></script>
 <script>
 async function startDemo()
 {
 await YAPI.LogUnhandledPromiseRejections();
 await YAPI.DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 alert('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 }

14. Utilisation du Yocto-Knob-C en JavaScript / EcmaScript

108 www.yoctopuce.com

 refresh();
 }

 async function refresh()
 {
 let serial = document.getElementById('serial').value;
 if(serial == '') {
 // by default use any connected module suitable for the demo
 let anyInput = YAnButton.FirstAnButton();
 if(anyInput) {
 let module = await anyInput.module();
 serial = await module.get_serialNumber();
 document.getElementById('serial').value = serial;
 }
 }
 let input1 = YAnButton.FindAnButton(serial+".anButton1");
 let input5 = YAnButton.FindAnButton(serial+".anButton5");
 if (await input1.isOnline()) {
 document.getElementById('msg').value = '';
 document.getElementById("inp1-chk").checked = await input1.get_isPressed();
 document.getElementById("inp1-val").value = await input1.get_calibratedValue();
 document.getElementById("inp5-chk").checked = await input5.get_isPressed();
 document.getElementById("inp5-val").value = await input5.get_calibratedValue();
 } else {
 document.getElementById('msg').value = 'Module not connected';
 }
 setTimeout(refresh, 500);
 }

 startDemo();
 </script>
</head>
<body>
Module to use: <input id='serial'>
<input id='msg' style='color:red;border:none;' readonly>

Input 1: <input type='checkbox' id='inp1-chk' readonly>
pressed / analog value: <input id='inp1-val' readonly>

Input 5: <input type='checkbox' id='inp5-chk' readonly>
pressed / analog value: <input id='inp5-val' readonly>

</body>
</html>

Aucune installation n'est nécessaire pout utiliser cet exemple, il suffit d'ouvrir la page HTML avec un
navigateur web.

14.4. Contrôle de la partie module
Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci dessous un simple
programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la
balise de localisation.

"use strict";

require('yoctolib-es2017/yocto_api.js');

async function startDemo(args)
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select the relay to use
 let module = YModule.FindModule(args[0]);
 if(await module.isOnline()) {
 if(args.length > 1) {
 if(args[1] == 'ON') {
 await module.set_beacon(YModule.BEACON_ON);
 } else {
 await module.set_beacon(YModule.BEACON_OFF);

14. Utilisation du Yocto-Knob-C en JavaScript / EcmaScript

www.yoctopuce.com 109

 }
 }
 console.log('serial: '+await module.get_serialNumber());
 console.log('logical name: '+await module.get_logicalName());
 console.log('luminosity: '+await module.get_luminosity()+'%');
 console.log('beacon: '+(await module.get_beacon()==YModule.BEACON_ON
?'ON':'OFF'));
 console.log('upTime: '+parseInt(await module.get_upTime()/1000)+' sec');
 console.log('USB current: '+await module.get_usbCurrent()+' mA');
 console.log('logs:');
 console.log(await module.get_lastLogs());
 } else {
 console.log("Module not connected (check identification and USB cable)\n");
 }
 await YAPI.FreeAPI();
}

if(process.argv.length < 2) {
 console.log("usage: node demo.js <serial or logicalname> [ON | OFF]");
} else {
 startDemo(process.argv.slice(2));
}

Chaque propriété xxx du module peut être lue grâce à une méthode du type get_xxxx(), et les
propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode set_xxx
() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module
Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction
set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du
module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées
de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration
courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode saveToFlash().
Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la
méthode revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique
d'un module.

"use strict";

require('yoctolib-es2017/yocto_api.js');

async function startDemo(args)
{
 await YAPI.LogUnhandledPromiseRejections();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if(await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
 return;
 }

 // Select the relay to use
 let module = YModule.FindModule(args[0]);
 if(await module.isOnline()) {
 if(args.length > 1) {
 let newname = args[1];
 if (!await YAPI.CheckLogicalName(newname)) {
 console.log("Invalid name (" + newname + ")");
 process.exit(1);
 }
 await module.set_logicalName(newname);
 await module.saveToFlash();
 }
 console.log('Current name: '+await module.get_logicalName());
 } else {
 console.log("Module not connected (check identification and USB cable)\n");
 }
 await YAPI.FreeAPI();
}

if(process.argv.length < 2) {

14. Utilisation du Yocto-Knob-C en JavaScript / EcmaScript

110 www.yoctopuce.com

 console.log("usage: node demo.js <serial> [newLogicalName]");
} else {
 startDemo(process.argv.slice(2));
}

Attention, le nombre de cycle d'écriture de la mémoire non volatile du module est limité. Passé cette
limite plus rien ne garantit de que la sauvegarde des réglages se passera correctement. Cette limite,
liée à la technologie employé par le micro-processeur du module se situe aux alentour de 100000
cycles. Pour résumer vous ne pouvez employer la fonction saveToFlash() que 100000 fois au
cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une
boucle.

Énumération des modules
Obtenir la liste des modules connectés se fait à l'aide de la fonction YModule.FirstModule()
qui renvoie le premier module trouvé, il suffit ensuite d'appeler la fonction nextModule() de cet
objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un null. Ci-dessous un
petit exemple listant les module connectés

"use strict";

require('yoctolib-es2017/yocto_api.js');

async function startDemo()
{
 await YAPI.LogUnhandledPromiseRejections();
 await YAPI.DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 let errmsg = new YErrorMsg();
 if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
 console.log('Cannot contact VirtualHub on 127.0.0.1');
 return;
 }
 refresh();
}

async function refresh()
{
 try {
 let errmsg = new YErrorMsg();
 await YAPI.UpdateDeviceList(errmsg);

 let module = YModule.FirstModule();
 while(module) {
 let line = await module.get_serialNumber();
 line += '(' + (await module.get_productName()) + ')';
 console.log(line);
 module = module.nextModule();
 }
 setTimeout(refresh, 500);
 } catch(e) {
 console.log(e);
 }
}

try {
 startDemo();
} catch(e) {
 console.log(e);
}

14.5. Gestion des erreurs
Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez
pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur
aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération.
La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais

14. Utilisation du Yocto-Knob-C en JavaScript / EcmaScript

www.yoctopuce.com 111

votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées
par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les
petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne
avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de
seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut
suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une
erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule
manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-
dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des
erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie
Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer
une exception. Dans ce cas, de trois choses l'une:

• Si votre code attrape l'exception au vol et la gère, et tout se passe bien.
• Si votre programme tourne dans le debugger, vous pourrez relativement facilement déterminer

où le problème s'est produit, et voir le message explicatif lié à l'exception.
• Sinon... l'exception va crasher votre programme, boum!

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre
alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir
attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction
YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de
chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui
peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas
d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il
suit toujours la même logique: une méthode get_state() retournera une valeur
NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur
NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du
type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire,
si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée.
Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera
YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message
expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des
méthodes errType() et errMessage(). Ce sont les même informations qui auraient été
associées à l'exception si elles avaient été actives.

112 www.yoctopuce.com

www.yoctopuce.com 113

15. Utilisation du Yocto-Knob-C en PHP
PHP est, tout comme Javascript, un langage assez atypique lorsqu'il s'agit de discuter avec du
hardware. Néanmoins, utiliser PHP avec des modules Yoctopuce offre l'opportunité de construire
très facilement des sites web capables d'interagir avec leur environnement physique, ce qui n'est pas
donné à tous les serveurs web. Cette technique trouve une application directe dans la domotique:
quelques modules Yoctopuce, un serveur PHP et vous pourrez interagir avec votre maison depuis
n'importe ou dans le monde. Pour autant que vous ayez une connexion internet.

PHP fait lui aussi partie de ces langages qui ne vous permettront pas d'accéder directement aux
couches matérielles de votre ordinateur. C'est pourquoi vous devrez faire tourner VirtualHub sur la
machine à laquelle sont branchés les modules.

Pour démarrer vos essais en PHP, vous allez avoir besoin d'un serveur PHP 7.1 ou plus récent 1 de
préférence en local sur votre machine. Si vous souhaiter utiliser celui qui se trouve chez votre
provider internet, c'est possible, mais vous devrez probablement configurer votre routeur ADSL pour
qu'il accepte et forwarde les requêtes TCP sur le port 4444.

15.1. Préparation
Connectez vous sur le site de Yoctopuce et téléchargez les éléments suivants:

• La librairie de programmation pour PHP2

• VirtualHub3 pour Windows, macOS ou Linux selon l'OS que vous utilisez

Notre librairie PHP est basée sur PHP 8.x. C'est-à-dire que notre librairie fonctionne parfaitement
avec n'importe quelle version de PHP actuellement encore supportée. Toutefois, afin de ne pas
abandonner nos clients qui ont des installations plus anciennes, nous maintenons une version
compatible avec PHP 7.1. qui date de 2016.

Par ailleurs, nous proposons également une version de la librairie qui suit les recommandations
PSR. Pour simplifier, cette version est de même code que la version php8 mais chaque classe est
stockée dans un fichier séparé. De plus, cette version utilise un namespace Yoctopuce
\YoctoAPI. Ces changements rendent notre librairie beaucoup plus facilement utilisable avec des
installations qui utilisent l'autoload.

Notez que les exemples de la documentation n'utilisent pas la version PSR.

1 Quelques serveurs PHP gratuits: easyPHP pour Windows, MAMP pour macOs
2 www.yoctopuce.com/FR/libraries.php
3 www.yoctopuce.com/FR/virtualhub.php

15. Utilisation du Yocto-Knob-C en PHP

114 www.yoctopuce.com

Dans l'archive de la librairie, il y a donc trois sous-répertoire :

• php7
• php8
• phpPSR

Choisissez le bon répertoire en fonction de la version de la librairie que vous souhaitez utiliser,
décompressez les fichiers de ce répertoire dans un répertoire de votre choix accessible à votre
serveur web, branchez vos modules, lancez VirtualHub, et vous pouvez commencer vos premiers
tests. Vous n'avez pas besoin d'installer de driver.

15.2. Contrôle de la fonction AnButton
Il suffit de quelques lignes de code pour piloter un Yocto-Knob-C. Voici le squelette d'un fragment de
code PHP qui utilise la fonction AnButton.

include('yocto_api.php');
include('yocto_anbutton.php');

[...]
// On active l'accès aux modules locaux à travers le VirtualHub
YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg);
[...]

// On récupère l'objet permettant d'intéragir avec le module
$anbutton = YAnButton::FindAnButton("YBUTTN1C-123456.anButton1");

// Pour gérer le hot-plug, on vérifie que le module est là
if($anbutton->isOnline())
{
 // Utiliser anbutton->get_calibratedValue()
 [...]
}

Voyons maintenant en détail ce que font ces quelques lignes.

yocto_api.php et yocto_anbutton.php
Ces deux includes PHP permettent d'avoir accès aux fonctions permettant de gérer les modules
Yoctopuce. yocto_api.php doit toujours être inclus, yocto_anbutton.php est nécessaire
pour gérer les modules contenant une entrée analogique, comme le Yocto-Knob-C.

YAPI::RegisterHub
La fonction YAPI::RegisterHub permet d'indiquer sur quelle machine se trouve les modules
Yoctopuce, ou plus exactemenent sur quelle machine tourne le programme VirtualHub. Dans notre
cas l'adresse 127.0.0.1:4444 indique la machine locale, en utilisant le port 4444 (le port
standard utilisé par Yoctopuce). Vous pouvez parfaitement changer cette adresse, et mettre
l'adresse d'une autre machine sur laquelle tournerait un autre VirtualHub.

YAnButton::FindAnButton
La fonction YAnButton::FindAnButton permet de retrouver une entrée analogique en fonction
du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi
bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module
Yocto-Knob-C avec le numéros de série YBUTTN1C-123456 que vous auriez appelé "MonModule"
et dont vous auriez nommé la fonction anButton1 "MaFonction", les cinq appels suivants seront
strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute
ambiguïté):

$anbutton = YAnButton::FindAnButton("YBUTTN1C-123456.anButton1");
$anbutton = YAnButton::FindAnButton("YBUTTN1C-123456.MaFonction");
$anbutton = YAnButton::FindAnButton("MonModule.anButton1");
$anbutton = YAnButton::FindAnButton("MonModule.MaFonction");
$anbutton = YAnButton::FindAnButton("MaFonction");

15. Utilisation du Yocto-Knob-C en PHP

www.yoctopuce.com 115

YAnButton::FindAnButton renvoie un objet que vous pouvez ensuite utiliser à loisir pour
contrôler l'entrée analogique.

isOnline
La méthode isOnline() de l'objet renvoyé par YAnButton::FindAnButton permet de savoir
si le module correspondant est présent et en état de marche.

get_isPressed
La méthode get_isPressed() de l'objet renvoyé par yFindAnButton permet de connaître
l'état d'un interrupteur on/off qui serait branché sur l'entrée correspondante du module. Les valeurs
possibles retournées sont Y_ISPRESSED_TRUE (si le contact est fermé) et
Y_ISPRESSED_FALSE (si le contact est ouvert). Pour lire une valeur analogique plutôt qu'une
valeur binaire, on utilise à la place la méthode ci-dessous.

get_calibratedValue
La méthode get_calibratedValue() de l'objet renvoyé par yFindAnButton permet de
connaître la position d'un potentiomètre analogique qui serait branché sur l'entrée correspondante du
module. Une fois que vous avez calibré l'entrée analogique pour votre potentiomètre, la valeur
retournée est un entier entre 0 et 1000.

Un exemple réel
Ouvrez votre éditeur de texte préféré4, recopiez le code ci dessous, sauvez-le dans un répertoire
accessible par votre serveur web/PHP avec les fichiers de la librairie, et ouvrez-la page avec votre
browser favori. Vous trouverez aussi ce code dans le répertoire Examples/Doc-GettingStarted-
Yocto-Knob-C de la librairie Yoctopuce.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois
utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

<HTML>
<HEAD>
 <TITLE>Hello World</TITLE>
</HEAD>
<BODY>
<?php
 include('../../php8/yocto_api.php');
 include('../../php8/yocto_anbutton.php');

 // Use explicit error handling rather than exceptions
 YAPI::DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 if(YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg) != YAPI::SUCCESS) {
 die("Cannot contact VirtualHub on 127.0.0.1");
 }

 @$serial = $_GET['serial'];
 if ($serial != '') {
 // Check if a specified module is available online
 $input1 = YAnButton::FindAnButton("$serial.anButton1");
 if (!$input1->isOnline()) {
 die("Module not connected (check serial and USB cable)");
 }
 } else {
 // or use any connected module suitable for the demo
 $input1 = YAnButton::FirstAnButton();
 if(is_null($input1)) {
 die("No module connected (check USB cable)");
 } else {
 $serial = $input1->module()->get_serialnumber();
 }
 }
 Print("Module to use: <input name='serial' value='$serial'>
");

4 Si vous n'avez pas d'éditeur de texte, utilisez Notepad plutôt que Microsoft Word.

15. Utilisation du Yocto-Knob-C en PHP

116 www.yoctopuce.com

 $input1 = YAnButton::FindAnButton("$serial.anButton1");
 $checked = $input1->get_isPressed() ? "checked" : "";
 $value = $input1->get_calibratedValue();
 Print("Input 1: <input type='checkbox' readonly $checked> ");
 Print("pressed / analog value: $value
");
 $input5 = YAnButton::FindAnButton("$serial.anButton5");
 $checked = $input5->get_isPressed() ? "checked" : "";
 $value = $input5->get_calibratedValue();
 Print("Input 5: <input type='checkbox' readonly $checked> ");
 Print("pressed / analog value: $value
");
 YAPI::FreeAPI();

 // trigger auto-refresh after one second
 Print("<script language='javascript1.5' type='text/JavaScript'>\n");
 Print("setTimeout('window.location.reload()',1000);");
 Print("</script>\n");
?>
</BODY>
</HTML>

15.3. Contrôle de la partie module
Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci dessous un simple
programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la
balise de localisation.

<HTML>
<HEAD>
 <TITLE>Module Control</TITLE>
</HEAD>
<BODY>
<FORM method='get'>
<?php
 include('../../php8/yocto_api.php');

 // Use explicit error handling rather than exceptions
 YAPI::DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 if(YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg) != YAPI::SUCCESS) {
 die("Cannot contact VirtualHub on 127.0.0.1 : ".$errmsg);
 }

 @$serial = $_GET['serial'];
 if ($serial != '') {
 // Check if a specified module is available online
 $module = YModule::FindModule("$serial");
 if (!$module->isOnline()) {
 die("Module not connected (check serial and USB cable)");
 }
 } else {
 // or use any connected module suitable for the demo
 $module = YModule::FirstModule();
 if($module) { // skip VirtualHub
 $module = $module->nextModule();
 }
 if(is_null($module)) {
 die("No module connected (check USB cable)");
 } else {
 $serial = $module->get_serialnumber();
 }
 }
 Print("Module to use: <input name='serial' value='$serial'>
");

 if (isset($_GET['beacon'])) {
 if ($_GET['beacon']=='ON')
 $module->set_beacon(Y_BEACON_ON);
 else
 $module->set_beacon(Y_BEACON_OFF);
 }
 printf('serial: %s
',$module->get_serialNumber());
 printf('logical name: %s
',$module->get_logicalName());
 printf('luminosity: %s
',$module->get_luminosity());

15. Utilisation du Yocto-Knob-C en PHP

www.yoctopuce.com 117

 print('beacon: ');
 if($module->get_beacon() == Y_BEACON_ON) {
 printf("<input type='radio' name='beacon' value='ON' checked>ON ");
 printf("<input type='radio' name='beacon' value='OFF'>OFF
");
 } else {
 printf("<input type='radio' name='beacon' value='ON'>ON ");
 printf("<input type='radio' name='beacon' value='OFF' checked>OFF
");
 }
 printf('upTime: %s sec
',intVal($module->get_upTime()/1000));
 printf('USB current: %smA
',$module->get_usbCurrent());
 printf('logs:
<pre>%s</pre>',$module->get_lastLogs());
 YAPI::FreeAPI();
?>
<input type='submit' value='refresh'>
</FORM>
</BODY>
</HTML>

Chaque propriété xxx du module peut être lue grâce à une méthode du type get_xxxx(), et les
propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode set_xxx
() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module
Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction
set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du
module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées
de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration
courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode saveToFlash().
Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la
méthode revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique
d'un module.

<HTML>
<HEAD>
 <TITLE>save settings</TITLE>
<BODY>
<FORM method='get'>
<?php
 include('../../php8/yocto_api.php');

 // Use explicit error handling rather than exceptions
 YAPI::DisableExceptions();

 // Setup the API to use the VirtualHub on local machine
 if(YAPI::RegisterHub('http://127.0.0.1:4444/',$errmsg) != YAPI::SUCCESS) {
 die("Cannot contact VirtualHub on 127.0.0.1");
 }

 @$serial = $_GET['serial'];
 if ($serial != '') {
 // Check if a specified module is available online
 $module = YModule::FindModule("$serial");
 if (!$module->isOnline()) {
 die("Module not connected (check serial and USB cable)");
 }
 } else {
 // or use any connected module suitable for the demo
 $module = YModule::FirstModule();
 if($module) { // skip VirtualHub
 $module = $module->nextModule();
 }
 if(is_null($module)) {
 die("No module connected (check USB cable)");
 } else {
 $serial = $module->get_serialnumber();
 }
 }
 Print("Module to use: <input name='serial' value='$serial'>
");

 if (isset($_GET['newname'])){
 $newname = $_GET['newname'];
 if (!yCheckLogicalName($newname))

15. Utilisation du Yocto-Knob-C en PHP

118 www.yoctopuce.com

 die('Invalid name');
 $module->set_logicalName($newname);
 $module->saveToFlash();
 }
 printf("Current name: %s
", $module->get_logicalName());
 print("New name: <input name='newname' value='' maxlength=19>
");
 YAPI::FreeAPI();
?>
<input type='submit'>
</FORM>
</BODY>
</HTML>

Attention, le nombre de cycle d'écriture de la mémoire non volatile du module est limité. Passé cette
limite plus rien ne garantit de que la sauvegarde des réglages se passera correctement. Cette limite,
lié à la technologie employé par le micro-processeur du module se situe aux alentour de 100000
cycles. Pour résumer vous ne pouvez employer la fonction saveToFlash() que 100000 fois au
cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une
boucle.

Enumération des modules
Obtenir la liste des modules connectés se fait à l'aide de la fonction yFirstModule() qui renvoie
le premier module trouvé, il suffit ensuite d'appeler la fonction nextModule() de cet objet pour
trouver les modules suivants, et ce tant que la réponse n'est pas un NULL. Ci-dessous un petit
exemple listant les module connectés

<HTML>
<HEAD>
 <TITLE>inventory</TITLE>
</HEAD>
<BODY>
<H1>Device list</H1>
<TT>
 <?php
 include('../../php8/yocto_api.php');
 YAPI::RegisterHub("http://127.0.0.1:4444/");
 $module = YModule::FirstModule();
 while (!is_null($module)) {
 printf("%s (%s)
\n", $module->get_serialNumber(),
 $module->get_productName());
 $module=$module->nextModule();
 }
 YAPI::FreeAPI();
 ?>
</TT>
</BODY>
</HTML>

15.4. API par callback HTTP et filtres NAT
La librairie PHP est capable de fonctionner dans un mode spécial appelé Yocto-API par callback
HTTP. Ce mode permet de contrôler des modules Yoctopuce installés derrière un filtre NAT tel qu'un
routeur DSL par exemple, et ce sans avoir à un ouvrir un port. L'application typique est le contrôle de
modules Yoctopuce situés sur réseau privé depuis un site Web publique.

Le filtre NAT, avantages et inconvénients
Un routeur DSL qui effectue de la traduction d'adresse réseau (NAT) fonctionne un peu comme un
petit central téléphonique privé: les postes internes peuvent s'appeler l'un l'autre ainsi que faire des
appels vers l'extérieur, mais vu de l'extérieur, il n'existe qu'un numéro de téléphone officiel, attribué
au central téléphonique lui-même. Les postes internes ne sont pas atteignables depuis l'extérieur.

15. Utilisation du Yocto-Knob-C en PHP

www.yoctopuce.com 119

Configuration DSL typique, les machines du LAN sont isolées de l'extérieur par le router DSL

Ce qui, transposé en terme de réseau, donne : les appareils connectés sur un réseau domestique
peuvent communiquer entre eux en utilisant une adresse IP locale (du genre 192.168.xxx.yyy), et
contacter des serveurs sur Internet par leur adresse publique, mais vu de l'extérieur, il n'y a qu'une
seule adresse IP officielle, attribuée au routeur DSL exclusivement. Les différents appareils réseau
ne sont pas directement atteignables depuis l'extérieur. C'est assez contraignant, mais c'est une
protection relativement efficace contre les intrusions.

Les réponses aux requêtes venant des machines du LAN sont routées.

Mais les requêtes venant de l'extérieur sont bloquées.

Voir Internet sans être vu représente un avantage de sécurité énorme. Cependant, cela signifie qu'a
priori, on ne peut pas simplement monter son propre serveur Web publique chez soi pour une
installation domotique et offrir un accès depuis l'extérieur. Une solution à ce problème, préconisée
par de nombreux vendeurs de domotique, consiste à donner une visibilité externe au serveur de
domotique lui-même, en ouvrant un port et en ajoutant une règle de routage dans la configuration

15. Utilisation du Yocto-Knob-C en PHP

120 www.yoctopuce.com

NAT du routeur DSL. Le problème de cette solution est qu'il expose le serveur de domotique aux
attaques externes.

L'API par callback HTTP résoud ce problème sans qu'il soit nécessaire de modifier la configuration
du routeur DSL. Le script de contrôle des modules est placé sur un site externe, et c'est le Virtual
Hub qui est chargé de l'appeler à intervalle régulier.

L'API par callback HTTP utilise le VirtualHub, et c'est lui qui initie les requêtes.

Configuration
L'API callback se sert donc du Virtual Hub comme passerelle. Toutes les communications sont
initiées par le Virtual Hub, ce sont donc des communication sortantes, et par conséquent
parfaitement autorisée par le routeur DSL.

Il faut configurer le VirtualHub pour qu'il appelle le script PHP régulièrement. Pour cela il faut:

1. Lancer un VirtualHub
2. Accéder à son interface, généralement 127.0.0.1:4444
3. Cliquer sur le bouton configure de la ligne correspondant au VirtualHub lui-même
4. Cliquer sur le bouton edit de la section Outgoing callbacks

Cliquer sur le bouton "configure" de la première ligne

Cliquer sur le bouton "edit" de la section Outgoing callbacks.

15. Utilisation du Yocto-Knob-C en PHP

www.yoctopuce.com 121

Et choisir "Yocto-API callback".

Il suffit alors de définir l'URL du script PHP et, si nécessaire, le nom d'utilisateur et le mot de passe
pour accéder à cette URL. Les méthodes d'authentification supportées sont basic et digest. La
seconde est plus sûre que la première car elle permet de ne pas transférer le mot de passe sur le
réseau.

Utilisation
Du point de vue du programmeur, la seule différence se trouve au niveau de l'appel à la fonction
yRegisterHub; au lieu d'utiliser une adresse IP, il faut utiliser la chaîne callback (ou http://callback,
qui est équivalent).

include("yocto_api.php");
yRegisterHub("callback");

La suite du code reste strictement identique. Sur l'interface du VirtualHub, il y a en bas de la fenêtre
de configuration de l'API par callback HTTP un bouton qui permet de tester l'appel au script PHP.

Il est à noter que le script PHP qui contrôle les modules à distance via l'API par callback HTTP ne
peut être appelé que par le VirtualHub. En effet, il a besoin des informations postées par le
VirtualHub pour fonctionner. Pour coder un site Web qui contrôle des modules Yoctopuce de
manière interactive, il faudra créer une interface utilisateur qui stockera dans un fichier ou une base
de données les actions à effectuer sur les modules Yoctopuce. Ces actions seront ensuite lues puis
exécutés par le script de contrôle.

Problèmes courants
Pour que l'API par callback HTTP fonctionne, l'option de PHP allow_url_fopen doit être activée.
Certains hébergeurs de site web ne l'activent pas par défaut. Le problème se manifeste alors avec
l'erreur suivante:

error: URL file-access is disabled in the server configuration

Pour activer cette option, il suffit de créer dans le même répertoire que le script PHP de contrôle un
fichier .htaccess contenant la ligne suivante:

php_flag "allow_url_fopen" "On"

Selon la politique de sécurité de l'hébergeur, il n'est parfois pas possible d'autoriser cette option à la
racine du site web, où même d'installer des scripts PHP recevant des données par un POST HTTP.
Dans ce cas il suffit de placer le script PHP dans un sous-répertoire.

15. Utilisation du Yocto-Knob-C en PHP

122 www.yoctopuce.com

Limitations

Cette méthode de fonctionnement qui permet de passer les filtres NAT à moindre frais a malgré tout
un prix. Les communications étant initiées par le Virtual Hub à intervalle plus ou moins régulier, le
temps de réaction à un événement est nettement plus grand que si les modules Yoctopuce étaient
pilotés en direct. Vous pouvez configurer le temps de réaction dans la fenêtre ad-hoc du Virtual Hub,
mais il sera nécessairement de quelques secondes dans le meilleur des cas.

Le mode Yocto-API par callback HTTP n'est pour l'instant disponible qu'en PHP, EcmaScript
(Node.JS) et Java.

15.5. Gestion des erreurs
Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez
pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur
aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération.
La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais
votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées
par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les
petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne
avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de
seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut
suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une
erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule
manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-
dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des
erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie
Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer
une exception. Dans ce cas, de trois choses l'une:

• Si votre code attrape l'exception au vol et la gère, et tout se passe bien.
• Si votre programme tourne dans le debugger, vous pourrez relativement facilement déterminer

où le problème s'est produit, et voir le message explicatif lié à l'exception.
• Sinon... l'exception va crasher votre programme, boum!

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre
alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir
attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction
YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de
chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui
peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas
d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il
suit toujours la même logique: une méthode get_state() retournera une valeur
NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur
NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du
type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire,
si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée.
Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera
YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message
expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des
méthodes errType() et errMessage(). Ce sont les même informations qui auraient été
associées à l'exception si elles avaient été actives.

www.yoctopuce.com 123

16. Utilisation du Yocto-Knob-C en
VisualBasic .NET
VisualBasic a longtemps été la porte d'entrée privilégiée vers le monde Microsoft. Nous nous
devions donc d'offrir notre interface pour ce langage, même si la nouvelle tendance est le C#. Nous
supportons Visual Studio 2017 et les versions plus récentes.

16.1. Installation
Téléchargez la librairie Yoctopuce pour Visual Basic depuis le site web de Yoctopuce1. Il n'y a pas
de programme d'installation, copiez simplement de contenu du fichier zip dans le répertoire de votre
choix. Vous avez besoin essentiellement du contenu du répertoire Sources. Les autres répertoires
contiennent la documentation et quelques programmes d'exemple. Les projets d'exemple sont des
projets Visual Basic 2010, si vous utilisez une version antérieure, il est possible que vous ayez à
reconstruire la structure de ces projets.

16.2. Utilisation l'API yoctopuce dans un projet Visual Basic
La librairie Yoctopuce pour Visual Basic .NET se présente sous la forme d'une DLL et de fichiers
sources en Visual Basic. La DLL n'est pas une DLL .NET mais une DLL classique, écrite en C, qui
gère les communications à bas niveau avec les modules2. Les fichiers sources en Visual Basic
gèrent la partie haut niveau de l'API. Vous avez donc besoin de cette DLL et des fichiers .vb du
répertoire Sources pour créer un projet gérant des modules Yoctopuce.

Configuration d'un projet Visual Basic
Les indications ci-dessous sont fournies pour Visual Studio express 2010, mais la procédure est
semblable pour les autres versions.

Commencez par créer votre projet, puis depuis le panneau Explorateur de solutions effectuez un
clic droit sur votre projet, et choisissez Ajouter puis Elément existant.

Une fenêtre de sélection de fichiers apparaît: sélectionnez le fichier yocto_api.vb et les fichiers
correspondant aux fonctions des modules Yoctopuce que votre projet va gérer. Dans le doute, vous
pouvez aussi sélectionner tous les fichiers.

1 www.yoctopuce.com/FR/libraries.php
2 Les sources de cette DLL sont disponibles dans l'API C++

16. Utilisation du Yocto-Knob-C en VisualBasic .NET

124 www.yoctopuce.com

Vous avez alors le choix entre simplement ajouter ces fichiers à votre projet, ou les ajouter en tant
que lien (le bouton Ajouter est en fait un menu déroulant). Dans le premier cas, Visual Studio va
copier les fichiers choisis dans votre projet, dans le second Visual Studio va simplement garder un
lien sur les fichiers originaux. Il est recommandé d'utiliser des liens, une éventuelle mise à jour de la
librairie sera ainsi beaucoup plus facile.

Ensuite, ajoutez de la même manière la dll yapi.dll, qui se trouve dans le répertoire Sources/
dll3. Puis depuis la fenêtre Explorateur de solutions, effectuez un clic droit sur la DLL, choisissez
Propriété et dans le panneau Propriétés, mettez l'option Copier dans le répertoire de sortie à
toujours copier. Vous êtes maintenant prêt à utiliser vos modules Yoctopuce depuis votre
environnement Visual Studio.

Afin de les garder simples, tous les exemples fournis dans cette documentation sont des applications
consoles. Il va de soit que que les fonctionnement des librairies est strictement identiques si vous les
intégrez dans une application dotée d'une interface graphique.

16.3. Contrôle de la fonction AnButton
Il suffit de quelques lignes de code pour piloter un Yocto-Knob-C. Voici le squelette d'un fragment de
code VisualBasic .NET qui utilise la fonction AnButton.

[...]
' On active la détection des modules sur USB
Dim errmsg As String
YAPI.RegisterHub("usb", errmsg)
[...]

' On récupère l'objet permettant d'intéragir avec le module
Dim anbutton As YAnButton
anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1")

' Pour gérer le hot-plug, on vérifie que le module est là
If (anbutton.isOnline()) Then
 ' Utiliser anbutton.get_calibratedValue()
 [...]
End If

[...]

Voyons maintenant en détail ce que font ces quelques lignes.

YAPI.RegisterHub
La fonction YAPI.RegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent
être recherchés. Utilisée avec le paramètre "usb", elle permet de travailler avec les modules
connectés localement à la machine. Si l'initialisation se passe mal, cette fonction renverra une valeur
différente de YAPI_SUCCESS, et retournera via le paramètre errmsg un explication du problème.

YAnButton.FindAnButton
La fonction YAnButton.FindAnButton permet de retrouver une entrée analogique en fonction
du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi
bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module
Yocto-Knob-C avec le numéros de série YBUTTN1C-123456 que vous auriez appelé "MonModule"
et dont vous auriez nommé la fonction anButton1 "MaFonction", les cinq appels suivants seront
strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute
ambiguïté):

anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1")
anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.MaFonction")
anbutton = YAnButton.FindAnButton("MonModule.anButton1")
anbutton = YAnButton.FindAnButton("MonModule.MaFonction")

3 Pensez à changer le filtre de la fenêtre de sélection de fichiers, sinon la DLL n'apparaîtra pas

16. Utilisation du Yocto-Knob-C en VisualBasic .NET

www.yoctopuce.com 125

anbutton = YAnButton.FindAnButton("MaFonction")

YAnButton.FindAnButton renvoie un objet que vous pouvez ensuite utiliser à loisir pour
contrôler l'entrée analogique.

isOnline
La méthode isOnline() de l'objet renvoyé par YAnButton.FindAnButton permet de savoir
si le module correspondant est présent et en état de marche.

get_isPressed
La méthode get_isPressed() de l'objet renvoyé par yFindAnButton permet de connaître
l'état d'un interrupteur on/off qui serait branché sur l'entrée correspondante du module. Les valeurs
possibles retournées sont Y_ISPRESSED_TRUE (si le contact est fermé) et
Y_ISPRESSED_FALSE (si le contact est ouvert). Pour lire une valeur analogique plutôt qu'une
valeur binaire, on utilise à la place la méthode ci-dessous.

get_calibratedValue
La méthode get_calibratedValue() de l'objet renvoyé par yFindAnButton permet de
connaître la position d'un potentiomètre analogique qui serait branché sur l'entrée correspondante du
module. Une fois que vous avez calibré l'entrée analogique pour votre potentiomètre, la valeur
retournée est un entier entre 0 et 1000.

Un exemple réel
Lancez Microsoft VisualBasic et ouvrez le projet exemple correspondant, fourni dans le répertoire
Examples/Doc-GettingStarted-Yocto-Knob-C de la librairie Yoctopuce.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois
utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

Module Module1

 Private Sub Usage()
 Dim execname = System.AppDomain.CurrentDomain.FriendlyName
 Console.WriteLine("Usage:")
 Console.WriteLine(execname + " <serial_number>")
 Console.WriteLine(execname + " <logical_name>")
 Console.WriteLine(execname + " any ")
 System.Threading.Thread.Sleep(2500)

 End
 End Sub

 Sub Main()
 Dim argv() As String = System.Environment.GetCommandLineArgs()
 Dim errmsg As String = ""
 Dim target As String
 Dim input1 As YAnButton = Nothing
 Dim input5 As YAnButton = Nothing

 If argv.Length < 2 Then Usage()

 target = argv(1)

 REM Setup the API to use local USB devices
 If (YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS) Then
 Console.WriteLine("RegisterHub error: " + errmsg)
 End
 End If

 If target = "any" Then
 input1 = YAnButton.FirstAnButton()
 If input1 Is Nothing Then
 Console.WriteLine("No module connected (check USB cable) ")
 End
 End If
 target = input1.get_Module().get_serialNumber()
 End If

16. Utilisation du Yocto-Knob-C en VisualBasic .NET

126 www.yoctopuce.com

 input1 = YAnButton.FindAnButton(target + ".anButton1")
 input5 = YAnButton.FindAnButton(target + ".anButton5")

 While (True)
 If Not (input1.isOnline()) Then
 Console.WriteLine("Module not connected (check identification and USB cable)")
 End
 End If
 If (input1.get_isPressed() = Y_ISPRESSED_TRUE) Then
 Console.Write("Button1: pressed ")
 Else
 Console.Write("Button1: not pressed ")
 End If
 Console.WriteLine("- analog value: " + Str(input1.get_calibratedValue()))

 If (input5.get_isPressed() = Y_ISPRESSED_TRUE) Then
 Console.Write("Button5: pressed ")
 Else
 Console.Write("Button5: not pressed ")
 End If
 Console.WriteLine("- analog value: " + Str(input5.get_calibratedValue()))

 YAPI.Sleep(1000, errmsg)

 End While
 YAPI.FreeAPI()

 End Sub

End Module

16.4. Contrôle de la partie module
Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci dessous un simple
programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la
balise de localisation.

Imports System.IO
Imports System.Environment

Module Module1

 Sub usage()
 Console.WriteLine("usage: demo <serial or logical name> [ON/OFF]")
 End
 End Sub

 Sub Main()
 Dim argv() As String = System.Environment.GetCommandLineArgs()
 Dim errmsg As String = ""
 Dim m As ymodule

 If (YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS) Then
 Console.WriteLine("RegisterHub error:" + errmsg)
 End
 End If

 If argv.Length < 2 Then usage()

 m = YModule.FindModule(argv(1)) REM use serial or logical name
 If (m.isOnline()) Then
 If argv.Length > 2 Then
 If argv(2) = "ON" Then m.set_beacon(Y_BEACON_ON)
 If argv(2) = "OFF" Then m.set_beacon(Y_BEACON_OFF)
 End If
 Console.WriteLine("serial: " + m.get_serialNumber())
 Console.WriteLine("logical name: " + m.get_logicalName())
 Console.WriteLine("luminosity: " + Str(m.get_luminosity()))
 Console.Write("beacon: ")
 If (m.get_beacon() = Y_BEACON_ON) Then
 Console.WriteLine("ON")

16. Utilisation du Yocto-Knob-C en VisualBasic .NET

www.yoctopuce.com 127

 Else
 Console.WriteLine("OFF")
 End If
 Console.WriteLine("upTime: " + Str(m.get_upTime() / 1000) + " sec")
 Console.WriteLine("USB current: " + Str(m.get_usbCurrent()) + " mA")
 Console.WriteLine("Logs:")
 Console.WriteLine(m.get_lastLogs())
 Else
 Console.WriteLine(argv(1) + " not connected (check identification and USB cable)")
 End If
 YAPI.FreeAPI()
 End Sub

End Module

Chaque propriété xxx du module peut être lue grâce à une méthode du type get_xxxx(), et les
propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode set_xxx
() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module
Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction
set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du
module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées
de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration
courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode saveToFlash().
Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la
méthode revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique
d'un module.

Module Module1

 Sub usage()

 Console.WriteLine("usage: demo <serial or logical name> <new logical name>")
 End
 End Sub

 Sub Main()
 Dim argv() As String = System.Environment.GetCommandLineArgs()
 Dim errmsg As String = ""
 Dim newname As String
 Dim m As YModule

 If (argv.Length <> 3) Then usage()

 REM Setup the API to use local USB devices
 If YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS Then
 Console.WriteLine("RegisterHub error: " + errmsg)
 End
 End If

 m = YModule.FindModule(argv(1)) REM use serial or logical name
 If m.isOnline() Then
 newname = argv(2)
 If (Not YAPI.CheckLogicalName(newname)) Then
 Console.WriteLine("Invalid name (" + newname + ")")
 End
 End If
 m.set_logicalName(newname)
 m.saveToFlash() REM do not forget this
 Console.Write("Module: serial= " + m.get_serialNumber)
 Console.Write(" / name= " + m.get_logicalName())
 Else
 Console.Write("not connected (check identification and USB cable")
 End If
 YAPI.FreeAPI()

 End Sub

End Module

16. Utilisation du Yocto-Knob-C en VisualBasic .NET

128 www.yoctopuce.com

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette
limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite,
liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000
cycles. Pour résumer vous ne pouvez employer la fonction saveToFlash() que 100000 fois au
cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une
boucle.

Enumeration des modules
Obtenir la liste des modules connectés se fait à l'aide de la fonction yFirstModule() qui renvoie
le premier module trouvé, il suffit ensuite d'appeler la fonction nextModule() de cet objet pour
trouver les modules suivants, et ce tant que la réponse n'est pas un Nothing. Ci-dessous un petit
exemple listant les module connectés

Module Module1

 Sub Main()
 Dim M As ymodule
 Dim errmsg As String = ""

 REM Setup the API to use local USB devices
 If YAPI.RegisterHub("usb", errmsg) <> YAPI_SUCCESS Then
 Console.WriteLine("RegisterHub error: " + errmsg)
 End
 End If

 Console.WriteLine("Device list")
 M = YModule.FirstModule()
 While M IsNot Nothing
 Console.WriteLine(M.get_serialNumber() + " (" + M.get_productName() + ")")
 M = M.nextModule()
 End While
 YAPI.FreeAPI()
 End Sub

End Module

16.5. Gestion des erreurs
Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez
pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur
aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération.
La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais
votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées
par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les
petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne
avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de
seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut
suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une
erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule
manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-
dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des
erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie
Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer
une exception. Dans ce cas, de trois choses l'une:

• Si votre code attrape l'exception au vol et la gère, et tout se passe bien.
• Si votre programme tourne dans le debugger, vous pourrez relativement facilement déterminer

où le problème s'est produit, et voir le message explicatif lié à l'exception.

16. Utilisation du Yocto-Knob-C en VisualBasic .NET

www.yoctopuce.com 129

• Sinon... l'exception va crasher votre programme, boum!

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre
alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir
attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction
YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de
chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui
peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas
d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il
suit toujours la même logique: une méthode get_state() retournera une valeur
NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur
NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du
type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire,
si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée.
Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera
YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message
expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des
méthodes errType() et errMessage(). Ce sont les même informations qui auraient été
associées à l'exception si elles avaient été actives.

130 www.yoctopuce.com

www.yoctopuce.com 131

17. Utilisation du Yocto-Knob-C en Delphi / Lazarus
Delphi est l'héritier de Turbo-Pascal. A l'origine, Delphi était produit par Borland, mais c'est
maintenant Embarcadero qui l'édite. Sa force réside dans sa facilité d'utilisation, il permet à
quiconque ayant des notions de Pascal de programmer une application Windows en deux temps
trois mouvements. Son seul défaut est d'être payant1.

Lazarus2 est un IDE gratuit basé sur Free-Pascal qui n'a pas grand chose à envier à Delphi. Il a
aussi l'avantage d'exister pour Windows et Linux. La librairie Yoctopuce pour Delphi est compatible
avec Lazarus tant sous Windows que Linux.

Les librairies pour Delphi / Lazarus sont fournies non pas sous forme de composants VCL, mais
directement sous forme de fichiers source. Ces fichiers sont compatibles avec la plupart des
versions de Delphi / Lazarus 3.

17.1. Préparation
Connectez-vous sur le site de Yoctopuce et téléchargez la la librairie Yoctopuce pour Delphi4.
Décompressez le tout dans le répertoire de votre choix.

• Avec Delphi ajoutez le sous-répertoire sources de l'archive dans la liste des répertoires des
librairies de Delphi5.

• Avec Lazarus, ouvrez les options de votre projet et ajoutez le répertoire sources dans le
champs "other unit files"6.

Windows
Sous Windows, la librairie Delphi / Lazarus utilise deux DLL: yapi.dll pour exécutables 32bits et
yapi64.dll pour les exécutable 64bits. Toutes les applications que vous créerez avec Delphi ou
Lazarus devront avoir accès à ces DLL. Le plus simple est de faire en sorte qu'elles soient présentes
dans le même répertoire que l'exécutable de votre application. Vous trouverez ces DLL dans le
répertoire sources/dll.

1 En fait, Borland a diffusé des versions gratuites (pour usage personnel) de Delphi 2006 et Delphi 2007, en cherchant un
peu sur internet il est encore possible de les télécharger.
2 www.lazarus-ide.org
3 Les librairies Delphi sont régulièrement testées avec Delphi 5 et Delphi XE2 et la dernière version de Lazarus
4 www.yoctopuce.com/FR/libraries.php
5 Utilisez le menu outils / options denvironnement
6 Utilisez le menu Project / Project options/ Compiler options / Paths

17. Utilisation du Yocto-Knob-C en Delphi / Lazarus

132 www.yoctopuce.com

Linux
Sous Linux, la librairie Delphi / Lazarus utilise les librairies suivantes:

• libyapi-i386.so sur les systèmes Intel 32 bits
• libyapi-amd64.so sur les systèmes Intel 64 bits
• libyapi-armhf.so sur les systèmes ARM 32 bits
• libyapi-aarch64.so sur les systèmes ARM 64 bits

Vous trouverez ces fichiers lib dans le répertoire sources/dll. Vous devez faire en sorte que :

• Lazarus soit capable de localiser le bon fichier .so à la compilation
• Lexécutable soit capable de le localiser l'exécution

La solution la plus simple pour remplir ces conditions consiste à copier ces quatre fichiers dans le
répertoire /usr/lib. Une autre solution consiste à les copier dans le même répertoire que votre code
source et à ajuster votre variable d'environnement LD_LIBRARY_PATHen conséquence.

A propos des exemples
Afin de les garder simples, tous les exemples fournis dans cette documentation sont des applications
consoles. Il va de soit que le fonctionnement des librairies est strictement identique avec des
applications fenêtrées.

Notez que la plupart de ces exemples utilisent des paramètres passés sur le ligne de commande7.

Vous allez rapidement vous rendre compte que l'API Delphi définit beaucoup de fonctions qui
retournent des objets. Vous ne devez jamais désallouer ces objets vous-même. Ils seront désalloués
automatiquement par l'API à la fin de l'application.

17.2. Contrôle de la fonction AnButton
Il suffit de quelques lignes de code pour piloter un Yocto-Knob-C. Voici le squelette d'un fragment de
code Delphi qui utilise la fonction AnButton.

uses yocto_api, yocto_anbutton;

var errmsg: string;
 anbutton: TYAnButton;

[...]
// On active la détection des modules sur USB
yRegisterHub('usb',errmsg)
[...]

// On récupère l'objet permettant d'intéragir avec le module
anbutton = yFindAnButton("YBUTTN1C-123456.anButton1")

// Pour gérer le hot-plug, on vérifie que le module est là
if anbutton.isOnline() then
 begin
 // use anbutton.get_calibratedValue()
 [...]
 end;
[...]

Voyons maintenant en détail ce que font ces quelques lignes.

yocto_api et yocto_anbutton
Ces deux unités permettent d'avoir accès aux fonctions permettant de gérer les modules Yoctopuce.
yocto_api doit toujours être utilisé, yocto_anbutton est nécessaire pour gérer les modules
contenant une entrée analogique, comme le Yocto-Knob-C.

7 voir http://www.yoctopuce.com/FR/article/a-propos-des-programmes-d-exemples

17. Utilisation du Yocto-Knob-C en Delphi / Lazarus

www.yoctopuce.com 133

yRegisterHub
La fonction yRegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent être
recherchés. Utilisée avec le paramètre 'usb', elle permet de travailler avec les modules connectés
localement à la machine. Si l'initialisation se passe mal, cette fonction renverra une valeur différente
de YAPI_SUCCESS, et retournera via le paramètre errmsg un explication du problème.

yFindAnButton
La fonction yFindAnButton permet de retrouver une entrée analogique en fonction du numéro de
série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi bien utiliser des
noms logiques que vous auriez préalablement configurés. Imaginons un module Yocto-Knob-C avec
le numéros de série YBUTTN1C-123456 que vous auriez appelé "MonModule" et dont vous auriez
nommé la fonction anButton1 "MaFonction", les cinq appels suivants seront strictement équivalents
(pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute ambiguïté):

anbutton := yFindAnButton("YBUTTN1C-123456.anButton1");
anbutton := yFindAnButton("YBUTTN1C-123456.MaFonction");
anbutton := yFindAnButton("MonModule.anButton1");
anbutton := yFindAnButton("MonModule.MaFonction");
anbutton := yFindAnButton("MaFonction");

yFindAnButton renvoie un objet que vous pouvez ensuite utiliser à loisir pour contrôler l'entrée
analogique.

isOnline
La méthode isOnline() de l'objet renvoyé par yFindAnButton permet de savoir si le module
correspondant est présent et en état de marche.

get_isPressed
La méthode get_isPressed() de l'objet renvoyé par yFindAnButton permet de connaître
l'état d'un interrupteur on/off qui serait branché sur l'entrée correspondante du module. Les valeurs
possibles retournées sont Y_ISPRESSED_TRUE (si le contact est fermé) et
Y_ISPRESSED_FALSE (si le contact est ouvert). Pour lire une valeur analogique plutôt qu'une
valeur binaire, on utilise à la place la méthode ci-dessous.

get_calibratedValue
La méthode get_calibratedValue() de l'objet renvoyé par yFindAnButton permet de
connaître la position d'un potentiomètre analogique qui serait branché sur l'entrée correspondante du
module. Une fois que vous avez calibré l'entrée analogique pour votre potentiomètre, la valeur
retournée est un entier entre 0 et 1000.

Un exemple réel
Lancez votre environnement Delphi, copiez la DLL yapi.dll dans un répertoire et créez une nouvelle
application console dans ce même répertoire, et copiez-coller le code ci dessous.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois
utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

program helloworld;
{$APPTYPE CONSOLE}
uses
 SysUtils, {$IFNDEF UNIX}
 windows,
 {$ENDIF UNIX}
 yocto_api,
 yocto_anbutton;

Procedure Usage();
 var
 exe : string;

 begin

17. Utilisation du Yocto-Knob-C en Delphi / Lazarus

134 www.yoctopuce.com

 exe:= ExtractFileName(paramstr(0));
 WriteLn(exe+' <serial_number>');
 WriteLn(exe+' <logical_name>');
 WriteLn(exe+' any');
 sleep(3000);
 halt;
 End;

var
 input,input1,input5 : TYAnButton;
 m : TYmodule;
 errmsg,serial : string;
 done : boolean;
begin
 if (paramcount<1) then usage();

 // Setup the API to use local USB devices
 if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
 begin
 Write('RegisterHub error: '+errmsg);
 sleep(3000);
 exit;
 end;
 if paramstr(1)='any' then
 begin
 // try to find the first available anButton
 input := yFirstAnButton();
 if input=nil then
 begin
 writeln('No module connected (check USB cable)');
 sleep(3000);
 halt;
 end
 end
 else // or use the module specified on the command line
 input:= YFindAnButton(paramstr(1)+'.anButton');

 // make sure it is online
 if not(input.isOnline()) then
 begin
 writeln('No module connected (check USB cable)');
 sleep(3000);
 halt;
 end;

 // lets find the matching module, to find out what serial it have
 m:=input.get_module();
 serial := m.get_serialNumber();

 // now we can reteive the 1srt and 5th button on the same module
 input1 := yFindAnButton(serial+'.anButton1');
 input5 := yFindAnButton(serial+'.anButton5');

 // lets poll
 repeat
 if (not(input1.isOnline())) then
 begin
 Writeln('Module not connected (check identification and USB cable)');
 done := true;
 end
 else
 begin
 if input1.get_isPressed() = Y_ISPRESSED_TRUE
 then Write('Button1: pressed ')
 else Write('Button1: not pressed');
 Writeln(' - analog value: '+FloatToStr(input1.get_calibratedValue()));
 if input5.get_isPressed() = Y_ISPRESSED_TRUE
 then Write('Button5: pressed ')
 else Write('Button5: not pressed');
 Writeln(' - analog value: '+FloatToStr(input5.get_calibratedValue()));
 Writeln('(press both buttons simultaneously to exit)');
 done := (input1.get_isPressed() = Y_ISPRESSED_TRUE) and
 (input5.get_isPressed() = Y_ISPRESSED_TRUE);
 Sleep(1000);
 end
 until done;
 yFreeAPI();

17. Utilisation du Yocto-Knob-C en Delphi / Lazarus

www.yoctopuce.com 135

end.

17.3. Contrôle de la partie module
Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci dessous un simple
programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la
balise de localisation.

program modulecontrol;
{$APPTYPE CONSOLE}
uses
 SysUtils,
 yocto_api;

const
 serial = 'YBUTTN1C-123456'; // use serial number or logical name

procedure refresh(module:Tymodule) ;
 begin
 if (module.isOnline()) then
 begin
 Writeln('');
 Writeln('Serial : ' + module.get_serialNumber());
 Writeln('Logical name : ' + module.get_logicalName());
 Writeln('Luminosity : ' + intToStr(module.get_luminosity()));
 Write('Beacon :');
 if (module.get_beacon()=Y_BEACON_ON) then Writeln('on')
 else Writeln('off');
 Writeln('uptime : ' + intToStr(module.get_upTime() div 1000)+'s');
 Writeln('USB current : ' + intToStr(module.get_usbCurrent())+'mA');
 Writeln('Logs : ');
 Writeln(module.get_lastlogs());
 Writeln('');
 Writeln('r : refresh / b:beacon ON / space : beacon off');
 end
 else Writeln('Module not connected (check identification and USB cable)');
 end;

procedure beacon(module:Tymodule;state:integer);
 begin
 module.set_beacon(state);
 refresh(module);
 end;

var
 module : TYModule;
 c : char;
 errmsg : string;

begin
 // Setup the API to use local USB devices
 if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
 begin
 Write('RegisterHub error: '+errmsg);
 exit;
 end;

 module := yFindModule(serial);
 refresh(module);

 repeat
 read(c);
 case c of
 'r': refresh(module);
 'b': beacon(module,Y_BEACON_ON);
 ' ': beacon(module,Y_BEACON_OFF);
 end;
 until c = 'x';
 yFreeAPI();
end.

17. Utilisation du Yocto-Knob-C en Delphi / Lazarus

136 www.yoctopuce.com

Chaque propriété xxx du module peut être lue grâce à une méthode du type get_xxxx(), et les
propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode set_xxx
() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module
Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction
set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire vive du
module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées
de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration
courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode saveToFlash().
Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la
méthode revertFromFlash(). Ce petit exemple ci-dessous vous permet changer le nom logique
d'un module.

program savesettings;
{$APPTYPE CONSOLE}
uses
 SysUtils,
 yocto_api;

const
 serial = 'YBUTTN1C-123456'; // use serial number or logical name

var
 module : TYModule;
 errmsg : string;
 newname : string;

begin
 // Setup the API to use local USB devices
 if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
 begin
 Write('RegisterHub error: '+errmsg);
 exit;
 end;

 module := yFindModule(serial);
 if (not(module.isOnline)) then
 begin
 writeln('Module not connected (check identification and USB cable)');
 exit;
 end;

 Writeln('Current logical name : '+module.get_logicalName());
 Write('Enter new name : ');
 Readln(newname);
 if (not(yCheckLogicalName(newname))) then
 begin
 Writeln('invalid logical name');
 exit;
 end;
 module.set_logicalName(newname);
 module.saveToFlash();
 yFreeAPI();
 Writeln('logical name is now : '+module.get_logicalName());
end.

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette
limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite,
liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000
cycles. Pour résumer vous ne pouvez employer la fonction saveToFlash() que 100000 fois au
cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une
boucle.

Énumération des modules
Obtenir la liste des modules connectés se fait à l'aide de la fonction yFirstModule() qui renvoie
le premier module trouvé, il suffit ensuite d'appeler la fonction nextModule() de cet objet pour

17. Utilisation du Yocto-Knob-C en Delphi / Lazarus

www.yoctopuce.com 137

trouver les modules suivants, et ce tant que la réponse n'est pas un nil. Ci-dessous un petit
exemple listant les module connectés

program inventory;
{$APPTYPE CONSOLE}
uses
 SysUtils,
 yocto_api;

var
 module : TYModule;
 errmsg : string;

begin
 // Setup the API to use local USB devices
 if yRegisterHub('usb', errmsg)<>YAPI_SUCCESS then
 begin
 Write('RegisterHub error: '+errmsg);
 exit;
 end;

 Writeln('Device list');

 module := yFirstModule();
 while module<>nil do
 begin
 Writeln(module.get_serialNumber()+' ('+module.get_productName()+')');
 module := module.nextModule();
 end;
 yFreeAPI();

end.

17.4. Gestion des erreurs
Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez
pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur
aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération.
La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais
votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées
par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les
petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne
avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de
seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut
suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une
erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule
manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-
dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des
erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie
Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer
une exception. Dans ce cas, de trois choses l'une:

• Si votre code attrape l'exception au vol et la gère, et tout se passe bien.
• Si votre programme tourne dans le debugger, vous pourrez relativement facilement déterminer

où le problème s'est produit, et voir le message explicatif lié à l'exception.
• Sinon... l'exception va crasher votre programme, boum!

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre
alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir
attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction
YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de
chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui

17. Utilisation du Yocto-Knob-C en Delphi / Lazarus

138 www.yoctopuce.com

peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas
d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il
suit toujours la même logique: une méthode get_state() retournera une valeur
NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur
NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du
type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire,
si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée.
Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera
YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message
expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des
méthodes errType() et errMessage(). Ce sont les même informations qui auraient été
associées à l'exception si elles avaient été actives.

www.yoctopuce.com 139

18. Utilisation du Yocto-Knob-C avec Universal
Windows Platform
Universal Windows Platform, abrégé UWP, est n'est pas un langage à proprememt parler mais une
plate-forme logicielle créée par Micorosft. Cette platform permet d'executer un nouveau type
d'applications : les application universelle Windows. Ces applicaiton peuvent fonctionner sur toutes
les machines qui fonctione sous Windows 10. Cela comprend les PCs, les tablettes, les
smartphones, la XBox One, mais aussi Windows IoT Core.

La librairie Yoctopuce UWP permet d'utiliser les modules Yoctopuce dans une application universelle
Winodws et est entièrement écrite C#. Elle peut être ajoutée a un projet Visual Studio 20171.

18.1. Fonctions bloquantes et fonctions asynchrones
La librairie Universal Windows Platform n'utilise pas l'API win32 mais uniquement l'API Windows
Runtime qui est disponible sur toutes les versions de Windows 10 et pour n'importe quelle
architecture. Grâce à cela la librairie UWP peut être utilisé sur toutes les versions de Windows 10, y
compris Windows 10 IoT Core.

Cependant, l'utilisation des nouvelles API UWP n'est pas sans conséquence: l'API Windows Runtime
pour accéder aux ports USB est asynchrone, et par conséquent la librairie Yoctopuce doit aussi être
asynchrone. Concrètement les méthodes asynchrones ne retournent pas directement le résultat
mais un objet Task ou Task<> et le résultat peut être obtenu plus tard. Fort heureusement, le
langage C# version 6 supporte les mots-clefs async et await qui simplifie beaucoup l'utilisation de
ces fonctions. Il est ainsi possible d'utiliser les fonctions asynchrones de la même manière que les
fonctions traditionnelles pour autant que les deux règles suivantes soient respectées:

• La méthode est déclarée comme asynchrone à l'aide du mot-clef async
• le mot-clef await est ajouté lors de l'utilisation d'une fonction asynchrone

Exemple:

async Task<int> MyFunction(int val)
{
 // do some long computation
 ...

 return result;
}

1 https://www.visualstudio.com/fr/vs/

18. Utilisation du Yocto-Knob-C avec Universal Windows Platform

140 www.yoctopuce.com

int res = await MyFunction(1234);

Notre librairie suit ces deux règles et peut donc dutil iser la notation await.

Pour ne pas devoir vous poser la question pour chaque méthode de savoir si elle est asynchrone ou
pas, la convention est la suivante: toutes les méthodes publiques de la librairie UWP sont
asyncrones, c'est-à-dire qui faut les appeler en ajoutant le mot clef await, sauf:

• GetTickCount(), parce que mesurer le temps de manière asynchrone n'a pas beaucoup
de sens...

• FindModule(), FirstModule(), nextModule(), ... parce que la détection et
l'énumération des modules est faite en tâche de fond sur des structures internes qui sont
gérées de manière transparente, et qu'il n'est donc pas nécessaire de faire des opérations
bloquantes durant le simple parcours de ces listes de modules.

18.2. Installation
Téléchargez la librairie Yoctopuce pour Universal Windows Platform depuis le site web de Yoctopuce
2. Il n'y a pas de programme d'installation, copiez simplement de contenu du fichier zip dans le
répertoire de votre choix. Vous avez besoin essentiellement du contenu du répertoire Sources. Les
autres répertoires contiennent la documentation et quelques programmes d'exemple. Les projets
d'exemple sont des projets Visual Studio 2017 qui est disponible sur le site de Microsoft 3.

18.3. Utilisation l'API Yoctopuce dans un projet Visual Studio

Commencez par créer votre projet , puis depuis le panneau Explorateur de solutions effectuez un
clic droit sur votre projet, et choisissez Ajouter puis Élément existant .

Une fenêtre de sélection de fichiers apparaît: sélectionnez tous les fichiers du répertoire Sources
de la librairie.

Vous avez alors le choix entre simplement ajouter ces fichiers à votre projet, ou les ajouter en tant
que lien (le bouton Ajouter est en fait un menu déroulant). Dans le premier cas, Visual Studio va
copier les fichiers choisis dans votre projet, dans le second Visual Studio va simplement garder un
lien sur les fichiers originaux. Il est recommandé d'utiliser des liens, une éventuelle mise à jour de la
librairie sera ainsi beaucoup plus facile.

Le fichier Package.appxmanifest
Par défaut, une application Universal Windows n'a pas le droit daccéder aux ports USB. Si l'on
désire accéder à un périphérique USB, il faut impérativement le déclarer dans le fichier
Package.appxmanifest.

Malheureusement, la fenêtre d'édition de ce fichier ne permet pas cette opération et il faut modifier le
fichier Package.appxmanifest à la main. Dans le panneau "Solutions Explorer", faites un clic
droit sur le fichier Package.appxmanifest et sélectionner "View Code".

Dans ce fichier XML, il faut rajouter un n u d DeviceCapability dans le n u d Capabilities.
Ce n u d doit avoir un attribut "Name" qui vaut "humaninterfacedevice".

A l intérieur de ce n u d , il faut déclarer tous les modules qui peuvent être utilisés. Concrètement,
pour chaque module, il faut ajouter un n u d "Device" avec un attribut "Id" dont la valeur est une
chaîne de caractères "vidpid:USB_VENDORID USB_DEVICE_ID". Le USB_VENDORID de
Yoctopuce est 24e0 et le USB_DEVICE_ID de chaque module Yoctopuce peut être trouvé dans la

2 www.yoctopuce.com/FR/libraries.php
3 https://www.visualstudio.com/downloads/

18. Utilisation du Yocto-Knob-C avec Universal Windows Platform

www.yoctopuce.com 141

documentation dans la section "Caractéristiques". Pour finir, le n u d "Device" doit contenir un n u d
"Function" avec l'attribut "Type" dont la valeur est "usage:ff00 0001".

Pour le Yocto-Knob-C voici ce qu'il faut ajouter dans le n u d "Capabilities":

 <DeviceCapability Name="humaninterfacedevice">
 <!-- Yocto-Knob-C -->
 <Device Id="vidpid:24e0 00E3">
 <Function Type="usage:ff00 0001" />
 </Device>
 </DeviceCapability>

Malheureusement, il n'est pas possible d'écrire un règle qui autorise tous les modules Yoctopuce,
par conséquent il faut impérativement ajouter chaque module que l'on désire utiliser.

18.4. Contrôle de la fonction AnButton
Il suffit de quelques lignes de code pour piloter un Yocto-Knob-C. Voici le squelette d'un fragment de
code c# qui utilise la fonction AnButton.

[...]
// On active la détection des modules sur USB
await YAPI.RegisterHub("usb");
[...]

// On récupère l'objet permettant d'intéragir avec le module
YAnButton anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1");

// Pour gérer le hot-plug, on vérifie que le module est là
if (await anbutton.isOnline())
{
 // Use anbutton.get_calibratedValue()
 ...
}

[...]

Voyons maintenant en détail ce que font ces quelques lignes.

YAPI.RegisterHub
La fonction YAPI.RegisterHub initialise l'API de Yoctopuce en indiquant où les modules doivent
être recherchés. Le paramètre est l'adresse du virtual hub capable de voir les modules. Si l'on passe
la chaîne de caractère "usb", l'API va travailler avec les modules connectés localement à la
machine. Si l'initialisation se passe mal, une exception sera générée.

YAnButton.FindAnButton
La fonction YAnButton.FindAnButton permet de retrouver une entrée analogique en fonction
du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi
bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module
Yocto-Knob-C avec le numéros de série YBUTTN1C-123456 que vous auriez appelé "MonModule"
et dont vous auriez nommé la fonction anButton1 "MaFonction", les cinq appels suivants seront
strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute
ambiguïté):

anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.anButton1");
anbutton = YAnButton.FindAnButton("YBUTTN1C-123456.MaFonction");
anbutton = YAnButton.FindAnButton("MonModule.anButton1");
anbutton = YAnButton.FindAnButton("MonModule.MaFonction");
anbutton = YAnButton.FindAnButton("MaFonction");

YAnButton.FindAnButton renvoie un objet que vous pouvez ensuite utiliser à loisir pour
contrôler l'entrée analogique.

18. Utilisation du Yocto-Knob-C avec Universal Windows Platform

142 www.yoctopuce.com

isOnline
La méthode isOnline() de l'objet renvoyé par YAnButton.FindAnButton permet de savoir
si le module correspondant est présent et en état de marche.

get_isPressed
La méthode get_isPressed() de l'objet renvoyé par YAnButton.FindAnButton permet de
connaître l'état d'un interrupteur on/off qui serait branché sur l'entrée correspondante du module. Les
valeurs possibles retournées sont YAnButton.ISPRESSED_TRUE (si le contact est fermé) et
YAnButton.ISPRESSED_FALSE (si le contact est ouvert). Pour lire une valeur analogique plutôt
qu'une valeur binaire, on utilise à la place la méthode ci-dessous.

get_calibratedValue
La méthode get_calibratedValue() de l'objet renvoyé par YAnButton.FindAnButton
permet de connaître la position d'un potentiomètre analogique qui serait branché sur l'entrée
correspondante du module. Une fois que vous avez calibré l'entrée analogique pour votre
potentiomètre, la valeur retournée est un entier entre 0 et 1000.

18.5. Un exemple concret
Lancez Visual Studio et ouvrez le projet correspondant, fourni dans le répertoire Examples/Doc-
GettingStarted-Yocto-Knob-C de la librairie Yoctopuce.

Le projets Visual Studio contient de nombreux fichiers dont la plupart ne sont pas liés à l'utilisation
de la librairie Yoctopuce. Pour simplifier la lecture du code nous avons regroupé tout le code qui
utilise la librairie dans la classe Demo qui se trouve dans le fichier demo.cs. Les propriétés de cette
classe correspondent aux différentes champs qui sont affichés à l'écran, et la méthode Run()
contient le code qui est exécuté quand le bouton "Start" est pressé.

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois
utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
 public class Demo : DemoBase
 {
 public string HubURL { get; set; }
 public string Target { get; set; }

 public override async Task<int> Run()
 {
 try {
 await YAPI.RegisterHub(HubURL);

 YAnButton input1;
 YAnButton input5;

 if (Target.ToLower() == "any") {
 input1 = YAnButton.FirstAnButton();
 if (input1 == null) {
 WriteLine("No module connected (check USB cable) ");
 return -1;
 }

 Target = await (await input1.get_module()).get_serialNumber();
 }

 input1 = YAnButton.FindAnButton(Target + ".anButton1");
 input5 = YAnButton.FindAnButton(Target + ".anButton5");

 while (await input1.isOnline()) {

18. Utilisation du Yocto-Knob-C avec Universal Windows Platform

www.yoctopuce.com 143

 if (await input1.get_isPressed() == YAnButton.ISPRESSED_TRUE)
 Write("Button 1: pressed ");
 else
 Write("Button 1: not pressed ");
 WriteLine("- analog value: " + await input1.get_calibratedValue());
 if (await input5.get_isPressed() == YAnButton.ISPRESSED_TRUE)
 Write("Button 5: pressed ");
 else
 Write("Button 5: not pressed ");
 WriteLine("- analog value: " + await input5.get_calibratedValue());

 await YAPI.Sleep(1000);
 }

 WriteLine("Module not connected (check identification and USB cable)");
 } catch (YAPI_Exception ex) {
 WriteLine("error: " + ex.Message);
 }

 await YAPI.FreeAPI();
 return 0;
 }
 }
}

18.6. Contrôle de la partie module
Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci-dessous un simple
programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la
balise de localisation.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
 public class Demo : DemoBase
 {

 public string HubURL { get; set; }
 public string Target { get; set; }
 public bool Beacon { get; set; }

 public override async Task<int> Run()
 {
 YModule m;
 string errmsg = "";

 if (await YAPI.RegisterHub(HubURL) != YAPI.SUCCESS) {
 WriteLine("RegisterHub error: " + errmsg);
 return -1;
 }
 m = YModule.FindModule(Target + ".module"); // use serial or logical name
 if (await m.isOnline()) {
 if (Beacon) {
 await m.set_beacon(YModule.BEACON_ON);
 } else {
 await m.set_beacon(YModule.BEACON_OFF);
 }

 WriteLine("serial: " + await m.get_serialNumber());
 WriteLine("logical name: " + await m.get_logicalName());
 WriteLine("luminosity: " + await m.get_luminosity());
 Write("beacon: ");
 if (await m.get_beacon() == YModule.BEACON_ON)
 WriteLine("ON");
 else
 WriteLine("OFF");
 WriteLine("upTime: " + (await m.get_upTime() / 1000) + " sec");
 WriteLine("USB current: " + await m.get_usbCurrent() + " mA");
 WriteLine("Logs:\r\n" + await m.get_lastLogs());

18. Utilisation du Yocto-Knob-C avec Universal Windows Platform

144 www.yoctopuce.com

 } else {
 WriteLine(Target + " not connected on" + HubURL +
 "(check identification and USB cable)");
 }
 await YAPI.FreeAPI();
 return 0;
 }
 }
}

Chaque propriété xxx du module peut être lue grâce à une méthode du type YModule.get_xxxx
(), et les propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode
YModule.set_xxx() Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux
chapitre API

Modifications des réglages du module
Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction
YModule.set_xxx() correspondante, cependant cette modification n'a lieu que dans la mémoire
vive du module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient
mémorisées de manière persistante, il est nécessaire de demander au module de sauvegarder sa
configuration courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode
YModule.saveToFlash(). Inversement il est possible de forcer le module à oublier ses réglages
courants en utilisant la méthode YModule.revertFromFlash(). Ce petit exemple ci-dessous
vous permet changer le nom logique d'un module.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
 public class Demo : DemoBase
 {

 public string HubURL { get; set; }
 public string Target { get; set; }
 public string LogicalName { get; set; }

 public override async Task<int> Run()
 {
 try {
 YModule m;

 await YAPI.RegisterHub(HubURL);

 m = YModule.FindModule(Target); // use serial or logical name
 if (await m.isOnline()) {
 if (!YAPI.CheckLogicalName(LogicalName)) {
 WriteLine("Invalid name (" + LogicalName + ")");
 return -1;
 }

 await m.set_logicalName(LogicalName);
 await m.saveToFlash(); // do not forget this
 Write("Module: serial= " + await m.get_serialNumber());
 WriteLine(" / name= " + await m.get_logicalName());
 } else {
 Write("not connected (check identification and USB cable");
 }
 } catch (YAPI_Exception ex) {
 WriteLine("RegisterHub error: " + ex.Message);
 }
 await YAPI.FreeAPI();
 return 0;
 }
 }
}

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette
limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite,

18. Utilisation du Yocto-Knob-C avec Universal Windows Platform

www.yoctopuce.com 145

liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000
cycles. Pour résumer vous ne pouvez employer la fonction YModule.saveToFlash() que
100000 fois au cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis
l'intérieur d'une boucle.

Enumeration des modules
Obtenir la liste des modules connectés se fait à l'aide de la fonction YModule.yFirstModule()
qui renvoie le premier module trouvé, il suffit ensuite d'appeler la méthode nextModule() de cet
objet pour trouver les modules suivants, et ce tant que la réponse n'est pas un null. Ci-dessous un
petit exemple listant les module connectés

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
 public class Demo : DemoBase
 {
 public string HubURL { get; set; }

 public override async Task<int> Run()
 {
 YModule m;
 try {
 await YAPI.RegisterHub(HubURL);

 WriteLine("Device list");
 m = YModule.FirstModule();
 while (m != null) {
 WriteLine(await m.get_serialNumber()
 + " (" + await m.get_productName() + ")");
 m = m.nextModule();
 }
 } catch (YAPI_Exception ex) {
 WriteLine("Error:" + ex.Message);
 }
 await YAPI.FreeAPI();
 return 0;
 }
 }
}

18.7. Gestion des erreurs
Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez
pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur
aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération.
La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais
votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées
par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les
petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne
avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de
seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut
suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une
erreur se produisant après le isOnline(), qui pourrait faire planter le programme.

Dans la librairie Universal Windows Platform, le traitement d'erreur est implémenté au moyen
d'exceptions. Vous devrez donc intercepter et traiter correctement ces exceptions si vous souhaitez
avoir un projet fiable qui ne crashera pas des que vous débrancherez un module.

Les exceptions lancées de la librairie sont toujours de type YAPI_Exception, ce qui permet
facilement de les séparer des autres exceptions dans un bloc try{...} catch{...}.

18. Utilisation du Yocto-Knob-C avec Universal Windows Platform

146 www.yoctopuce.com

Exemple:

try {

} catch (YAPI_Exception ex) {
 Debug.WriteLine("Exception from Yoctopuce lib:" + ex.Message);
} catch (Exception ex) {
 Debug.WriteLine("Other exceptions :" + ex.Message);
}

www.yoctopuce.com 147

19. Utilisation du Yocto-Knob-C en Objective-C
Objective-C est le langage de prédilection pour programmer sous macOS, en raison de son
intégration avec le générateur d'interfaces Cocoa. Yoctopuce supporte les versions de XCode
supportées par Apple. La librairie Yoctopuce est compatible ARC. Il vous sera donc possible de
coder vos projet soit en utilisant la traditionnelle méthode de retain / release, soit en activant
l'Automatic Reference Counting.

Les librairies Yoctopuce1 pour Objective-C vous sont fournies au format source dans leur intégralité.
Une partie de la librairie de bas-niveau est écrite en C pur sucre, mais vous n'aurez à priori pas
besoin d'interagir directement avec elle: tout a été fait pour que l'interaction soit le plus simple
possible depuis Objective-C.

Vous allez rapidement vous rendre compte que l'API Objective-C définit beaucoup de fonctions qui
retournent des objets. Vous ne devez jamais désallouer ces objets vous-même. Ils seront désalloués
automatiquement par l'API à la fin de l'application.

Afin des les garder simples, tous les exemples fournis dans cette documentation sont des
applications consoles. Il va de soit que que les fonctionnement des librairies est strictement
identiques si vous les intégrez dans une application dotée d'une interface graphique. Vous trouverez
sur le blog de Yoctopuce un exemple détaillé2 avec des séquences vidéo montrant comment intégrer
les fichiers de la librairie à vos projets.

19.1. Contrôle de la fonction AnButton
Il suffit de quelques lignes de code pour piloter un Yocto-Knob-C. Voici le squelette d'un fragment de
code Objective-C qui utilise la fonction AnButton.

#import "yocto_api.h"
#import "yocto_anbutton.h"

...
NSError *error;
[YAPI RegisterHub:@"usb": &error]
...
// On récupère l'objet représentant le module (ici connecté en local sur USB)
anbutton = [YAnButton FindAnButton:@"YBUTTN1C-123456.anButton1"];

// Pour gérer le hot-plug, on vérifie que le module est là
if([anbutton isOnline])

1 www.yoctopuce.com/FR/libraries.php
2 www.yoctopuce.com/FR/article/nouvelle-librairie-objective-c-pour-mac-os-x

19. Utilisation du Yocto-Knob-C en Objective-C

148 www.yoctopuce.com

{
 // Utiliser [anbutton get_calibratedValue]
 ...
}

Voyons maintenant en détail ce que font ces quelques lignes.

yocto_api.h et yocto_anbutton.h
Ces deux fichiers importés permettent d'avoir accès aux fonctions permettant de gérer les modules
Yoctopuce. yocto_api.h doit toujours être utilisé, yocto_anbutton.h est nécessaire pour
gérer les modules contenant une entrée analogique, comme le Yocto-Knob-C.

[YAPI RegisterHub]
La fonction [YAPI RegisterHub] initialise l'API de Yoctopuce en indiquant où les modules
doivent être recherchés. Utilisée avec le paramètre @"usb", elle permet de travailler avec les
modules connectés localement à la machine. Si l'initialisation se passe mal, cette fonction renverra
une valeur différente de YAPI_SUCCESS, et retournera via le paramètre errmsg un explication du
problème.

[AnButton FindAnButton]
La fonction [AnButton FindAnButton], permet de retrouver une entrée analogique en fonction
du numéro de série de son module hôte et de son nom de fonction. Mais vous pouvez tout aussi
bien utiliser des noms logiques que vous auriez préalablement configurés. Imaginons un module
Yocto-Knob-C avec le numéros de série YBUTTN1C-123456 que vous auriez appelé "MonModule"
et dont vous auriez nommé la fonction anButton1 "MaFonction", les cinq appels suivants seront
strictement équivalents (pour autant que MaFonction ne soit définie qu'une fois, pour éviter toute
ambiguïté):

YAnButton *anbutton = [YAnButton FindAnButton:@"YBUTTN1C-123456.anButton1"];
YAnButton *anbutton = [YAnButton FindAnButton:@"YBUTTN1C-123456.MaFonction"];
YAnButton *anbutton = [YAnButton FindAnButton:@"MonModule.anButton1"];
YAnButton *anbutton = [YAnButton FindAnButton:@"MonModule.MaFonction"];
YAnButton *anbutton = [YAnButton FindAnButton:@"MaFonction"];

[YAnButton FindAnButton] renvoie un objet que vous pouvez ensuite utiliser à loisir pour
contrôler l'entrée analogique.

isOnline
La méthode isOnline de l'objet renvoyé par [YAnButton FindAnButton] permet de savoir
si le module correspondant est présent et en état de marche.

get_isPressed
La méthode get_isPressed() de l'objet renvoyé par YAnButton.FindAnButton permet de
connaître l'état d'un interrupteur on/off qui serait branché sur l'entrée correspondante du module. Les
valeurs possibles retournées sont YAnButton.ISPRESSED_TRUE (si le contact est fermé) et
YAnButton.ISPRESSED_FALSE (si le contact est ouvert). Pour lire une valeur analogique plutôt
qu'une valeur binaire, on utilise à la place la méthode ci-dessous.

get_calibratedValue
La méthode get_calibratedValue() de l'objet renvoyé par YAnButton.FindAnButton
permet de connaître la position d'un potentiomètre analogique qui serait branché sur l'entrée
correspondante du module. Une fois que vous avez calibré l'entrée analogique pour votre
potentiomètre, la valeur retournée est un entier entre 0 et 1000.

Un exemple réel
Lancez Xcode 4.2 et ouvrez le projet exemple correspondant, fourni dans le répertoire Examples/
Doc-GettingStarted-Yocto-Knob-C de la librairie Yoctopuce.

19. Utilisation du Yocto-Knob-C en Objective-C

www.yoctopuce.com 149

Vous reconnaîtrez dans cet exemple l'utilisation des fonctions expliquées ci-dessus, cette fois
utilisées avec le décorum nécessaire à en faire un petit programme d'exemple concret.

#import <Foundation/Foundation.h>
#import "yocto_api.h"
#import "yocto_anbutton.h"

static void usage(void)
{
 NSLog(@"usage: demo <serial_number> ");
 NSLog(@" demo <logical_name>");
 NSLog(@" demo any (use any discovered device)");
 exit(1);
}

int main(int argc, const char * argv[])
{
 NSError *error;

 if (argc < 2) {
 usage();
 }

 @autoreleasepool {
 NSString *target = [NSString stringWithUTF8String:argv[1]];
 // Setup the API to use local USB devices
 if([YAPI RegisterHub:@"usb": &error] != YAPI_SUCCESS) {
 NSLog(@"RegisterHub error: %@", [error localizedDescription]);
 return 1;
 }

 if ([target isEqualToString:@"any"]) {
 YAnButton *anbutton = [YAnButton FirstAnButton];
 if (anbutton == NULL) {
 NSLog(@"No module connected (check USB cable)");
 return 1;
 }
 target = [[anbutton module] serialNumber];
 }
 YAnButton *input1 = [YAnButton FindAnButton:[target stringByAppendingString:
 @".anButton1"]];
 YAnButton *input5 = [YAnButton FindAnButton:[target stringByAppendingString:
 @".anButton5"]];

 while(1) {
 if(![input1 isOnline]) {
 NSLog(@"Module not connected (check identification and USB cable)");
 break;
 }

 if([input1 get_isPressed]) {
 NSLog(@"Button1: pressed ");
 } else {
 NSLog(@"Button1: not pressed");
 }
 NSLog(@" - analog value: %d", [input1 get_calibratedValue]);
 if([input5 get_isPressed])
 NSLog(@"Button5: pressed ");
 else
 NSLog(@"Button5: not pressed");
 NSLog(@" - analog value: %d", [input5 get_calibratedValue]);

 NSLog(@"(press both buttons simultaneously to exit)");

 if([input1 get_isPressed] == Y_ISPRESSED_TRUE &&
 [input5 get_isPressed] == Y_ISPRESSED_TRUE)
 break;
 [YAPI Sleep:1000:NULL];
 };
 [YAPI FreeAPI];
 }
 NSLog(@"bye bye");

 return 0;
}

19. Utilisation du Yocto-Knob-C en Objective-C

150 www.yoctopuce.com

19.2. Contrôle de la partie module
Chaque module peut-être contrôlé d'une manière similaire, vous trouverez ci dessous un simple
programme d'exemple affichant les principaux paramètres d'un module et permettant d'activer la
balise de localisation.

#import <Foundation/Foundation.h>
#import "yocto_api.h"

static void usage(const char *exe)
{
 NSLog(@"usage: %s <serial or logical name> [ON/OFF]\n", exe);
 exit(1);
}

int main (int argc, const char * argv[])
{
 NSError *error;

 @autoreleasepool {
 // Setup the API to use local USB devices
 if([YAPI RegisterHub:@"usb": &error] != YAPI_SUCCESS) {
 NSLog(@"RegisterHub error: %@", [error localizedDescription]);
 return 1;
 }
 if(argc < 2)
 usage(argv[0]);
 NSString *serial_or_name = [NSString stringWithUTF8String:argv[1]];
 // use serial or logical name
 YModule *module = [YModule FindModule:serial_or_name];
 if ([module isOnline]) {
 if (argc > 2) {
 if (strcmp(argv[2], "ON") == 0)
 [module setBeacon:Y_BEACON_ON];
 else
 [module setBeacon:Y_BEACON_OFF];
 }
 NSLog(@"serial: %@\n", [module serialNumber]);
 NSLog(@"logical name: %@\n", [module logicalName]);
 NSLog(@"luminosity: %d\n", [module luminosity]);
 NSLog(@"beacon: ");
 if ([module beacon] == Y_BEACON_ON)
 NSLog(@"ON\n");
 else
 NSLog(@"OFF\n");
 NSLog(@"upTime: %ld sec\n", [module upTime] / 1000);
 NSLog(@"USB current: %d mA\n", [module usbCurrent]);
 NSLog(@"logs: %@\n", [module get_lastLogs]);
 } else {
 NSLog(@"%@ not connected (check identification and USB cable)\n",
 serial_or_name);
 }
 [YAPI FreeAPI];
 }
 return 0;
}

Chaque propriété xxx du module peut être lue grâce à une méthode du type get_xxxx, et les
propriétés qui se sont pas en lecture seule peuvent être modifiées à l'aide de la méthode set_xxx:
Pour plus de détails concernant ces fonctions utilisées, reportez-vous aux chapitre API

Modifications des réglages du module
Lorsque que vous souhaitez modifier les réglages d'un module, il suffit d'appeler la fonction
set_xxx: correspondante, cependant cette modification n'a lieu que dans la mémoire vive du
module: si le module redémarre, les modifications seront perdues. Pour qu'elle soient mémorisées
de manière persistante, il est nécessaire de demander au module de sauvegarder sa configuration
courante dans sa mémoire non volatile. Pour cela il faut utiliser la méthode saveToFlash.
Inversement il est possible de forcer le module à oublier ses réglages courants en utilisant la

19. Utilisation du Yocto-Knob-C en Objective-C

www.yoctopuce.com 151

méthode revertFromFlash. Ce petit exemple ci-dessous vous permet changer le nom logique
d'un module.

#import <Foundation/Foundation.h>
#import "yocto_api.h"

static void usage(const char *exe)
{
 NSLog(@"usage: %s <serial> <newLogicalName>\n", exe);
 exit(1);
}

int main (int argc, const char * argv[])
{
 NSError *error;

 @autoreleasepool {
 // Setup the API to use local USB devices
 if([YAPI RegisterHub:@"usb" :&error] != YAPI_SUCCESS) {
 NSLog(@"RegisterHub error: %@", [error localizedDescription]);
 return 1;
 }

 if(argc < 2)
 usage(argv[0]);

 NSString *serial_or_name = [NSString stringWithUTF8String:argv[1]];
 // use serial or logical name
 YModule *module = [YModule FindModule:serial_or_name];

 if (module.isOnline) {
 if (argc >= 3) {
 NSString *newname = [NSString stringWithUTF8String:argv[2]];
 if (![YAPI CheckLogicalName:newname]) {
 NSLog(@"Invalid name (%@)\n", newname);
 usage(argv[0]);
 }
 module.logicalName = newname;
 [module saveToFlash];
 }
 NSLog(@"Current name: %@\n", module.logicalName);
 } else {
 NSLog(@"%@ not connected (check identification and USB cable)\n",
 serial_or_name);
 }
 [YAPI FreeAPI];
 }
 return 0;
}

Attention, le nombre de cycles d'écriture de la mémoire non volatile du module est limité. Passé cette
limite plus rien ne garantit que la sauvegarde des réglages se passera correctement. Cette limite,
liée à la technologie employée par le micro-processeur du module se situe aux alentour de 100000
cycles. Pour résumer vous ne pouvez employer la fonction saveToFlash que 100000 fois au
cours de la vie du module. Veillez donc à ne pas appeler cette fonction depuis l'intérieur d'une
boucle.

Enumeration des modules
Obtenir la liste des modules connectés se fait à l'aide de la fonction yFirstModule() qui renvoie
le premier module trouvé, il suffit ensuite d'appeler la fonction nextModule() de cet objet pour
trouver les modules suivants, et ce tant que la réponse n'est pas un NULL. Ci-dessous un petit
exemple listant les module connectés

#import <Foundation/Foundation.h>
#import "yocto_api.h"

int main (int argc, const char * argv[])
{
 NSError *error;

 @autoreleasepool {

19. Utilisation du Yocto-Knob-C en Objective-C

152 www.yoctopuce.com

 // Setup the API to use local USB devices
 if([YAPI RegisterHub:@"usb" :&error] != YAPI_SUCCESS) {
 NSLog(@"RegisterHub error: %@\n", [error localizedDescription]);
 return 1;
 }

 NSLog(@"Device list:\n");

 YModule *module = [YModule FirstModule];
 while (module != nil) {
 NSLog(@"%@ %@", module.serialNumber, module.productName);
 module = [module nextModule];
 }
 [YAPI FreeAPI];
 }
 return 0;
}

19.3. Gestion des erreurs
Lorsque vous implémentez un programme qui doit interagir avec des modules USB, vous ne pouvez
pas faire abstraction de la gestion des erreurs. Il y aura forcément une occasion où un utilisateur
aura débranché le périphérique, soit avant de lancer le programme, soit même en pleine opération.
La librairie Yoctopuce est prévue pour vous aider à supporter ce genre de comportements, mais
votre code doit néanmoins être fait pour se comporter au mieux pour interpréter les erreurs signalées
par la librairie.

La manière la plus simple de contourner le problème est celle que nous avons employé pour les
petits exemples précédents de ce chapitre: avant d'accéder à un module, on vérifie qu'il est en ligne
avec la méthode isOnline() et on suppose ensuite qu'il va y rester pendant la fraction de
seconde nécessaire à exécuter les lignes de code suivantes. Ce n'est pas parfait, mais ça peut
suffire dans certains cas. Il faut toutefois être conscient qu'on ne peut pas totalement exclure une
erreur se produisant après le isOnline(), qui pourrait faire planter le programme. La seule
manière de l'éviter est d'implémenter une des deux techniques de gestion des erreurs décrites ci-
dessous.

La méthode recommandée par la plupart des langages de programmation pour la gestion des
erreurs imprévisibles est l'utilisation d'exceptions. C'est le comportement par défaut de la librairie
Yoctopuce. Si une erreur se produit alors qu'on essaie d'accéder à un module, la librairie va lancer
une exception. Dans ce cas, de trois choses l'une:

• Si votre code attrape l'exception au vol et la gère, et tout se passe bien.
• Si votre programme tourne dans le debugger, vous pourrez relativement facilement déterminer

où le problème s'est produit, et voir le message explicatif lié à l'exception.
• Sinon... l'exception va crasher votre programme, boum!

Comme cette dernière situation n'est pas la plus souhaitable, la librairie Yoctopuce offre une autre
alternative pour la gestion des erreurs, permettant de faire un programme robuste sans devoir
attraper les exceptions à chaque ligne de code. Il suffit d'appeler la fonction
YAPI.DisableExceptions() pour commuter la librairie dans un mode où les exceptions de
chaque fonction sont systématiquement remplacées par des valeurs de retour particulières, qui
peuvent être testées par l'appelant lorsque c'est pertinent. Le nom de la valeur de retour en cas
d'erreur pour chaque fonction est systématiquement documenté dans la référence de la librairie. Il
suit toujours la même logique: une méthode get_state() retournera une valeur
NomDeClasse.STATE_INVALID, une méthode get_currentValue retournera une valeur
NomDeClasse.CURRENTVALUE_INVALID, etc. Dans tous les cas, la valeur retournée sera du
type attendu, et ne sera pas un pointeur nul qui risquerait de faire crasher votre programme. Au pire,
si vous affichez la valeur sans la tester, elle sera hors du cadre attendu pour la valeur retournée.
Dans le cas de fonctions qui ne retournent à priori pas d'information, la valeur de retour sera
YAPI.SUCCESS si tout va bien, et un code d'erreur différent en cas d'échec.

Quand vous travaillez sans les exceptions, il est possible d'obtenir un code d'erreur et un message
expliquant l'origine de l'erreur en le demandant à l'objet qui a retourné une erreur à l'aide des

19. Utilisation du Yocto-Knob-C en Objective-C

www.yoctopuce.com 153

méthodes errType() et errMessage(). Ce sont les même informations qui auraient été
associées à l'exception si elles avaient été actives.

154 www.yoctopuce.com

www.yoctopuce.com 155

20. Utilisation avec des langages non supportés
Les modules Yoctopuce peuvent être contrôlés depuis la plupart des langages de programmation
courants. De nouveaux langages sont ajoutés régulièrement en fonction de l'intérêt exprimé par les
utilisateurs de produits Yoctopuce. Cependant, certains langages ne sont pas et ne seront jamais
supportés par Yoctopuce, les raisons peuvent être diverses: compilateurs plus disponibles,
environnements inadaptés, etc...

Il existe cependant des méthodes alternatives pour accéder à des modules Yoctopuce depuis un
langage de programmation non supporté.

20.1. Utilisation en ligne de commande
Le moyen le plus simple pour contrôler des modules Yoctopuce depuis un langage non supporté
consiste à utiliser l'API en ligne de commande à travers des appels système. L'API en ligne de
commande se présente en effet sous la forme d'un ensemble de petits exécutables qu'il est facile
d'appeler et dont la sortie est facile à analyser. La plupart des langages de programmation
permettant d'effectuer des appels système, cela permet de résoudre le problème en quelques lignes.

Cependant, si l'API en ligne de commande est la solution la plus facile, ce n'est pas la plus rapide ni
la plus efficace. A chaque appel, l'exécutable devra initialiser sa propre API et faire l'inventaire des
modules USB connectés. Il faut compter environ une seconde par appel.

20.2. Assembly .NET
Un Assembly .NET permet de partager un ensemble de classes précompilées pour offrir un service,
en annonçant des points d'entrées qui peuvent être utilisés par des applications tierces. Dans notre
cas, c'est toute la librairie Yoctopuce qui est disponible dans l'Assembly .NET, de sorte à pouvoir
être utilisée dans n'importe quel environnement qui supporte le chargement dynamique
d'Assembly .NET.

La librairie Yoctopuce sous forme d'Assembly .NET ne contient pas uniquement la librairie
Yoctopuce standard pour C#, car cela n'aurait pas permis une utilisation optimale dans tous les
environnements. En effet, on ne peut pas attendre forcément des applications hôtes d'offrir un
système de threads ou de callbacks, pourtant très utiles pour la gestion du plug-and-play et des
capteurs à taux de rafraîchissements élevé. De même, on ne peut pas attendre des applications
externes un comportement transparent dans le cas où un appel de fonction dans l'Assembly cause
un délai en raison de communication réseau.

Nous y avons donc ajouté une surcouche, appelée librairie .NET Proxy. Cette surcouche offre une
interface très similaire à la librairie standard mais un peu simplifiée, car elle gère en interne tous les

20. Utilisation avec des langages non supportés

156 www.yoctopuce.com

mécanismes de callbacks. A la place, cette librairie offre des objets miroirs, appelés Proxys, qui
publient par le biais de Propriétés les principaux attributs des fonctions Yoctopuce tels que la mesure
courante, les paramètres de configuration, l'état, etc.

Architecture de l'Assembly .NET

Les propriétés des objets Proxys sont automatiquement mises à jour en tâche de fond par le
mécanisme de callbacks, sans que l'application hôte n'ait à s'en soucier. Celle-ci peut donc à tout
moment et sans aucun risque de latence afficher la valeur de toutes les propriétés des objets Proxys
Yoctopuce.

Notez bien que la librairie de communication de bas niveau yapi.dll n'est pas inclue dans
l'Assembly .NET. Il faut donc bien penser à la garder toujours avec DotNetProxyLibrary.dll.
La version 32 bits doit être dans le même répertoire que DotNetProxyLibrary.dll, tandis que
la version 64 bits doit être dans un sous-répertoire nommé amd64.

Exemple d'utilisation avec MATLAB
Voici comment charger notre Assembly .NET Proxy dans MATLAB et lire la valeur du premier
capteur branché par USB trouvé sur la machine :

NET.addAssembly("C:/Yoctopuce/DotNetProxyLibrary.dll");
import YoctoProxyAPI.*

errmsg = YAPIProxy.RegisterHub("usb");
sensor = YSensorProxy.FindSensor("");
measure = sprintf('%.3f %s', sensor.CurrentValue, sensor.Unit);

Exemple d'utilisation en PowerShell
Les commandes en PowerShell sont un peu plus étranges, mais on reconnaît le même schéma :

Add-Type -Path "C:/Yoctopuce/DotNetProxyLibrary.dll"

$errmsg = [YoctoProxyAPI.YAPIProxy]::RegisterHub("usb")
$sensor = [YoctoProxyAPI.YSensorProxy]::FindSensor("")
$measure = "{0:n3} {1}" -f $sensor.CurrentValue, $sensor.Unit

Particularités de la librairie .NET Proxy
Par rapport aux librairies Yoctopuce classiques, on notera en particulier les différences suivantes.

Pas de méthode FirstModule/nextModule
Pour obtenir un objet se référant au premier module trouvé, on appelle un
YModuleProxy.FindModule(""). Si aucun module n'est connecté, cette méthode retournera
un objet avec la propriété module.IsOnline à False. Dès le branchement d'un module, la
propriété passera à True et l'identifiant matériel du module sera mis à jour.

20. Utilisation avec des langages non supportés

www.yoctopuce.com 157

Pour énumérer les modules, on peut appeler la méthode module.GetSimilarFunctions()
qui retourne un tableau de chaînes de caractères contenant les identifiants de tous les module
trouvés.

Pas de fonctions de callback
Les fonctions de callback sont implémentées en interne et mettent à jour les propriétés des objets.
Vous pouvez donc simplement faire du polling sur les propriétés, sans pénalité significative de
performance. Prenez garde au fait que si vous utilisez l'une des méthodes qui désactive les
callbacks, le rafraichissement automatique des propriétés des objets en sera altéré.

Une nouvelle méthode YAPIProxy.GetLog permet de récupérer les logs de diagnostiques de bas
niveau sans recourir à l'utilisation de callbacks.

Types énumérés
Pour maximiser la compatibilité avec les applications hôte, la librairie .NET Proxy n'utilise pas de
véritables types énumérés .NET, mais des simples entiers. Pour chaque type énuméré, la librairie
publie des constantes entières nommées correspondant aux valeurs possibles. Contrairement aux
librairies Yoctopuce classiques, les valeurs utiles commencent toujours à 1, la valeur 0 étant
réservée pour signifier une valeur invalide, par exemple lorsque le module est débranché.

Valeurs numériques invalides
Pour toutes les grandeurs numériques, plutôt qu'une constante arbitraire, la valeur invalide retournée
en cas d'erreur est NaN. Il faut donc utiliser la fonction isNaN() pour détecter cette valeur.

Utilisation de l'Assembly .NET sans la librairie Proxy
Si pour une raison ou une autre vous ne désirez pas utiliser la librairie Proxy, et que votre
environnement le permet, vous pouvez utiliser l'API C# standard puisqu'elle se trouve dans
l'Assembly, sous le namespace YoctoLib. Attention toutefois à ne pas mélanger les deux
utilisations: soit vous passez par la librairie Proxy, soit vous utilisez directement la version
YoctoLib, mais pas les deux !

Compatibilité
Pour que la librairie .NET Proxy fonctionne correctement avec vos modules Yoctopuce, ces derniers
doivent avoir au moins le firmware 37120.

Afin d'être compatible avec un maximum de version de Windows, y compris Windows XP, la librairie
DotNetProxyLibrary.dll est compilée en .NET 3.5, qui est disponible par défaut sur toutes les
versions de Windows depuis XP. A ce jour nous n'avons pas trouvé d'environnement hormis
Windows qui supporte le chargement d'Assemblys, donc seules les dll de bas niveau pour Windows
sont distribuées avec l'Assembly.

20.3. Virtual Hub et HTTP GET
Le Virtual Hub est disponible pour presque toutes les plateformes actuelles, il sert généralement de
passerelle pour permettre l'accès aux modules Yoctopuce depuis des langages qui interdisent
l'accès direct aux couches matérielles d'un ordinateur (Javascript, PHP, Java...).

Il se trouve que le Virtual Hub est en fait un petit serveur Web qui est capable de router des requêtes
HTTP vers les modules Yoctopuce. Ce qui signifie que si vous pouvez faire une requête HTTP
depuis votre langage de programmation, vous pouvez contrôler des modules Yoctopuce, même si ce
langage n'est pas officiellement supporté.

Interface REST
A bas niveau, les modules sont pilotés à l'aide d'une API REST. Ainsi pour contrôler un module, il
suffit de faire les requêtes HTTP appropriées sur le Virtual Hub. Par défaut le port HTTP du Virtual
Hub est 4444.

20. Utilisation avec des langages non supportés

158 www.yoctopuce.com

Un des gros avantages de cette technique est que les tests préliminaires sont très faciles à mettre en
uvre , il suffit d'un Virtual Hub et d'un simple browser Web. Ainsi, si vous copiez l'URL suivante dans
votre browser favori, alors que le Virtual Hub est en train de tourner, vous obtiendrez la liste des
modules présents.

http://127.0.0.1:4444/api/services/whitePages.txt

Remarquez que le résultat est présenté sous forme texte, mais en demandant whitePages.xml vous
auriez obtenu le résultat en XML. De même, whitePages.json aurait permis d'obtenir le résultat en
JSON. L'extension html vous permet même d'afficher une interface sommaire vous permettant de
changer les valeurs en direct. Toute l'API REST est disponible dans ces différents formats.

Contrôle d'un module par l'interface REST
Chaque module Yoctopuce a sa propre interface REST disponible sous différentes formes.
Imaginons un Yocto-Knob-C avec le numéro de de série YBUTTN1C-12345 et le nom logique
monModule. l'URL suivante permettra de connaître l'état du module.

http://127.0.0.1:4444/bySerial/YBUTTN1C-12345/api/module.txt

Il est bien entendu possible d'utiliser le nom logique des modules plutôt que leur numéro de série.

http://127.0.0.1:4444/byName/monModule/api/module.txt

Vous pouvez retrouver la valeur d'une des propriétés d'un module, il suffit d'ajouter le nom de la
propriété en dessous de module. Par exemple, si vous souhaitez connaître la luminosité des LEDs
de signalisation, il vous suffit de faire la requête suivante:

http://127.0.0.1:4444/bySerial/YBUTTN1C-12345/api/module/luminosity

Pour modifier la valeur d'une propriété, il vous suffit de modifier l'attribut correspondant. Ainsi, pour
modifier la luminosité il vous suffit de faire la requête suivante:

http://127.0.0.1:4444/bySerial/YBUTTN1C-12345/api/module?luminosity=100

Contrôle des différentes fonctions du module par l'interface REST
Les fonctionnalités des modules se manipulent de la même manière. Pour connaître l'état de la
fonction anButton1, il suffit de construire l'URL suivante.

http://127.0.0.1:4444/bySerial/YBUTTN1C-12345/api/anButton1.txt

En revanche, si vous pouvez utiliser le nom logique du module en lieu et place de son numéro de
série, vous ne pouvez pas utiliser les noms logiques des fonctions, seuls les noms hardware sont
autorisés pour les fonctions.

Vous pouvez retrouver un attribut d'une fonction d'un module d'une manière assez similaire à celle
utilisée avec les modules, par exemple:

http://127.0.0.1:4444/bySerial/YBUTTN1C-12345/api/anButton1/logicalName

Assez logiquement, les attributs peuvent être modifiés de la même manière.

http://127.0.0.1:4444/bySerial/YBUTTN1C-12345/api/anButton1?logicalName=maFonction

Vous trouverez la liste des attributs disponibles pour votre Yocto-Knob-C au début du chapitre
Programmation, concepts généraux.

20. Utilisation avec des langages non supportés

www.yoctopuce.com 159

Accès aux données enregistrées sur le datalogger par l'interface REST
Cette section s'applique uniquement aux modules dotés d'un enregistreur de donnée.

La version résumée des données enregistrées dans le datalogger peut être obtenue au format JSON
à l'aide de l'URL suivante:

http://127.0.0.1:4444/bySerial/YBUTTN1C-12345/dataLogger.json

Le détail de chaque mesure pour un chaque tranche d'enregistrement peut être obtenu en ajoutant à
l'URL l'identifiant de la fonction désirée et l'heure de départ de la tranche:

http://127.0.0.1:4444/bySerial/YBUTTN1C-12345/dataLogger.json?id=anButton1&utc=1389801080

20.4. Utilisation des librairies dynamiques
L'API Yoctopuce bas niveau est disponible sous différents formats de librairie dynamiques écrites en
C, dont les sources sont disponibles avec l'API C++. Utiliser une de ces librairies bas niveau vous
permettra de vous passer du Virtual Hub.

Filename Plateforme
libyapi.dylib Max OS X
libyapi-amd64.so Linux Intel (64 bits)
libyapi-armel.so Linux ARM EL (32 bits)
libyapi-armhf.so Linux ARM HL (32 bits)
libyapi-aarch64.so Linux ARM (64 bits)
libyapi-i386.so Linux Intel (32 bits)
yapi64.dll Windows (64 bits)
yapi.dll Windows (32 bits)

Ces librairies dynamiques contiennent toutes les fonctionnalités nécessaires pour reconstruire
entièrement toute l'API haut niveau dans n'importe quel langage capable d'intégrer ces librairies. Ce
chapitre se limite cependant à décrire une utilisation de base des modules.

Contrôle d'un module
Les trois fonctions essentielles de l'API bas niveau sont les suivantes:

int yapiInitAPI(int connection_type, char *errmsg);
int yapiUpdateDeviceList(int forceupdate, char *errmsg);
int yapiHTTPRequest(char *device, char *request, char* buffer,int buffsize,int *fullsize,
char *errmsg);

La fonction yapiInitAPI permet d'initialiser l'API et doit être appelée une fois en début du programme.
Pour une connection de type USB, le paramètre connection_type doit prendre la valeur 1. errmsg est
un pointeur sur un buffer de 255 caractères destiné à récupérer un éventuel message d'erreur. Ce
pointeur peut être aussi mis à NULL. La fonction retourne un entier négatif en cas d'erreur, ou zéro
dans le cas contraire.

La fonction yapiUpdateDeviceList gère l'inventaire des modules Yoctopuce connectés, elle doit être
appelée au moins une fois. Pour pouvoir gérer le hot plug, et détecter d'éventuels nouveaux modules
connectés, cette fonction devra être apellée à intervalles réguliers. Le paramètre forceupdate devra
être à la valeur 1 pour forcer un scan matériel. Le paramètre errmsg devra pointer sur un buffer de
255 caractères pour récupérer un éventuel message d'erreur. Ce pointeur peut aussi être à
null.Cette fonction retourne un entier négatif en cas d'erreur, ou zéro dans le cas contraire.

Enfin, la fonction yapiHTTPRequest permet d'envoyer des requêtes HTTP à l'API REST du module.
Le paramètre device devra contenir le numéro de série ou le nom logique du module que vous
cherchez à atteindre. Le paramètre request doit contenir la requête HTTP complète (y compris les
sauts de ligne terminaux). buffer doit pointer sur un buffer de caractères suffisamment grand pour

20. Utilisation avec des langages non supportés

160 www.yoctopuce.com

contenir la réponse. buffsize doit contenir la taille du buffer. fullsize est un pointeur sur un entier qui
sera affecté à la taille effective de la réponse. Le paramètre errmsg devra pointer sur un buffer de
255 caractères pour récupérer un éventuel message d'erreur. Ce pointeur peut aussi être à null.
Cette fonction retourne un entier négatif en cas d'erreur, ou zéro dans le cas contraire.

Le format des requêtes est le même que celui décrit dans la section Virtual Hub et HTTP GET.
Toutes les chaînes de caractères utilisées par l'API sont des chaînes constituées de caractères 8
bits: l'Unicode et l'UTF8 ne sont pas supportés.

Le résultat retourné dans la variable buffer respecte le protocole HTTP, il inclut donc un header
HTTP . Ce header se termine par deux lignes vides, c'est-à-dire une séquence de quatre caractères
ASCII 13, 10, 13, 10.

Voici un programme d'exemple écrit en pascal qui utilise la DLL yapi.dll pour lire puis changer la
luminosité d'un module.

// Dll functions import
function yapiInitAPI(mode:integer;
 errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiInitAPI';
function yapiUpdateDeviceList(force:integer;errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiUpdateDeviceList';
function yapiHTTPRequest(device:pansichar;url:pansichar; buffer:pansichar;
 buffsize:integer;var fullsize:integer;
 errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiHTTPRequest';

var
 errmsgBuffer : array [0..256] of ansichar;
 dataBuffer : array [0..1024] of ansichar;
 errmsg,data : pansichar;
 fullsize,p : integer;

const
 serial = 'YBUTTN1C-12345';
 getValue = 'GET /api/module/luminosity HTTP/1.1'#13#10#13#10;
 setValue = 'GET /api/module?luminosity=100 HTTP/1.1'#13#10#13#10;

begin
 errmsg := @errmsgBuffer;
 data := @dataBuffer;
 // API initialization
 if(yapiInitAPI(1,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

 // forces a device inventory
 if(yapiUpdateDeviceList(1,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

 // requests the module luminosity
 if (yapiHTTPRequest(serial,getValue,data,sizeof(dataBuffer),fullsize,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

 // searches for the HTTP header end
 p := pos(#13#10#13#10,data);

 // displays the response minus the HTTP header
 writeln(copy(data,p+4,length(data)-p-3));

 // change the luminosity
 if (yapiHTTPRequest(serial,setValue,data,sizeof(dataBuffer),fullsize,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;

20. Utilisation avec des langages non supportés

www.yoctopuce.com 161

 end;

end.

Inventaire des modules
Pour procéder à l'inventaire des modules Yoctopuce, deux fonctions de la librairie dynamique sont
nécessaires

 int yapiGetAllDevices(int *buffer,int maxsize,int *neededsize,char *errmsg);
 int yapiGetDeviceInfo(int devdesc,yDeviceSt *infos, char *errmsg);

La fonction yapiGetAllDevices permet d'obtenir la liste des modules connectés sous la forme d'une
liste de handles. buffer pointe sur un tableau d'entiers 32 bits qui contiendra les handles retournés.
Maxsize est la taille en bytes du buffer. neededsize contiendra au retour la taille nécessaire pour
stocker tous les handles. Cela permet d'en déduire le nombre de module connectés, ou si le buffer
passé en entrée est trop petit. Le paramètre errmsg devra pointer sur un buffer de 255 caractères
pour récupérer un éventuel message d'erreur. Ce pointeur peut aussi être à null. Cette fonction
retourne un entier négatif en cas d'erreur, ou zéro dans le cas contraire.

La fonction yapiGetDeviceInfo permet de récupérer les informations relatives à un module à partir de
son handle. devdesc est un entier 32bit qui représente le module, et qui a été obtenu grâce à
yapiGetAllDevices. infos pointe sur une structure de données dans laquelle sera stocké le résultat.
Le format de cette structure est le suivant:

Nom Type Taille
(bytes)Description

vendorid int 4 ID USB de Yoctopuce
deviceid int 4 ID USB du module
devrelease int 4 Version du module
nbinbterfaces int 4 Nombre d'interfaces USB utilisée par le module
manufacturer char[] 20 Yoctopuce (null terminé)
productname char[] 28 Modèle (null terminé)
serial char[] 20 Numéro de série (null terminé)
logicalname char[] 20 Nom logique (null terminé)
firmware char[] 22 Version du firmware (null terminé)
beacon byte 1 Etat de la balise de localisation (0/1)

Le paramètre errmsg devra pointer sur un buffer de 255 caractères pour récupérer un éventuel
message d'erreur.

Voici un programme d'exemple écrit en pascal qui utilise la DLL yapi.dll pour lister les modules
connectés.

// device description structure
type yDeviceSt = packed record
 vendorid : word;
 deviceid : word;
 devrelease : word;
 nbinbterfaces : word;
 manufacturer : array [0..19] of ansichar;
 productname : array [0..27] of ansichar;
 serial : array [0..19] of ansichar;
 logicalname : array [0..19] of ansichar;
 firmware : array [0..21] of ansichar;
 beacon : byte;
 end;

// Dll function import
function yapiInitAPI(mode:integer;
 errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiInitAPI';

function yapiUpdateDeviceList(force:integer;errmsg : pansichar):integer;cdecl;
 external 'yapi.dll' name 'yapiUpdateDeviceList';

20. Utilisation avec des langages non supportés

162 www.yoctopuce.com

function yapiGetAllDevices(buffer:pointer;
 maxsize:integer;
 var neededsize:integer;
 errmsg : pansichar):integer; cdecl;
 external 'yapi.dll' name 'yapiGetAllDevices';

function apiGetDeviceInfo(d:integer; var infos:yDeviceSt;
 errmsg : pansichar):integer; cdecl;
 external 'yapi.dll' name 'yapiGetDeviceInfo';

var
 errmsgBuffer : array [0..256] of ansichar;
 dataBuffer : array [0..127] of integer; // max of 128 USB devices
 errmsg,data : pansichar;
 neededsize,i : integer;
 devinfos : yDeviceSt;

begin
 errmsg := @errmsgBuffer;

 // API initialisation
 if(yapiInitAPI(1,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

 // forces a device inventory
 if(yapiUpdateDeviceList(1,errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;

 // loads all device handles into dataBuffer
 if yapiGetAllDevices(@dataBuffer,sizeof(dataBuffer),neededsize,errmsg)<0 then
 begin
 writeln(errmsg);
 halt;
 end;

 // gets device info from each handle
 for i:=0 to neededsize div sizeof(integer)-1 do
 begin
 if (apiGetDeviceInfo(dataBuffer[i], devinfos, errmsg)<0) then
 begin
 writeln(errmsg);
 halt;
 end;
 writeln(pansichar(@devinfos.serial)+' ('+pansichar(@devinfos.productname)+')');
 end;

end.

VB6 et yapi.dll
Chaque point d'entrée de la DLL yapi.dll est disponible en deux versions, une classique C-decl, et un
seconde compatible avec Visual Basic 6 préfixée avec vb6_.

20.5. Port de la librairie haut niveau
Toutes les sources de l'API Yoctopuce étant fournies dans leur intégralité, vous pouvez parfaitement
entreprendre le port complet de l'API dans le langage de votre choix. Sachez cependant qu'une
grande partie du code source de l'API est généré automatiquement.

Ainsi, il n'est pas nécessaire de porter la totalité de l'API, il suffit de porter le fichier yocto_api et un
de ceux correspondant à une fonctionnalité, par exemple yocto_relay. Moyennant un peu de travail
supplémentaire, Yoctopuce sera alors en mesure de générer tous les autres fichiers. C'est pourquoi
il est fortement recommandé de contacter le support Yoctopuce avant d'entreprendre le port de la
librairie Yoctopuce dans un autre langage. Un travail collaboratif sera profitable aux deux parties.

www.yoctopuce.com 163

21. Programmation avancée
Les chapitres précédents vous ont présenté dans chaque language disponible les fonctions de
programmation de base utilisables avec votre module Yocto-Knob-C. Ce chapitre présente de façon
plus générale une utilisation plus avancée de votre module. Les exemples sont donnés dans le
language le plus populaire auprès des clients de Yoctopuce, à savoir C#. Néanmoins, vous trouverez
dans les librairies de programmation pour chaque language des exemples complets illustrant les
concepts présentés ici.

Afin de rester le plus concis possible, les exemples donnés dans ce chapitre ne font aucune gestion
d'erreur. Ne les copiez pas tels-quels dans une application de production.

21.1. Programmation par événements
Les méthodes de gestion des modules Yoctopuce qui vous ont été présentées dans les chapitres
précédents sont des fonctions de polling, qui consistent à demander en permanence à l'API si
quelque chose a changé. Facile à appréhender, cette technique de programmation est n'est pas la
plus efficace ni la plus réactive. C'est pourquoi l'API de programmation Yoctopuce propose aussi un
modèle de programmation par événements. Cette technique consiste à demander à l'API de signaler
elle-même les changements importants dès qu'ils sont détectés. A chaque fois qu'un paramètre clé
change, l'API appelle une fonction de callback que vous avez prédéfinie.

Détecter l'arrivée et le départ des modules
La gestion du hot-plug est importante lorsque l'on travaille avec des modules USB, car tôt ou tard
vous serez amené à brancher et débrancher un module après le lancement de votre programme.
L'API a été conçue pour gérer l'arrivée et le départ inopinés des modules de manière transparente,
mais votre application doit en général en tenir compte si elle veut éviter de prétendre utiliser un
module qui a été débranché.

La programmation par événements est particulièrement utile pour détecter les branchements/
débranchements de modules. Il est en effet plus simple de se faire signaler les branchements, que
de devoir lister en permanence les modules branchés pour en déduire ceux qui sont arrivés et ceux
qui sont partis. Pour pouvoir être prévenu dès qu'un module arrive, vous avez besoin de trois
morceaux de code.

Le callback
Le callback est la fonction qui sera appelée à chaque fois qu'un nouveau module Yoctopuce sera
branché. Elle prend en paramètre le module concerné.

 static void deviceArrival(YModule m)

21. Programmation avancée

164 www.yoctopuce.com

 {
 Console.WriteLine("Nouveau module : " + m.get_serialNumber());
 }

L'initialisation
Vous devez ensuite signaler à l'API qu'il faut appeler votre callback quand un nouveau module est
branché.

 YAPI.RegisterDeviceArrivalCallback(deviceArrival);

Notez que si des modules sont déjà branchés lorsque le callback est enregistré, le callback sera
appelé pour chacun de ces modules déjà branchés.

Déclenchement des callbacks
Un problème classique de la programmation par callbacks est que ces callbacks peuvent être
appelés n'importe quand, y compris à des moments où le programme principal n'est pas prêt à les
recevoir, ce qui peut avoir des effets de bords indésirables comme des dead-locks et autres
conditions de course. C'est pourquoi dans l'API Yoctopuce, les callbacks d'arrivée/départs de
modules ne sont appelés que pendant l'exécution de la fonction UpdateDeviceList(). Il vous
suffit d'appeler UpdateDeviceList() à intervalle régulier depuis un timer ou un thread
spécifique pour controller précisément quand les appels à ces callbacks auront lieu:

// boucle d'attente gérant les callback
while (true)
{
 // callback d'arrivée / départ de modules
 YAPI.UpdateDeviceList(ref errmsg);
 // attente non active gérant les autres callbacks
 YAPI.Sleep(500, ref errmsg);
}

De manière similaire, il est possible d'avoir un callback quand un module est débranché. Vous
trouverez un exemple concret démontrant toutes ces techniques dans la librairie de programmation
Yoctopuce de chaque langage. L'exemple se trouve dans le répertoire Examples/Prog-EventBased.

Attention: dans la plupart des langages, les callbacks doivent être des procédures globales, et non
pas des méthodes. Si vous souhaitez que le callback appelle une méthode d'un objet, définissez
votre callback sous la forme d'une procédure globale qui ensuite appellera votre méthode.

www.yoctopuce.com 165

22. Mise à jour du firmware
Il existe plusieurs moyens de mettre à jour le firmware des modules Yoctopuce.

22.1. Le VirtualHub ou le YoctoHub
Il est possible de mettre à jour un module directement depuis l'interface web du VirutalHub ou du
YoctoHub. Il suffit d'accéder à la fenêtre de configuration du module que à mettre à jour et de cliquer
sur le bouton "upgrade". Le VirtualHub démarre un assistant qui vous guidera durant la procédure de
mise à jour.

Si pour une raison ou une autre, la mise à jour venait à échouer et que le module de fonctionnait
plus, débranchez puis rebranchez le module en maintenant sur le Yocto-bouton appuyé. Le module
va démarrer en mode "mise à jour" et sera listé en dessous des modules connectés.

22.2. La librairie ligne de commandes
Tous les outils en lignes de commandes ont la possibilité de mettre à jour les modules Yoctopuce
grâce à la commande downloadAndUpdate. Le mécanisme de sélection des modules fonctionne
comme pour une commande traditionnelle. La [cible] est le nom du module qui va être mis à jour.
Vous pouvez aussi utiliser les alias "any" ou "all", ou encore une liste de noms, séparés par des
virgules, sans espace.

C:\>Executable [options] [cible] commande [paramètres]

L'exemple suivant met à jour tous les modules Yoctopuce connectés en USB.

C:\>YModule all downloadAndUpdate
ok: Yocto-PowerRelay RELAYHI1-266C8(rev=15430) is up to date.
ok: 0 / 0 hubs in 0.000000s.
ok: 0 / 0 shields in 0.000000s.
ok: 1 / 1 devices in 0.130000s 0.130000s per device.
ok: All devices are now up to date.
C:\>

22.3. L'application Android Yocto-Firmware
Il est possible de mettre à jour le firmware de vos modules depuis votre téléphone ou tablette
Android avec l'application Yocto-Firmware. Cette application liste tous les modules Yoctopuce

22. Mise à jour du firmware

166 www.yoctopuce.com

branchés en USB et vérifie si un firmware plus récent est disponible sur www.yoctopuce.com. Si un
firmware plus récent est disponible, il est possible de mettre à jour le module. L'application se charge
de télécharger et d'installer le nouveau firmware en préservant les paramètres du module.

Attention, pendant la mise à jour du firmware, le module redémarre plusieurs fois. Android interprète
le reboot d'un périphérique USB comme une déconnexion et reconnexion du périphérique USB, et
demande à nouveau l'autorisation d'utiliser le port USB. L'utilisateur est obligé de cliquer sur OK
pour que la procédure de mise à jour se termine correctement.

22.4. La librairie de programmation
Si vous avez besoin d'intégrer la mise à jour de firmware dans votre application, les librairies
proposent une API pour mettre à jour vos modules.

Sauvegarder et restaurer les paramètres
La méthode get_allSettings() retourne un buffer binaire qui permet de sauvegarder les
paramètres persistants d'un module. Cette fonction est très utile pour sauvegarder la configuration
réseau d'un YoctoHub par exemple.

YWireless wireless = YWireless.FindWireless("reference");
YModule m = wireless.get_module();
byte[] default_config = m.get_allSettings();
saveFile("default.bin", default_config);
...

Ces paramètres peuvent être appliqués sur d'autres modules à l'aide de la méthode
set_allSettings().

byte[] default_config = loadFile("default.bin");
YModule m = YModule.FirstModule();
while (m != null) {
 if (m.get_productName() == "YoctoHub-Wireless") {
 m.set_allSettings(default_config);
 }
 m = m.next();
}

Chercher le bon firmware
La première étape pour mettre à jour un module Yoctopuce est de trouver quel firmware il faut
utiliser, c'est le travail de la méthode checkFirmware(path, onlynew) de l'objet YModule.
Cette méthode vérifie que le firmware passé en argument (path) est compatible avec le module. Si
le paramètre onlynew est vrai, cette méthode vérifie si le firmware est plus récent que la version
qui est actuellement utilisée par le module. Quand le fichier n'est pas compatible (ou si le fichier est
plus vieux que la version installée), cette méthode retourne une chaîne vide. Si au contraire le fichier
est valide, la méthode retourne le chemin d'accès d'un fichier.

Le code suivant vérifie si le fichier c:\tmp\METEOMK1.17328.byn est compatible avec le
module stocké dans la variable m.

YModule m = YModule.FirstModule();
...
...
string path = "c:\\tmp\METEOMK1.17328.byn";
string newfirm = m.checkFirmware(path, false);
if (newfirm != "") {
 Console.WriteLine("firmware " + newfirm + " is compatible");
}
...

Il est possible de passer un répertoire en argument (au lieu d'un fichier). Dans ce cas la méthode va
parcourir récursivement tous les fichiers du répertoire et retourner le firmware compatible le plus
récent. Le code suivant vérifie s'il existe un firmware plus récent dans le répertoire c:\tmp\.

22. Mise à jour du firmware

www.yoctopuce.com 167

YModule m = YModule.FirstModule();
...
...
string path = "c:\\tmp";
string newfirm = m.checkFirmware(path, true);
if (newfirm != "") {
 Console.WriteLine("firmware " + newfirm + " is compatible and newer");
}
...

Il est aussi possible de passer la chaîne "www.yoctopuce.com" en argument pour vérifier s'il existe
un firmware plus récent publié sur le site web de Yoctopuce. Dans ce cas, la méthode retournera
l'URL du firmware. Vous pourrez soit utiliser cette URL pour télécharger le firmware sur votre disque,
soit utiliser cette URL lors de la mise à jour du firmware (voir ci-dessous). Bien évidemment, cette
possibilité ne fonctionne que si votre machine est reliée à Internet.

YModule m = YModule.FirstModule();
...
...
string url = m.checkFirmware("www.yoctopuce.com", true);
if (url != "") {
 Console.WriteLine("new firmware is available at " + url);
}
...

Mettre à jour le firmware
La mise à jour du firmware peut prendre plusieurs minutes, c'est pourquoi le processus de mise à
jour est exécuté par la librairie en arrière plan et est contrôlé par le code utilisateur à l'aide de la
classe YFirmwareUdpate.

Pour mettre à jour un module Yoctopuce, il faut obtenir une instance de la classe
YFirmwareUpdate à l'aide de la méthode updateFirmware d'un objet YModule. Le seul
paramètre de cette méthode est le path du firmware à installer. Cette méthode ne démarre pas
immédiatement la mise à jour, mais retourne un objet YFirmwareUpdate configuré pour mettre à
jour le module.

string newfirm = m.checkFirmware("www.yoctopuce.com", true);
.....
YFirmwareUpdate fw_update = m.updateFirmware(newfirm);

La méthode startUpdate() démarre la mise à jour en arrière plan. Ce processus en arrière plan
se charge automatiquement de:

1. sauvegarder des paramètres du module,
2. redémarrer le module en mode "mise à jour"
3. mettre à jour le firmware
4. démarrer le module avec la nouvelle version du firmware
5. restaurer les paramètres

Les méthodes get_progress() et get_progressMessage() permettent de suivre la
progression de la mise à jour. get_progress()retourne la progression sous forme de
pourcentage (100 = mise à jour terminée). get_progressMessage() retourne une chaîne de
caractères décrivant l'opération en cours (effacement, écriture, reboot,...). Si la méthode
get_progress() retourne une valeur négative, c'est que le processus de mise à jour à échoué.
Dans ce cas la méthode get_progressMessage() retourne le message d'erreur.

Le code suivant démarre la mise à jour et affiche la progression sur la sortie standard.

YFirmwareUpdate fw_update = m.updateFirmware(newfirm);
....
int status = fw_update.startUpdate();
while (status < 100 && status >= 0) {
 int newstatus = fw_update.get_progress();

22. Mise à jour du firmware

168 www.yoctopuce.com

 if (newstatus != status) {
 Console.WriteLine(status + "% "
 + fw_update.get_progressMessage());
 }
 YAPI.Sleep(500, ref errmsg);
 status = newstatus;
}

if (status < 0) {
 Console.WriteLine("Firmware Update failed: "
 + fw_update.get_progressMessage());
} else {
 Console.WriteLine("Firmware Updated Successfully!");
}

Particularité d'Android
Il est possible de mettre à jour un firmware d'un module en utilisant la librairie Android. Mais pour les
modules branchés en USB, Android va demander à l'utilisateur d'autoriser l'application à accéder au
port USB.

Pendant la mise à jour du firmware, le module redémarre plusieurs fois. Android interprète le reboot
d'un périphérique USB comme une déconnexion et reconnexion du port USB, et interdit tout accès
USB tant que l'utilisateur n'a pas fermé le pop-up. L'utilisateur est obligé de cliquer sur OK pour que
la procédure de mise à jour puisse continuer correctement. Il n'est pas possible de mettre à jour
un module branché en USB à un appareil Android sans que l'utilisateur ne soit obligé
d'interagir avec l'appareil.

22.5. Le mode "mise à jour"
Si vous désirez effacer tous les paramètres du module ou que votre module ne démarre plus
correctement, il est possible d'installer un firmware depuis le mode "mise à jour".

Pour forcer le module à fonctionner dans le mode "mis à jour", débranchez-le, attendez quelques
secondes, et rebranchez-le en maintenant le Yocto-Bouton appuyé. Cela a pour effet de faire
démarrer le module en mode "mise à jour". Ce mode de fonctionnement est protégé contre les
corruptions et est toujours accessible.

Dans ce mode, le module n'est plus détecté par les objets YModules. Pour obtenir la liste des
modules connectés en mode "mise à jour", il faut utiliser la fonction YAPI.GetAllBootLoaders
(). Cette fonction retourne un tableau de chaînes de caractères avec le numéro de série des
modules en le mode "mise à jour".

List<string> allBootLoader = YAPI.GetAllBootLoaders();

La procédure de mise à jour est identique au cas standard (voir section précédente), mais il faut
instancier manuellement l'objet YFirmwareUpdate au lieu d'appeler
module.updateFirmware(). Le constructeur prend en argument trois paramètres: le numéro
de série du module, le path du firmware à installer, et un tableau de bytes avec les paramètres à
restaurer à la fin de la mise à jour (ou null pour restaurer les paramètres d'origine).

YFirmwareUpdateupdate fw_update;
fw_update = new YFirmwareUpdate(allBootLoader[0], newfirm, null);
int status = fw_update.startUpdate();
.....

www.yoctopuce.com 169

23. Référence de l'API de haut niveau
Ce chapitre résume les fonctions de l'API de haut niveau pour commander votre Yocto-Knob-C. La
syntaxe et les types précis peuvent varier d'un langage à l'autre mais, sauf avis contraire toutes sont
disponibles dans chaque language. Pour une information plus précise sur les types des arguments
et des valeurs de retour dans un langage donné, veuillez vous référer au fichier de définition pour ce
langage (yocto_api.* ainsi que les autres fichiers yocto_* définissant les interfaces des
fonctions).

Dans les langages qui supportent les exceptions, toutes ces fonctions vont par défaut générer des
exceptions en cas d'erreur plutôt que de retourner la valeur d'erreur documentée pour chaque
fonction, afin de faciliter le déboguage. Il est toutefois possible de désactiver l'utilisation d'exceptions
à l'aide de la fonction yDisableExceptions(), si l'on préfère travailler avec des valeurs de
retour d'erreur.

Ce chapitre ne reprend pas en détail les concepts de programmation décrits plus tôt, afin d'offrir une
référence plus concise. En cas de doute, n'hésitez pas à retourner au chapitre décrivant en détail de
chaque attribut configurable.

23. Référence de l'API de haut niveau

170 www.yoctopuce.com

23.1. La classe YAPI

Fonctions générales

Ces quelques fonctions générales permettent l'initialisation et la configuration de la librairie Yoctopuce.
Dans la plupart des cas, un appel à yRegisterHub() suffira en tout et pour tout. Ensuite, vous
pourrez appeler la fonction globale yFind...() ou yFirst...() correspondant à votre module
pour pouvoir interagir avec lui.

Pour utiliser les fonctions décrites ici, vous devez inclure:

java import com.yoctopuce.YoctoAPI.YAPI;

dnp import YoctoProxyAPI.YAPIProxy

cp #include "yocto_api_proxy.h"

ml import YoctoProxyAPI.YAPIProxy"

cpp #include "yocto_api.h"

vb yocto_api.vb

cs yocto_api.cs

py from yocto_api import *

php require_once('yocto_api.php');

ts in HTML: import { YAPI, YErrorMsg, YModule, YSensor } from '../../dist/esm/yocto_api_browser.js';
in Node.js: import { YAPI, YErrorMsg, YModule, YSensor } from 'yoctolib-cjs/yocto_api_nodejs.js';

tpy from yoctolib.yocto_api import *

vi YModule.vi

pas uses yocto_api;

es in HTML: <script src="../../lib/yocto_api.js"></script>
in node.js: require('yoctolib-es2017/yocto_api.js');

Fonction globales
YAPI.AddTrustedCertificates(certificate)

Ajoute un certificat TLS/SSL à la liste des certificats de confiance.

cpp vb cs java py php ts tpy pas es

YAPI.AddUdevRule(force)

Ajoute une règle UDEV qui autorise tous les utilisateurs à accéder aux modules Yoctopuce connectés sur les
ports USB.

cpp vb cs java py php ts pas es

YAPI.CheckLogicalName(name)

Vérifie si un nom donné est valide comme nom logique pour un module ou une fonction.

cpp vb cs java py php ts tpy pas es

YAPI.ClearHTTPCallbackCacheDir(removeFiles)

Désactive le cache de callback HTTP.

java php

YAPI.DisableExceptions()

Désactive l'utilisation d'exceptions pour la gestion des erreurs.

cpp vb cs py php ts tpy pas es

YAPI.DownloadHostCertificate(url, mstimeout)

Télecharge le certificat TLS/SSL du hub.

https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.AddTrustedCertificates
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.AddTrustedCertificates
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.AddTrustedCertificates
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.AddTrustedCertificates
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.AddTrustedCertificates
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.AddTrustedCertificates
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.AddTrustedCertificates
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.AddTrustedCertificates
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.AddTrustedCertificates
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.AddTrustedCertificates
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.AddUdevRule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.AddUdevRule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.AddUdevRule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.AddUdevRule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.AddUdevRule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.AddUdevRule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.AddUdevRule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.AddUdevRule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.AddUdevRule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.CheckLogicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.CheckLogicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.CheckLogicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.CheckLogicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.CheckLogicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.CheckLogicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.CheckLogicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.CheckLogicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.CheckLogicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.CheckLogicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.ClearHTTPCallbackCacheDir
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.ClearHTTPCallbackCacheDir
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.DisableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.DisableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.DisableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.DisableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.DisableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.DisableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.DisableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.DisableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.DisableExceptions

23. Référence de l'API de haut niveau

www.yoctopuce.com 171

cpp vb cs java py php ts tpy pas es

YAPI.EnableExceptions()

Réactive l'utilisation d'exceptions pour la gestion des erreurs.

cpp vb cs py php ts tpy pas es

YAPI.EnableUSBHost(osContext)

Cette fonction est utilisée uniquement sous Android.

java

YAPI.FreeAPI()

Attends que toutes les communications en cours avec les modules Yoctopuce soient terminées puis libère les
ressources utilisées par la librairie Yoctopuce.

cpp vb cs java py php ts dnp tpy pas es

YAPI.GetAPIVersion()

Retourne la version de la librairie Yoctopuce utilisée.

cpp vb cs java py php ts dnp tpy pas es

YAPI.GetCacheValidity()

Retourne la durée de validité des données chargée par la libraire.

cpp vb cs java py php ts tpy pas es

YAPI.GetDeviceListValidity()

Retourne le délai entre chaque énumération forcée des YoctoHubs utilisés.

cpp vb cs java py php ts tpy pas es

YAPI.GetDllArchitecture()

Retourne l'architecture du binaire de la librairie de communication Yoctopuce utilisée.

dnp

YAPI.GetDllPath()

Retourne l'emplacement sur le disque des librairies Yoctopuce utilisées.

dnp

YAPI.GetLog(lastLogLine)

Récupère les messages de logs de la librairie de communication Yoctopuce.

dnp

YAPI.GetNetworkTimeout()

Retourne le délai de connexion réseau pour yRegisterHub() et yUpdateDeviceList().

cpp vb cs java py php ts dnp tpy pas es

YAPI.GetTickCount()

Retourne la valeur du compteur monotone de temps (en millisecondes).

cpp vb cs java py php ts tpy pas es

YAPI.GetYAPISharedLibraryPath()

Retourne le chemin de la librairie dynamique YAPI.

cpp vb cs java py php ts pas es

YAPI.HandleEvents(errmsg)

Maintient la communication de la librairie avec les modules Yoctopuce.

cpp vb cs java py php ts tpy pas es

https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.DownloadHostCertificate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.DownloadHostCertificate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.DownloadHostCertificate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.DownloadHostCertificate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.DownloadHostCertificate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.DownloadHostCertificate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.DownloadHostCertificate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.DownloadHostCertificate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.DownloadHostCertificate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.DownloadHostCertificate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.EnableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.EnableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.EnableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.EnableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.EnableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.EnableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.EnableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.EnableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.EnableExceptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.EnableUSBHost
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.FreeAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.FreeAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.FreeAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.FreeAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.FreeAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.FreeAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.FreeAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#API.FreeAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.FreeAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.FreeAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.FreeAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.GetAPIVersion
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.GetAPIVersion
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.GetAPIVersion
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.GetAPIVersion
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.GetAPIVersion
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.GetAPIVersion
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.GetAPIVersion
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#API.GetAPIVersion
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.GetAPIVersion
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.GetAPIVersion
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.GetAPIVersion
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.GetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.GetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.GetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.GetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.GetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.GetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.GetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.GetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.GetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.GetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.GetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.GetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.GetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.GetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.GetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.GetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.GetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.GetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.GetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.GetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#API.GetDllArchitecture
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#API.GetDllPath
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#API.GetLog
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.GetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.GetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.GetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.GetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.GetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.GetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.GetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#API.GetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.GetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.GetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.GetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.GetTickCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.GetTickCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.GetTickCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.GetTickCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.GetTickCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.GetTickCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.GetTickCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.GetTickCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.GetTickCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.GetTickCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.HandleEvents
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.HandleEvents
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.HandleEvents
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.HandleEvents
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.HandleEvents
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.HandleEvents
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.HandleEvents
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.HandleEvents
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.HandleEvents
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.HandleEvents

23. Référence de l'API de haut niveau

172 www.yoctopuce.com

YAPI.InitAPI(mode, errmsg)

Initialise la librairie de programmation de Yoctopuce explicitement.

cpp vb cs java py php ts tpy pas es

YAPI.PreregisterHub(url, errmsg)

Alternative plus tolérante à yRegisterHub().

cpp vb cs java py php ts dnp tpy pas es

YAPI.RegisterDeviceArrivalCallback(arrivalCallback)

Enregistre une fonction de callback qui sera appelée à chaque fois qu'un module est branché.

cpp vb cs java py php ts tpy pas es

YAPI.RegisterDeviceRemovalCallback(removalCallback)

Enregistre une fonction de callback qui sera appelée à chaque fois qu'un module est débranché.

cpp vb cs java py php ts tpy pas es

YAPI.RegisterHub(url, errmsg)

Configure la librairie Yoctopuce pour utiliser les modules connectés sur une machine donnée.

cpp vb cs java py php ts dnp tpy pas es

YAPI.RegisterHubDiscoveryCallback(hubDiscoveryCallback)

Enregistre une fonction de callback qui est appelée chaque fois qu'un hub réseau s'annonce avec un
message SSDP.

cpp vb cs java py ts tpy pas es

YAPI.RegisterHubWebsocketCallback(ws, errmsg, authpwd)

Variante de la fonction yRegisterHub() destinée à initialiser l'API Yoctopuce sur une session
Websocket existante, dans le cadre d'un callback WebSocket entrant.

YAPI.RegisterLogFunction(logfun)

Enregistre une fonction de callback qui sera appellée à chaque fois que l'API a quelque chose à dire.

cpp vb cs java py ts tpy pas es

YAPI.SelectArchitecture(arch)

Sélectionne manuellement l'architecture de la libraire dynamique à utiliser pour accéder à USB.

py

YAPI.SetCacheValidity(cacheValidityMs)

Change la durée de validité des données chargées par la librairie.

cpp vb cs java py php ts tpy pas es

YAPI.SetDelegate(object)

(Objective-C uniquement) Enregistre un objet délégué qui doit se conformer au protocole
YDeviceHotPlug.

YAPI.SetDeviceListValidity(deviceListValidity)

Change le délai entre chaque énumération forcée des YoctoHub utilisés.

cpp vb cs java py php ts tpy pas es

YAPI.SetHTTPCallbackCacheDir(directory)

Active le cache du callback HTTP.

java php

YAPI.SetNetworkSecurityOptions(opts)

Permet d'activer ou désactiver certains checks des certificats TLS/SSL.

https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.InitAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.InitAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.InitAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.InitAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.InitAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.InitAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.InitAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.InitAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.InitAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.InitAPI
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.PreregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.PreregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.PreregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.PreregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.PreregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.PreregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.PreregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#API.PreregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.PreregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.PreregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.PreregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.RegisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.RegisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.RegisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.RegisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.RegisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.RegisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.RegisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#API.RegisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.RegisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.RegisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.RegisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.RegisterLogFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.RegisterLogFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.RegisterLogFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.RegisterLogFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.RegisterLogFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.RegisterLogFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.RegisterLogFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.RegisterLogFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.RegisterLogFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.SelectArchitecture
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.SetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.SetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.SetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.SetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.SetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.SetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.SetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.SetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.SetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.SetCacheValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.SetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.SetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.SetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.SetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.SetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.SetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.SetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.SetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.SetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.SetDeviceListValidity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.SetHTTPCallbackCacheDir
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.SetHTTPCallbackCacheDir

23. Référence de l'API de haut niveau

www.yoctopuce.com 173

cpp vb cs java py php ts tpy pas es

YAPI.SetNetworkTimeout(networkMsTimeout)

Change le délai de connexion réseau pour yRegisterHub() et yUpdateDeviceList().

cpp vb cs java py php ts dnp tpy pas es

YAPI.SetTimeout(callback, ms_timeout, args)

Appelle le callback spécifié après un temps d'attente spécifié.

ts es

YAPI.SetTrustedCertificatesList(certificatePath)

Definit le chemin d'accès au fichier de l'autorité de certification.

cpp vb cs java py php ts tpy pas es

YAPI.SetUSBPacketAckMs(pktAckDelay)

Active la quittance des paquets USB reçus par la librairie Yoctopuce.

java

YAPI.Sleep(ms_duration, errmsg)

Effectue une pause dans l'exécution du programme pour une durée spécifiée.

cpp vb cs java py php ts tpy pas es

YAPI.TestHub(url, mstimeout, errmsg)

Test si un hub est joignable.

cpp vb cs java py php ts dnp tpy pas es

YAPI.TriggerHubDiscovery(errmsg)

Relance une détection des hubs réseau.

cpp vb cs java py ts tpy pas es

YAPI.UnregisterHub(url)

Configure la librairie Yoctopuce pour ne plus utiliser les modules connectés sur une machine préalablement
enregistrer avec RegisterHub.

cpp vb cs java py php ts tpy pas es

YAPI.UpdateDeviceList(errmsg)

Force une mise-à-jour de la liste des modules Yoctopuce connectés.

cpp vb cs java py php ts tpy pas es

YAPI.UpdateDeviceList_async(callback, context)

Force une mise-à-jour de la liste des modules Yoctopuce connectés.

https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.SetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.SetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.SetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.SetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.SetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.SetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.SetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#API.SetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.SetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.SetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.SetNetworkTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.SetTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.SetTimeout
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.SetUSBPacketAckMs
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.Sleep
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.Sleep
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.Sleep
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.Sleep
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.Sleep
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.Sleep
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.Sleep
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.Sleep
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.Sleep
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.Sleep
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.TestHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.TestHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.TestHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.TestHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.TestHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.TestHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.TestHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#API.TestHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.TestHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.TestHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.TestHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.UnregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.UnregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.UnregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.UnregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.UnregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.UnregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.UnregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.UnregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.UnregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.UnregisterHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#API.UpdateDeviceList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#API.UpdateDeviceList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#API.UpdateDeviceList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#API.UpdateDeviceList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#API.UpdateDeviceList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#API.UpdateDeviceList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#API.UpdateDeviceList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#API.UpdateDeviceList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#API.UpdateDeviceList
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#API.UpdateDeviceList

23. Référence de l'API de haut niveau

174 www.yoctopuce.com

23.2. La classe YModule

Interface de contrôle des paramètres généraux des modules Yoctopuce

La classe YModule est utilisable avec tous les modules USB de Yoctopuce. Elle permet de contrôler
les paramètres généraux du module, et d'énumérer les fonctions fournies par chaque module.

Pour utiliser les fonctions décrites ici, vous devez inclure:

cpp #include "yocto_api.h"

vb yocto_api.vb

cs yocto_api.cs

java import com.yoctopuce.YoctoAPI.YModule;

py from yocto_api import *

php require_once('yocto_api.php');

ts in HTML: import { YAPI, YErrorMsg, YModule, YSensor } from '../../dist/esm/yocto_api_browser.js';
in Node.js: import { YAPI, YErrorMsg, YModule, YSensor } from 'yoctolib-cjs/yocto_api_nodejs.js';

dnp import YoctoProxyAPI.YModuleProxy

cp #include "yocto_module_proxy.h"

tpy from yoctolib.yocto_api import *

vi YModule.vi

ml import YoctoProxyAPI.YModuleProxy"

pas uses yocto_api;

es in HTML: <script src="../../lib/yocto_api.js"></script>
in node.js: require('yoctolib-es2017/yocto_api.js');

Fonction globales
YModule.FindModule(func)

Permet de retrouver un module d'après son numéro de série ou son nom logique.

cpp vb cs java py php ts dnp tpy pas es

YModule.FindModuleInContext(yctx, func)

Permet de retrouver un module d'après un identifiant donné dans un Context YAPI.

java ts tpy es

YModule.FirstModule()

Commence l'énumération des modules accessibles par la librairie.

cpp vb cs java py php ts tpy pas es

Propriétés des objets YModuleProxy
module→Beacon [modifiable]

état de la balise de localisation.

dnp

module→FirmwareRelease [lecture seule]

Version du logiciel embarqué du module.

dnp

module→FunctionId [lecture seule]

Identifiant matériel de la nième fonction du module.

dnp

module→HardwareId [lecture seule]

https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.FindModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.FindModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.FindModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.FindModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.FindModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.FindModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.FindModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.FindModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.FindModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.FindModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.FindModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.FindModuleInContext
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.FindModuleInContext
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.FindModuleInContext
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.FindModuleInContext
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.FirstModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.FirstModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.FirstModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.FirstModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.FirstModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.FirstModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.FirstModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.FirstModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.FirstModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.FirstModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.Beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.FirmwareRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.FunctionId

23. Référence de l'API de haut niveau

www.yoctopuce.com 175

Identifiant unique du module.

dnp

module→IsOnline [lecture seule]

Vérifie si le module est joignable.

dnp

module→LogicalName [modifiable]

Nom logique du module.

dnp

module→Luminosity [modifiable]

Luminosité des leds informatives du module (valeur entre 0 et 100).

dnp

module→ProductId [lecture seule]

Identifiant USB du module, préprogrammé en usine.

dnp

module→ProductName [lecture seule]

Nom commercial du module, préprogrammé en usine.

dnp

module→ProductRelease [lecture seule]

Numéro uméro de révision du module hardware, préprogrammé en usine.

dnp

module→SerialNumber [lecture seule]

Numéro de série du module, préprogrammé en usine.

dnp

Méthodes des objets YModule
module→addFileToHTTPCallback(filename)

Ajoute un fichier aux données uploadées lors du prochain callback HTTP.

cmd cpp vb cs java py php ts dnp pas es

module→checkFirmware(path, onlynew)

Teste si le fichier byn est valide pour le module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→clearCache()

Invalide le cache.

cpp vb cs java py php ts tpy pas es

module→describe()

Retourne un court texte décrivant le module.

cpp vb cs java py php ts pas es

module→download(pathname)

Télécharge le fichier choisi du module et retourne son contenu.

cmd cpp vb cs java py php ts dnp tpy pas es

module→functionBaseType(functionIndex)

Retourne le type de base de la nième fonction du module.

https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.HardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.IsOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.LogicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.Luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.ProductId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.ProductName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.ProductRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.SerialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.checkFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.checkFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.checkFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.checkFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.checkFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.checkFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.checkFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.checkFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.checkFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.checkFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.checkFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.checkFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.download
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.download
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.download
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.download
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.download
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.download
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.download
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.download
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.download
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.download
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.download
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.download

23. Référence de l'API de haut niveau

176 www.yoctopuce.com

cpp vb cs java py php ts tpy pas es

module→functionCount()

Retourne le nombre de fonctions (sans compter l'interface "module") existant sur le module.

cpp vb cs java py php ts tpy pas es

module→functionId(functionIndex)

Retourne l'identifiant matériel de la nième fonction du module.

cpp vb cs java py php ts tpy pas es

module→functionName(functionIndex)

Retourne le nom logique de la nième fonction du module.

cpp vb cs java py php ts tpy pas es

module→functionType(functionIndex)

Retourne le type de la nième fonction du module.

cpp vb cs java py php ts tpy pas es

module→functionValue(functionIndex)

Retourne la valeur publiée par la nième fonction du module.

cpp vb cs java py php ts tpy pas es

module→get_allSettings()

Retourne tous les paramètres de configuration du module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_beacon()

Retourne l'état de la balise de localisation.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_errorMessage()

Retourne le message correspondant à la dernière erreur survenue lors de l'utilisation de l'objet module.

cpp vb cs java py php ts tpy pas es

module→get_errorType()

Retourne le code d'erreur correspondant à la dernière erreur survenue lors de l'utilisation de l'objet module.

cpp vb cs java py php ts tpy pas es

module→get_firmwareRelease()

Retourne la version du logiciel embarqué du module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_functionIds(funType)

Retourne les identifiants matériels des fonctions correspondant au type passé en argument.

cmd cpp vb cs java py php ts dnp pas es

module→get_hardwareId()

Retourne l'identifiant unique du module.

cpp vb cs java py php ts dnp tpy es cmd pas

module→get_icon2d()

Retourne l'icône du module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_lastLogs()

https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.functionBaseType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.functionBaseType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.functionBaseType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.functionBaseType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.functionBaseType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.functionBaseType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.functionBaseType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.functionBaseType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.functionBaseType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.functionBaseType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.functionCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.functionCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.functionCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.functionCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.functionCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.functionCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.functionCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.functionCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.functionCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.functionCount
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.functionName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.functionName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.functionName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.functionName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.functionName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.functionName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.functionName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.functionName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.functionName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.functionName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.functionType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.functionType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.functionType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.functionType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.functionType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.functionType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.functionType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.functionType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.functionType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.functionType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.functionValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.functionValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.functionValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.functionValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.functionValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.functionValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.functionValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.functionValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.functionValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.functionValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_firmwareRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_firmwareRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_firmwareRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_firmwareRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_firmwareRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_firmwareRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_firmwareRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_firmwareRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_firmwareRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_firmwareRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_firmwareRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_firmwareRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_functionIds
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_functionIds
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_functionIds
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_functionIds
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_functionIds
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_functionIds
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_functionIds
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_functionIds
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_functionIds
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_functionIds
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_functionIds
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_icon2d
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_icon2d
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_icon2d
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_icon2d
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_icon2d
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_icon2d
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_icon2d
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_icon2d
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_icon2d
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_icon2d
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_icon2d
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_icon2d

23. Référence de l'API de haut niveau

www.yoctopuce.com 177

Retourne une chaîne de caractères contenant les derniers logs du module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_logicalName()

Retourne le nom logique du module.

cpp vb cs java py php ts dnp tpy pas es cmd

module→get_luminosity()

Retourne la luminosité des leds informatives du module (valeur entre 0 et 100).

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_parentHub()

Retourne le numéro de série du YoctoHub sur lequel est connecté le module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_persistentSettings()

Retourne l'état courant des réglages persistents du module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_productId()

Retourne l'identifiant USB du module, préprogrammé en usine.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_productName()

Retourne le nom commercial du module, préprogrammé en usine.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_productRelease()

Retourne le numéro uméro de révision du module hardware, préprogrammé en usine.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_rebootCountdown()

Retourne le nombre de secondes restantes avant un redémarrage du module, ou zéro si aucun redémarrage
n'a été agendé.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_serialNumber()

Retourne le numéro de série du module, préprogrammé en usine.

cpp vb cs java py php ts dnp tpy pas es cmd

module→get_subDevices()

Retourne la liste des modules branchés au module courant.

cmd cpp vb cs java py php ts dnp pas es

module→get_upTime()

Retourne le nombre de millisecondes écoulées depuis la mise sous tension du module

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_url()

Retourne l'URL utilisée pour accéder au module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_usbCurrent()

Retourne le courant consommé par le module sur le bus USB, en milliampères.

https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_lastLogs
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_lastLogs
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_lastLogs
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_lastLogs
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_lastLogs
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_lastLogs
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_lastLogs
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_lastLogs
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_lastLogs
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_lastLogs
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_lastLogs
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_lastLogs
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_parentHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_parentHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_parentHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_parentHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_parentHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_parentHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_parentHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_parentHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_parentHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_parentHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_parentHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_parentHub
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_persistentSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_persistentSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_persistentSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_persistentSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_persistentSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_persistentSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_persistentSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_persistentSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_persistentSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_persistentSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_persistentSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_persistentSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_productId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_productId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_productId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_productId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_productId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_productId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_productId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_productId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_productId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_productId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_productId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_productId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_productName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_productName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_productName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_productName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_productName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_productName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_productName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_productName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_productName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_productName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_productName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_productName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_productRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_productRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_productRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_productRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_productRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_productRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_productRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_productRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_productRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_productRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_productRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_productRelease
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_rebootCountdown
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_rebootCountdown
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_rebootCountdown
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_rebootCountdown
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_rebootCountdown
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_rebootCountdown
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_rebootCountdown
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_rebootCountdown
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_rebootCountdown
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_rebootCountdown
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_rebootCountdown
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_rebootCountdown
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_subDevices
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_subDevices
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_subDevices
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_subDevices
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_subDevices
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_subDevices
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_subDevices
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_subDevices
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_subDevices
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_subDevices
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_subDevices
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_upTime
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_upTime
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_upTime
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_upTime
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_upTime
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_upTime
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_upTime
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_upTime
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_upTime
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_upTime
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_upTime
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_upTime
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_url
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_url
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_url
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_url
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_url
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_url
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_url
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_url
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_url
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_url
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_url
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_url

23. Référence de l'API de haut niveau

178 www.yoctopuce.com

cmd cpp vb cs java py php ts dnp tpy pas es

module→get_userData()

Retourne le contenu de l'attribut userData, précédemment stocké à l'aide de la méthode set_userData.

cpp vb cs java py php ts tpy pas es

module→get_userVar()

Retourne la valeur entière précédemment stockée dans cet attribut.

cmd cpp vb cs java py php ts dnp tpy pas es

module→hasFunction(funcId)

Teste la présence d'une fonction pour le module courant.

cmd cpp vb cs java py php ts dnp tpy pas es

module→isOnline()

Vérifie si le module est joignable, sans déclencher d'erreur.

cpp vb cs java py php ts dnp tpy pas es

module→isOnline_async(callback, context)

Vérifie si le module est joignable, sans déclencher d'erreur.

module→isReadOnly()

Indique si le module est en lecture seule.

cpp vb cs java py php ts dnp tpy pas es cmd

module→load(msValidity)

Met en cache les valeurs courantes du module, avec une durée de validité spécifiée.

cpp vb cs java py php ts tpy pas es

module→load_async(msValidity, callback, context)

Met en cache les valeurs courantes du module, avec une durée de validité spécifiée.

module→log(text)

Ajoute un message arbitraire dans les logs du module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→nextModule()

Continue l'énumération des modules commencée à l'aide de yFirstModule().

cpp vb cs java py php ts tpy pas es

module→reboot(secBeforeReboot)

Agende un simple redémarrage du module dans un nombre donné de secondes.

cmd cpp vb cs java py php ts dnp tpy pas es

module→registerBeaconCallback(callback)

Enregistre une fonction de callback qui sera appelée à chaque changement d'état de la balise de localisation
du module.

cpp vb cs java py php ts tpy pas es

module→registerConfigChangeCallback(callback)

Enregistre une fonction de callback qui sera appelée à chaque fois qu'un réglage persistant d'un module est
modifié (par exemple changement d'unité de mesure, etc.)

cpp vb cs java py php ts tpy pas es

module→registerLogCallback(callback)

Enregistre une fonction de callback qui sera appelée à chaque fois le module émet un message de log.

https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_usbCurrent
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_usbCurrent
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_usbCurrent
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_usbCurrent
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_usbCurrent
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_usbCurrent
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_usbCurrent
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_usbCurrent
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_usbCurrent
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_usbCurrent
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_usbCurrent
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_usbCurrent
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.get_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.get_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.get_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.get_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.get_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.get_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.get_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.get_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.get_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.get_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.get_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.get_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.hasFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.hasFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.hasFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.hasFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.hasFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.hasFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.hasFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.hasFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.hasFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.hasFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.hasFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.hasFunction
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.log
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.log
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.log
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.log
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.log
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.log
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.log
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.log
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.log
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.log
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.log
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.log
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.nextModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.nextModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.nextModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.nextModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.nextModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.nextModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.nextModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.nextModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.nextModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.nextModule
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.reboot
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.reboot
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.reboot
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.reboot
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.reboot
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.reboot
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.reboot
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.reboot
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.reboot
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.reboot
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.reboot
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.reboot
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.registerBeaconCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.registerBeaconCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.registerBeaconCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.registerBeaconCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.registerBeaconCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.registerBeaconCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.registerBeaconCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.registerBeaconCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.registerBeaconCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.registerBeaconCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.registerConfigChangeCallback

23. Référence de l'API de haut niveau

www.yoctopuce.com 179

cpp vb cs java py php ts tpy pas es

module→revertFromFlash()

Recharge les réglages stockés dans le mémoire non volatile du module, comme à la mise sous tension du
module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→saveToFlash()

Sauve les réglages courants dans la mémoire non volatile du module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→set_allSettings(settings)

Rétablit tous les paramètres du module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→set_allSettingsAndFiles(settings)

Rétablit tous les paramètres de configuration et fichiers sur un module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→set_beacon(newval)

Allume ou éteint la balise de localisation du module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→set_logicalName(newval)

Change le nom logique du module.

cpp vb cs java py php ts dnp tpy pas es cmd

module→set_luminosity(newval)

Modifie la luminosité des leds informatives du module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→set_userData(data)

Enregistre un contexte libre dans l'attribut userData de la fonction, afin de le retrouver plus tard à l'aide de la
méthode get_userData.

cpp vb cs java py php ts tpy pas es

module→set_userVar(newval)

Stocke une valeur 32 bits dans la mémoire volatile du module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→triggerConfigChangeCallback()

Force le déclenchement d'un callback de changement de configuration, afin de vérifier s'ils sont disponibles
ou pas.

cmd cpp vb cs java py php ts dnp tpy pas es

module→triggerFirmwareUpdate(secBeforeReboot)

Agende un redémarrage du module en mode spécial de reprogrammation du logiciel embarqué.

cmd cpp vb cs java py php ts dnp tpy pas es

module→updateFirmware(path)

Prepare une mise à jour de firmware du module.

cmd cpp vb cs java py php ts dnp tpy pas es

module→updateFirmwareEx(path, force)

Prepare une mise à jour de firmware du module.

https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.registerLogCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.registerLogCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.registerLogCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.registerLogCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.registerLogCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.registerLogCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.registerLogCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.registerLogCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.registerLogCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.registerLogCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.revertFromFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.revertFromFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.revertFromFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.revertFromFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.revertFromFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.revertFromFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.revertFromFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.revertFromFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.revertFromFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.revertFromFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.revertFromFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.revertFromFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.saveToFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.saveToFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.saveToFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.saveToFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.saveToFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.saveToFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.saveToFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.saveToFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.saveToFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.saveToFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.saveToFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.saveToFlash
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.set_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.set_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.set_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.set_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.set_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.set_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.set_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.set_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.set_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.set_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.set_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.set_allSettings
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.set_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.set_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.set_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.set_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.set_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.set_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.set_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.set_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.set_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.set_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.set_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.set_beacon
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.set_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.set_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.set_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.set_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.set_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.set_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.set_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.set_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.set_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.set_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.set_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.set_luminosity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.set_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.set_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.set_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.set_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.set_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.set_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.set_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.set_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.set_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.set_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.set_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.set_userVar
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.updateFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.updateFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.updateFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.updateFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.updateFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.updateFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.updateFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.updateFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.updateFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.updateFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.updateFirmware
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.updateFirmware

23. Référence de l'API de haut niveau

180 www.yoctopuce.com

cmd cpp vb cs java py php ts dnp tpy pas es

module→wait_async(callback, context)

Attend que toutes les commandes asynchrones en cours d'exécution sur le module soient terminées, et
appelle le callback passé en paramètre.

ts es

https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#Module.updateFirmwareEx
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#Module.updateFirmwareEx
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#Module.updateFirmwareEx
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#Module.updateFirmwareEx
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#Module.updateFirmwareEx
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#Module.updateFirmwareEx
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#Module.updateFirmwareEx
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.updateFirmwareEx
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#Module.updateFirmwareEx
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#Module.updateFirmwareEx
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#Module.updateFirmwareEx
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.updateFirmwareEx
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#Module.wait_async
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#Module.wait_async

23. Référence de l'API de haut niveau

www.yoctopuce.com 181

23.3. La classe YAnButton

Interface pour intéragir avec les entrées analogiques, disponibles par exemple dans le Yocto-Buzzer, le
Yocto-Knob, le Yocto-MaxiBuzzer et le Yocto-MaxiDisplay

La classe YAnButton permet d'accéder à une entrée résistive simple. Cela permet aussi bien de
mesurer l'état d'un simple bouton que de lire un potentiomètre analogique (résistance variable), comme
par exmple un bouton rotatif continu, une poignée de commande de gaz ou un joystick. Le module est
capable de se calibrer sur les valeurs minimales et maximales du potentiomètre, et de restituer une
valeur calibrée variant proportionnellement avec la position du potentiomètre, indépendant de sa
résistance totale.

Pour utiliser les fonctions décrites ici, vous devez inclure:

es in HTML: <script src="../../lib/yocto_anbutton.js"></script>
in node.js: require('yoctolib-es2017/yocto_anbutton.js');

cpp #include "yocto_anbutton.h"

vb yocto_anbutton.vb

cs yocto_anbutton.cs

java import com.yoctopuce.YoctoAPI.YAnButton;

py from yocto_anbutton import *

php require_once('yocto_anbutton.php');

ts in HTML: import { YAnButton } from '../../dist/esm/yocto_anbutton.js';
in Node.js: import { YAnButton } from 'yoctolib-cjs/yocto_anbutton.js';

dnp import YoctoProxyAPI.YAnButtonProxy

cp #include "yocto_anbutton_proxy.h"

tpy from yoctolib.yocto_anbutton import *

vi YAnButton.vi

ml import YoctoProxyAPI.YAnButtonProxy

pas uses yocto_anbutton;

Fonction globales
YAnButton.FindAnButton(func)

Permet de retrouver une entrée analogique d'après un identifiant donné.

cpp vb cs java py php ts dnp tpy pas es

YAnButton.FindAnButtonInContext(yctx, func)

Permet de retrouver une entrée analogique d'après un identifiant donné dans un Context YAPI.

java ts tpy es

YAnButton.FirstAnButton()

Commence l'énumération des entrées analogiques accessibles par la librairie.

cpp vb cs java py php ts tpy pas es

YAnButton.FirstAnButtonInContext(yctx)

Commence l'énumération des entrées analogiques accessibles par la librairie.

java ts tpy es

YAnButton.GetSimilarFunctions()

Enumère toutes les fonctions de type AnButton disponibles sur les modules actuellement joignables par la
librairie, et retourne leurs identifiants matériels uniques (hardwareId).

dnp

https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.FindAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.FindAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.FindAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.FindAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.FindAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.FindAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.FindAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.FindAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.FindAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.FindAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.FindAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.FindAnButtonInContext
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.FindAnButtonInContext
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.FindAnButtonInContext
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.FindAnButtonInContext
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.FirstAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.FirstAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.FirstAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.FirstAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.FirstAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.FirstAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.FirstAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.FirstAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.FirstAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.FirstAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.FirstAnButtonInContext
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.FirstAnButtonInContext
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.FirstAnButtonInContext
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.FirstAnButtonInContext
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.GetSimilarFunctions

23. Référence de l'API de haut niveau

182 www.yoctopuce.com

Propriétés des objets YAnButtonProxy
anbutton→AdvertisedValue [lecture seule]

Courte chaîne de caractères représentant l'état courant de la fonction.

dnp

anbutton→AnalogCalibration [modifiable]

Permet de savoir si une procédure de calibration est actuellement en cours.

dnp

anbutton→CalibratedValue [lecture seule]

Valeur calibrée de l'entrée (entre 0 et 1000 inclus).

dnp

anbutton→CalibrationMax [modifiable]

Valeur maximale observée durant la calibration (entre 0 et 4095 inclus).

dnp

anbutton→CalibrationMin [modifiable]

Valeur minimale observée durant la calibration (entre 0 et 4095 inclus).

dnp

anbutton→FriendlyName [lecture seule]

Identifiant global de la fonction au format NOM_MODULE.NOM_FONCTION.

dnp

anbutton→FunctionId [lecture seule]

Identifiant matériel de l'entrée analogique, sans référence au module.

dnp

anbutton→HardwareId [lecture seule]

Identifiant matériel unique de la fonction au format SERIAL.FUNCTIONID.

dnp

anbutton→InputType [modifiable]

Type de décodage appliqué à l'entrée (entrée analogique ou entrées binaires multiplexées).

dnp

anbutton→IsOnline [lecture seule]

Vérifie si le module hébergeant la fonction est joignable, sans déclencher d'erreur.

dnp

anbutton→IsPressed [lecture seule]

Vrai si l'entrée (considérée comme binaire) est active (contact fermé), et faux sinon.

dnp

anbutton→LogicalName [modifiable]

Nom logique de la fonction.

dnp

anbutton→Sensitivity [modifiable]

Sensibilité pour l'entrée (entre 1 et 1000) pour le déclenchement de callbacks.

dnp

anbutton→SerialNumber [lecture seule]

https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.AdvertisedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.AnalogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.CalibratedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.CalibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.CalibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.FriendlyName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.FunctionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.HardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.InputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.IsOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.IsPressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.LogicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.Sensitivity

23. Référence de l'API de haut niveau

www.yoctopuce.com 183

Numéro de série du module, préprogrammé en usine.

dnp

Méthodes des objets YAnButton
anbutton→clearCache()

Invalide le cache.

cpp vb cs java py php ts tpy pas es

anbutton→describe()

Retourne un court texte décrivant de manière non-ambigüe l'instance de l'entrée analogique au format
TYPE(NAME)=SERIAL.FUNCTIONID.

cpp vb cs java py php ts pas es

anbutton→get_advertisedValue()

Retourne la valeur courante de l'entrée analogique (pas plus de 6 caractères).

cpp vb cs java py php ts dnp tpy pas es cmd

anbutton→get_analogCalibration()

Permet de savoir si une procédure de calibration est actuellement en cours.

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→get_calibratedValue()

Retourne la valeur calibrée de l'entrée (entre 0 et 1000 inclus).

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→get_calibrationMax()

Retourne la valeur maximale observée durant la calibration (entre 0 et 4095 inclus).

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→get_calibrationMin()

Retourne la valeur minimale observée durant la calibration (entre 0 et 4095 inclus).

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→get_errorMessage()

Retourne le message correspondant à la dernière erreur survenue lors de l'utilisation de l'entrée analogique.

cpp vb cs java py php ts tpy pas es

anbutton→get_errorType()

Retourne le code d'erreur correspondant à la dernière erreur survenue lors de l'utilisation de l'entrée
analogique.

cpp vb cs java py php ts tpy pas es

anbutton→get_friendlyName()

Retourne un identifiant global de l'entrée analogique au format NOM_MODULE.NOM_FONCTION.

cpp cs java py php ts dnp tpy es

anbutton→get_functionDescriptor()

Retourne un identifiant unique de type YFUN_DESCR correspondant à la fonction.

cpp vb cs java py php ts pas es

anbutton→get_functionId()

Retourne l'identifiant matériel de l'entrée analogique, sans référence au module.

cpp vb cs java py php ts dnp tpy es

https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.SerialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.clearCache
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.describe
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_advertisedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_advertisedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_advertisedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_advertisedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_advertisedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_advertisedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_advertisedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_advertisedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_advertisedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_advertisedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_advertisedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_advertisedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_calibratedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_calibratedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_calibratedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_calibratedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_calibratedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_calibratedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_calibratedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_calibratedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_calibratedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_calibratedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_calibratedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_calibratedValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_errorMessage
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_errorType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_friendlyName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_friendlyName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_friendlyName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_friendlyName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_friendlyName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_friendlyName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_friendlyName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_friendlyName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_friendlyName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_functionDescriptor
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_functionDescriptor
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_functionDescriptor
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_functionDescriptor
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_functionDescriptor
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_functionDescriptor
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_functionDescriptor
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_functionDescriptor
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_functionDescriptor
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_functionId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_functionId

23. Référence de l'API de haut niveau

184 www.yoctopuce.com

anbutton→get_hardwareId()

Retourne l'identifiant matériel unique de l'entrée analogique au format SERIAL.FUNCTIONID.

cpp vb cs java py php ts dnp tpy es

anbutton→get_inputType()

Retourne le type de décodage appliqué à l'entrée (entrée analogique ou entrées binaires multiplexées).

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→get_isPressed()

Retourne vrai si l'entrée (considérée comme binaire) est active (contact fermé), et faux sinon.

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→get_lastTimePressed()

Retourne le temps absolu (nombre de millisecondes) entre la mise sous tension du module et la dernière
pression observée du bouton à l'entrée (transition du contact de ouvert à fermé).

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→get_lastTimeReleased()

Retourne le temps absolu (nombre de millisecondes) entre la mise sous tension du module et le dernier
relâchement observée du bouton à l'entrée (transition du contact de fermé à ouvert).

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→get_logicalName()

Retourne le nom logique de l'entrée analogique.

cpp vb cs java py php ts dnp tpy pas es cmd

anbutton→get_module()

Retourne l'objet YModule correspondant au module Yoctopuce qui héberge la fonction.

cpp vb cs java py php ts dnp tpy pas es

anbutton→get_module_async(callback, context)

Retourne l'objet YModule correspondant au module Yoctopuce qui héberge la fonction.

anbutton→get_pulseCounter()

Retourne la valeur du compteur d'impulsions.

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→get_pulseTimer()

Retourne le timer du compteur d'impulsions (ms).

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→get_rawValue()

Retourne la valeur mesurée de l'entrée telle-quelle (entre 0 et 4095 inclus).

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→get_sensitivity()

Retourne la sensibilité pour l'entrée (entre 1 et 1000) pour le déclenchement de callbacks.

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→get_serialNumber()

Retourne le numéro de série du module, préprogrammé en usine.

cpp vb cs java py php ts dnp tpy pas es cmd

anbutton→get_userData()

Retourne le contenu de l'attribut userData, précédemment stocké à l'aide de la méthode set_userData.

https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_hardwareId
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_isPressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_isPressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_isPressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_isPressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_isPressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_isPressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_isPressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_isPressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_isPressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_isPressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_isPressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_isPressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_lastTimePressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_lastTimePressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_lastTimePressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_lastTimePressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_lastTimePressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_lastTimePressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_lastTimePressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_lastTimePressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_lastTimePressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_lastTimePressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_lastTimePressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_lastTimePressed
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_lastTimeReleased
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_lastTimeReleased
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_lastTimeReleased
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_lastTimeReleased
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_lastTimeReleased
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_lastTimeReleased
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_lastTimeReleased
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_lastTimeReleased
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_lastTimeReleased
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_lastTimeReleased
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_lastTimeReleased
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_lastTimeReleased
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_module
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_module
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_module
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_module
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_module
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_module
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_module
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_module
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_module
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_module
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_module
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_pulseCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_pulseCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_pulseCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_pulseCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_pulseCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_pulseCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_pulseCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_pulseCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_pulseCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_pulseCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_pulseCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_pulseCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_pulseTimer
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_pulseTimer
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_pulseTimer
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_pulseTimer
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_pulseTimer
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_pulseTimer
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_pulseTimer
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_pulseTimer
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_pulseTimer
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_pulseTimer
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_pulseTimer
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_pulseTimer
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_rawValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_rawValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_rawValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_rawValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_rawValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_rawValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_rawValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_rawValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_rawValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_rawValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_rawValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_rawValue
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_serialNumber
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.get_serialNumber

23. Référence de l'API de haut niveau

www.yoctopuce.com 185

cpp vb cs java py php ts tpy pas es

anbutton→isOnline()

Vérifie si le module hébergeant l'entrée analogique est joignable, sans déclencher d'erreur.

cpp vb cs java py php ts dnp tpy pas es

anbutton→isOnline_async(callback, context)

Vérifie si le module hébergeant l'entrée analogique est joignable, sans déclencher d'erreur.

anbutton→isReadOnly()

Indique si la fonction est en lecture seule.

cpp vb cs java py php ts dnp tpy pas es cmd

anbutton→load(msValidity)

Met en cache les valeurs courantes de l'entrée analogique, avec une durée de validité spécifiée.

cpp vb cs java py php ts tpy pas es

anbutton→loadAttribute(attrName)

Retourne la valeur actuelle d'un attribut spécifique de la fonction, sous forme de texte, le plus rapidement
possible mais sans passer par le cache.

cpp vb cs java py php ts dnp tpy pas es

anbutton→load_async(msValidity, callback, context)

Met en cache les valeurs courantes de l'entrée analogique, avec une durée de validité spécifiée.

anbutton→muteValueCallbacks()

Désactive l'envoi de chaque changement de la valeur publiée au hub parent.

cpp vb cs java py php ts dnp tpy pas es cmd

anbutton→nextAnButton()

Continue l'énumération des entrées analogiques commencée à l'aide de yFirstAnButton() Attention,
vous ne pouvez faire aucune supposition sur l'ordre dans lequel les entrées analogiques sont retournés.

cpp vb cs java py php ts tpy pas es

anbutton→registerValueCallback(callback)

Enregistre la fonction de callback qui est appelée à chaque changement de la valeur publiée.

cpp vb cs java py php ts tpy pas es

anbutton→resetCounter()

Réinitialise le compteur d'impulsions et son timer.

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→set_analogCalibration(newval)

Enclenche ou déclenche le procédure de calibration.

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→set_calibrationMax(newval)

Modifie la valeur maximale de calibration pour l'entrée (entre 0 et 4095 inclus), sans lancer la calibration
automatique.

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→set_calibrationMin(newval)

Modifie la valeur minimale de calibration pour l'entrée (entre 0 et 4095 inclus), sans lancer la calibration
automatique.

cmd cpp vb cs java py php ts dnp tpy pas es

https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.get_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.isOnline
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.isReadOnly
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.load
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.loadAttribute
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.loadAttribute
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.loadAttribute
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.loadAttribute
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.loadAttribute
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.loadAttribute
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.loadAttribute
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.loadAttribute
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.loadAttribute
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.loadAttribute
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.loadAttribute
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.muteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.muteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.muteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.muteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.muteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.muteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.muteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.muteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.muteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.muteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.muteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.muteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.nextAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.nextAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.nextAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.nextAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.nextAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.nextAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.nextAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.nextAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.nextAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.nextAnButton
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.registerValueCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.registerValueCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.registerValueCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.registerValueCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.registerValueCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.registerValueCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.registerValueCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.registerValueCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.registerValueCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.registerValueCallback
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.resetCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.resetCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.resetCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.resetCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.resetCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.resetCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.resetCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.resetCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.resetCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.resetCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.resetCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.resetCounter
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.set_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.set_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.set_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.set_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.set_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.set_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.set_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.set_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.set_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.set_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.set_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.set_analogCalibration
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.set_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.set_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.set_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.set_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.set_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.set_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.set_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.set_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.set_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.set_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.set_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.set_calibrationMax
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.set_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.set_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.set_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.set_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.set_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.set_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.set_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.set_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.set_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.set_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.set_calibrationMin
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.set_calibrationMin

23. Référence de l'API de haut niveau

186 www.yoctopuce.com

anbutton→set_inputType(newval)

Modifie le type de décodage appliqué à l'entrée (entrée analogique ou entrées binaires multiplexées).

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→set_logicalName(newval)

Modifie le nom logique de l'entrée analogique.

cpp vb cs java py php ts dnp tpy pas es cmd

anbutton→set_sensitivity(newval)

Modifie la sensibilité pour l'entrée (entre 1 et 1000) pour le déclenchement de callbacks.

cmd cpp vb cs java py php ts dnp tpy pas es

anbutton→set_userData(data)

Enregistre un contexte libre dans l'attribut userData de la fonction, afin de le retrouver plus tard à l'aide de la
méthode get_userData.

cpp vb cs java py php ts tpy pas es

anbutton→unmuteValueCallbacks()

Réactive l'envoi de chaque changement de la valeur publiée au hub parent.

cpp vb cs java py php ts dnp tpy pas es cmd

anbutton→wait_async(callback, context)

Attend que toutes les commandes asynchrones en cours d'exécution sur le module soient terminées, et
appelle le callback passé en paramètre.

ts es

https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.set_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.set_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.set_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.set_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.set_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.set_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.set_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.set_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.set_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.set_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.set_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.set_inputType
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.set_logicalName
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.set_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.set_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.set_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.set_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.set_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.set_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.set_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.set_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.set_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.set_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.set_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.set_sensitivity
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.set_userData
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cpp-FR.html#AnButton.unmuteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-vbnet-FR.html#AnButton.unmuteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cs-FR.html#AnButton.unmuteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-java-FR.html#AnButton.unmuteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-python-FR.html#AnButton.unmuteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-php-FR.html#AnButton.unmuteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.unmuteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-dnp-FR.html#AnButton.unmuteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typedpython-FR.html#AnButton.unmuteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-delphi-FR.html#AnButton.unmuteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.unmuteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-cmd-FR.html#AnButton.unmuteValueCallbacks
https://www.yoctopuce.com/FR/doc/reference/yoctolib-typescript-FR.html#AnButton.wait_async
https://www.yoctopuce.com/FR/doc/reference/yoctolib-ecmascript-FR.html#AnButton.wait_async

www.yoctopuce.com 187

24. Problèmes courants
24.1. Par où commencer ?
Si c'est la première fois que vous utilisez un module Yoctopuce et ne savez pas trop par où
commencer, allez donc jeter un coup d'œil sur le blog de Yoctopuce. Il y a une section dédiée aux
débutants 1.

24.2. Linux et USB
Pour fonctionner correctement sous Linux, la librairie a besoin d'avoir accès en écriture à tous les
périphériques USB Yoctopuce. Or, par défaut, sous Linux les droits d'accès des utilisateurs non-root
à USB sont limités à la lecture. Afin d'éviter de devoir lancer les exécutables en tant que root, il faut
créer une nouvelle règle udev pour autoriser un ou plusieurs utilisateurs à accéder en écriture aux
périphériques Yoctopuce.

Pour ajouter une règle udev à votre installation, il faut ajouter un fichier avec un nom au format "##-
nomArbitraire.rules" dans le répertoire "/etc/udev/rules.d". Lors du démarrage du
système, udev va lire tous les fichiers avec l'extension ".rules" de ce répertoire en respectant
l'ordre alphabétique (par exemple, le fichier "51-custom.rules" sera interprété APRES le fichier
"50-udev-default.rules").

Le fichier "50-udev-default" contient les règles udev par défaut du système. Pour modifier le
comportement par défaut du système, il faut donc créer un fichier qui commence par un nombre plus
grand que 50, qui définira un comportement plus spécifique que le défaut du système. Notez que
pour ajouter une règle vous aurez besoin d'avoir un accès root sur le système.

Dans le répertoire udev_conf de l'archive de VirtualHub2 pour Linux, vous trouverez deux
exemples de règles qui vous éviteront de devoir partir de rien.

Exemple 1: 51-yoctopuce.rules
Cette règle va autoriser tous les utilisateurs à accéder en lecture et en écriture aux périphériques
Yoctopuce USB. Les droits d'accès pour tous les autres périphériques ne seront pas modifiés. Si ce
scénario vous convient, il suffit de copier le fichier "51-yoctopuce_all.rules" dans le
répertoire "/etc/udev/rules.d" et de redémarrer votre système.

1 voir: http://www.yoctopuce.com/FR/blog_by_categories/pour-les-debutants
2 http://www.yoctopuce.com/EN/virtualhub.php

24. Problèmes courants

188 www.yoctopuce.com

udev rules to allow write access to all users
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0666"

Exemple 2: 51-yoctopuce_group.rules
Cette règle va autoriser le groupe "yoctogroup" à accéder en lecture et écriture aux périphériques
Yoctopuce USB. Les droits d'accès pour tous les autres périphériques ne seront pas modifiés. Si ce
scénario vous convient, il suffit de copier le fichier "51-yoctopuce_group.rules" dans le
répertoire "/etc/udev/rules.d" et de redémarrer votre système.

udev rules to allow write access to all users of "yoctogroup"
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0664", GROUP="yoctogroup"

24.3. Plateformes ARM: HF et EL
Sur ARM il existe deux grandes familles d'executables: HF (Hard Float) et EL (EABI Little Endian).
Ces deux familles ne sont absolument pas compatibles entre elles. La capacité d'une machine ARM
à faire tourner des exécutables de l'une ou l'autre de ces familles dépend du hardware et du système
d'exploitation. Les problèmes de compatibilité entre ArmHL et ArmEL sont assez difficiles à
diagnostiquer, souvent même l'OS se révèle incapable de distinguer un exécutable HF d'un
exécutable EL.

Tous les binaires Yoctopuce pour ARM sont fournis pré-compilée pour ArmHF et ArmEL, si vous ne
savez à quelle famille votre machine ARM apartient, essayez simplement de lancer un exécutable de
chaque famille.

24.4. Les exemples de programmation n'ont pas l'air de
marcher
La plupart des exemples de programmation de l'API Yoctopuce sont des programmes en ligne de
commande et ont besoin de quelques paramètres pour fonctionner. Vous devez les lancer depuis
l'invite de commande de votre système d'exploitation ou configurer votre IDE pour qu'il passe les
paramètres corrects au programme 3.

24.5. Module alimenté mais invisible pour l'OS
Si votre Yocto-Knob-C est branché par USB et que sa LED bleue s'allume, mais que le module n'est
pas vu par le système d'exploitation, vérifiez que vous utilisez bien un vrai câble USB avec les fils
pour les données, et non pas un câble de charge. Les câbles de charge n'ont que les fils
d'alimentation.

24.6. Another process named xxx is already using yAPI
Si lors de l'initialisation de l'API Yoctopuce, vous obtenez le message d'erreur "Another process
named xxx is already using yAPI", cela signifie qu'une autre application est déjà en train d'utiliser les
modules Yoctopuce USB. Sur une même machine, un seul processus à la fois peut accéder aux
modules Yoctopuce par USB. Cette limitation peut facilement être contournée en utilisant un
VirtualHub et le mode réseau 4.

3 voir: http://www.yoctopuce.com/FR/article/a-propos-des-programmes-d-exemples
4 voir: http://www.yoctopuce.com/FR/article/message-d-erreur-another-process-is-already-using-yapi

24. Problèmes courants

www.yoctopuce.com 189

24.7. Déconnexions, comportement erratique
Si votre Yocto-Knob-C se comporte de manière erratique et/ou se déconnecte du bus USB sans
raison apparente, vérifiez qu'il est alimenté correctement. Evitez les câbles d'une longueur
supérieure à 2 mètres. Au besoin, intercalez un hub USB alimenté 5 6.

24.8. Le module ne marche plus après une mise à jour ratée
Si une mise à jour du firmware de votre Yocto-Knob-C échoue, il est possible que le module ne soit
plus en état de fonctionner. Si c'est le cas, branchez votre module en maintenant sont Yocto-Bouton
pressé. La Yocto-LED devrait s'allumer en haute intensité et rester fixe. Relâchez le bouton. Votre
Yocto-Knob-C devrait alors apparaître dans le bas de l'interface du virtualHub comme un module
attendant une mise à jour de firmware. Cette mise à jour aura aussi pour effet de réinitialiser le
module à sa configuration d'usine.

24.9. L'interface web montre des erreurs après une mise à jour
de firmware
Après une mise à jour, les fenêtres correspondant au Yocto-Knob-C dans l'interface du VirtualHub
rapportent des erreurs. C'est peut-être un bug, mais il y a plus de chances pour que votre navigateur
web ait gardé en mémoire cache une partie du code de l'interface du firmware précédent. Faites un
shift-reload ou videz le cache de votre navigateur et tout devrait rentrer dans l'ordre.

24.10. RegisterHub d'une instance de VirtualHub déconnecte
la précédente
Si lorsque vous faire un YAPI.RegisterHub de VirtualHub et que la connexion avec un autre
VirtualHub précédement enregistré tombe, vérifiez que les machines qui hébergent ces VirtualHubs
ont bien un hostname différent. Ce cas de figure est très courant avec les machines dont le système
d'exploitation est installé avec une image monolithique, comme les Raspberry Pi par exemple. L'API
Yoctopuce utilise les numéros de série Yoctopuce pour communiquer et le numéro de série d'un
VirtualHub est créé à la volée à partir du hostname de la machine qui l'héberge.

24.11. Commandes ignorées
Si vous avez l'impression que des commandes envoyées à un module Yoctopuce sont ignorées,
typiquement lorsque vous avez écrit un programme qui sert à configurer ce modules Yoctopuce et
qui envoie donc beaucoup de commandes, vérifiez que vous avez bien mis un YAPI.FreeAPI() à la
fin du programme. Les commandes sont envoyées aux modules de manière asynchrone grâce à un
processus qui tourne en arrière plan. Lorsque le programme se termine, ce processus est tué, même
s'il n'a pas eu le temps de tout envoyer. En revanche API.FreeAPI() attend que la file d'attente des
commandes à envoyer soit vide avant de libérer les ressources utilisées par l'API et rendre la main.

24.12. Module endommagé
Yoctopuce s'efforce de réduire la production de déchets électroniques. Si vous avez l'impression que
votre Yocto-Knob-C ne fonctionne plus, commencez par contacter le support Yoctopuce par e-mail
pour poser un diagnostic. Même si c'est suite à une mauvaise manipulation que le module a été
endommagé, il se peut que Yoctopuce puisse le réparer, et ainsi éviter de créer un déchet
électronique.

5 voir: http://www.yoctopuce.com/FR/article/cables-usb-la-taille-compte
6 voir: http://www.yoctopuce.com/FR/article/combien-de-capteurs-usb-peut-on-connecter

24. Problèmes courants

190 www.yoctopuce.com

Déchets d'équipements électriques et électroniques (DEEE) Si voulez vraiment
vous débarasser de votre Yocto-Knob-C, ne le jetez pas à la poubelle, mais ramenez-le
à l'un des points de collecte proposé dans votre région afin qu'il soit envoyé à un centre
de recyclage ou de traitement spécialisé.

www.yoctopuce.com 191

25. Caractéristiques
Vous trouverez résumées ci-dessous les principales caractéristiques techniques de votre module
Yocto-Knob-C

Identifiant produit YBUTTN1C

Révision matérielle†

Connecteur USB USB-C

Largeur 20 mm

Longueur 45 mm

Poids 5 g

Canaux 5

Fréquence de rafraîchissement 250 Hz

Classe de protection selon IEC 61140 classe III

Temp. de fonctionnement normale 5...40 °C

Temp. de fonctionnement étendue‡ -30...85 °C

Conformité RoHS RoHS III (2011/65/UE+2015/863)

USB Vendor ID 0x24E0

USB Device ID 0x00E3

Boîter recommandé YoctoBox-Short-Thick-Black

Code tarifaire harmonisé 9032.9000

Fabriqué en Suisse
† Ces spécifications correspondent à la révision matérielle actuelle du produit. Les spécifications des
versions antérieures peuvent être inférieures.

‡ La plage de température étendue est définie d'après les spécifications des composants et testée
sur une durée limitée (1h). En cas d'utilisation prolongée hors de la plage de température standard, il
est recommandé procéder à des tests extensifs avant la mise en production.

25. Caractéristiques

192 www.yoctopuce.com

	Table des matières
	1. Introduction
	1.1. Informations de sécurité
	1.2. Conditions environnementales

	2. Présentation
	2.1. Les éléments communs
	2.2. Les éléments spécifiques
	2.3. Accessoires optionnels

	3. Premiers pas
	3.1. Prérequis
	3.2. Test de la connectivité USB
	3.3. Localisation
	3.4. Test du module
	3.5. Configuration

	4. Montage et connectique
	4.1. Fixation
	4.2. Contraintes d'alimentation par USB
	4.3. Compatibilité électromagnétique (EMI)

	5. Programmation, concepts généraux
	5.1. Paradigme de programmation
	5.2. Le module Yocto-Knob-C
	5.3. Module
	5.4. AnButton
	5.5. Quelle interface: Native, DLL ou Service?
	5.6. Accéder aux modules à travers un hub
	5.7. Programmation, par où commencer?

	6. Utilisation du Yocto-Knob-C en ligne de commande
	6.1. Installation
	6.2. Utilisation: description générale
	6.3. Contrôle de la fonction AnButton
	6.4. Contrôle de la partie module
	6.5. Limitations

	7. Utilisation du Yocto-Knob-C en Python
	7.1. Fichiers sources
	7.2. Librairie dynamique
	7.3. Contrôle de la fonction AnButton
	7.4. Contrôle de la partie module
	7.5. Gestion des erreurs

	8. Utilisation du Yocto-Knob-C en C++
	8.1. Contrôle de la fonction AnButton
	8.2. Contrôle de la partie module
	8.3. Gestion des erreurs
	8.4. Intégration de la librairie Yoctopuce en C++

	9. Utilisation du Yocto-Knob-C en C#
	9.1. Installation
	9.2. Utilisation l'API yoctopuce dans un projet Visual C#
	9.3. Contrôle de la fonction AnButton
	9.4. Contrôle de la partie module
	9.5. Gestion des erreurs

	10. Utilisation du Yocto-Knob-C avec LabVIEW
	10.1. Architecture
	10.2. Compatibilité
	10.3. Installation
	10.4. Présentation des VIs Yoctopuce
	10.5. Fonctionnement et utilisation des VIs
	10.6. Utilisation des objets
	10.7. Gestion du datalogger
	10.8. Énumération de fonctions
	10.9. Un mot sur les performances
	10.10. Un exemple complet de programme LabVIEW
	10.11. Différences avec les autres API Yoctopuce

	11. Utilisation du Yocto-Knob-C en Java
	11.1. Préparation
	11.2. Contrôle de la fonction AnButton
	11.3. Contrôle de la partie module
	11.4. Gestion des erreurs

	12. Utilisation du Yocto-Knob-C avec Android
	12.1. Accès Natif et VirtualHub
	12.2. Préparation
	12.3. Compatibilité
	12.4. Activer le port USB sous Android
	12.5. Contrôle de la fonction AnButton
	12.6. Contrôle de la partie module
	12.7. Gestion des erreurs

	13. Utilisation du Yocto-Knob-C en TypeScript
	13.1. Utiliser la librairie Yoctopuce pour TypeScript
	13.2. Petit rappel sur les fonctions asynchrones en JavaScript
	13.3. Contrôle de la fonction AnButton
	13.4. Contrôle de la partie module
	13.5. Gestion des erreurs

	14. Utilisation du Yocto-Knob-C en JavaScript / EcmaScript
	14.1. Fonctions bloquantes et fonctions asynchrones en JavaScript
	14.2. Utiliser la librairie Yoctopuce pour JavaScript / EcmaScript 2017
	14.3. Contrôle de la fonction AnButton
	14.4. Contrôle de la partie module
	14.5. Gestion des erreurs

	15. Utilisation du Yocto-Knob-C en PHP
	15.1. Préparation
	15.2. Contrôle de la fonction AnButton
	15.3. Contrôle de la partie module
	15.4. API par callback HTTP et filtres NAT
	15.5. Gestion des erreurs

	16. Utilisation du Yocto-Knob-C en VisualBasic .NET
	16.1. Installation
	16.2. Utilisation l'API yoctopuce dans un projet Visual Basic
	16.3. Contrôle de la fonction AnButton
	16.4. Contrôle de la partie module
	16.5. Gestion des erreurs

	17. Utilisation du Yocto-Knob-C en Delphi / Lazarus
	17.1. Préparation
	17.2. Contrôle de la fonction AnButton
	17.3. Contrôle de la partie module
	17.4. Gestion des erreurs

	18. Utilisation du Yocto-Knob-C avec Universal Windows Platform
	18.1. Fonctions bloquantes et fonctions asynchrones
	18.2. Installation
	18.3. Utilisation l'API Yoctopuce dans un projet Visual Studio
	18.4. Contrôle de la fonction AnButton
	18.5. Un exemple concret
	18.6. Contrôle de la partie module
	18.7. Gestion des erreurs

	19. Utilisation du Yocto-Knob-C en Objective-C
	19.1. Contrôle de la fonction AnButton
	19.2. Contrôle de la partie module
	19.3. Gestion des erreurs

	20. Utilisation avec des langages non supportés
	20.1. Utilisation en ligne de commande
	20.2. Assembly .NET
	20.3. Virtual Hub et HTTP GET
	20.4. Utilisation des librairies dynamiques
	20.5. Port de la librairie haut niveau

	21. Programmation avancée
	21.1. Programmation par événements

	22. Mise à jour du firmware
	22.1. Le VirtualHub ou le YoctoHub
	22.2. La librairie ligne de commandes
	22.3. L'application Android Yocto-Firmware
	22.4. La librairie de programmation
	22.5. Le mode "mise à jour"

	23. Référence de l'API de haut niveau
	23.1. La classe YAPI
	23.2. La classe YModule
	23.3. La classe YAnButton

	24. Problèmes courants
	24.1. Par où commencer ?
	24.2. Linux et USB
	24.3. Plateformes ARM: HF et EL
	24.4. Les exemples de programmation n'ont pas l'air de marcher
	24.5. Module alimenté mais invisible pour l'OS
	24.6. Another process named xxx is already using yAPI
	24.7. Déconnexions, comportement erratique
	24.8. Le module ne marche plus après une mise à jour ratée
	24.9. L'interface web montre des erreurs après une mise à jour de firmware
	24.10. RegisterHub d'une instance de VirtualHub déconnecte la précédente
	24.11. Commandes ignorées
	24.12. Module endommagé

	25. Caractéristiques
	Blueprint

