Yocto-PWM-Rx-C

User's guide

Table of contents

L INEFOAUCTION ot 1
1.1, Safety INTOrMaAtionviiiiic e e e e e e e e e e e 2
1.2. Environmental CONAITIONS ...ooiiiiiiiiiiiii et e e e e e 3
2. PreSeNtatioN ... 5
2.1. COMMON ElEMENTS ..ottt ettt e e s et e e e s e b e e e e e e abbnreeaeeeaees 5
P S o 1= ot} o =Y =T g =] SO 7
2.3. FUNCLIONAL ISOIALION ...ttt e st e e e e e nb e e e e e e e nnneeeeeas 8
P @ o] A o] g F= L= Lo o 2] o 4 == 9
S FIISE STBPS ot 11
o Tt I o 1= /=T [U= =SSO 11
3.2. TesSting USB CONNECLIVITY ..ocoiiiiiiiiii it e e e e e e e e e e aaaaaeas 12
TG T o Yo 1 2 1§ o] o [Pt 13
3.4. Test Of the MOAUIE .ot e e e e 13
3.5, CONFIGUIALION ittt e e ettt e e e s et b e e e e s s e nbbe e e e e e e anbbeeeaaeas 13
3.6. WOTKING MOGES ..ottt e e st e e e s e b et e e s e b e e e e e e 16
4. Assembly and CONNECTIONS ... 21
o O 1 o P 21
4.2. USB pOWEr AiSTIDULION ..ot e e e e e e e e e s e e e e e nnnes 22
4.3. Electromagnetic compatibility (EMI)ooooiiiiiiiiiiii e 22
5. Programming, general CONCEPLS ..o 25
5.1. Programming PAradigm eeeeeooiirieieiee ettt e et e e e st r e e s e e s ea e 25
5.2. The YOCtO-PWM-RX-C MOAUIE ..cooiiiiiiiiie ettt 27
LG T 1Y (o To LU =P PPPPRPRPRRR 28
B4 PWIMINPUL ettt e e e e e et et ettt bbb a e s e e e e e e e e e et ebbbba e n e e e eeeaeas 29
5.5. What interface: Native, DLL OF SEIVICE 2 oottt e e e e e e 31
5.6. Accessing modules through ahub ... e 33
5.7. Programming, Where t0 STArt?eeiiiiiiiie e e e e e e e e e e e 34
6. Using the Yocto-PWM-Rx-C in command line ... 35

S0 T [=3 =1 oo PSSR 35

6.2. Use: general deSCIIPLION ..uuuiiiiiiiiiiieiiiiiee e st e e e e e e e e e e eaeeaeeesseeeseannnnnnnns 35

6.3. Control of the PWmINPUt fUNCHION ..o 36
6.4. Control of the MOAUIE PAIToooii i 36
B.5. LIMITATIONS .eeeiiiiiiiiee ettt e e e s et b e e e e e s et e e e e e s e nnbbeeeeas 37
7. Using the Yocto-PWM-Rx-C with Python ..., 39
7.0 SOUTCE FIlES oottt e e et e e e e e e sbb b et e e e e e s nbaaeeaaeaas 39
7.2. DYNAMIC [IDIAIY et e et e e e e e e e e e e e e e e e s e e e e s e naanaes 39
7.3. Control of the PwmINPULt fUNCLION ...oiiei e 39
7.4. Control of the MOdUIE PArTuviiiieec e 41
T =X g g] g =T g Lo |11 o o [T PSP 43
8. Using YOCto-PWM-RX-C With C++ ..o 45
8.1. Control of the PWMmINPUL FUNCLION ..o 45
8.2. Control of the MOdUIE PArTuviiii e 48
SRS I = (oY g = 1 T I 1o Yo [R PURT 50
8.4. Integration variants for the C++ Yoctopuce libraryccccccoeeeiiiiiiiiiiiiieeeeeeee 51
9. Using YOCtO-PWM-RX-C With CH ..o 53
O.1. INSTAIIALION ittt e e e s b e e e e s s e e e e e e abr e e e e e e e aan 53
9.2. Using the Yoctopuce APl in a Visual C# Project ... 53
9.3. Control of the PWmINPUL FUNCHION ..o 54
9.4. Control of the MOAUIE PArTeiiiie e e 56
S BT = g (oY g = T T I T Yo [P T TP PURTP 58
10. Using the Yocto-PWM-Rx-C with LabVIEW ... 61
0 T N o 11 =3 AU = RS UERR 61
IO 2 o T ¢ ¥ =1 €1 o111 SRR 62
(ORI [1S3 = 11 F= AT o] o H TP PR RPN 62
10.4. Presentation Of YOCTOPUCE VISuuiiiiiiiiiiiiiiiiiiiiiieee et e e 67
10.5. FUNCLIONING @Nd USE OF VIS i r e e e e e e e e e e e e e e e 70
IO I ST O = 1 o PSRRI 72
10.7. Managing the data logger ... e e e e e e e e e e 74
10.8. FUNCHION TIST .ottt e et e e e e s s e e e e e s nnb e e e e e e s annneee 75
10.9. AWOrd ON PErfOIMANCES ..iiiiiiiiiiiii ettt e e sbbe e e e e e s e abraeeaeeaa 76
10.10. A full example of @ LabVIEW Programcooiiiiiiieiiiiiiiee e 76
10.11. Differences from other YOCIOPUCE APIS ..o 77
11. Using the Yocto-PWM-RX-C with Java ..., 79
I I T =Y Yo T = T PP 79
11.2. Control of the PWMmINPUT TUNCTION ...uuiiiiiiiiiiiii e 79
11.3. Control of the MOdUIE PArtcccoeiiii e eeeeeees 81
I3 S = oY o = T 1 1 o S EEEEUPRPRR 84
12. Using the Yocto-PWM-Rx-C with Androidccccccooiviiiiececceeea 85
12.1. Native access and VirtualHUD ... 85
2 = g Yo T == T PR PPP 85
12.3. COMPALIDIIITY ooeeeeeeeee e e e e e e e e s e e et r e e rraaaaaaaaaaaaaaaan 85
12.4. Activating the USB port under AnNdroidc..ooiioiiiiiiiiiee e 86
12.5. Control of the PWmINPpUt fFUNCLIONuuiiiiiiiie e 87
12.6. Control of the MOdUIe Part ..o e 90

2 G = o g =V g o | 17 o PRSP 94

13. Using Yocto-PWM-RX-C with TYPeSCript ..o, 97

13.1. Using the Yoctopuce library for TYPESCIIPLvuiiiiiiiiiiiiiieiiieeeeee e 98
13.2. Refresher on asynchronous 1/O in JavaScCript ... 98
13.3. Control of the PWMmINPUt FUNCLION ..o 99
13.4. Control of the MOdUIE PArtccooeiii e 102
IR ST =1 0T o = T 1 T o PP USEEERRURRRRRR 104
14. Using Yocto-PWM-Rx-C with JavaScript / EcmaScript ..o, 107
14.1. Blocking 1/0 versus Asynchronous /O in JavaScCriptccccciiiiiieieiiiiiiieee e, 107
14.2. Using Yoctopuce library for JavaScript / EcmaScript 2017cccoccviiveeeiiiiinieeeenns 108
14.3. Control of the PwmINput fFUNCLIONuiiiiiiii e 110
14.4. Control of the MOAUIE PArt ... et e e e 114
145, Error NANAIING oo e e e e e et e e e e e e e e e e e e s aaaaaaa 116
15. Using Yocto-PWM-RX-C With PHP ..., 117
ST I =Y Yo T == T PP 117
15.2. Control of the PwmINput fFUNCLIONuiiiiiiiiiee e 118
15.3. Control of the MOdUIe PArt ... e 120
15.4. HTTP callback APl and NAT filters ... 122
TN = o T g o =Yoo | 1T s T PSPPI 126
16. Using Yocto-PWM-Rx-C with Visual Basic .NET ..., 127
LT8O [X3 = 11 =LA T] o O SRTP 127
16.2. Using the Yoctopuce APl in a Visual BasiC Projectcccccceeeviiiiiiiiiiiiciiiiieiieeeeeeen 127
16.3. Control of the PwmInNput fFUNCLIONoviiiiiiiiee e 128
16.4. Control of the MOAUIE PArt ... e e e e 130
16.5. Error NANAIING oot e e e et e e e e e e e e e e e e s e aanans 132
17. Using Yocto-PWM-Rx-C with Delphi or Lazarusccccooeeveeeecnnnn. 133
A O = =T o = L= Lo SO 133
A N o o U =) T o] o] 1= PR 134
17.3. Control of the PWmINPUt fTUNCHIONuuuiiiiiiiiiiiee e 134
17.4. Control of the MOodule Part ... 136
T = o T g o =Y o o | 1T s T PR 139
18. Using the Yocto-PWM-Rx-C with Universal Windows Platform 141
18.1. Blocking and asynchronous fUNCLIONS ... 141
18.2. INSTAIALION ..ot s et e e e st et e e e s e bbb e e e e e s e nerree 142
18.3. Using the Yoctopuce APl in a Visual Studio projectccccoiceeiiininiiiienieeeiiiieenn. 142
18.4. Control of the PwmINPpUt fUNCLION ..o 143
18.5. A 1Al EXAMPIE .oiiiiiiiiiiiiiiii e e e e e e e e e e ——————————————————— 144
18.6. Control of the MOAUIE PArt ... e e e 145
18.7. Error NANAIING oo r e e e e et e e e e e e e e e e e e e aaaaaan 147
19. Using Yocto-PWM-Rx-C with Objective-C ..o, 149
19.1. Control of the PWmINPpuUt fFUNCLIONuuiiiiiiiiiiie e 149
19.2. Control of the MOdUle Part ... 151
19.3. Error NANAIING oot a e e e e e e e e e e e e e 153
20. Using with unsupported languages ..., 155

240 I 0] o] a0 = o I 11 1= 155

20.2. INET ASSEMIY oot e et e e e e e e e e e et s e e s s e r e e e r et e et aaeeaaeaaan 155

20.3. VirtualHUub and HTTP GET ..ottt e e e e e e e e snneee 157
20.4. Using dynamicC lIDrari@S ... 159
20.5. Porting the high level IBrary ... 162
21. Advanced programming ... 163
b3 V=T o o e Yo | = Va1 .4 11 U PURRRR 163
21.2. THE @A IOGUEE ettt e e e e e e e e e e e e e e e e e s e e s e e aab b bbb e b beeeeees 166
21.3. SeNSOr CAlIDIALION oo e e et e e e 168
22. FIrMWare UPAAte ... 173
22.1. VirtualHub or the YOCIOHUD ..o 173
22.2. The command lIN€ HTDFary ..o 173
22.3. The Android application YOCtO-FIrMWArecccccccoiiiiiieieeeeeeiieiees e 173
22.4. Updating the firmware with the programming libraryccccciiiiiiiiiiiiiieee, 174
22.5. The "UPAAte” MOAE ..ocoiieiiiiie e e e e e e e st ae e e e e s snneaeeee s 176
23. High-level APl REEIENCE ... 177
2 B I O - T S 41 = PR S 178
23.2. ClaSS YMOUUIE ...ttt ettt e e e s et e e e e s e eabb e e e e e s e annnbeeee s 182
23.3. ClasSS YPWIMINPUL oottt ettt e e e ettt e e e e s asbb e e e e e e e s sanbeeeaae e e annbneeeaens 189
24, TroubleSNOOTING ..o 197
24. 1. WHEIE 10 STAIT? oo e et e et e e e e e e e e e eaaaaaeaaaaaeeaessaanannnnns 197
24.2. Programming examples don't SEem t0 WOIKooooiiiiiiiiiiiiiiiiiee e e e 197
24.3. LiNUX @NA USB ...ttt et e e e e sttt e e e e s e bbb e e e e e e e nnbeeee s 197
24.4. ARM Platforms: HF and EL ... 198
24.5. Powered module but invisible for the OS ... 198
24.6. Another process named xxx is already using YAPI ... 198
24.7. Disconnections, erratiC BENAVIOT ... e 198
24.8. After a failed firmware update, the device stopped workingoooeveeccivneiiinnnnen. 199
24.9. The web interface shows errors after a firmware updateccccccvvvevvvviiiiiiieennnnn. 199
24.10. Registering VirtualHub disconnects another instancecccooviiiiiiiiiiiiiinnieenn. 199
227300 5 N T (oY o o =To I o3 o 1 422 = 1 o = PP 199
24.12. DAMAGEA UEVICE .oiiiiiiiiiiiiie ettt e et e e e e s s abb e e e e e s aaabbee e e e e s annreeeaens 199
25. CRAlACTIEIISTICS ..o 201

2] TUT=T o] 1 o PR 203

1. Introduction

The Yocto-PWM-Rx-C is a 54x20mm electronic module which offers two inputs enabling you not only
to measure the characteristics of a PWM signal but also to count pulses. The Yocto-PWM-Rx-C
works with signals with a frequency between 0.05Hz and 250 kHz and with a voltage between -30V
and +30V. The threshold voltage is located at 0.7V, allowing you to measure strictly positive signals
as well as signals alternating between positive and negative voltages.

An important characteristic of this device is its electrical isolation: the measuring part is electrically
isolated from the USB part. This enables you to connect your module to devices powered by the
mains without risking to destroy your computer.

The Yocto-PWM-Rx-C module

The Yocto-PWM-Rx-C is not in itself a complete product. It is a component intended to be integrated
into a solution used in laboratory equipments, or in industrial process-control equipments, or for
similar applications in domestic and commercial environments. In order to use it, you must at least
install it in a protective enclosure and connect it to a host computer.

Yoctopuce thanks you for buying this Yocto-PWM-Rx-C and sincerely hopes that you will be satisfied
with it. The Yoctopuce engineers have put a large amount of effort to ensure that your Yocto-PWM-
Rx-C is easy to install anywhere and easy to drive from a maximum of programming languages. If
you are nevertheless disappointed with this module, or if you need additional information, do not
hesitate to contact Yoctopuce support:

E-mail address: support@yoctopuce.com
Web site: www.yoctopuce.com
Postal address: Route de Cartigny 33

www.yoctopuce.com 1

1. Introduction

ZIP code, city: 1236 Cartigny

Country: Switzerland

1.1. Safety Information

The Yocto-PWM-Rx-C is designed to meet the requirements of IEC 61010-1:2010 safety standard. It
does not create any serious hazards to the operator and surrounding area, even in single fault
condition, as long as it is integrated and used according to the instructions contained in this
documentation, and in this section in particular.

Protective enclosure

The Yocto-PWM-Rx-C should not be used without a protective enclosure, because of the accessible
bare electronic components. For optimal safety, it should be put into a non-metallic, non-inflammable
enclosure, resistant to a mechanical stress level of 5 J. For instance, use a polycarbonate (e.g.
LEXAN) enclosure rated IKO8 with a IEC 60695-11-10 flammability rating of V-1 or better. Using a
lower quality enclosure may require specific warnings for the operator and/or compromise conformity
with the safety standard.

Maintenance

If a damage is observed on the electronic board or on the enclosure, it should be replaced in order to
ensure continued safety of the equipment, and to prevent damaging other parts of the system due to
overload that a short circuit could cause.

Identification

In order to ease the maintenance and the identification of risks during maintenance, you should stick
the water-resistant identification label provided together with the electronic board as close as
possible to the device. If the device is put in a dedicated enclosure, the identification label should be
affixed on the outside of the enclosure. This label is resistant to humidity and to the usual rubbing
that can occur during normal maintenance.

Identification label is integrated in the package label.

Application

The safety standard applied is intended to cover laboratory equipment, industrial process-control
equipment and similar applications in residential or commercial environment. If you intend to use the
Yocto-PWM-Rx-C for another kind of application, you should check the safety regulations according
to the standard applicable to your application.

In particular, the Yocto-PWM-Rx-C is not certified for use in medical environments or for life-support
applications.

Environment

The Yocto-PWM-Rx-C is not certified for use in hazardous locations, explosive environments, or life-
threatening applications. Environmental ratings are provided below.

2 www.yoctopuce.com

1. Introduction

IEC 61140 Protection Class lli

The Yocto-PWM-Rx-C has been designed to work with safety extra-low voltages only.
Do not exceed voltages indicated in this manual, and never connect to the Yocto-PWM-
Rx-C terminal blocks any wire that could be connected to the mains.

1.2. Environmental conditions

Yoctopuce devices have been designed for indoor use in a standard office or laboratory environment
(IEC 60664 pollution degree 2): air pollution is expected to be limited and mainly non-conductive.
Relative humidity is expected to be between 10% and 90% RH, non condensing. Use in
environments with significant solid pollution or conductive pollution requires a protection from such
pollution using an IP67 or IP68 enclosure. Yoctopuce's products are designed for use up to altitude
2000m.

All Yoctopuce devices are warranted to perform according to their documentation and technical
specifications under normal temperature conditions according to IEC61010-1, i.e. 5°C to 40°C. In
addition, most devices can also be used on an extended temperature range, where some limitations
may apply from case to case.

The extended operating temperature range for the Yocto-PWM-Rx-C is -30...85°C. This temperature
range has been determined based on components manufacturer recommendations, and on
controlled environment tests performed during a limited duration (1h). If you plan to use the Yocto-
PWM-Rx-C in harsh environments for a long period of time, we strongly advise you to run extensive
tests before going to production.

www.yoctopuce.com 3

www.yoctopuce.com

2. Presentation

O
o

1: Micro-B USB socket 4: Ground 8: Ground

2: Yocto-button 5: Input 1 9: Input 2

3: Yocto-led 6: Pull-up 1 10: Pull-up 2
7: Input 1 led 11: Input 2 led

YW

2.1. Common elements

All Yocto-modules share a number of common functionalities.

USB connector

The Yocto-PWM-Rx-C features an USB Type-C socket and uses USB 1.1 protocol which makes it
compatible with any USB host port. Alternatively USB wires or a 1.27mm connector can be soldered
on the footprint right behind the USB socket.

If, when you plug your Yocto-PWM-Rx-C into a USB-C cable, your module lights up but is not
detected by your computer, check that the USB-C plug is fully inserted and that you're using a
regular USB cable, not a charging cable with no data lines.

www.yoctopuce.com 5

2. Presentation

If you plan to use a power source other then a standard USB host port to power the device through
the USB connector, that power source must respect the assigned values of USB 2.0 specifications:

* Voltage min.: 4.75V DC
* Voltage max.: 5.25V DC
» Over-current protection: 5.0 A max.

A higher voltage is likely to destroy the device. The behaviour with a lower voltage is not specified,
but it can result firmware corruption.

Yocto-button

The Yocto-button has two functionalities. First, it can activate the Yocto-beacon mode (see below
under Yocto-led). Second, if you plug in a Yocto-module while keeping this button pressed, you can
then reprogram its firmware with a new version. Note that there is a simpler Ul-based method to
update the firmware, but this one works even in case of severely damaged firmware.

Yocto-led

Normally, the Yocto-led is used to indicate that the module is working smoothly. The Yocto-led then
emits a low blue light which varies slowly, mimicking breathing. The Yocto-led stops breathing when
the module is not communicating any more, as for instance when powered by a USB hub which is
disconnected from any active computer.

When you press the Yocto-button, the Yocto-led switches to Yocto-beacon mode. It starts flashing
faster with a stronger light, in order to facilitate the localization of a module when you have several
identical ones. It is indeed possible to trigger off the Yocto-beacon by software, as it is possible to
detect by software that a Yocto-beacon is on.

The Yocto-led has a third functionality, which is less pleasant: when the internal software which
controls the module encounters a fatal error, the Yocto-led starts emitting an SOS in morse . If this
happens, unplug and re-plug the module. If it happens again, check that the module contains the
latest version of the firmware, and, if it is the case, contact Yoctopuce support?.

Current sensor

Each Yocto-module is able to measure its own current consumption on the USB bus. Current supply
on a USB bus being quite critical, this functionality can be of great help. You can only view the
current consumption of a module by software.

Serial number

Each Yocto-module has a unique serial number assigned to it at the factory. For Yocto-PWM-Rx-C
modules, this number starts with YPWMRX1C. The module can be software driven using this serial
number. The serial number cannot be modified.

Logical name

The logical name is similar to the serial number: it is a supposedly unique character string which
allows you to reference your module by software. However, in the opposite of the serial number, the
logical name can be modified at will. The benefit is to enable you to build several copies of the same
project without needing to modify the driving software. You only need to program the same logical
name in each copy. Warning: the behavior of a project becomes unpredictable when it contains
several modules with the same logical name and when the driving software tries to access one of
these modules through its logical name. When leaving the factory, modules do not have an assigned
logical name. It is yours to define.

1 short-short-short long-long-long short-short-short
support@yoctopuce.com

6 www.yoctopuce.com

2. Presentation

2.2. Specific elements

The two PWM inputs

The Yocto-PWM-Rx-C two inputs are designed to measure binary signals with a voltage between
-30V and +30V. The threshold voltage between the high state and the low state is around 0.7V,
enabling you to measure strictly positive signals as well as signals alternating positive and negative
voltages.

The measurement circuit is a safety extra low voltage (SELV) circuit. It should not be presented with
voltages exceeding -30V and +30V, nor connected to mains circuits. Use wires as short as possible
between the remote device and the Yocto-PWM-Rx-C, in particular for frequencies above 10kHz.
The device has not been tested for wires longer than 3m. Depending on the application, it may
nevertheless work properly, but you will have to assert yourself the conformity of your system with
electromagnetic immunity standards with regard to surges and induced voltages.

The Yocto-PWM-Rx-C can measure the temporal characteristics of a PWM signal: frequency, duty
cycle, and pulse width. To be able to perform these measures, the signal frequency must be in the
0.05Hz and 250kHz range, so a period between 20s to 4us. Outside this range, the Yocto-PWM-Rx-
C measures a OHz frequency. Below 0.05Hz, the announced duty cycle is 0% if the signal level is
low, or 100% if the signal level is high.

Moreover, a pulse counter and an elapsed time counters are associated to each input. These
counters count the number of state changes (two changes per pulse) since the last reset. These
counters work up to 250 kHz at the maximum, without a lower bound. They can count up to 1 billion,
that is 500 million pulses.

THe Yocto-PWM-Rx-C also features a quadrature decoder which uses both inputs together to
decode the position and speed of position sensors with quadrature output.

The Yocto-PWM-Rx-C inputs are galvanically isolated from the USB bus. However, the two inputs
are not isolated from one another: they share a common ground.

Screw terminal

There are two different ways to connect each input depending on the nature of the electric signal that
you want to measure.

When the PWM signal is directly provided as a voltage (high and low levels), you only need to
connect the output the transmitter to the input of the Yocto-PWM-Rx-C and the ground of the
transmitter to the ground of the input. It is the most common case.

N\ r
D
Source D
: = D
signal = >
) (D

o

Beware: the Yocto-PWM-Rx-C supports any voltage between -30V and +30V, but this does not
mean that your signal is measured correctly if you connect it the wrong way. You must take some
precautions:

* The Yocto-PWM-Rx-C detects a state change when the voltage on the corresponding input
goes above the +0.7 Volt threshold. If your PWM is a purely positive signal and you inverse
the wires, the Yocto-PWM-Rx-C does not detect anything because the signal oscillates
between OV and a negative voltage. It therefore never goes above 0.7V.

* The Yocto-PWM-Rx-C two inputs share a common ground: if you use both channels
simultaneously, and you connect one inversely and the other one correctly, you are going to

www.yoctopuce.com 7

2. Presentation

cause a short-circuit which could damage your Yocto-PWM-Rx-C as well as your PWM signal
generator.

The Yocto-PWM-Rx-C can also measure signals in open drain mode: they are typically circuits based
on mechanical commutations and which behave like switches. In this case, you need an external
voltage source to create a PWM signal varying in voltage. This is the job of the pull-up.

1 -

I | [

iH

eeE66

eSO
_ ax m Gl
Wiring with pull-up: the high voltage is provided by the Yocto-PWM-Rx-C, the signal generator merely pulls the signal
to ground.

You can find this type of systems for example in some gas meters. These meters contain a wheel
with a magnet that turns close to a reed switch. As soon as the magnet is close to the reed switch,
the later becomes a conductor creating "pulses" that you only have to count, provided there is some
power going in the circuit, hence the interest of the pull-up?®.

Beware: the pull-up is not an electric power supply. It is a high impedance voltage source, which can
only serve as input for the PWM signal. If you need a power source for an external PWM generator
(for example a Hall effect sensor) you must take the power from somewhere else, for instance from
the USB bus.

Input leds

The Yocto-PWM-Rx-C includes two green leds indicating the state of each input. Below 100Hz, each
led directly translates its input state: on if the voltage is above 0.7V, off otherwise. Above 100Hz, the
led luminosity is simply proportional to the corresponding input duty cycle.

2.3. Functional isolation

The Yocto-PWM-Rx-C is designed as two distinct electrical circuits, separated by a functional
isolation. This isolation plays no role for the operator safety, since both circuits of the Yocto-PWM-
Rx-C work with safety extra low voltages (SELV) and are accessible without risk at any time. The
isolation has been added in excess of safety requirements, to improve the reliability and the ease of
use of the Yocto-PWM-Rx-C, allowing both circuits to work with different reference grounds.

Although the isolation plays no role for security, it has been designed according to the rules that
would apply for a supplementary isolation on a secondary circuit. Its specifications of the functional
isolation are as follows*:

Isolation voltage®: 1kV
Clearance distance: 1.2mm
Creepage distance: 1.2mm
Material group: Cat llla (FR4)

Les deux entrées ne sont pas isolées l'une vis-a-vis de l'autre: elles partagent la méme masse.

3 Note that making a reed switch based counter is not as trivial as one may think: www.yoctopuce.com/EN/article/reed-
switches-magnets-and-yocto-pwm-rx

This description of the isolation applies to the latest revision of the product. Earlier revisions of the product might have
smaller clearance and creepage distance. In order to get the clearance and creepage distance for an older device, contact
Yoctopuce support and provide either the serial number of the device or the purchase reference.

Nominal value, not tested

8 www.yoctopuce.com

2. Presentation

2.4. Optional accessories

The accessories below are not necessary to use the Yocto-PWM-Rx-C module but might be useful
depending on your project. These are mostly common products that you can buy from your favorite
DIY store. To save you the tedious job of looking for them, most of them are also available on the
Yoctopuce shop.

Screws and spacers

In order to mount the Yocto-PWM-Rx-C module, you can put small screws in the 2.5mm assembly
holes, with a screw head no larger than 4.5mm. The best way is to use threaded spacers, which you
can then mount wherever you want. You can find more details on this topic in the chapter about
assembly and connections.

Micro-USB hub

If you intend to put several Yoctopuce modules in a very small space, you can connect them directly
to a micro-USB hub. Yoctopuce builds a multi-TT USB hub particularly small for this purpose (down
to 20mmx36mm), on which you can directly solder a USB cable instead of using a USB plug. For
more details, see the micro-USB hub information sheet.

YoctoHub-Ethernet, YoctoHub-Wireless and YoctoHub-GSM

You can add network connectivity to your Yocto-PWM-Rx-C, thanks to the YoctoHub-Ethernet, the
YoctoHub-Wireless and the YoctoHub-GSM which provides respectively Ethernet, WiFi and GSM
connectivity. All of them can drive up to three devices and behave exactly like a regular computer
running the VirtualHub application®.

1.27mm (or 1.25mm) connectors

In case you wish to connect your Yocto-PWM-Rx-C to a Micro-hub USB or a YoctoHub without using
a bulky USB connector, you can use the four 1.27mm pads just behind the USB connector. There
are two options.

You can mount the Yocto-PWM-Rx-C directly on the hub using screw and spacers, and connect it
using 1.27mm board-to-board connectors. To prevent shortcuts, it is best to solder the female
connector on the hub and the male connector on the Yocto-PWM-Rx-C.

You can also use a small 4-wires cable with a 1.27mm connector. 1.25mm works as well, it does not
make a difference for 4 pins. This makes it possible to move the device a few inches away. Don't put
it too far away if you use that type of cable, because as the cable is not shielded, it may cause
undesirable electromagnetic emissions.

Enclosure

Your Yocto-PWM-Rx-C has been designed to be installed as is in your project. Nevertheless,
Yoctopuce sells enclosures specifically designed for Yoctopuce devices. These enclosures have
removable mounting brackets and magnets allowing them to stick on ferromagnetic surfaces. More
details are available on the Yoctopuce web site’. The suggested enclosure model for your Yocto-
PWM-Rx-C is the YoctoBox-Long-Thick-Black.

6 http://www.yoctopuce.com/EN/virtualhub.php
http://www.yoctopuce.com/EN/products/category/enclosures

www.yoctopuce.com 9

2. Presentation

You can install your Yocto-PWM-Rx-C in an optional enclosure

www.yoctopuce.com

10

3. First steps

By design, all Yoctopuce modules are driven the same way. Therefore, user's guides for all the
modules of the range are very similar. If you have already carefully read through the user's guide of
another Yoctopuce module, you can jump directly to the description of the module functions.

3.1. Prerequisites
In order to use your Yocto-PWM-Rx-C module, you should have the following items at hand.

A computer

Yoctopuce modules are intended to be driven by a computer (or possibly an embedded
microprocessor). You will write the control software yourself, according to your needs, using the
information provided in this manual.

Yoctopuce provides software libraries to drive its modules for the following operating systems:
Windows, Linux, macOS, and Android. Yoctopuce modules do not require the installation of
specific drivers, as they use the HID driver' standardly supplied in all operating systems.

The general rule regarding supported operating system versions is as follows: Yoctopuce
development tools are supported for all versions covered by the operating system vendor's support,
including the duration of extended support (long term support or LTS). Yoctopuce pays particular
attention to long-term support, and whenever possible with reasonable effort, our tools are designed
so that they can be used on older systems even several years after the end of the manufacturer's
extended support.

Moreover, the programming libraries used to drive our modules being available in source code, you
can generally recompile them to run on even older operating systems. To date, our programming
library can still be compiled to run on operating systems released in 2008, such as Windows XP SP3
or Linux Debian Squeeze.

The architectures supported by Yoctopuce software libraries are as follows:

* Windows: Intel 64 bits and 32 bits
 Linux: Intel 64 bits and 32 bits, ARM 64 bits and 32 bits, including Raspberry Pi OS.
+ macOS: Intel 64 bits and Apple Silicon (ARM)

Under Linux, communication with our USB modules requires the libusb library, version 1.0 or higher,
which is available on all common distributions. Libraries and command-line tools should be easy to

1 The HID driver is manages peripheral devices such as mouse, keyboard, and so on.

www.yoctopuce.com 11

3. First steps

recompile on any UNIX variant (Linux, FreeBSD, ...) from the last fifteen years for which libusb-1.0 is
available and functional.

Under Android, the ability to connect a USB module depends on whether the tablet or phone
supports the USB Host mode.

An USB cable, type A - USB-C

USB connectors come in several shapes. The "standard" size is the one you probably use to connect
your printer. The "mini" size has more or less disappeared. The "micro" size was the smallest when
the first Yoctopuce modules were designed. Over the last few years, USB-C connectors have
appeared and are about replace all other types. That is why, since 2024 Yoctopuce, is progressively
migrating its product line to USB-C?.

@
=)

=2 = =
-

DOEI l?‘ [_J

g @ "
g

The most common USB 2.0 connectors: A, B, Mini B, Micro B and USB-C.

fffj =]

To connect your Yocto-PWM-Rx-C module to a computer, you need an USB cable of type A-USB-C
or type C-USB-C. The price of this cable may vary a lot depending on the source, look for it under the
name USB A to USB-C Data cable. Make sure not to buy a simple USB charging cable without data
connectivity. The correct type of cable is available on the Yoctopuce shop.

If you insert a USB hub between the computer and the Yocto-PWM-Rx-C module, make sure to take
into account the USB current limits. If you do not, be prepared to face unstable behaviors and
unpredictable failures. You can find more details on this topic in the chapter about assembly and
connections.

3.2. Testing USB connectivity

At this point, your Yocto-PWM-Rx-C should be connected to your computer, which should have
recognized it. It is time to make it work.

Go to the Yoctopuce web site and download the VirtualHub software®. It is available for Windows,
Linux, and macOS. Normally, VirtualHub serves as an abstraction layer for languages which cannot

2 www.yoctopuce.com/EN/article/would-you-like-usb-c-devices

www.yoctopuce.com/EN/virtualhub.php

12 www.yoctopuce.com

3. First steps

access the hardware layers of your computer. However, it also offers a succinct interface to configure
your modules and to test their basic functions. You access this interface with a simple web browser*.
Start VirtualHub in a command line, open your preferred web browser and enter the URL http:/
127.0.0.1:4444. The list of the Yoctopuce modules connected to your computer is displayed.

Serial Logical Name Description Action
VIRTHUB2-388@db7f12 VirtualHub-V2 (configure) (view log file) A
YPWMRX1C-2E843C Yocto-PWM-Rx-C (configure) (view logfile) (beacon)
v
/0 [{ Show debug information) (Show device functions)

Module list as displayed in your web bowser

3.3. Localization

You can then physically localize each of the displayed modules by clicking on the beacon button.
This puts the Yocto-led of the corresponding module in Yocto-beacon mode. It starts flashing, which
allows you to easily localize it. The second effect is to display a little blue circle on the screen. You
obtain the same behavior when pressing the Yocto-button of the module.

3.4. Test of the module

The first item to check is that your module is working well: click on the serial number corresponding
to your module. This displays a window summarizing the properties of your Yocto-PWM-Rx-C.

YPWMRX1C-2E843C

W) YPWMRX1C-2E843C is a 20x54mm
| board with two isolated PWM inputs
Module
Serial # YPWMRX1C-2E843C
Product name: Yocto-PWM-Rx-C rev. B
Logical name:
Firmware: 69970
Consumption 86 mA
Beacon: Inactive ‘um on
Luminosity: 50%
Sensors
PWM 1 PWM 2
Value report mode dutycycle dutycycle
Value
Frequency 0 Hz 0 Hz
Period N/A N/A
Pulse duration N/A N/A
Duty cycle 0% 0%
Edges per period 0 0
Edges count 0 0
Edges count timer 0h07m02s 0Oh 07m 02s
(resel Tesel
Quadrature decoder
Position 0 Tesel
Speed 0
Misc
Open API browser
Get user manual from yoctopuce.com
Close |

Properties of the Yocto-PWM-Rx-C module

This window enables you, among other things, to play with your module to check how it is working:
frequency, duty cycle, pulse width, as well as the value of the counters are displayed in real time.

3.5. Configuration

When, in the module list, you click on the configure button corresponding to your module, the
configuration window is displayed.

4 The interface is tested on Chrome, FireFox, Safari, Edge et IE 11.

www.yoctopuce.com 13

3. First steps

YPWMRX1C-2E843C
Edit parameters for device YPWMRX1C-2E843C, and click on the Save
Serial # YPWMRX1C-2E843C
Product name: Yocto-PWM-Rx-C
Firmware: 69970 pgrace)
ExporiSetings) (import Sefings)
Logical name: |
Luminosity () (signal leds only)
Device functions
Each function of the device has a physical name and a logical name. You
can change the logical name using the rename button.
YPWMRX1C-2E843C pwminputt / ‘Tename’
Value report mode: | dutycycle v
Unit | |
Debounce interval lo |ms
Minimum frequency: [0.02 |Hz
Input bandwidth: [16000 | KkHz
Values mapping (leave blank for no mapping)
Sensor reading range || oo
mapsto \ I \
YPWMRX1C-2E843C pwminput2 / “ename’
Value report mode: |dutycycle v
Unit [|
Debounce interval: lo |ms
Minimum frequency: l0.02 |Hz
Input bandwidth [16000 |kHz
Values mapping (leave blank for no mapping)
Sensor reading range [1 i3
maps to [J{]
YPWMRX1C-2E843C quadratureDecoder /| ~ (Gename
Decading [oFF v]
YPWMRX1C-2E843C datalogger/ ~ (ename
Datalogger and Timed reports Gortigure
Timed reports are disabled
Recording to flash memory is disabled
no recorded data
| save| [cancel |

Yocto-PWM-Rx-C module configuration

Firmware

The module firmware can easily be updated with the help of the interface. Firmware destined for
Yoctopuce modules are available as .byn files and can be downloaded from the Yoctopuce web site.

To update a firmware, simply click on the upgrade button on the configuration window and follow the
instructions. If the update fails for one reason or another, unplug and re-plug the module and start
the update process again. This solves the issue in most cases. If the module was unplugged while it
was being reprogrammed, it does probably not work anymore and is not listed in the interface.
Howﬁever, it is always possible to reprogram the module correctly by using VirtualHub ° in command
line °.

Logical name of the module

The logical name is a name that you choose, which allows you to access your module, in the same
way a file name allows you to access its content. A logical name has a maximum length of 19
characters. Authorized characters are A..7Z, a..z, 0..9, , and -. If you assign the same logical name
to two modules connected to the same computer and you try to access one of them through this
logical name, behavior is undetermined: you have no way of knowing which of the two modules
answers.

Luminosity

This parameter allows you to act on the maximal intensity of the leds of the module. This enables
you, if necessary, to make it a litle more discreet, while limiting its power consumption. Note that this
parameter acts on all the signposting leds of the module, including the Yocto-led. If you connect a
module and no led turns on, it may mean that its luminosity was set to zero.

Logical names of functions

Each Yoctopuce module has a serial number and a logical name. In the same way, each function on
each Yoctopuce module has a hardware name and a logical name, the latter can be freely chosen by
the user. Using logical names for functions provides a greater flexibility when programming modules.

5 www.yoctopuce.com/EN/virtualhub.php

More information available in the Virtual[Hub documentation

14 www.yoctopuce.com

3. First steps

The three functions provided by the Yocto-PWM-Rx-C module are "Pwminput1”, "Pwminput2" and
"quadratureDecoder". Simply click on the corresponding rename button to assign a new logical
name to one of these functions.

Configuration

The Yocto-PWM-Rx-C is somewhat different from other Yoctopuce sensors. For the same signal, it
can measure several values at the same time: frequency, duty cycle, pulse width, and the number of
commutations. You can therefore configure which of these values is returned by the
get currentValue function, recorded in the data logger and signaled by callback’, knowing that
generally only one of them is decisive. Independently, you can always read each value separately
with the functions get frequency, get dutyCycle, and so on. Thanks to this double working
mode, using this module stays simple and it remains compatible with the generic YSensor class.

The various kind of values available are:

Duty cyle: the ratio between pulse length and the period, expressed in %.
Frequency: the pulse frequency, in Hz.

Pulse duration: the length of the pulse, in milliseconds.

Egde count: the number of state changes since the last time the counter was reset
Pulse count: the number of full pulses since the last time the counter was reset
CPS: the integer number of pulses per second, as observed during last second

CPM: the integer number of pulses per minute, as observed during the last 6 seconds
State: either 1 or 0 depending on the input state, after applying the debounce filter.

Values managed by callback are limited to 6 characters. Therefore, when you select the "counter"
mode, values returned by the callbacks are limited to the less significative 6 digits. The
get_pulseCounter function, however, returns numbers up to 999'999'999.

Debounce filter

Electromechanical signal generators such as switches, relays and reed switches all tend to bounce
when they change from one state to the other, which can cause extra parasitic pulses. The Yocto-
PWM-Rx-C can filter these bounces by ignoring, during a predefined debounce interval, any extra
state change following the initial change. A typical debouncing interval is 25ms.

Unit

The unit of measurement returned by the Yocto-PWM-Rx-C for each mode is automatically changed
each time the mode is changed. But the unit can also be changed to an arbitrary text, which can be
useful when applying unit conversions. Note that the unit text in itself has no effect on the value
returned by the device: if you need to convert the measure to a physical vaue, you should define a
value mapping.

Value mapping

The Yocto-PWM-Rx-C can automatically apply a linear mapping on the value measured by the
sensor, for instance to map a count to a physical value. The mapping is defined as two intervals: the
interval for observed values, et the interval for mapped values.

For instance, if a water meter produces one pulse per liter of water crossing the counter, the Yocto-
PWM-Rx-C can be configured to return a value in m3/hour in the following way: the input is set in
frequency mode (Hz) and the input interval is set to cover all possible obervables values, eg.
[0...100'000]. The mapped interval in m3/hour can then be computed: [0...(100'000 * 3'600/1'000)] =
[0...360'000]. Be aware that the values used to define the intervals must be within the range
[-2'100'000...2'100'000], and have a maximum of three digits after the decimal dot.

Note that this value mapping is based on the generic calibration system present in all Yoctopuce
sensors described in the chapter about advanced programming topics.

7 See the "Advanced programming" chapter.

www.yoctopuce.com 15

3. First steps

3.6. Working modes

Adaptive system

The Yocto-PWM-Rx-C features an adaptive system that handles period detection quite efficiently,
even in the case of signals with more than two edges per period. However, if you want the algorithm
to be as reactive as possible in ambiguous cases, you can tell the module some of the characteristics
of the signal.

The essential information to facilitate the resolution of ambiguous circumstances is the frequency
range of the signal that the Yocto-PWM-Rx-C is to analyze.

* If you indicate that your signal does not use frequencies below 1 Hz, this prevents the module
from interpreting a few isolated pulses as a signal at 0.05 Hz, for example, a measure which
could take several tens of seconds to correct.

« If your signal is noisy, but the useful frequency is limited, it is best to reduce the acquisition
bandwidth to 1 MHz or less, to filter out high-frequency noise. Interpretation will be all the
better for it.

Measuring pulse-width modulated (PWM) signals

The basic working mode of the Yocto-PWM-Rx-C is the measure of a signal encoded in periodical
pulses of varying lengths. The frequency is usually constant, and the useful value is coded in the
duty cycle, that is the ratio between the duration of the pulse and the duration of the whole period. In
some rare cases, its the absolute duration of the pulse which encodes the transmitted value.

M 200us/ Delay:0.00s

True PWM signal

For this working mode, the Yocto-PWM-Rx-C can work with frequencies from 0.1Hz to 250kHz. The
read value is refreshed 50 times per second. The expected input signal is a clear alternation of
pulses with a regular frequency.

Parameters for the PWM mode:

* pwmReportMode: PWM DUTYCYCLE or PWM PULSEDURATION
» debounce: 0 ms (disabled)
» bandwidth: 16'000 kHz (i.e. 16 MHz, the default value corresponding to the maximum)

The configuration interface of the Yocto-PWM-Rx-C enables you to directly convert the decoded duty
cycle into a corresponding physical value if necessary.

Measuring frequency-modulated (FM) signals

Some simpler sensors encode a value not in the duty cycle but directly in the frequency of the signal
(frequency modulation). The Yocto-PWM-Rx-C can also decode this type of signal and provide an
instantaneous measure of the frequency of a signal made of regular high/low alternations, but with a
varying frequency.

16 www.yoctopuce.com

3. First steps

M 200us/ Delay:0.00s

FM signal

For this working mode, the Yocto-PWM-Rx-C can also work with frequencies from 0.1Hz to 250kHz.
The read value is refreshed 50 times per second.

Parameters for the frequency modulation mode:

* pwmReportMode: PWM FREQUENCY

» debounce: 0 ms (disabled)

* bandwidth: 16'000 kHz, in any case for frequencies above 25kHz. Below 10kHz, you can
choose to lower the bandwidth to 1 ' 000kHz, or even 100kHz, less for frequencies lower than
1kHz.

Measuring noisy frequency-modulated signals

When the measured signal comes from a mechanical contact such as a reed switch, you can't expect
that it is made of regular alternations. At best, there will be high frequency rebounds, at worst there
will even be multiple triggers. If the signal periodicity remains clearly visible thanks to the presence of
stable flats during each period, the Yocto-PWM-Rx-C can still measure the frequency.

M 5.00ms/ Del ay:0.005

Complex periodic signal

For this working mode, the Yocto-PWM-Rx-C can work with frequencies from 0.1Hz to 25kHz only.
The read value is refreshed 50 times per second.

Parameters for noisy frequency mode:

* pwmReportMode: PWM FREQUENCY

» debounce: 0 ms (disabled)

* bandwidth: typically 1'000 kHz. For a fundamental frequency below 2kHz, you can choose
to lower the bandwidth to 1 00kHz, or even 1 0kHz or less for frequencies below 500Hz.

Note that you don't need to explicitly enable the measure of a noisy signal: it's the normal working
mode of the module for signals up to a maximum of 25kHz.

Measuring the average frequency of irregular pulses

All the frequency estimations described above are computed on the basis of the measure of the
period. Some applications based on the detection of near-random events, such as Geiger counters,
generate irregular frequencies that are better measured by counting over a given time period.
Therefore, you can also select a counting per second (CPS) mode, and a counting per minute (CPM)

www.yoctopuce.com 17

3. First steps

mode, the later actually being an estimate of the count per minute based on counting over the
previous six seconds.

M 100ms/ Delay:-400ms
L

Slow pulses

For this working mode, the Yocto-PWM-Rx-C can work with frequencies from 10 CPM to 250'000
CPS only. The read value is refreshed once per second.

Parameters for low frequency mode

+ pwmReportMode: PWM CPS or PWM CPM
» debounce: 0 ms (disabled)
* bandwidth: 16'000 kHz (i.e. 16 MHz, the default value corresponding to the maximum)

Note that at the request of users wanting to work with CPS and CPM units but using the
instantaneous frequency estimation based on the measure of the period, there are two hybrid modes
PWM FREQ CPS and PWM FREQ CPM which work exactly like PWM FREQUENCY. The only
difference is the unit used to express the measured frequency.

Counting high-frequency pulses

Sometimes, rather than measuring the pulse frequency, it is useful to only count the pulses. You can
configure the Yocto-PWM-Rx-C as a pulse counter enabling you to measure pulses of a few
hundreds of nanoseconds only. The module can count all the edges (increasing or decreasing), or
each pulse.

M 200us/ Delay.0.00s

Fast pulses

The counter is reset to zero at module start up, and with the call to the reset () method. The read
value is refreshed 50 times per second.

Parameters for the fast pulse counting mode

* pwmReportMode: PWM EGDECOUNT or PWM PULSECOUNT
» debounce: 0 ms (disabled)
* bandwidth: 16'000 kHz (i.e. 16 MHz, the default value corresponding to the maximum)

Counting slow pulses

If you want to count slow pulses coming from an electromechanical relay or from a mechanical switch
for example, you must enable the protection against rebounds, otherwise one single commutation

18 www.yoctopuce.com

3. First steps

can trigger several tens of micro-pulses. With the protection against rebounds, all the oscillations
following an edge are ignored until the end of the debounce period.

1 M2.00ms/Delay:-10.2ms
¥

Pulses with rebounds

The counter is reset to zero at module start up, and with the call to the reset () method.
Parameters for the slow pulse with rebound counting mode:

* pwmReportMode: PWM EGDECOUNT or PWM PULSECOUNT
» debounce: 25 ms (typical value for a relay)
» bandwidth: n/a kHz (ignored parameter, always 100kHz)

Counting noisy periods

In the same way that we allowed the frequency measure for noisy signals with frequency modulation,
we added the possibility to count the number of detected cycles, independently from the number of
edges. As for the frequency measure, this function is possible only for frequencies which do not go
over 25kHz only.

The counter is reset to zero at module start up, and with the call to the reset () method. The read
value is refreshed 50 times per second.

Parameters for the noisy period mode:

* pwmReportMode: PWM PERIODCOUNT

+ debounce: 0 ms (disabled)

* bandwidth: 1'000 kHz typically. Below 10kHz, you can choose to lower the bandwidth to
1'000kHz, or even 100kHz, less for frequencies lower than 1kHz.

For all intents and purposes, you can also use the additional method get edgesPerPeriod() to
obtain the number of detected edges during the previous period. If the input signal is a noiseless
frequency-modulated signal, the number of edges is of two. The noisier the signal, the higher will this
number be.

Reading a debounced-state

You can also use the Yocto-PWM-Rx-C to simply read the input value, after applying the debounce
filter.

Parameters for the debounced-state mode

* pwmReportMode: PWWM STATE
» debounce: 25 ms (typical value for a relay)
» bandwidth: n/a kHz (ignored parameter, always 100kHz)

Reading quadrature-encoded signals

Finally, you can also interpret conjointly the two inputs of the Yocto-PWM-Rx-C to decode the signal
produced by a quadrature counter. It is a double frequency modulated signal, phase-shifted by 90
degrees, thus making it possible to differentiate the direction of rotation.

www.yoctopuce.com 19

3. First steps

M 200us/ Delay-10.2ms

Quadrature-encoded signal

Parameters for the quadrature decoder mode:

+ pwmReportMode: can be in any mode for both inputs
» debounce: 0 ms (disabled)
* bandwidth: 16'000 kHz (i.e. 16 MHz, the default value corresponding to the maximum)

You must however enable decoding with the set decoding() method on the
quadratureDecoder object. You can then use the latter to read the counter value, or read the
speed at which the counter changes. Note that the protection against rebounds is not pertinent for a
quadrature counter, because quadrature encoding leads to an intrinsic cancellation of possible
oscillations.

20 www.yoctopuce.com

4. Assembly and connections

This chapter provides important information regarding the use of the Yocto-PWM-Rx-C module in
real-world situations. Make sure to read it carefully before going too far into your project if you want
to avoid pitfalls.

4.1. Fixing

While developing your project, you can simply let the module hang at the end of its cable. Check only
that it does not come in contact with any conducting material (such as your tools). When your project
is almost at an end, you need to find a way for your modules to stop moving around.

Examples of assembly on supports

The Yocto-PWM-Rx-C module contains 2.5mm assembly holes. You can use these holes for screws.
The screw head diameter must not be larger than 4.5mm or they will damage the module circuits.
Make sure that the lower surface of the module is not in contact with the support. We recommend
using spacers, but other methods are possible. Nothing prevents you from fixing the module with a
glue gun; it will not be good-looking, but it will hold.

If your intend to screw your module directly against a conducting part, for example a metallic frame,
insert an isolating layer in between. Otherwise you are bound to induce a short circuit: there are
naked pads under your module. Simple insulating tape should be enough.

www.yoctopuce.com 21

4. Assembly and connections

4.2. USB power distribution

Although USB means Universal Serial BUS, USB devices are not physically organized as a flat bus
but as a tree, using point-to-point connections. This has consequences on power distribution: to
make it simple, every USB port must supply power to all devices directly or indirectly connected to it.
And USB puts some limits.

In theory, a USB port provides 100mA, and may provide up to 500mA if available and requested by
the device. In the case of a hub without external power supply, 100mA are available for the hub itself,
and the hub should distribute no more than 100mA to each of its ports. This is it, and this is not
much. In particular, it means that in_theory, it is not possible to connect USB devices through two
cascaded hubs without external power supply. In order to cascade hubs, it is necessary to use self-
powered USB hubs, that provide a full 500mA to each subport.

In practice, USB would not have been as successful if it was really so picky about power distribution.
As it happens, most USB hub manufacturers have been doing savings by not implementing current
limitation on ports: they simply connect the computer power supply to every port, and declare
themselves as self-powered hub even when they are taking all their power from the USB bus (in
order to prevent any power consumption check in the operating system). This looks a bit dirty, but
given the fact that computer USB ports are usually well protected by a hardware current limitation
around 2000mA, it actually works in every day life, and seldom makes hardware damage.

What you should remember: if you connect Yoctopuce modules through one, or more, USB hub
without external power supply, you have no safe-guard and you depend entirely on your computer
manufacturer attention to provide as much current as possible on the USB ports, and to detect
overloads before they lead to problems or to hardware damages. When modules are not provided
enough current, they may work erratically and create unpredictable bugs. If you want to prevent any
risk, do not cascade hubs without external power supply, and do not connect peripherals requiring
more than 100mA behind a bus-powered hub.

In order to help you controlling and planning overall power consumption for your project, all
Yoctopuce modules include a built-in current sensor that indicates (with 5mA precision) the
consumption of the module on the USB bus.

Note also that the USB cable itself may also cause power supply issues, in particular when the wires
are too thin or when the cable is too long '. Good cables are usually made using AWG 26 or AWG 28
wires for data lines and AWG 24 wires for power.

4.3. Electromagnetic compatibility (EMI)

Connection methods to integrate the Yocto-PWM-Rx-C obviously have an impact on the system
overall electromagnetic emissions, and therefore also impact the conformity with international
standards.

When we perform reference measurements to validate the conformity of our products with IEC
CISPR 11, we do not use any enclosure but connect the devices using a shielded USB cable,
compliant with USB 2.0 specifications: the cable shield is connected to both connector shells, and the
total resistance from shell to shell is under 0.6Q. The USB cable length is 3m, in order to expose one
meter horizontally, one meter vertically and keep the last meter close to the host computer within a
ferrite bead.

If you use a non-shielded USB cable, or an improperly shielded cable, your system will work perfectly
well but you may not remain in conformity with the emission standard. If you are building a system
made of multiple devices connected using 1.27mm pitch connectors, or with a sensor moved away
from the device CPU, you can generally recover the conformity by using a metallic enclosure acting
as an external shield.

1 www.yoctopuce.com/EN/article/usb-cables-size-matters

22 www.yoctopuce.com

4. Assembly and connections

Still on the topic of electromagnetic compatibility, the maximum supported length of the USB cable is
3m. In addition to the voltage drop issue mentionned above, using longer wires would require to run
extra tests to assert compatibility with the electromagnetic immunity standards.

www.yoctopuce.com 23

24

www.yoctopuce.com

5. Programming, general concepts

The Yoctopuce API was designed to be at the same time simple to use and sufficiently generic for
the concepts used to be valid for all the modules in the Yoctopuce range, and this in all the available
programming languages. Therefore, when you have understood how to drive your Yocto-PWM-Rx-C
with your favorite programming language, learning to use another module, even with a different
language, will most likely take you only a minimum of time.

5.1. Programming paradigm

The Yoctopuce API is object oriented. However, for simplicity's sake, only the basics of object
programming were used. Even if you are not familiar with object programming, it is unlikely that this
will be a hinderance for using Yoctopuce products. Note that you will never need to allocate or
deallocate an object linked to the Yoctopuce API: it is automatically managed.

There is one class per Yoctopuce function type. The name of these classes always starts with a Y
followed by the name of the function, for example YTemperature, YRelay, YPressure, and so on.
There is also a YModule class, dedicated to managing the modules themselves, and finally there is
the static YAPI class, that supervises the global workings of the APl and manages low level
communications.

Low level handling) Module handling . Feature handling

[YAPI] [YModuIe] [YTemperature]

YPressure
YRelay
Y Xxx

Structure of the Yoctopuce API

The YSensor class

Each Yoctopuce sensor function has its dedicated class: YTemperature to measure the temperature,
YVoltage to measure a voltage, YRelay to drive a relay, etc. However there is a special class that
can do more: YSensor.

www.yoctopuce.com 25

5. Programming, general concepts

The YSensor class is the parent class for all Yoctopuce sensors, and can provide access to any
sensor, regardless of its type. It includes methods to access all common functions. This makes it
easier to create applications that use many different sensors. Moreover, if you create an application
based on YSensor, it will work with all Yoctopuce sensors, even those which do no yet exist.

Programmation

In the Yoctopuce API, priority was put on the ease of access to the module functions by offering the
possibility to make abstractions of the modules implementing them. Therefore, it is quite possible to
work with a set of functions without ever knowing exactly which module are hosting them at the
hardware level. This tremendously simplifies programming projects with a large number of modules.

From the programming stand point, your Yocto-PWM-Rx-C is viewed as a module hosting a given
number of functions. In the API, these functions are objects which can be found independently, in
several ways.

Access to the functions of a module

Access by logical name

Each function can be assigned an arbitrary and persistent logical name: this logical name is stored in
the flash memory of the module, even if this module is disconnected. An object corresponding to an
Xxx function to which a logical name has been assigned can then be directly found with this logical
name and the YXxx.FindXxx method. Note however that a logical name must be unique among all
the connected modules.

Access by enumeration
You can enumerate all the functions of the same type on all the connected modules with the help of
the classic enumeration functions FirstXxx and nextXxxx available for each YXxx class.

Access by hardware name

Each module function has a hardware name, assigned at the factory and which cannot be modified.
The functions of a module can also be found directly with this hardware name and the YXxx.FindXxx
function of the corresponding class.

Difference between Find and First

The YXxx.FindXxxx and YXxx.FirstXxxx methods do not work exactly the same way. If there is no
available module, YXxx.FirstXxxx returns a null value. On the opposite, even if there is no
corresponding module, YXxx.FindXxxx returns a valid object, which is not online but which could
become so if the corresponding module is later connected.

Function handling

When the object corresponding to a function is found, its methods are available in a classic way.
Note that most of these subfunctions require the module hosting the function to be connected in
order to be handled. This is generally not guaranteed, as a USB module can be disconnected after
the control software has started. The isOnline method, available in all the classes, is then very
helpful.

Access to the modules

Even if it is perfectly possible to build a complete project while making a total abstraction of which
function is hosted on which module, the modules themselves are also accessible from the API. In
fact, they can be handled in a way quite similar to the functions. They are assigned a serial number
at the factory which allows you to find the corresponding object with YModule.Find(). You can also
assign arbitrary logical names to the modules to make finding them easier. Finally, the YModule
class contains the YModule.FirstModule() and nextModule() enumeration methods allowing you to list
the connected modules.

26 www.yoctopuce.com

Functions/Module interaction

5. Programming, general concepts

From the API standpoint, the modules and their functions are strongly uncorrelated by design.
Nevertheless, the API provides the possibility to go from one to the other. Thus, the get_module()
method, available for each function class, allows you to find the object corresponding to the module
hosting this function. Inversely, the YModule class provides several methods allowing you to
enumerate the functions available on a module.

5.2. The Yocto-PWM-Rx-C module

The Yocto-PWM-Rx-C module provides two instances of the pwmlinput function, providing two

channels for PWM measurements.

module : Module

attribute
productName
serialNumber
logicalName
productId
productRelease
firmwareRelease
persistentSettings
luminosity
beacon
upTime
usbCurrent
rebootCountdown
userVar

pwminput1 : Pwminput
pwmlinput2 : Pwminput

attribute
logicalName
advertisedValue
unit
currentValue
lowestValue
highestValue
currentRawValue
logFrequency
reportFrequency
advMode
calibrationParam
resolution
sensorState
dutyCycle
pulseDuration
frequency
period
pulseCounter
pulseTimer
pwmReportMode
debouncePeriod
minFrequency
bandwidth
edgesPerPeriod

type
String
String
String
Hexadecimal number
Hexadecimal number
String
Enumerated
0..100%
On/Off
Time
Used current (mA)
Integer
Integer

type
String
String
String
Fixed-point number
Fixed-point number
Fixed-point number
Fixed-point number
Frequency
Frequency
Enumerated
Calibration parameters
Fixed-point number
Integer
Fixed-point number
Fixed-point number
Fixed-point number
Fixed-point number
Integer
Time
Enumerated
Integer
Fixed-point number
Integer
Integer

modifiable ?

read-only
read-only
modifiable
read-only
read-only
read-only
modifiable
modifiable
modifiable
read-only
read-only
modifiable
modifiable

modifiable ?
modifiable
modifiable
modifiable
read-only
modifiable
modifiable
read-only
modifiable
modifiable
modifiable
modifiable
modifiable
read-only
read-only
read-only
read-only
read-only
modifiable
read-only
modifiable
modifiable
modifiable
modifiable
read-only

www.yoctopuce.com

27

5. Programming, general concepts

quadratureDecoder : QuadratureDecoder

attribute type modifiable ?
logicalName String modifiable
advertisedvValue String modifiable
unit String read-only
currentValue Fixed-point number modifiable
lowestValue Fixed-point number modifiable
highestValue Fixed-point number modifiable
currentRawValue Fixed-point number read-only
logFrequency Frequency modifiable
reportFrequency Frequency modifiable
advMode Enumerated modifiable
calibrationParam Calibration parameters modifiable
resolution Fixed-point number modifiable
sensorState Integer read-only
speed Fixed-point number read-only
decoding On/Off modifiable
edgesPerCycle Integer modifiable

dataLogger : DataLogger

attribute type modifiable ?
logicalName String modifiable
advertisedvalue String modifiable
currentRunIndex Integer read-only
timeUTC UTC time modifiable
recording Enumerated modifiable
autoStart On/Off modifiable
beaconDriven On/Off modifiable
usage 0..100% read-only
clearHistory Boolean modifiable

5.3. Module

Global parameters control interface for all Yoctopuce devices

The YModule class can be used with all Yoctopuce USB devices. It can be used to control the
module global parameters, and to enumerate the functions provided by each module.

productName
Character string containing the commercial name of the module, as set by the factory.

serialNumber

Character string containing the serial number, unique and programmed at the factory. For a Yocto-
PWM-Rx-C module, this serial number always starts with YPWMRX1C. You can use the serial
number to access a given module by software.

logicalName

Character string containing the logical name of the module, initially empty. This attribute can be
modified at will by the user. Once initialized to an non-empty value, it can be used to access a given
module. If two modules with the same logical name are in the same project, there is no way to
determine which one answers when one tries accessing by logical name. The logical name is limited
to 19 characters among A..7,a..z,0..9, ,and -.

productid
USB device identifier of the module, preprogrammed to 246 at the factory.

28 www.yoctopuce.com

5. Programming, general concepts

productRelease

Release number of the module hardware, preprogrammed at the factory. The original hardware
release returns value 1, revision B returns value 2, and so on.

firmwareRelease
Release version of the embedded firmware, changes each time the embedded software is updated.

persistentSettings

State of persistent module settings: loaded from flash memory, modified by the user or saved to flash
memory.

luminosity

Lighting strength of the informative leds (e.g. the Yocto-Led) contained in the module. It is an integer
value which varies between 0 (LEDs turned off) and 100 (maximum led intensity). The default value
is 50. To change the strength of the module LEDs, or to turn them off completely, you only need to
change this value.

beacon
Activity of the localization beacon of the module.

upTime
Time elapsed since the last time the module was powered on.

usbCurrent
Current consumed by the module on the USB bus, in milli-amps.

rebootCountdown
Countdown to use for triggering a reboot of the module.

userVar
32bit integer variable available for user storage.

5.4. Pwminput

PWM input control interface, available for instance in the Yocto-PWM-Rx

The YPwmInput class allows you to read and configure Yoctopuce PWM inputs. It inherits from
YSensor class the core functions to read measurements, to register callback functions, and to
access the autonomous datalogger. This class adds the ability to configure the signal parameter
used to transmit information: the duty cycle, the frequency or the pulse width.

logicalName

Character string containing the logical name of the PWM input, initially empty. This attribute can be
modified at will by the user. Once initialized to an non-empty value, it can be used to access the
PWM input directly. If two PWM inputs with the same logical name are used in the same project,
there is no way to determine which one answers when one tries accessing by logical name. The
logical name is limited to 19 characters among A..Z,a..z,0..9, ,and -.

advertisedValue

Short character string summarizing the current state of the PWM input, that is automatically
advertised up to the parent hub. For a PWM input, the advertised value is the current value of the
PWM.

www.yoctopuce.com 29

5. Programming, general concepts

unit
Short character string representing the measuring unit for the PWM.

currentValue
Current value of the PWM, in HZ, as a floating point number.

lowestValue
Minimal value of the PWM, in HZ, as a floating point number.

highestValue
Maximal value of the PWM, in HZ, as a floating point number.

currentRawValue
Uncalibrated, unrounded raw value returned by the sensor, as a floating point number.

logFrequency

Datalogger recording frequency, or "OFF" when measures should not be stored in the data logger
flash memory.

reportFrequency

Timed value notification frequency, or "OFF" when timed value notifications are disabled for this
function.

advMode

Measuring mode for the advertised value pushed to the parent hub.

calibrationParam

Extra calibration parameters (for instance to compensate for the effects of an enclosure), as an array
of 16 bit words.

resolution
Measure resolution (i.e. precision of the numeric representation, not necessarily of the measure

itself).
sensorState
Sensor state (zero when a current measure is available).

dutyCycle
Duty cycle, as a floating point number between 0% and 100%

pulseDuration
Pulse length in milliseconds, as a floating-point number

frequency
PWM frequency, in Hz

period
Period in milliseconds, as a floating-point number

pulseCounter

Pulse counter, incremented each time the input state changes, Each pulse therefore increments the
counter by 2. This counter is set to zero each time the device restarts.

30 www.yoctopuce.com

5. Programming, general concepts

pulseTimer
Elapsed time since last pulse counter reset.

pwmReportMode

Data type type(frequency/duty cycle, pulse width) reported by the get currentValue function and
callbacks

debouncePeriod
Shortest expected pulse duration, in ms. Any shorter pulse will be automatically ignored (debounce).

minFrequency
Minimum detected frequency, in Hz. Slower signals will be consider as zero frequency.

bandwidth

Input signal sampling rate, in kHz.

edgesPerPeriod
Number of edges detected per preiod. For a clean PWM signal, this should be exactly two.

5.5. What interface: Native, DLL or Service ?

There are several methods to control you Yoctopuce module by software.

Native control

In this case, the software driving your project is compiled directly with a library which provides control
of the modules. Obijectively, it is the simplest and most elegant solution for the end user. The end
user then only needs to plug the USB cable and run your software for everything to work.
Unfortunately, this method is not always available or even possible.

4)

application

native
library

ofi

The application uses the native library to control the locally connected module

Native control by DLL

Here, the main part of the code controlling the modules is located in a DLL. The software is compiled
with a small library which provides control of the DLL. It is the fastest method to code module support
in a given language. Indeed, the "useful" part of the control code is located in the DLL which is the
same for all languages: the effort to support a new language is limited to coding the small library
which controls the DLL. From the end user stand point, there are few differences: one must simply
make sure that the DLL is installed on the end user's computer at the same time as the main
software.

www.yoctopuce.com 31

5. Programming, general concepts

application

‘ DLL interface
®

ol

The application uses the DLL to natively control the locally connected module

Control by service

Some languages do simply not allow you to easily gain access to the hardware layers of the
machine. It is the case for Javascript, for instance. To deal with this case, Yoctopuce provides a
solution in the form of a small piece of software called VirtualHub'. It can access the modules, and
your application only needs to use a library which offers all necessary functions to control the
modules via this VirtualHub. The end users will have to start VirtualHub before running the project
control software itself, unless they decide to install the hub as a service/deamon, in which case
VirtualHub starts automatically when the machine starts up.

()

hub library

virtual hub

e

The application connects itself to VirtualHub to gain access to the module

The service control method comes with a non-negligible advantage: the application does not need to
run on the machine on which the modules are connected. The application can very well be located
on another machine which connects itself to the service to drive the modules. Moreover, the native
libraries and DLL mentioned above are also able to connect themselves remotely to one or several
machines running VirtualHub.

1 www.yoctopuce.com/EN/virtualhub.php

32 www.yoctopuce.com

5. Programming, general concepts

-
application
native
library
s (" N
application g
application hub library
hub library
—] virtual hub
] J (
k | éf .
o

When VirtualHub is used, the control application does not need to reside on the same machine as the module.

Whatever the selected programming language and the control paradigm used, programming itself
stays strictly identical. From one language to another, functions bear exactly the same name, and
have the same parameters. The only differences are linked to the constraints of the languages
themselves.

Language Native Native with DLL VirtualHub
Command line v
Python -
C++ v
C# .Net -
C# UWP v
LabVIEW -
Java -
Java for Android v
TypeScript - -
JavaScript / ECMAScript - -

PHP - -

VisualBasic .Net - v

Delphi - v

Objective-C v -
Support methods for different languages

U N UL N N N

AN Y U VA N N N VA N N S N WA

5.6. Accessing modules through a hub

VirtualHub to work around USB access limitation

Only one application at a given time can have native access to Yoctopuce devices. This limitation is
related to the fact that two different processes cannot talk to a USB device at the same time. Usually,
this kind of problem is solved by a driver that takes care of the police work to prevent multiple
processes fighting over the same device. But Yoctopuce products do not use drivers. Therefore, the
first process that manages to access the native mode keeps it for itself until UnregisterHub or
FreeApi is called.

If your application tries to communicate in native mode with Yoctopuce devices, but that another
application prevents you from accessing them, you receive the following error message:

Another process is already using yAPI

The solution is to use VirtualHub locally on your machine and to use it as a gateway for your
applications. In this way, if all your applications use VirtualHub, you do not have conflicts anymore
and you can access all your devices all the time.

www.yoctopuce.com 33

5. Programming, general concepts

With a YoctoHub

A YoctoHub behaves itself exactly like a computer running VirtualHub. The only difference between a
program using the Yoctopuce API with modules in native USB and the same program with
Yoctopuce modules connected to a YoctoHub is located at the level of the RegisterHub function
call. To use USB modules connected natively, the RegisterHub parameter is usb. To use
modules connected to a YoctoHub, you must simply replace this parameter by the IP address of the
YoctoHub.

So there are three possible modes: native mode, network mode via VirtualHub on your local
machine, or via a YoctoHub. To switch from native to network mode on your local machine, you only
need to change the parameter when calling YAPI.RegisterHub, as shown in the examples
below:

YAPI.RegisterHub ("usb",errmsqg) ;
YAPI.RegisterHub("127.0.0.1",errmsqg) ;

YAPI.RegisterHub("192.168.0.10",errmsqg) ;

5.7. Programming, where to start?

At this point of the user's guide, you should know the main theoretical points of your Yocto-PWM-Rx-
C. It is now time to practice. You must download the Yoctopuce library for your favorite programming
language from the Yoctopuce web site?. Then skip directly to the chapter corresponding to the
chosen programming language.

All the examples described in this guide are available in the programming libraries. For some
languages, the libraries also include some complete graphical applications, with their source code.

When you have mastered the basic programming of your module, you can turn to the chapter on
advanced programming that describes some techniques that will help you make the most of your
Yocto-PWM-Rx-C.

2 http://www.yoctopuce.com/EN/libraries.php

34 www.yoctopuce.com

6. Using the Yocto-PWM-Rx-C in command line

When you want to perform a punctual operation on your Yocto-PWM-Rx-C, such as reading a value,
assigning a logical name, and so on, you can obviously use VirtualHub, but there is a simpler, faster,
and more efficient method: the command line API.

The command line API is a set of executables, one by type of functionality offered by the range of
Yoctopuce products. These executables are provided pre-compiled for all the Yoctopuce officially
supported platforms/OS. Naturally, the executable sources are also provided'.

6.1. Installing

Download the command line API?. You do not need to run any setup, simply copy the executables
corresponding to your platform/OS in a directory of your choice. You may add this directory to your
PATH variable to be able to access these executables from anywhere. You are all set, you only need
to connect your Yocto-PWM-Rx-C, open a shell, and start working by typing for example:

YPwmOutput any dutyCycleMove 1000 22.5
To use the command line API on Linux, you need either have root privileges or to define an udev rule

for your system. See the Troubleshooting chapter for more details.

6.2. Use: general description

All the command line API executables work on the same principle. They must be called the following
way

Executable [options] [target] command [parameter]

[options] manage the global workings of the commands, they allow you, for instance, to pilot a
module remotely through the network, or to force the module to save its configuration after executing
the command.

[target] is the name of the module or of the function to which the command applies. Some very
generic commands do not need a target. You can also use the aliases "any" and "all', or a list of
names separated by comas without space.

i you want to recompile the command line API, you also need the C++ API.
2 http://www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com 35

6. Using the Yocto-PWM-Rx-C in command line

command is the command you want to run. Almost all the functions available in the classic
programming APIls are available as commands. You need to respect neither the case nor the
underlined characters in the command name.

[parameters] are logically the parameters needed by the command.

At any time, the command line AP| executables can provide a rather detailed help. Use for instance:

executable elp

to know the list of available commands for a given command line API executable, or even:

executable command

to obtain a detailed description of the parameters of a command.

6.3. Control of the Pwminput function

To control the Pwmlnput function of your Yocto-PWM-Rx-C, you need the YPwminput executable
file.

For instance, you can launch:
YPwmOutput any dutyCycleMove 1000 22.5

This example uses the "any" target to indicate that we want to work on the first Pwminput function
found among all those available on the connected Yoctopuce modules when running. This prevents
you from having to know the exact names of your function and of your module.

But you can use logical names as well, as long as you have configured them beforehand. Let us
imagine a Yocto-PWM-Rx-C module with the YPWMRX1C-123456 serial number which you have
called "MyModule", and its pwmlInput1 function which you have renamed "MyFunction". The five
following calls are strictly equivalent (as long as MyFunction is defined only once, to avoid any
ambiguity).

YPwmInput YPWMRX1C-123456.pwmInputl describe

YPwmInput YPWMRX1C-123456.MyFunction describe

YPwmInput MyModule.pwmInputl describe

YPwmInput MyModule.MyFunction describe

YPwmInput MyFunction describe

To work on all the Pwminput functions at the same time, use the "all" target.

YPwmInput all describe

For more details on the possibilities of the YPwmInput executable, use:

YPwmInput

6.4. Control of the module part

Each module can be controlled in a similar way with the help of the YModule executable. For
example, to obtain the list of all the connected modules, use:

YModule inventory

36 www.yoctopuce.com

6. Using the Yocto-PWM-Rx-C in command line

You can also use the following command to obtain an even more detailed list of the connected
modules:

YModule all describe

Each xxx property of the module can be obtained thanks to a command of the get xxxx () type,
and the properties which are not read only can be modified with the set xxx () command. For
example:

YModule YPWMRX1C-12346 set logicalName MonPremierModule

YModule YPWMRX1C-12346 get logicalName

Changing the settings of the module

When you want to change the settings of a module, simply use the corresponding set xxx
command. However, this change happens only in the module RAM: if the module restarts, the
changes are lost. To store them permanently, you must tell the module to save its current
configuration in its nonvolatile memory. To do so, use the saveToFlash command. Inversely, it is
possible to force the module to forget its current settings by using the revertFromFlash method.
For example:

YModule YPWMRX1C-12346 set logicalName MonPremierModule
YModule YPWMRX1C-12346 saveToFlash

Note that you can do the same thing in a single command with the —s option.

YModule -s YPWMRX1C-12346 set logicalName MonPremierModule

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

6.5. Limitations

The command line API has the same limitation than the other APIs: there can be only one application
at a given time which can access the modules natively. By default, the command line APl works in
native mode.

You can easily work around this limitation by using a Virtual Hub: run VirtualHub® on the concerned
machine, and use the executables of the command line API with the —r option. For example, if you
use:

YModule inventory

you obtain a list of the modules connected by USB, using a native access. If another command which
accesses the modules natively is already running, this does not work. But if you run VirtualHub, and
you give your command in the form:

YModule -r 127.0.0.1 inventory

it works because the command is not executed natively anymore, but through VirtualHub. Note that
VirtualHub counts as a native application.

3 http://www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 37

38

www.yoctopuce.com

7. Using the Yocto-PWM-Rx-C with Python

Python is an interpreted object oriented language developed by Guido van Rossum. Among its
advantages is the fact that it is free, and the fact that it is available for most platforms, Windows as
well as UNIX. It is an ideal language to write small scripts on a napkin. The Yoctopuce library is
compatible with Python 2.7 and 3.x up to the latest official versions. It works under Windows,
macOS, and Linux, Intel as well as ARM. Python interpreters are available on the Python web site".

7.1. Source files

The Yoctopuce library classes? for Python that you will use are provided as source files. Copy all the
content of the Sources directory in the directory of your choice and add this directory to the
PYTHONPATH environment variable. If you use an IDE to program in Python, refer to its
documentation to configure it so that it automatically finds the API source files.

7.2. Dynamic library

A section of the low-level library is written in C, but you should not need to interact directly with it: it is
provided as a DLL under Windows, as a .so files under UNIX, and as a .dylib file under macOS.
Everything was done to ensure the simplest possible interaction from Python: the distinct versions of
the dynamic library corresponding to the distinct operating systems and architectures are stored in
the cdll directory. The API automatically loads the correct file during its initialization. You should not
have to worry about it.

If you ever need to recompile the dynamic library, its complete source code is located in the
Yoctopuce C++ library.

In order to keep them simple, all the examples provided in this documentation are console

applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

7.3. Control of the Pwminput function

A few lines of code are enough to use a Yocto-PWM-Rx-C. Here is the skeleton of a Python code
snipplet to use the Pwmlinput function.

1 http://www.python.org/download/
www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com 39

7. Using the Yocto-PWM-Rx-C with Python

[...]

errmsg=YRefParam ()
YAPI.RegisterHub ("usb",errmsqg)

[oooll
pwminput = YPwmInﬁni.FindemInput(”YPWMRXIC—123456.pwmInputl"

—r g s e 1S "heck a e dev e

if pwminput.isOnline () :

[.;;]
[oool

Let's look at these lines in more details.

YAPIL.RegisterHub

The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPI.SUCCESS and errmsg contains the error message.

YPwmlInput.FindPwmlinput

The YPwmInput.FindPwmInput function allows you to find a PWM input from the serial number
of the module on which it resides and from its function name. You can use logical names as well, as
long as you have initialized them. Let us imagine a Yocto-PWM-Rx-C module with serial number
YPWMRX1C-123456 which you have named "MyModule", and for which you have given the
pwminput1 function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pwminput = YPwmInput.FindPwmInput ("YPWMRX1C-123456.pwmInputl"”
pwminput = 3 Input.FindPwmInput ("YPWMRX1C-123456.MyFunction")
pwminput = ut . FindPwmInput ("MyModule.pwmInputl"
pwminput = FindPwmInput ("MyModule.MyFunction")
pwminput = YPwmInput.FindPwmInput ("MyFunction")

YPwmInput.FindPwmInput returns an object which you can then use at will to control the PWM
input.
isOnline

The isOnline () method of the object returned by YPwmInput.FindPwmInput allows you to
know if the corresponding module is present and in working order.

About python imports

This documentation assumes that you are using the Python library downloaded directly from the
Yoctopuce website, but if you are using the library installed with PIP, then you will need to prefix all
imports with yoctopuce.. Meaning all the import examples shown in the documentation, such as:

from yocto api import *
need to be converted , when the yoctopuce library was installed by PIP, to:

from yoctopuce.yocto api import *

get_frequency

The get frequency() method of the object returned by YPwmInput.FindPwmIntput
returns the detected PWM frequency.

40 www.yoctopuce.com

get_dutyCycle

7. Using the Yocto-PWM-Rx-C with Python

The get dutyCycle () method of the object returned by YPwmInput.FindPwmInput returns

the detected PWM duty cycle.

A real example

Launch Python and open the corresponding sample script provided in the directory Examples/Doc-

GettingStarted-Yocto-PWM-Rx-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side

materials needed to make it work nicely as a small demo.

import os, sys

from yocto api import *
from yocto pwminput import *

def usage():

scriptname = os.path.basename (sys.argv([0]

print ("Usage:")
print (scriptname + ' <serial number>"')
print (scriptname + ' <logical name>')

print (scriptname + any ")
sys.exit ()

def die (msg) :
sys.exit (msg + ' (check USB cable)')

errmsg = YRefParam/()

if len(sys.argv) < 2:
usage ()

target = sys.argv[1l]

Setup the API to use SB dev

if YAPE.RegisterHub("usb", errmsg) !=
sys.exit ("init error" + errmsg.value)

anypwm = y
if anypwm is None:

die ('No module connected')
m = anypwm.get module ()
target = m.get serialNumber ()

pwml = YPwmInput.FindPwmInput (target + '.pwmInputl')
wnInput.FindPwmInput (target + '.pwmInput2')

pwm2 =

if not (pwml.isOnline()):
die ('device not connected')

while pwml.isOnline() :

print ("PWM1 : $.1fHz $.1£%% %d "%
(pwml.get frequency(), pwml.get
print ("PWM2 : $.1fHz $.1£%% %d "%
(

(pwm2.get frequency
YAPI.Sleep (1000)
YAPI.FreeAPI ()

7.4. Control of the module part

YAPI.SUCCESS:

), pwm2.get dutyCycle(),

dutyCycle (), pwml.get pulseCounter()))

pwm2.get pulseCounter()))

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

www.yoctopuce.com

41

7. Using the Yocto-PWM-Rx-C with Python

codin

import os, sys

)y

from yocto api import *

def usage():
sys.exit ("usage: demo <serial or logical name> [ON/OFF]")

errmsg = YRefParam()
if YAPI.RegisterHub ("usb", errmsg) != YAPI.SUCCESS:
sys.exit ("RegisterHub error: " + str(errmsg))

if len(sys.argv) < 2:
usage ()

m = YModule.FindModule (sys.argv[1l]) # # use serial or logical name

if m.isOnline () :
if len(sys.argv) > 2:

if sys.argv[2].upper() == "ON":
m.set beacon (YModule.BEACON_ ON)
if sys.argv[2].upper() == "OFF":

m.set beacon (YModule.BEACON OFF)

print ("serial: " + m.get serialNumber ())
print ("logical name: " + m.get logicalName ())
print ("luminosity: " + str(m.get luminosity()))
if m.get beacon() == YModule.BEACON ON:
print ("beacon: ON")
else:
print ("beacon: OFF")
print ("upTime: " + str(m.get upTime() / 1000) + " sec")
print ("USB current: " + str(m.get usbCurrent()) + " mA")
print ("logs:\n" + m.get lastLogs())
else:

print (sys.argv[l] + " not connected (check identification and USB cable)"
YAPI.FreeAPI ()

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

coaing:

import os, sys

from yocto api import *

def usage():
sys.exit ("usage: demo <serial or logical name> <new logical name>")

if len(sys.argv) != 3:
usage ()
errmsg = YRefParam()
if YAPI.RegisterHub ("usb", errmsg) != YAPI.SUCCESS:
sys.exit ("RegisterHub error: " + str(errmsg))
m = YModule.FindModule (sys.argv[1l]) # use serial or logical name

42 www.yoctopuce.com

7. Using the Yocto-PWM-Rx-C with Python

if m.isOnline () :

newname = sys.argv[2]
if not YAPI.CheckLogicalName (newname) :
sys.exit ("Invalid name (" + newname + ")")

m.set logicalName (newname)
m.saveToFlash () # do not forget t S
print ("Module: serial= " + m.get serialNumber() + " / name= " + m.get logicalName ())
else:
sys.exit ("not connected (check identification and USB cable")
YAPI.FreeAPI ()

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

g

import os, sys
from yocto api import *

errmsg = YRefParam()

if YAPI.RegisterHub ("usb", errmsg) != YAPI.SUCCESS:
sys.exit ("init error" + str(errmsg))

print ('Device list')

module = YModule.FirstModule ()

while module is not None:
print (module.get serialNumber () + ' (' + module.get productName() + ')')
module = module.nextModule ()

YAPI.FreeAPI ()

7.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

www.yoctopuce.com 43

7. Using the Yocto-PWM-Rx-C with Python

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.
+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

44 www.yoctopuce.com

8. Using Yocto-PWM-Rx-C with C++

C++ is not the simplest language to master. However, if you take care to limit yourself to its essential
functionalities, this language can very well be used for short programs quickly coded, and it has the
advantage of being easily ported from one operating system to another. Under Windows, C++ is
supported with Microsoft Visual Studio 2017 and more recent versions. Under macOS, we support
the XCode versions supported by Apple. And under Linux, we support all GCC version published
since 2008. Moreover, under Max OS X and under Linux, you can compile the examples using a
command line with GCC using the provided GNUmakefile. In the same manner under Windows, a
Makefile allows you to compile examples using a command line, fully knowing the compilation and
linking arguments.

Yoctopuce C++ libraries' are integrally provided as source files. A section of the low-level library is
written in pure C, but you should not need to interact directly with it: everything was done to ensure
the simplest possible interaction from C++. The library is naturally also available as binary files, so
that you can link it directly if you prefer.

You will soon notice that the C++ API defines many functions which return objects. You do not need
to deallocate these objects yourself, the APl does it automatically at the end of the application.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface. You will find in the last section of this chapter all the information
needed to create a wholly new project linked with the Yoctopuce libraries.

8.1. Control of the Pwminput function

A few lines of code are enough to use a Yocto-PWM-Rx-C. Here is the skeleton of a C++ code
snipplet to use the Pwmlinput function.

#include "yocto api.h"
#include "yocto pwminput.h"

[oool
String errmsg;

YAPI::RegisterHub ("usb", errmsqg);

[oool

YPwmInput *pwminput;

1 www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com 45

8. Using Yocto-PWM-Rx-C with C++

pwminput = YPwmInput::FindPwmInput ("YPWMRX1C-123456.pwmInputl") ;

if (pwminput->isOnline())
put->get frequency ()
}

Let's look at these lines in more details.

yocto_api.h et yocto_pwminput.h

These two include files provide access to the functions allowing you to manage Yoctopuce modules.
yocto api.h must always be used, yocto pwminput.h is necessary to manage modules
containing a PWM input, such as Yocto-PWM-Rx-C.

YAPI::RegisterHub

The YAPI: : RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPTI SUCCESS and errmsg contains the error message.

YPwmInput::FindPwminput

The YPwmInput::FindPwmInput function allows you to find a PWM input from the serial
number of the module on which it resides and from its function name. You can use logical names as
well, as long as you have initialized them. Let us imagine a Yocto-PWM-Rx-C module with serial
number YPWMRX1C-123456 which you have named "MyModule", and for which you have given the
pwmlinput1 function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

::FindPwmInput ("YPWMRX1C-123456.pwmInputl"™) ;
t::FindPwmInput ("YPWMRX1C-123456.MyFunction") ;

‘’PwmInput *pwminput (
y (

YPwmInput: :FindPwmInput ("MyModule.pwmInputl") ;
(
(

mInput *pwminput
mInput *pwminput
‘PwmInput *pwminput
(PwmInput *pwminput

YPwmInput: :FindPwmInput ("MyModule.MyFunction") ;
YPwmInput: :FindPwmInput ("MyFunction");

YPwmInput: :FindPwmInput returns an object which you can then use at will to control the
PWM input.

isOnline

The isOnline () method of the object returned by YPwmInput: : FindPwmInput allows you to
know if the corresponding module is present and in working order.

get_frequency

The get frequency () method of the object returned by yFindPwmIntput returns the
detected PWM frequency.

get_dutyCycle

The get dutyCycle () method of the object returned by yFindPwmInput returns the detected
PWM duty cycle.

A real example

Launch your C++ environment and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-PWM-Rx-C of the Yoctopuce library. If you prefer to work
with your favorite text editor, open the file main. cpp, and type make to build the example when you
are done.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

46 www.yoctopuce.com

8. Using Yocto-PWM-Rx-C with C++

#include "yocto api.h"
#include "yocto pwminput.h"
#include <iostream>
#include <stdlib.h>

using namespace std;
static void usage (void)

{

cout << "usage: demo <serial number> " << endl;

cout << " demo <logical name>" << endl;
cout << " demo any" << endl;

u64 now = YAPI::GetTickCount () ;

while (YAPI::GetTickCount() - now < 3000) {

// wait 3 sec to show the message
}
exit (1) ;
}

int main(int argc, const char * argv[])
{

string errmsg;

string target;

YPwmInput *pwm;

YPwmInput *pwml ;

YPwmInput *pwm2 ;

YModule *m;

if (argc < 2) {
usage () ;
}
target = (string) argv[l];

YAPI::DisableExceptions () ;

// Setup the API to use local USB devices

if (YAPI::RegisterHub ("usb", errmsg) != YAPI::SUCCESS) {
cerr << "RegisterHub error: " << errmsg << endl;
return 1;

}

if (target == "any") {
// retreive any pwm input available
pwm = YPwmInput::FirstPwmInput () ;
if (pwm == NULL) {
cerr << "No module connected (Check cable)" << endl;
exit(1);
}
} else {
// retreive the first pwm input from the device given on command line
pwm = YPwmInput::FindPwmInput (target + ".pwmInputl"):;
}

// we need to retreive both channels from the device.

if (pwm->isOnline()) {
m = pwm->get module () ;
pwml = YPwmInput::FindPwmInput (m->get serialNumber () + ".pwmInputl");
pwm2 = YPwmInput::FindPwmInput (m->get serialNumber () + ".pwmInput2");

} else {
cerr << "No module connected (Check cable)" << endl;
exit (1) ;
}
while (pwml->isOnline()) {
cout << "PWM1l : " << pwml->get frequency() << " Hz " << pwml->get dutyCycle ()
<< " % " << pwml->get pulseCounter () << "pulses edges" << endl;
cout << "PWM2 : " << pwm2->get frequency() << " Hz " << pwm2->get dutyCycle ()
<< " % " << pwm2->get pulseCounter () << " pulses edges" << endl;
cout << " (press Ctrl-C to exit)" << endl;

YAPI::Sleep (1000, errmsqg);
}
cout << "Module disconnected" << endl;
YAPI::FreeAPI();
return 0;

www.yoctopuce.com 47

8. Using Yocto-PWM-Rx-C with C++

8.2. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#include <iostream>
#include <stdlib.h>

#include "yocto api.h"

using namespace std;

static void usage (const char *exe)
{
cout << "usage: " << exe << " <serial or logical name>
exit (1) ;
}
int main(int argc, const char * argv[])
{
string errmsg;
if (YAPI::RegisterHub ("usb", errmsg) != YAPI::SUCCESS) {
cerr << "RegisterHub error: " << errmsg << endl;
return 1;

}

if (argc < 2)
usage (argv[0]) ;

YModule *module = YModule::FindModule (argv[1l]);

if (module->isOnline()) {
if (argc > 2) {
if (string(argv[2]) == "ON")
module->set beacon (Y BEACON ON) ;
else
module->set beacon (Y BEACON OFF) ;
}

[ON/OFF]" << endl;

cout << "serial: " << module->get serialNumber () << endl;
cout << "logical name: " << module->get logicalName () << endl;
cout << "luminosity: " << module->get luminosity () << endl;
cout << "beacon: Y
if (module->get beacon() == Y BEACON_ ON)
cout << "ON" << endl;
else
cout << "OFF" << endl;
cout << "upTime: " << module->get upTime() / 1000 << " sec" << endl;
cout << "USB current: " << module->get usbCurrent () << " mA" << endl;
cout << "Logs:" << endl << module->get lastLogs() << endl;
} else {
cout << argv[l] << " not connected (check identification and USB cable)"
<< endl;

}
YAPI::FreeAPI();
return 0;

Each property xxx of the module can be read thanks to a method of type get xxxx(), and
properties which are not read-only can be modified with the help of the set xxx () method. For

more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to

48

www.yoctopuce.com

8. Using Yocto-PWM-Rx-C with C++

forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

#include <iostream>
#include <stdlib.h>

#include "yocto api.h"

using namespace std;

static void usage (const char *exe)

{
cerr << "usage: " << exe << " <serial> <newlLogicalName>" << endl;
exit (1) ;

}
int main(int argc, const char * argv[])

string errmsg;

he AP to se devices

if (YAPI::RegisterHub ("usb", errmsg) != YAPI::SUCCESS) {
cerr << "RegisterHub error: " << errmsg << endl;
return 1;

}

if (argc < 2)
usage (argv[0]) ;

YModule *module = YModule::FindModule (argv([1l]); '/ use serial or logical name
if (module->isOnline()) {
if (argc >= 3) {
string newname = argv[2];
if (!yCheckLogicalName (newname)) {
cerr << "Invalid name (" << newname << ")" << endl;

usage (argv[0]) ;
}
module->set logicalName (newname) ;
module->saveToFlash () ;

}

cout << "Current name: " << module->get logicalName () << endl;
} else {
cout << argv[l] << " not connected (check identification and USB cable)"
<< endl;

}
YAPI: :FreeAPI();
return 0;

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

#include <iostream>

#include "yocto api.h"

using namespace std;

int main(int argc, const char * argvl[])

{

string errmsg;

www.yoctopuce.com 49

8. Using Yocto-PWM-Rx-C with C++

if (YAPI::RegisterHub ("usb", errmsg) != YAPI::SUCCESS) {

cerr << "RegisterHub error: " << errmsg << endl;
return 1;

}

cout << "Device list: " << endl;

YModule *module = YModule::FirstModule () ;

while (module != NULL) {
cout << module->get serialNumber () << " "
cout << module->get productName () << endl;
module = module->nextModule () ;

}
YAPI::FreeAPI();
return 0;

8.3. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

» Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPT.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

50 www.yoctopuce.com

8. Using Yocto-PWM-Rx-C with C++

8.4. Integration variants for the C++ Yoctopuce library

Depending on your needs and on your preferences, you can integrate the library into your projects in
several distinct manners. This section explains how to implement the different options.

Integration in source format (recommended)
Integrating all the sources of the library into your projects has several advantages:

* |t guaranties the respect of the compilation conventions of your project (32/64 bits, inclusion of
debugging symbols, unicode or ASCII characters, etc.);

« It facilitates debugging if you are looking for the cause of a problem linked to the Yoctopuce
library;

* It reduces the dependencies on third party components, for example in the case where you
would need to recompile this project for another architecture in many years;

* It does not require the installation of a dynamic library specific to Yoctopuce on the final
system, everything is in the executable.

To integrate the source code, the easiest way is to simply include the Sources directory of your
Yoctopuce library into your IncludePath, and to add all the files of this directory (including the sub-
directory yapi) to your project.

For your project to build correctly, you need to link with your project the prerequisite system libraries,
that is:

* For Windows: the libraries are added automatically
* For macOS: IOKit.framework and CoreFoundation.framework
» For Linux: libm, libpthread, libusb1.0, and libstdc++

Integration as a static library

With the integration of the Yoctopuce library as a static library, you do not need to install a dynamic
library specific to Yoctopuce, everything is in the executable.

To use the static library, you must first compile it using the shell script build.sh on UNIX, or
build.bat on Windows. This script, located in the root directory of the library, detects the OS and
recompiles all the corresponding libraries as well as the examples.

Then, to integrate the static Yoctopuce library to your project, you must include the Sources
directory of the Yoctopuce library into your IncludePath, and add the sub-directory Binaries/. ..
corresponding to your operating system into your libPath.

Finally, for you project to build correctly, you need to link with your project the Yoctopuce library and
the prerequisite system libraries:

* For Windows: yocto-static.lib
* For macOS: libyocto-static.a, IOKit.framework, and CoreFoundation.framework
* For Linux: libyocto-static.a, libm, libpthread, libusb1.0, and libstdc++.

Note, under Linux, if you wish to compile in command line with GCC, it is generally advisable to link
system libraries as dynamic libraries, rather than as static ones. To mix static and dynamic libraries
on the same command line, you must pass the following arguments:

gcc (...) -Wl,-Bstatic -lyocto-static -Wl,-Bdynamic -1lm -lpthread -lusb-1.0 -lstdc++

Integration as a dynamic library

Integration of the Yoctopuce library as a dynamic library allows you to produce an executable smaller
than with the two previous methods, and to possibly update this library, if a patch reveals itself
necessary, without needing to recompile the source code of the application. On the other hand, it is
an integration mode which systematically requires you to copy the dynamic library on the target

www.yoctopuce.com 51

8. Using Yocto-PWM-Rx-C with C++

machine where the application will run (yocto.dll for Windows, libyocto.s0.1.0.1 for macOS and
Linux).

To use the dynamic library, you must first compile it using the shell script build.sh on UNIX, or
build.bat on Windows. This script, located in the root directory of the library, detects the OS and
recompiles all the corresponding libraries as well as the examples.

Then, To integrate the dynamic Yoctopuce library to your project, you must include the Sources
directory of the Yoctopuce library into your IncludePath, and add the sub-directory Binaries/. ..
corresponding to your operating system into your LibPath.

Finally, for you project to build correctly, you need to link with your project the dynamic Yoctopuce
library and the prerequisite system libraries:

* For Windows: yocto.lib
» For macOS: libyocto, IOKit.framework, and CoreFoundation.framework
* For Linux: libyocto, libm, libpthread, libusb1.0, and libstdc++.

With GCC, the command line to compile is simply:

gcc (...) -lyocto -1lm -lpthread -lusb-1.0 -lstdc++

52 www.yoctopuce.com

9. Using Yocto-PWM-Rx-C with C#

C# (pronounced C-Sharp) is an object-oriented programming language promoted by Microsoft, it is
somewhat similar to Java. Like Visual-Basic and Delphi, it allows you to create Windows applications
quite easily. C# is supported under Windows Visual Studio 2017 and its more recent versions.

Our programming library is also compatible with Mono, the open source version of C# that also works
on Linux and macQOS. Under Linux, use Mono version 5.20 or more recent. Under macOS, support is
limited to 32bit systems, which makes it virtually useless nowadays. You will find on our web site
various articles that describe how to configure Mono to use our library.

9.1. Installation

Download the Visual C# Yoctopuce library from the Yoctopuce web site'. There is no setup program,
simply copy the content of the zip file into the directory of your choice. You mostly need the content
of the Sources directory. The other directories contain the documentation and a few sample
programs. All sample projects are Visual C# 2010, projects, if you are using a previous version, you
may have to recreate the projects structure from scratch.

9.2. Using the Yoctopuce API in a Visual C# project

The Visual C#.NET Yoctopuce library is composed of a DLL and of source files in Visual C#. The
DLL is not a .NET DLL, but a classic DLL, written in C, which manages the low level communications
with the modules?. The source files in Visual C# manage the high level part of the API. Therefore,
your need both this DLL and the .cs files of the sources directory to create a project managing
Yoctopuce modules.

Configuring a Visual C# project

The following indications are provided for Visual Studio Express 2010, but the process is similar for
other versions. Start by creating your project. Then, on the Solution Explorer panel, right click on your
project, and select "Add" and then "Add an existing item".

A file selection window opens. Select the yocto api.cs file and the files corresponding to the
functions of the Yoctopuce modules that your project is going to manage. If in doubt, select all the
files.

1 www.yoctopuce.com/EN/libraries.php

The sources of this DLL are available in the C++ API

www.yoctopuce.com 53

9. Using Yocto-PWM-Rx-C with C#

You then have the choice between simply adding these files to your project, or to add them as links
(the Add button is in fact a scroll-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply keeps a link on the original files. We
recommend you to use links, which makes updates of the library much easier.

Then add in the same manner the yapi.d11l DLL, located in the Sources/d11 directory®. Then,
from the Solution Explorer window, right click on the DLL, select Properties and in the Properties
panel, set the Copy to output folder to always. You are now ready to use your Yoctopuce modules
from Visual Studio.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

9.3. Control of the Pwminput function

A few lines of code are enough to use a Yocto-PWM-Rx-C. Here is the skeleton of a C# code
snipplet to use the Pwmlinput function.

[oooll

string errmsg ="";
YAPI.RegisterHub ("usb", errmsg);

[oool

YPwmInput pwminput = YPwmInput.FindPwmInput ("YPWMRX1C-123456.pwmInputl")

if (pwminput.isOnline ())

{

}

Let's look at these lines in more details.

YAPIL.RegisterHub

The YAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPI.SUCCESS and errmsg contains the error message.

YPwmInput.FindPwminput

The YPwmInput.FindPwmInput function allows you to find a PWM input from the serial number
of the module on which it resides and from its function name. You can use logical names as well, as
long as you have initialized them. Let us imagine a Yocto-PWM-Rx-C module with serial number
YPWMRX1C-123456 which you have named "MyModule", and for which you have given the
pwminput1 function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pwminput
pwminput
pwminput
pwminput
pwminput

/PwmInput.FindPwmInput
PwmInput.FindPwmInput

("YPWMRX1C-123456.pwmInputl") ;
(
YPwmInput.FindPwmInput (
(
(

"YPWMRX1C-123456.MyFunction") ;
"MyModule.pwmInputl") ;
'MyModule.MyFunction") ;
"MyFunction") ;

mmInput.FindPwmInput
YPwmInput.FindPwmInput

L | R |

YPwmInput.FindPwmInput returns an object which you can then use at will to control the PWM
input.

3 Remember to change the filter of the selection window, otherwise the DLL will not show.

54 www.yoctopuce.com

9. Using Yocto-PWM-Rx-C with C#

isOnline

The isOnline () method of the object returned by YPwmInput.FindPwmInput allows you to
know if the corresponding module is present and in working order.

get_frequency

The get frequency() method of the object returned by YPwmInput.FindPwmIntput
returns the detected PWM frequency.

get_dutyCycle

The get dutyCycle () method of the object returned by YPwmInput.FindPwmInput returns
the detected PWM duty cycle.

A real example

Launch Microsoft Visual C# and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-PWM-Rx-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl

{

D]

>lass Program

~ O

static void usage ()

{
string execname = System.AppDomain.CurrentDomain.FriendlyName;
Console.WriteLine ("Usage:");
Console.WriteLine (execname + " <serial number>");
Console.WritelLine (execname + " <logical name>");
Console.WritelLine (execname + " any ");

System.Threading.Thread.Sleep (2500) ;
Environment.Exit (0) ;

}

static void die(string msg)

{
Console.WriteLine (msg + " (check USB cable) ");
Environment.Exit (0) ;

}

static void Main(string[] args)
{
string errmsg = "";
string target;
YPwmInput pwm;
YPwmInput pwml = null;
YPwmInput pwm2 = null;
YModule m = null;

if (args.Length < 1) usage();
target = args[0].ToUpper /() ;

A P c = v
ALl TO USE oca

if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS) {
Console.WritelLine ("RegisterHub error: " + errmsg);
Environment.Exit (0) ;

}

if (target == "ANY") {

// retreive any pwm input available

pwm = Y Input.FirstPwmInput () ;

if (pwm == null) die("No module connected");
} else {

www.yoctopuce.com 55

9. Using Yocto-PWM-Rx-C with C#

// retreive the first pwm input from the device given on command line
pwm = YPwmInput.FindPwmInput (target + ".pwmInputl");
}

// we need to retreive both channels from the device.
if (pwm.isOnline()) {
m = pwm.get module();
pwml = YPwmInput.FindPwmInput (m.get serialNumber () + ".pwmInputl");
pwm2 = YPwmInput.FindPwmInput (m.get serialNumber () + ".pwmInput2");
} else die("Module not connected");

while (m.isOnline()) {
Console.WriteLine ("PWMl: " + pwml.get frequency() .ToString() + " Hz
+ pwml.get dutyCycle().ToString() + " % "
+ pwml.get pulseCounter().ToString() + " pulse edges ");
Console.WriteLine ("PWM2: " + pwm2.get frequency().ToString() + " Hz "
+ pwm2.get dutyCycle().ToString() + " % "
+ pwm2.get pulseCounter().ToString() + " pulse edges ");
Console.WriteLine (" (press Ctrl-C to exit)");
YAPI.Sleep (1000, ref errmsq);

}
YAPI.FreeAPI ()
die ("Module not connected");

}

9.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl

{

class Program

{

static void usage()

{

string execname = System.AppDomain.CurrentDomain.FriendlyName;
Console.WriteLine ("Usage:");

Console.WritelLine (execname + " <serial or logical name> [ON/OFF]");
System.Threading.Thread.Sleep (2500) ;

Environment.Exit (0) ;

}

static void Main(string[] args)

{
YModule m;
string errmsg = "";

if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS) ({
Console.WritelLine ("RegisterHub error: " + errmsgqg);
Environment.Exit (0) ;

}

if (args.Length < 1) usage () ;

m = YModule.FindModule (args[0]); // use serial or logical name
if (m.isOnline()) {
if (args.Length >= 2) {
if (args[l].ToUpper () == "ON") {

m.set beacon (YModule.BEACON ON) ;
}
if (args[l].ToUpper () == "OFF") {
m.set beacon (YModule.BEACON OFF) ;
}

56 www.yoctopuce.com

9. Using Yocto-PWM-Rx-C with C#

}

Console.WriteLine ("serial: " + m.get serialNumber());
Console.WriteLine ("logical name: " + m.get logicalName()) ;
Console.WriteLine ("luminosity: " + m.get luminosity().ToString()):;
Console.Write ("beacon: W g
if (m.get beacon() == YModule.BEACON_ON)
Console.WriteLine ("ON") ;
else
Console.WriteLine ("OFF") ;
Console.WriteLine ("upTime: " + (m.get upTime() / 1000).ToString() + " sec");
Console.WriteLine ("USB current: " + m.get usbCurrent().ToString() + " mA");

Console.WriteLine ("Logs:\r\n" + m.get lastLogs());

} else {
Console.WriteLine (args[0] + " not connected (check identification and USB cable)"):

}
YAPI.FreeAPI();
}
}

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl
{
class Program
{
static void usage()
{
string execname = System.AppDomain.CurrentDomain.FriendlyName;
Console.WriteLine ("Usage:");
Console.WriteLine ("usage: demo <serial or logical name> <new logical name>");
System.Threading.Thread.Sleep (2500) ;
Environment.Exit (0) ;

}

static void Main(string[] args)
{

YModule m;

string errmsg = "";

string newname;

if (args.Length != 2) usage();
if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS) {
Console.WriteLine ("RegisterHub error: " + errmsqg);

Environment.Exit (0) ;

}

m = YModule.FindModule (args[0]); // use serial or logical name
if (m.isOnline()) {
newname = args[l];
if (!YAPI.CheckLogicalName (newname)) {
Console.WriteLine ("Invalid name (" + newname + ")");

Environment.Exit (0);

www.yoctopuce.com 57

9. Using Yocto-PWM-Rx-C with C#

}

m.set logicalName (newname) ;
m.saveToFlash () ;) t

Console.Write ("Module: serial= " + m.get serialNumber());
Console.WriteLine (" / name= " + m.get logicalName());
} else {

Console.Write ("not connected (check identification and USB cable");
}
YAPI.FreeAPI():;
}
}
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl
{
class Program
{
static void Main(string[] args)
{
YModule m;
string errmsg = "";

if (YAPI.RegisterHub ("usb", ref errmsg) != YAPI.SUCCESS) {
Console.WriteLine ("RegisterHub error: " + errmsqg);
Environment.Exit (0) ;

}

Console.WriteLine ("Device list");

m = YModule.FirstModule () ;

while (m != null) {
Console.WriteLine (m.get serialNumber() + " (" + m.get productName() + ")");
m = m.nextModule () ;

}
YAPI.FreeAPI();
}
}
}

9.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then

58 www.yoctopuce.com

9. Using Yocto-PWM-Rx-C with C#

hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

+ If your code catches the exception and handles it, everything goes well.

* If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPT.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 59

60

www.yoctopuce.com

10. Using the Yocto-PWM-Rx-C with LabVIEW

LabVIEW is edited by National Instruments since 1986. It is a graphic development environment:
rather than writing lines of code, the users draw their programs, somewhat like a flow chart.
LabVIEW was designed mostly to interface measuring tools, hence the Virtual Instruments name for
LabVIEW programs. With visual programming, drawing complex algorithms becomes quickly
fastidious. The LabVIEW Yoctopuce library was thus designed to make it as easy to use as possible.
In other words, LabVIEW being an environment extremely different from other languages supported
by Yoctopuce, there are major differences between the LabVIEW API and the other APIs.

10.1. Architecture

The LabVIEW library is based on the Yoctopuce DotNetProxy library contained in the
DotNetProxyLibrary.dll DLL. In fact, it is this DotNetProxy library which takes care or most of the work
by relying on the C# library which, in turn, uses the low level library coded in yapi.dll (32bits) and
amd64\yapi.dll(64bits).

r)
Yoctopuce library for LabVIEW
L o J
30
DotNetProxy.dll (.NET Assembly)
[YoctoProxyAPlL.* : .NET Proxy API]
_lnL
[YoctoLib.* : Yoctopuce standard C# API]
>) 3F g
yapi.dil | [amd64/iyapidil

low-level API (32 bit) J Llow-level API (64 bit)
\
LabVIEW Yoctopuce API architecture

You must therefore imperatively distribute the DotNetProxyLibrary.dll, yapi.dll, and amd64\yapi.dil
with your LabVIEW applications using the Yoctopuce API.

If need be, you can find the low level API sources in the C# library and the DotNetProxyLibrary.dll
sources in the DotNetProxy library.

www.yoctopuce.com 61

10. Using the Yocto-PWM-Rx-C with LabVIEW

10.2. Compatibility

Firmware

For the LabVIEW Yoctopuce library to work correctly with your Yoctopuce modules, these modules
need to have firmware 37120, or higher.

LabVIEW for Linux and MacOS

At the time of writing, the LabVIEW Yoctopuce API has been tested under Windows only. It is
therefore most likely that it simply does not work with the Linux and MacOS versions of LabVIEW.

LabVIEW NXG

The LabVIEW Yoctopuce library uses many techniques which are not yet available in the new
generation of LabVIEW. The library is therefore absolutely not compatible with LabVIEW NXG.

About DotNewProxyLibrary.dll

In order to be compatible with as many versions of Windows as possible, including Windows XP, the
DotNetProxyLibrary.dll library is compiled in .NET 3.5, which is available by default on all the
Windows versions since XP.

10.3. Installation

Download the LabVIEW library from the Yoctopuce web site'. It is a ZIP file in which there is a
distinct directory for each version of LabVIEW. Each of these directories contains two subdirectories:
the first one contains programming examples for each Yoctopuce product; the second one, called
Vis, contains all the Vls of the API and the required DLLs.

Depending on Windows configuration and the method used to copy the DotNetProxyLibrary.dll on
your system, Windows may block it because it comes from an other computer. This may happen
when the library zip file is uncompressed with Window's file explorer. If the DLL is blocked, LabVIEW
will not be able to load it and an error 1386 will occur whenever any of the Yoctopuce Vls is
executed.

There are two ways to fix this. The simplest is to unblock the file with the Windows file explorer: right
click / properties on the DotNetProxyLibrary.dll file, and click on the unblock button. But this has to be
done each time a new version of the DLL is copied on your system.

1 http://www.yoctopuce.com/EN/libraries.php

62 www.yoctopuce.com

10. Using the Yocto-PWM-Rx-C with LabVIEW

{ * DotNetProxyLibrary.dll Properties = 1

General | Digital Signatures | Security | Details | Previous Versionsl

, Dot Met Prosgy Librany.dll

Type of file: Application extension {.dll)

Opens with: Unknown application [Change...

Location: CmphLabVIEW 2017 \Wls
Size: 720 KB (738,000 bytes)
Size on disk: 724 KB (741,376 bytes)

Created: Friday, November 15, 2015, 11:06:38 AM
Maodified: Monday, Movember 18, 2015, 7:08:48 PM
Accessed: Friday, Movember 15, 2015, 11:06:38 AM

Attributes: [C| Read-only [Hidden

Security: This file came from anather
computer and might be blocked th
help protect this computer.

[ok || cance || ool

Unblock the DotNetProxyLibrary DLL.

Alternatively, one can modify the LabVIEW configuration by creating, in the same directory as the
labview.exe executable, an XML file called labview.exe.config containing the following code:

<?xml version ="1.0"?2>

<configuration>

<runtime>

<loadFromRemoteSources enabled="true" />
</runtime>

</configuration>

Make sure to select the correct directory depending on the LabVIEW version you are using (32 bits
vs. 64 bits). You can find more information about this file on the National Instruments web site.?

To install the LabVIEW Yoctopuce API, there are several methods.

Method 1 : "Take-out" installation

The simplest way to use the Yoctopuce library is to copy the content of the Vis directory wherever
you want and to use the Vls in LabVIEW with a simple drag-n-drop operation.

To use the examples provided with the API, it is simpler if you add the directory of Yoctopuce Vls into
the list of where LabVIEW must look for Vls that it has not found. You can access this list through the
Tools > Options > Paths > VI Search Path menu.

2 https://knowledge.ni.com/KnowledgeAtrticleDetails?id=kA00Z000000P8XnSAK

www.yoctopuce.com 63

10. Using the Yocto-PWM-Rx-C with LabVIEW

[-] tabview = Esn =<
File Opelote Help
urement & Automation Explorer...

Instrumentation »
Security 3

User Name...

[- | options

Category -
Front Panel

[ESRECR =)

LLB Manager...
Import » Block Diagram
Shared Variable » Controls/Functions Palettes VISearch Path [] [EJuse defautt

Distributed System Manager

Vi T ——
<foundvi>

<vilib>\"

<userib>*

<instrlib>*

aireyTd lesiNational

C:\Yoctopuce\LabVIEW2017\VIs

nment -
Search /

Menu Shortcuts.
Revision History
Security

Shared Variable Engine
VI Server

Web Server

Find VIs on Disk...
brepare Example Vis for NI Example Finder...
Remote Panel Connection Manager...
b Publishing Tool...
brtrol and Simulation

Browse...

EI C:\Yoctopuce\LabVIEW2017\VIs

agpts N abVIEW 2017\resource

[msertBefore N[Insertaster | [Replace | Rem,
E) NI Blog articles | Scalable EW Validation Solutions

*Changes to marked options will take effect the next time you start LabVIEW.

oK

][cancel][Help

Configuring the "VI Search Path"

Method 2 : Provided installer

In each LabVIEW folder of the Library, you will find a VI named "Install.vi", just open the one
matching your LabVIEW version.

'

D Yoctopuce library for LabVIEW (xooood)

computer, just choose the type of installation you want:

Then, click the "5Start” button to continue

This will install the Yoctopuce library for LabVIEW 2017 (64-bit) on your

E} Install: Copy VI and documentation files into LabVIEW's vilib folder

-

=3

| Start ' |Cancel'

The provider installer

This installer provide 3 installation options:

Install: Keep VI and documentation files where they are.
With this option, VI files are keep in the place where the library has been unzipped. So you will have
to make sure these files are not deleted as long as you need them. Here is what the installer will do if
that option is chosen:

the labview.ini file.

» A dir.mnu palette file referring to Vls in the install folder will be created in

» All references to Yoctopuce any library paths will be removed from the viSearchPath option in

C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce

labview.ini file.

» A reference to the VIs source install path will inserted into the viSearchPath option in the

64

www.yoctopuce.com

10. Using the Yocto-PWM-Rx-C with LabVIEW

Install: Copy VI and documentation files into LabVIEW's vi.lib folder

In that case all required files are copied inside the LabVIEW's installation folder, so you will be able
to delete the installation folder once the original installation is complete. Note that programming
examples won't be copied. Here is the exact behaviour of the installer in that case:

+ All references to Yoctopuce library paths will be removed from viSearchPath in labview.ini file
All Vis, DLLs, and documentation files will be copied into:

C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\Yoctopuce

Vls will be patched with the path to copied documentation files

A dir.mnu palette file referring to copied VIs will be created in

C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce

Uninstall Yoctopuce Library
this option is meant to remove the LabVIEW library from your LabVIEW installation, here is how it is
done:

+ All references to Yoctopuce library paths will be removed from viSearchPath in labview.ini file
» Following folders, if exists, will be removed:
C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\addons\Yoctopuce
C:\Program Files xx\National Instruments\LabVIEW 20xx\vi.lib\Yoctopuce

In any case, if the labview.ini file needs to be modified, a backup copy will be made beforehand.

The installer identifies Yoctopuce Vls library folders by checking the presence of the YRegisterHub.vi
file in said folders.

Once the installation is complete, a Yoctopuce palette will appear in Functions/Addons menu.

Method 3 : Installation in a LabVIEW palette (ancillary method)

The steps to manually install the VIs directly in the LabVIEW palette are somewhat more complex.
You can find the detailed procedure on the National Instruments web site 2, but here is a summary:

1. Create a Yoctopuce/API directory in the C:\Program Files\National Instruments\LabVIEW xxxx
\vi.lib directory and copy all the VIs and DLLs of the VIs directory into it.

2. Create a Yoctopuce directory in the C:\Program Files\National Instruments\LabVIEW xxxx
\menus\Categories directory.

3. Run LabVIEW and select the option Tools>Advanced>Edit Palette Set

File Edit View Project Operate [Jfd| Window Help

Measurement & Automation Explorer...

Instrumentation 4

Profile 2
Security »

User Name...
Information on Building Applications

LLB Manager...

Import 3
Shared Variable 2
Distributed System Manager

Find VIs on Disk...

Prepare Example Vs for NI Example Finder...
Remote Panel Connection Manager...

‘Web Publishing Tool...

Find LabVIEW Add-ons...

VI Package Manager...

Options... Clear Compiled Object Cache...
Edit Error Codes...

Create or Edit Express VI...

Export Strings...
Import Strings...

3 https://forums.ni.com/t5/Developer-Center-Resources/Creating-a-LabVIEW-Palette/ta-p/3520557

www.yoctopuce.com 65

10. Using the Yocto-PWM-Rx-C with LabVIEW

Three windows pop up:

o "Edit Controls and Functions Palette Set"
o "Functions"
o "Controls"

[dit Controls and Functions Palette Set =

LabVIEW loads a separate palette set for cach target. If you are working on
more than one target, the palette set you are editing is the one in use before
you displayed this dialog.

Current Palette Set

LocalHost

Save Changes Saves changes you just made to this palette set.

cha
Cancels changes you just made to this palette set.
Control & Sim
Restore to Default Resets to the default palette set when you installed oy —
LabVIEW.
Favorites mbedded Addons

E
Development

<UseDefaultM... FPGA Interface

WSN Host AP

Displays help for this dialog box.

in the Function window, there is a Yoctopuce icon. Double-click it to create an empty
"Yoctopuce" window.

4. In the Yoctopuce window, perform a Right click>Insert>Vi(s)..

Yoctopuce

4+ O\ Search Customizew

Subpalette...

| J Synchronize With Directory

Display S}fnchrﬁniz.atiﬂn Path... Empty Slot
Standard Palette View »
Empty Row

"WL..." Option

in order to open a file chooser. Put the file chooser in the vi.lib\Yoctopuce\API directory that
you have created in step 1 and click on Current Folder

Select a VI or directory to add =
G () =[J < Program Files » National Instruments » LebVIEW 2017 » vilib » Voctopuce » API » ~ %2 [Search aPi)
Organize v MNew folder i= » i @
“ Mame Date modified Type Size *
i Libraries .) =
o . amd4 21/09/201911:09 File folder
& locuments E ™
J’ - \gﬂ, YAccelerometer.vi 10/08/2019 07:40 LabVIEW Instrume...
= usie =, vARtude.vi E
it L
E V‘d ures [, vAnButton.vi
deos [, Y ArithmeticSensor.vi
_ [vBuzzervi
& Homegroup L (I Lo
=], YCarbonDioxide.vi
=], YColorLed.vi 01/08/2019 11:02
1% Computer 4 o
R =], YColorLedClustervi 13/08/2019 17:36
- ocal Dist . E
= =), ¥Compass.i 10/08/2019 0740 LabVIEW Instrume... -
~ [] +

Current Folder Open |v Cancel
/

All the Yoctopuce VIs now appear in the Yoctopuce window. By default, they are sorted by
alphabetical order, but you can arrange them as you see fit by moving them around with the
mouse. For the palette to be easy to use, we recommend to reorganize the icons over 8
columns.

5. In the "Edit Controls and Functions Palette Set" window, click on the "Save Changes" button,
the window indicates that it has created a dir.mnu file in your Documents directory.

66 www.yoctopuce.com

‘:l Edit Controls and Functions Palette Set = |

10. Using the Yocto-PWM-Rx-C with LabVIEW

[+] Preview Palette Changes

LabVIEW loads a separate palette set for each target. If you are working on
more than one target, the palette set you are editing is the one in use before
you displayed this dialog.

Current Palette Set
LocalHost o

O ——
Save Changes ’ anges you just made to this palette set.

[¥] Preview changes before saving.

‘-

Cancel Cancels changes you just made to this palette set.

Restore to Default Resets to the default palette set when you installed

LabVIEW.

Help Displays help for this dialog box.

Preview Saving Palette Files

"Yoctopuce palette” -
Currently at: C:\Program Files\National Instruments\,
LabVIEW dir.mnu

e saved at: C:\Users*YourName™ Documen
< LabVIEW Data\2017 (64- bit)\Palettes\menus\Categories\

[latopuce\dirmnd

[Continue] [Cancel l [Help]

Copy this file in the "menus\Categories\Yoctopuce" directory that you have created in

step 2.
6. Restart LabVIEW, the LabVIEW palette
of the API.

4] Functions Q, Search
Programming »
Structures Aray Cluster, Class, &

Variant

String

Comparison Timing Dialog & User
Interface
=
0 i
File VO Waveform Application
]

41 Yoctopuce

fo
> e
Synchronization Graphics & Report [=mm5 [-m]
Sound Generation o _— S i
RO) | Registertubi reeAPLi odulei
Instrument /0) - -
Mathemaics (N (@) &)
S E=TE) VAttudevi VCarbonDiosi.. YColorLedui
Data Communication)
Connectivity) | [oTE] =]
G — {
Express) VDateloggerC.. YDigitallOvi YDisplay.vi
Addons)
Select 2 V1... o
= L] W
v YHubPort.vi YHumidity.vi YRCPort.vi
e [Powes |
& =
YMultiCellWei.. YNetworkvi VYPowerxi

i
ok
=

VRangeFindervi YRealTimeClo...

=<
7
3
H

[CH
 [CH
&l

3

focni

3
8
S

YVoltage vi

now contains a Yoctopuce sub-palette with all the Vs

YSensorvi YAcceleromet.. YAnButtonvi VAritk

El

meticSe...

g

il
0
G
i
i [l

=8
=1
il
[oF

YColorledClus.. YCompass.i YCurentvi YCumentloop.. YDataloggervi

g
=
=
0
el

YDualPowerxvi YFilesxi VGenericSenso.. YGroundSpee...

&
£
3
H

=
-8
S
€8
ol

Yiat

=
a
s,
g

itude.vi Ylightsensorvi Viongitudevi VYMax

&
]
2
g
3
2

EH
te
<]

YPowerOutput.. YPressurevi YProdmitywi VPwminputyi VPwmOutput.i
[ELeoe) e
= @ 0 &
VSerialPort.vi VServoi VSPIPortyi YTemperaturexvi VTilti
e s o
& & >
YVoltageOutp... YWakeUpMon... YWakeUpSche.. YWeighScalevi YWireless.vi

10.4. Presentation of Yoctopuce Vs

The LabVIEW Yoctopuce library contains one VI per class of the Yoctopuce API, as well as a few
special Vlis. All the VlIs have the traditional connectors Error IN and Error Out.

YRegisterHub

The YRegisterHub VI is used to initialize the API. You must imperatively call this VI once before
you do anything in relation with Yoctopuce modules.

url _l_

successful
REG.HUB —l_

async

E- error msg

error in

on
error out

The YRegisterHub VI

www.yoctopuce.com

67

10. Using the Yocto-PWM-Rx-C with LabVIEW

The YRegisterHub VI takes a url parameter which can be:

» The "usb" character string to indicated that you wish to work with local modules, directly
connected by USB

* An IP address to indicate that you wish to work with modules which are available through a
network connection. This IP address can be that of a YoctoHub* or even that of a machine on
which the VirtualHub® application is running.

In the case of an IP address, the YRegisterHub VI tries to contact this address and generates and
error if it does not succeed, unless the async parameter is set to TRUE. If async is set to TRUE, no
error is generated and Yoctopuce modules corresponding to that IP address become automatically
available as soon as the said machine can be reached.

If everything went well, the successful output contains the value TRUE. In the opposite case, it
contains the value FALSE and the error msg output contains a string of characters with a description
of the error.

You can use several YRegisterHub Vls with distinct URLs if you so wish. However, on the same
machine, there can be only one process accessing local Yoctopuce modules directly by USB (url set
to "usb™). You can easily work around this limitation by running the VirtualHub software on the local
machine and using the "127.0.0.1" url.

YFreeAPI
The YFreeAPTI VI enables you to free resources allocated by the Yoctopuce API.

FREE API

error in ;ﬁ'ég error out

The YFreeAPI VI

You must call the YFreeAPT VI when your code is done with the Yoctopuce API. Otherwise, direct
USB access (url set to "usb") could stay locked after the execution of your VI, and stay so for as
long as LabVIEW is not completely closed.

Structure of the VIs corresponding to a class

The other VlIs correspond to each function/class of the Yoctopuce API, they all have the same
structure:

[7] hardware name

[5] is online
name [11] _|—[3] optional reference
input 1[10] [2] output 1
input 2 [9] [1] output 2
error in [8] [0] error out

create ref [6]
Structure of most Vls of the API.

» Connector [11]: name must contain the hardware name or the logical name of the intended
function.

Connectors [10] and [9]: input parameters depending on the nature of the VI.

Connectors [8] and [0] : error in and error out.

Connector [7] : Unique hardware name of the found function.

Connector [5] : is online contains TRUE if the function is available, FALSE otherwise.
Connectors [2] and [1]: output values depending on the nature of the VI.

Connector [6]: If this input is set to TRUE, connector [3] contains a reference to the Proxy
objects implemented by the VI°. This input is initialized to FALSE by default.

4 www.yoctopuce.com/EN/products/category/extensions-and-networking
5 http://www.yoctopuce.com/EN/virtualhub.php
see section Using Proxy objects

68 www.yoctopuce.com

10. Using the Yocto-PWM-Rx-C with LabVIEW

» Connector [3]: Reference on the Proxy object implemented by the VI if input [6] is TRUE. This
object enables you to access additional features.

You can find the list of functions available on your Yocto-PWM-Rx-C in chapter Programming,
general concepts.

If the desired function (parameter name) is not available, this does not generate an error, but the is
online output contains FALSE and all the other outputs contain the value "N/A" whenever possible. If
the desired function becomes available later in the life of your program, is online switches to TRUE
automatically.

If the name parameter contains an empty string, the VI targets the first available function of the same
type. If no function is available, is online is set to FALSE.

The YModule VI

The YModule VI enables you to interface with the "module” section of each Yoctopuce module. It
enables you to drive the module led and to know the serial number of the module.

[7] hardware name

[5] is online
module name [11] [—[3] optional reference
. MODULE |
Beacon in [10] [2] beacon out
[1] serial number
error in [8] [0] error out

create ref [6]
The YModule VI

The name input works slightly differently from other Vis. If it is called with a name parameter
corresponding to a function name, the YModule VI finds the Module function of the module hosting
the function. You can therefore easily find the serial number of the module of any function. This
enables you to build the name of other functions which are located on the same module. The
following example finds the first available YHumidity function and builds the name of the
YTemperature function located on the same module. The examples provided with the Yoctopuce API
make extensive use of this technique.

E HL | MOGULE e TEWE.
I temperature i

" |

Using the YModule VI to retrieve functions hosted on the same module

The sensor Vis

All the VIs corresponding to Yoctopuce sensors have exactly the same geometry. Both outputs
enable you to retrieve the value measured by the corresponding sensor as well the unit used.

[7] hardware name

[5] is online
sensor name [11] _l_[3] optional reference
update freq[10] SENSOR) [2] current value
[I] [1] unit
error in [8] [0] error out

create ref [6]
The sensor Vls have all exactly the same geometry

The update freq input parameter is a character string enabling you to configure the way in which the
output value is updated:

» "auto" : The VI value is updated as soon as the sensor detects a significant modification of the
value. It is the default behavior.
» "x/s": The VI value is updated x times per second with the current value of the sensor.

www.yoctopuce.com 69

10. Using the Yocto-PWM-Rx-C with LabVIEW

* "x/m","x/h": The VI value is updated x times per minute (resp. hour) with the average value
over the latest period. Note, maximum frequencies are (60/m) and (3600/h), for higher
frequencies use the (x/s) syntax.

The update frequency of the VI is a parameter managed by the physical Yoctopuce module. If
several VIs try to change the frequency of the same sensor, the valid configuration is that of the
latest call. It is however possible to set different update frequencies to different sensors on the same
Yoctopuce module.

temperature

%1.23
DEL

Changing the update frequency of the same module

The update frequency of the VI is completely independent from the sampling frequency of the
sensor, which you usually cannot modify. It is useless and counterproductive to define an update
frequency higher than the sensor sampling frequency.

10.5. Functioning and use of Vis

Here is one of the simplest example of VIs using the Yoctopuce API.

value
%1.23
DEL!
[FEGHLE ‘“—m‘" (FREEA

Minimal example of use of the LabVIEW Yoctopuce API

This example is based on the YSensor VI which is a generic VI enabling you to interface any
sensor function of a Yoctopuce module. You can replace this VI by any other from the Yoctopuce
API, they all have the same geometry and work in the same way. This example is limited to three
actions:

1. ltinitializes the API in native ("usb") mode with the YRegisterHub VI.
2. It displays the value of the first Yoctopuce sensor it finds thanks to the YSensor VI.
3. It frees the API thanks to the YFreeAPT VI.

This example automatically looks for an available sensor. If there is such a sensor, we can retrieve
its name through the hardware name output and the isOnline output equals TRUE. If there is no
available sensor, the VI does not generate an error but emulates a ghost sensor which is "offline".
However, if later in the life of the application, a sensor becomes available because it has been
connected, isOnline switches to TRUE and the hardware name contains the name of the sensor. We
can therefore easily add a few indicators in the previous example to know how the executions goes.

70 www.yoctopuce.com

10. Using the Yocto-PWM-Rx-C with LabVIEW

hardware name jsOnline

'I
TF

: value
ush | T ME FREE 427
- -: |T| DEL %

Use of the hardware name and isOnline outputs

The Vls of the Yoctopuce API are actually an entry door into the library. Internally, this mechanism
works independently of the Yoctopuce Vis. Indeed, most communications with electronic modules
are managed automatically as background tasks. Therefore, you do not necessarily need to take any
specific care to use Yoctopuce Vls, you can for example use them in a non-delayed loop without
creating any specific problem for the API.

hardware name jsoOnline

The Yoctopuce Vls can be used in a non-delayed loop

Note that the YRegisterHub VI is not inside the loop. The YRegisterHub VI is used to initialize
the API. Unless you have several URLs that you need to register, it is better to call the
YRegisterHub VI only once.

When the name parameter is initialized to an empty string, the Yoctopuce VIs automatically look for a
function they can work with. This is very handy when you know that there is only one function of the
same type available and when you do not want to manage its name. If the name parameter contains
a hardware name or a logical name, the VI looks for the corresponding function. If it does not find it, it
emulates an offline function while it waits for the true function to become available.

hardware name jsonline

| METEOMEK2-1181D4 temperature

[el s

Using names to identify the functions to be used

www.yoctopuce.com 71

10. Using the Yocto-PWM-Rx-C with LabVIEW

Error handling

The LabVIEW Yoctopuce API is coded to handle errors as smoothly as possible: for example, if you
use a VI to access a function which does not exist, the isOnline output is set to FALSE, the other
outputs are set to NaN, and thus the inputs do not have any impact. Fatal errors are propagated
through the traditional error in, error out channel.

However, the YRegisterHub VI manages connection errors slightly differently. In order to make
them easier to manage, connection errors are signaled with Success and error msg outputs. If there
is an issue during a call to the YRegisterHub VI, Success contains FALSE and error msg contains
a description of the error.

IMETEOME2-1181D4 temperature hardware name isOnline

‘., ‘ Lol

:
3
<)

Error handling

The most common error message is "Another process is already using yAPI". It means that another
application, LabVIEW or other, already uses the API in native USB mode. For technical reasons, the
native USB API can be used by only one application at the same time on the same machine. You
can easily work around this limitation by using the network mode.

10.6. Using Proxy objects

The Yoctopuce API contains hundreds of methods, functions, and properties. It was not possible, or
desirable, to create a VI for each of them. Therefore, there is a VI per class that shows the two
properties that Yoctopuce deemed the most useful, but this does not mean that the rest is not
available.

Each VI corresponding to a class has two connectors create ref and optional ref which enable you to
obtain a reference on the Proxy object of the .NET Proxy APl on which the LabVIEW library is built.

[—[3] optional reference

create ref [6]
The connectors to obtain a reference on the Proxy object corresponding to the VI

To obtain this reference, you only need to set optional ref to TRUE. Note, it is essential to close all
references created in this way, otherwise you risk to quickly saturate the computer memory.

Here is an example which uses this technique to change the luminosity of the leds of a Yoctopuce
module.

72 www.yoctopuce.com

10. Using the Yocto-PWM-Rx-C with LabVIEW

error msg hardware name

B YModuleProxy _ﬂ i, | [FREERS]

3 Luminasity ch | #x

L]

stop

Regulating the luminosity of the leds of a module

Note that each reference allows you to obtain properties (property nodes) as well as methods (invoke
nodes). By convention, properties are optimized to generate a minimum of communication with the
modules. Therefore, we recommend to use them rather than the corresponding get xxx and set_xxx
methods which might seem equivalent but which are not optimized. Properties also enable you to
retrieve the various constants of the API, prefixed with the " " character. For technical reasons, the

get xxx and set_xxx methods are not all available as properties.

5 == YSensorProxy §

CurrentValue K

S YSensorProxy o

get_currentValue v

B oy YSensorProxy _E;

D-'ssm— _CurrentValue INVALID»

Property and Invoke nodes: Using properties, methods and constants

You can find a description of all the available properties, functions, and methods in the
documentation of the .NET Proxy API.

Network mode

On a given machine, there can be only one process accessing local Yoctopuce modules directly by
USB (url set to "usb"). It is however possible that multiple process connect in parallel to
YoctoHubs’ or tp a machine on which VirtualHub® is running, including the local machine. Therefore,
if you use the local address of your machine (127.0.0.1) and if a VirtualHub runs on it, you can work
around the limitation which prevents using the native USB APl in parallel.

127.0.0.1 [~{FEcHus

L

Network mode

7 https://www.yoctopuce.com/EN/products/category/extensions-and-networking
www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 73

10. Using the Yocto-PWM-Rx-C with LabVIEW

In the same way, there is no limitation on the number of network interfaces to which the API can
connect itself in parallel. This means that it is quite possible to make multiple calls to the
YRegisterHub VI. This is the only case where it is useful to call the YRegisterHub VI several
times in the life of the application.

192.168.0.10 192.168.011

You can have multiple network connections

By default, the YRegisterHub VI tries to connect itself on the address given as parameter and
generates an error (success=FALSE) when it cannot do so because nobody answers. But if the
async parameter is initialized to TRUE, no error is generated when the connection does not succeed.
If the connection becomes possible later in the life of the application, the corresponding modules are
automatically made available.

192.168.0.10

Asynchronous connection

10.7. Managing the data logger

Almost all the Yoctopuce sensors have a data logger which enables you to store the measures of the
sensors in the non-volatile memory of the module. You can configure the data logger with the
VirtualHub, but also with a little bit of LabVIEW code.

Logging

To do so, you must configure the logging frequency by using the "LogFrequency" property which you
can reach with a reference on the Proxy object of the sensor you are using. Then, you must turn the
data logger on thanks to the YDataLogger VI. Note that, like with the YModule VI, you can obtain
the YDataLogger VI corresponding to a module with its own name, but also with the name of any
of the functions available on the same module.

hardware name
Errar msg

abic

| Recording ON ~ tl e
e e

& =% ¥SensorProxy § c D Y

"-.:L ‘J r b.- LCEIFI'Equen.:-;_-

Activating the data logger

Reading
You can retrieve the data in the data logger with the YDatalLoggerContents VI.

74 www.yoctopuce.com

10. Using the Yocto-PWM-Rx-C with LabVIEW

context in [0] [4] context out
sensor name [9] -} e I—[G] progress
start [7] [8] data
] nf > 1 .
end [9] [10] preview

error in [1] [15] error out
The YDatalLoggerContents VI

Retrieving the data from the logger of a Yoctopuce module is a slow process which can take up to
several tens of seconds. Therefore, we designed the VI enabling this operation to work iteratively.

As a first step, you must call the VI with a sensor name, a start date, and an end date (UTC UNIX
timestamp). The (0,0) pair enables you to obtain the complete content of the data logger. This first
call enables you to obtain a summary of the data logger content and a context.

As a second step, you must call the YDatalLoggerContents VI in a loop with the context parameter,
until the progress output reaches the 100 value. At this time, the data output represents the content
of the data logger.

errar msg hardware name preview

[e[z=z]
[= > }ﬂ
HEC HE 7

progress
data
__ AT

FEGHE D-ssm E_l—mmrn Loenmr 100 —_— @
—{ b=gl Ty eI

[

Retrieving the content of the data logger

L,

S, |

The results and the summary are returned as an array of structures containing the following fields:

startTime: beginning of the measuring period
endTime: end of the measuring period
averageValue: average value for the period
minValue: minimum value over the period
maxValue: maximum value over the period

Note that if the logging frequency is superior to 1Hz, the data logger stores only current values. In
this case, averageValue, minValue, and maxValue share the same value.

10.8. Function list

Each VI corresponding to an object of the Proxy API enables you to list all the functions of the same
class with the getSimilarfunctions() method of the corresponding Proxy object. Thus, you can easily
perform an inventory of all the connected modules, of all the connected sensors, of all the connected
relays, and so on.

www.yoctopuce.com 75

10. Using the Yocto-PWM-Rx-C with LabVIEW

error msg

5 YModuleProxy 4

GetSimilarFunctions »
GetSimilarFunctions
Il[guzs

l—kldl:-cl—
Retrieving the list of all the modules which are connected

10.9. A word on performances

The LabVIEW Yoctopuce API is optimized so that all the VIs and .NET Proxy API object properties
generate a minimum of communication with Yoctopuce modules. Thus, you can use them in loops
without taking any specific precaution: you do not have to slow down the loops with a timer.

- ﬂ =% YSensorProxy ﬂ

CurrentValue ¥

These two loops generate little USB communication and do not need to be slowed down

However, almost all the methods of the available Proxy objects initiate a communication with the
Yoctopuce modules each time they are called. You should therefore avoid calling them too often

without purpose.

— & ¥ YSensorProxy §

g]f‘r._:!_ll‘lfrﬁr.‘.‘-_=.|!_IE v

This loop, using a method, must be slowed down

10.10. A full example of a LabVIEW program

Here is a short example of how to use the Yocto-PWM-Rx-C in LabVIEW. After a call to the
RegisterHub V1, the YPwminput VI finds the PWM input available, then use the YModule VI to find
out the device serial number. This number is used to build the name of all sensors present on the
device. Theses names are used to initialize one VI per sensor. This technique avoids ambiguities
when several Yocto-PWM-Rx-C are connected at the same time. Once every VI is initialized, the
sensor value can be displayed. When the application is about to exit, it frees the Yoctopuce API,

thanks to the YFreeAPI VI.

76 www.yoctopuce.com

10. Using the Yocto-PWM-Rx-C with LabVIEW

[Module serial number Serial [[True -}

or
Module logical name

or

Empty string if you have no clue

Online

ch2
bﬁ.?a”‘
ioe

Ch2 Unit

[v &

Default Vals.Reinit All | § usb |-G
[&

Reset the front panel|

AN
Find out The device seral number
Find a matching PWM input, and and construct all sensor names
usb™ 10 use local devices, or I address | chedks if itis online lfrom it
Example of Yocto-PWM-Rx-C usage in LabVIEW

If you read this documentation on screen, you can zoom on the image above. You can also find this
example in the LabVIEW Yoctopuce library.

10.11. Differences from other Yoctopuce APIs

Yoctopuce does everything it can to maintain a strong coherence between its different programming
libraries. However, LabVIEW being clearly apart as an environment, there are, as a consequence,
important differences from the other libraries.

These differences were introduced to make the use of modules as easy as possible and requiring a
minimum of LabVIEW code.

YFreeAPI

In the opposite to other languages, you must absolutely free the native API by calling the YFreeAPT
VI when your code does not need to use the APl anymore. If you forget this call, the native API risks
to stay locked for the other applications until LabVIEW is completely closed.

Properties

In the opposite to classes of the other APlIs, classes available in LabVIEW implement properties. By
convention, these properties are optimized to generate a minimum of communication with the
modules while automatically refreshing. By contrast, methods of type get xxx and set xxx
systematically generate communications with the Yoctopuce modules and must be called sparingly.

Callback vs. Properties

There is no callback in the LabVIEW Yoctopuce API, the VIs automatically refresh: they are based
on the properties of the .NET Proxy API objects.

www.yoctopuce.com 77

78

www.yoctopuce.com

11. Using the Yocto-PWM-Rx-C with Java

Java is an object oriented language created by Sun Microsystem. Beside being free, its main
strength is its portability. Unfortunately, this portability has an excruciating price. In Java, hardware
abstraction is so high that it is almost impossible to work directly with the hardware. Therefore, the
Yoctopuce API does not support native mode in regular Java. The Java API needs VirtualHub to
communicate with Yoctopuce devices.

11.1. Getting ready

Go to the Yoctopuce web site and download the following items:

+ The Java programming library’
« VirtualHub? for Windows, macOS or Linux, depending on your OS

The library is available as source files as well as a jar file. Decompress the library files in a folder of
your choice, connect your modules, run VirtualHub, and you are ready to start your first tests. You do
not need to install any driver.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

11.2. Control of the Pwmlinput function

A few lines of code are enough to use a Yocto-PWM-Rx-C. Here is the skeleton of a Java code
snippet to use the Pwminput function.

[oool

YAPI.RegisterHub ("127.0.0.1");
[...]

pwminput = YPwmInput.FindPwmInput ("YPWMRX1C-123456.pwmInputl");

if (pwminput.isOnline())

{

1 www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 79

11. Using the Yocto-PWM-Rx-C with Java

Let us look at these lines in more details.

YAPIL.RegisterHub

The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the Virtual Hub able to see the devices. If the
initialization does not succeed, an exception is thrown.

YPwmInput.FindPwminput

The YPwmInput.FindPwmInput function allows you to find a PWM input from the serial number
of the module on which it resides and from its function name. You can use logical names as well, as
long as you have initialized them. Let us imagine a Yocto-PWM-Rx-C module with serial number
YPWMRX1C-123456 which you have named "MyModule", and for which you have given the
pwmlinput1 function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pwminput = out . FindPwmInput ("YPWMRX1C-123456.pwmInputl"
pwminput = out . FindPwmInput ("YPWMRX1C-123456.MyFunction")
pwminput = out . FindPwmInput ("MyModule.pwmInputl")
pwminput = C.FindPwmInput ("MyModule.MyFunction")
pwminput = .FindPwmInput ("MyFunction")

YPwmInput.FindPwmInput returns an object which you can then use at will to control the PWM
input.
isOnline

The isOnline () method of the object returned by YPwmInput.FindPwmInput allows you to
know if the corresponding module is present and in working order.

get_frequency

The get frequency() method of the object returned by YPwmInput.FindPwmIntput
returns the detected PWM frequency.

get_dutyCycle

The get dutyCycle () method of the object returned by YPwmInput.FindPwmInput returns
the detected PWM duty cycle.

A real example

Launch you Java environment and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-PWM-Rx-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

import com.yoctopuce.YoctoAPI.*;
public class Demo {

public static void main(String[] args)
{
try {

YAPI.RegisterHub ("127.0.0.1");
} catch (YAPI Exception ex) {
System.out.println ("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage () + ")");
System.out.println ("Ensure that the VirtualHub application is running");

80 www.yoctopuce.com

11. Using the Yocto-PWM-Rx-C with Java

System.exit (1) ;
}
String serial =
if (args.length > 0) {
serial = args|[0];
} else {
// retreive any pwm input available
YPwmInput tmp = YPwmInput.FirstPwmInput () ;
if (tmp == null) {
System.out.println ("No module connected (check USB cable)"):;
System.exit (1) ;

wn .
’

}

try {
serial = tmp.module () .get serialNumber () ;

} catch (YAPI Exception ex) {
System.out.println ("No module connected (check USB cable)");
System.exit (1) ;

}

// we need to retreive both DC and AC pwmInput from the device.
YPwmInput pwml = YPwmInput.FindPwmInput (serial + ".pwmInputl");

YPwmInput pwm2 = YPwmInput.FindPwmInput (serial + ".pwmInput2");
while (true) {
try {
System.out.println("PWMl: " + pwml.get frequency() + "Hz "

+ pwml.get dutyCycle() + "% "
+ pwml.get pulseCounter() + " pulse edges ");
System.out.println ("PWM2: " + pwm2.get frequency() + "Hz "
+ pwm2.get dutyCycle() + "% "
+ pwm2.get pulseCounter() + " pulse edges ");
System.out.println (" (press Ctrl-C to exit)");
YAPI.Sleep(1000) ;
} catch (YAPI Exception ex) {
System.out.println ("Module " + pwml.describe() + " is not connected (check
identification and USB cable)"):;
break;

}

}
YAPI.FreeAPI();

11.3. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

import com.yoctopuce.YoctoAPI.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class Demo {

public static void main (String[] args)
{
try {
// setup the API to use local VirtualHub

YAPI.RegisterHub ("127.0.0.1");
} catch (YAPI Exception ex) {
System.out.println ("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage () + ")");
System.out.println ("Ensure that the VirtualHub application is running");
System.exit (1) ;
}

System.out.println ("usage: demo [serial or logical name] [ON/OFF]");

YModule module;
if (args.length == 0) {
module = YModule.FirstModule () ;

www.yoctopuce.com 81

11. Using the Yocto-PWM-Rx-C with Java

if (module == null) {
System.out.println ("No module connected
System.exit (1) ;
}
} else {
module = YModule.FindModule (args[0]); // use
}
try {
if (args.length > 1) {

if

(args[l].equalsIgnoreCase ("ON")) {

module.setBeacon (YModule.BEACON ON) ;

} else {

(check USB cable)");

module.setBeacon (YModule.BEACON OFF) ;

}
}
System.out.
System.out.
System.out

if (module.get beacon() ==
System.out.println ("beacon:
} else {

System.
}
System.out.
System.out.
System.out.
} catch (YAPI Exception ex) {
System.out.println(args[1]
cable)");
}
YAPI.FreeAPI();

println("serial:
println("logical name:
.println ("luminosity:

println ("upTime:
println ("USB current:
println("logs:\n" + module.get lastLogs());

" + module
" + module
" + module

.get _serialNumber ()
.get logicalName ())
.get luminosity()):

)

YModule.BEACON ON) {

out.println ("beacon:

+ "

ON") ;
OFF") ;
" + module

" + module

not connected

/ 1000
+on

+ " sec");
mA") ;

.get _upTime ()
.get_usbCurrent ()

(check identification and USB

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx (),
and properties which are not read-only can be modified with the help of the YModule.set xxx()
method. For more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

import com.yoctopuce.YoctoAPI.*;
public class Demo {

public static void main(Stringl[]
{

try {

// setup the API to use

YAPI.RegisterHub ("127.0.0.
} catch (YAPI Exception ex) {

System.out.println ("Cannot contact VirtualHub on 127.0.0.1

ex.getLocalizedMessage () + ")");

args)

Locad

1" ;

(" +

System.out.println ("Ensure that the VirtualHub application is running");

System.exit (1) ;
}
if (args.length != 2) {
System.out.println ("usage:
System.exit (1) ;
}

YModule m;
String newname;

m =

demo <serial or logical name> <new logical name>");

YModule.FindModule (args[01]) ;

82

www.yoctopuce.com

11. Using the Yocto-PWM-Rx-C with Java

try {
newname = args([l];
if (!YAPI.CheckLogicalName (newname))

{

System.out.println("Invalid name (" + newname + ")");
System.exit (1) ;
}

m.set logicalName (newname) ;

m.saveToFlash(); // do not forget this
System.out.println("Module: serial= " + m.get serialNumber()):;
System.out.println(" / name= " + m.get logicalName());

} catch (YAPI Exception ex) {
System.out.println("Module " + args[0] + "not connected (check identification
and USB cable)");
System.out.println (ex.getMessage()) ;
System.exit (1) ;
}

YAPI.FreeAPI () ;

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

import com.yoctopuce.YoctoAPI.*;
public class Demo {

public static void main(String[] args)
{
try {

YAPI.RegisterHub ("127.0.0.1");
} catch (YAPI Exception ex) ({
System.out.println ("Cannot contact VirtualHub on 127.0.0.1 (" +
ex.getLocalizedMessage () + ")");
System.out.println ("Ensure that the VirtualHub application is running");
System.exit (1) ;
}

System.out.println ("Device list");
YModule module = YModule.FirstModule () ;

while (module != null) {
try {
System.out.println(module.get_serialNumber() S (O

module.get productName () + ")");
} catch (YAPI Exception ex) {
break;
}
module = module.nextModule () ;

}
YAPI.FreeAPI();

www.yoctopuce.com 83

11. Using the Yocto-PWM-Rx-C with Java

11.4. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software.

In the Java API, error handling is implemented with exceptions. Therefore you must catch and
handle correctly all exceptions that might be thrown by the API if you do not want your software to
crash as soon as you unplug a device.

84 www.yoctopuce.com

12. Using the Yocto-PWM-Rx-C with Android

To tell the truth, Android is not a programming language, it is an operating system developed by
Google for mobile appliances such as smart phones and tablets. But it so happens that under
Android everything is programmed with the same programming language: Java. Nevertheless, the
programming paradigms and the possibilities to access the hardware are slightly different from
classical Java, and this justifies a separate chapter on Android programming.

12.1. Native access and VirtualHub

In the opposite to the classical Java API, the Java for Android API can access USB modules natively.
However, as there is no VirtualHub running under Android, it is not possible to remotely control
Yoctopuce modules connected to a machine under Android. Naturally, the Java for Android API
remains perfectly able to connect itself to VirtualHub running on another OS.

12.2. Getting ready

Go to the Yoctopuce web site and download the Java for Android programming library'. The library is
available as source files, and also as a jar file. Connect your modules, decompress the library files in
the directory of your choice, and configure your Android programming environment so that it can find
them.

To keep them simple, all the examples provided in this documentation are snippets of Android
applications. You must integrate them in your own Android applications to make them work.
However, your can find complete applications in the examples provided with the Java for Android
library.

12.3. Compatibility

In an ideal world, you would only need to have a smart phone running under Android to be able to
make Yoctopuce modules work. Unfortunately, it is not quite so in the real world. A machine running
under Android must fulfil to a few requirements to be able to manage Yoctopuce USB modules
natively.

Android version

Our library can be compiled to work with older versions, as long as the Android tools allow us to
support them, i.e. approximately versions of the last ten years.

1 www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com 85

12. Using the Yocto-PWM-Rx-C with Android

USB host support

Naturally, not only must your machine have a USB port, this port must also be able to run in host
mode. In host mode, the machine literally takes control of the devices which are connected to it. The
USB ports of a desktop computer, for example, work in host mode. The opposite of the host mode is
the device mode. USB keys, for instance, work in device mode: they must be controlled by a host.
Some USB ports are able to work in both modes, they are OTG (On The Go) ports. It so happens
that many mobile devices can only work in device mode: they are designed to be connected to a
charger or a desktop computer, and nothing else. It is therefore highly recommended to pay careful
attention to the technical specifications of a product working under Android before hoping to make
Yoctopuce modules work with it.

Unfortunately, having a correct version of Android and USB ports working in host mode is not enough
to guaranty that Yoctopuce modules will work well under Android. Indeed, some manufacturers
configure their Android image so that devices other than keyboard and mass storage are ignored,
and this configuration is hard to detect. As things currently stand, the best way to know if a given
Android machine works with Yoctopuce modules consists in trying.

12.4. Activating the USB port under Android

By default, Android does not allow an application to access the devices connected to the USB port.
To enable your application to interact with a Yoctopuce module directly connected on your tablet on a
USB port, a few additional steps are required. If you intend to interact only with modules connected
on another machine through the network, you can ignore this section.

In your AndroidManifest.xml, you must declare using the "USB Host" functionality by adding
the <uses-feature android:name="android.hardware.usb.host" /> tag in the
manifest section.

<manifest ...>
<uses-feature android:name="android.hardware.usb.host" />;

</manifest>

When first accessing a Yoctopuce module, Android opens a window to inform the user that the
application is going to access the connected module. The user can deny or authorize access to the
device. If the user authorizes the access, the application can access the connected device as long as
it stays connected. To enable the Yoctopuce library to correctly manage these authorizations, your
must provide a pointer on the application context by calling the EnableUSBHost method of the YAPI
class before the first USB access. This function takes as arguments an object of the
android.content.Context class (or of a subclass). As the Activity class is a subclass of
Context, it is simpler to call YAPI .EnableUSBHost (this) ; in the method onCreate of your
application. If the object passed as parameter is not of the correct type, a YAPI Exception
exception is generated.

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
try {

YAPI.EnableUSBHost (this) ;
} catch (YAPI Exception e) {
Log.e("Yocto",e.getLocalizedMessage());

}

Autorun

It is possible to register your application as a default application for a USB module. In this case, as
soon as a module is connected to the system, the application is automatically launched. You must

86 www.yoctopuce.com

12. Using the Yocto-PWM-Rx-C with Android

add <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"/> in the
section <intent-filter> of the main activity. The section <activity> must have a pointer to an XML file
containing the list of USB modules which can run the application.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
<uses-feature android:name="android.hardware.usb.host" />

<application ... >

<activity
android:name=".MainActivity" >

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<action android:name="android.hardware.usb.action.USB DEVICE ATTACHED" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

<meta-data
android:name="android.hardware.usb.action.USB DEVICE ATTACHED"

android:resource="@xml/device filter" />
</activity>
</application>

</manifest>

The XML file containing the list of modules allowed to run the application must be saved in the res/
xml directory. This file contains a list of USB vendorld and devicelD in decimal. The following
example runs the application as soon as a Yocto-Relay or a YoctoPowerRelay is connected. You can
find the vendorID and the devicelD of Yoctopuce modules in the characteristics section of the
documentation.

<?xml version="1.0" encoding="utf-8"?2>

<resources>
<usb-device vendor-id="9440" product-id="12" />
<usb-device vendor-id="9440" product-id="13" />
</resources>

12.5. Control of the Pwminput function

A few lines of code are enough to use a Yocto-PWM-Rx-C. Here is the skeleton of a Java code
snippet to use the Pwmlnput function.

[oool

YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb");
[...]

"YPWMRX1C-123456.pwmInputl") ;

= = hoac used to {

pwminput = YPwmInput.FindPwmInput (
if (pwminpﬁt.isOnlinek)) {

L.;]
)

[oool

Let us look at these lines in more details.

YAPI.EnableUSBHost

The YAPI.EnableUSBHost function initializes the API with the Context of the current application.
This function takes as argument an object of the android.content.Context class (or of a
subclass). If you intend to connect your application only to other machines through the network, this
function is facultative.

www.yoctopuce.com 87

12. Using the Yocto-PWM-Rx-C with Android

YAPI.RegisterHub

The yAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the virtual hub able to see the devices. If the
string "usb" is passed as parameter, the APl works with modules locally connected to the machine. If
the initialization does not succeed, an exception is thrown.

YPwmlInput.FindPwmlinput

The YPwmInput.FindPwmInput function allows you to find a PWM input from the serial number
of the module on which it resides and from its function name. You can use logical names as well, as
long as you have initialized them. Let us imagine a Yocto-PWM-Rx-C module with serial number
YPWMRX1C-123456 which you have named "MyModule", and for which you have given the
pwminput1 function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pwminput = YPwmInput.FindPwmInput ("YPWMRX1C-123456.pwmnInputl"
pwminput = Y Input.FindPwmInput ("YPWMRX1C-123456.MyFunction")
pwminput = YPwmInput.FindPwmInput ("MyModule.pwmInputl")
pwminput = YPwmInput.FindPwmInput ("MyModule.MyFunction")
pwminput = YPwmInput.FindPwmInput ("MyFunction")

YPwmInput.FindPwmInput returns an object which you can then use at will to control the PWM
input.

isOnline

The isOnline () method of the object returned by YPwmInput.FindPwmInput allows you to
know if the corresponding module is present and in working order.

get_frequency

The get frequency() method of the object returned by YPwmInput.FindPwmIntput
returns the detected PWM frequency.

get_dutyCycle

The get dutyCycle () method of the object returned by YPwmInput.FindPwmInput returns
the detected PWM duty cycle.

A real example

Launch you Java environment and open the corresponding sample project provided in the directory
Examples//Doc-Examples of the Yoctopuce library.

In this example, you can recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

package com.yoctopuce.doc examples;

import android.app.Activity;

import android.os.Bundle;

import android.os.Handler;

import android.view.View;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;

import android.widget.Spinner;

import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;

import com.yoctopuce.YoctoAPI.YAPI Exception;
import com.yoctopuce.YoctoAPI.YModule;

import com.yoctopuce.YoctoAPI.YPwmInput;

public class GettingStarted Yocto PWM Rx extends Activity implements OnItemSelectedListener
{

private ArrayAdapter<String> aa;

private Handler handler;

88 www.yoctopuce.com

12. Using the Yocto-PWM-Rx-C with Android

private String serial;

@Override
public void onCreate (Bundle savedInstanceState)
{
super.onCreate (savedInstanceState) ;
setContentView (R.layout.gettingstarted yocto pwm rx);
Spinner my spin = (Spinner) findViewById(R.id.spinnerl);
my spin.setOnItemSelectedListener (this);
aa = new ArrayAdapter<String>(this, android.R.layout.simple spinner item);
aa.setDropDownViewResource (android.R.layout.simple spinner dropdown item);
my spin.setAdapter (aa);
handler = new Handler();

@Override
protected void onStart ()
{
super.onStart () ;
try {
aa.clear () ;
YAPI .EnableUSBHost (this) ;
YAPI.RegisterHub ("usb");
YModule module = YModule.FirstModule () ;
while (module != null) {
if (module.get productName () .equals ("Yocto-PWM-Rx")) {
String serial = module.get serialNumber () ;
aa.add (serial);
}
module = module.nextModule () ;
}
} catch (YAPI Exception e) {
e.printStackTrace () ;
}
aa.notifyDataSetChanged() ;
handler.postDelayed(r, 500);
}

@Override

protected void onStop ()

{
super.onStop () ;
handler.removeCallbacks (r);
YAPI.FreeAPI()

}

@Override
public void onItemSelected (AdapterView<?> parent, View view, int pos, long id)
{
serial = parent.getItemAtPosition (pos).toString();
}

@Override

public void onNothingSelected (AdapterView<?> arg0)
{

}

final Runnable r = new Runnable ()

{

public void run/()

{

if (serial !'= null) {
YPwmInput pwml = YPwmInput.FindPwmInput (serial + ".pwmInputl");
try {
TextView view = (TextView) findViewById(R.id.freql);
view.setText (String.format ("%.1f Hz", pwml.get frequency())):
view = (TextView) findViewById(R.id.cyclel);

view.setText (String.format ("%$.1f %%", pwml.get dutyCycle()));
view = (TextView) findViewById(R.id.pulsel);
view.setText (String.format ("%d ", pwml.get pulseCounter())):;
} catch (YAPI Exception e) {
e.printStackTrace();
}
YPwmInput pwm2 = YPwmInput.FindPwmInput (serial + ".pwmInput2");
try {
TextView view = (TextView) findViewById(R.id.freqg2);
view.setText (String.format ("%.1f Hz", pwm2.get frequency())):

www.yoctopuce.com 89

12. Using the Yocto-PWM-Rx-C with Android

}

view = (TextView) findViewById(R.id.cycle2);

view.setText (String.format ("%.1f %

$", pwm2.get dutyCycle (

view = (TextView) findViewById(R.id.pulse2);

view.setText (String.format ("%d ",
} catch (YAPI Exception e) {
e.printStackTrace () ;

}

handler.postDelayed (this, 1000);

12.6. Control of the module part

pwm2.get pulseCounter ()

)))

));

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

package com.yoctopuce.doc examples;

import
import
import
import
import
import
import
import
import

import
import
import

public
{

android.
android.
android.
android.
android.
android
android.
android.
android.

com.yoct
com.yoct

com.yoct

class Mo

app.Activity;

os.Bundle;

view.View;

widget.AdapterView;
widget.AdapterView.OnItemSelectedListen

.widget.ArrayAdapter;

widget.Spinner;
widget.Switch;
widget.TextView;

opuce.YoctoAPI.YAPI;
opuce.YoctoAPI.YAPI Exception;
opuce.YoctoAPI.YModule;

duleControl extends Activity implements

private ArrayAdapter<String> aa;
private YModule module = null;

@Override
public void onCreate (Bundle savedInstanceState)

{

}

super.o
setCont
Spinner
my spin
aa = ne

my spin

@Override
protected void onStart ()

{

super.o

try {
aa.
YAP
YAP
YMo
whi

}
} catch

e.p
}

// refr

aa.noti

nCreate (savedInstanceState) ;

entView (R.layout.modulecontrol) ;

my spin = (Spinner) findViewById(R.id.
.setOnItemSelectedListener (this);

ery

OnItemSelectedListener

spinnerl) ;

w ArrayAdapter<String>(this, android.R.layout.simple spinner item);
aa.setDropDownViewResource (android.R.layout.simple spinner dropdown item);

.setAdapter (aa) ;

nStart () ;

clear () ;
I.EnableUSBHost (this) ;
I.RegisterHub ("usb") ;
dule r = YModule.FirstModule();
le (r !'= null) {
String hwid = r.get hardwareId();
aa.add (hwid) ;
r = r.nextModule () ;

(YAPI Exception e) {
rintStackTrace () ;

esh Spinner with detected relay
fyDataSetChanged () ;

90

www.yoctopuce.com

12. Using the Yocto-PWM-Rx-C with Android

}

@Override
protected void onStop ()
{
super.onStop () ;
YAPI.FreeAPI () ;
}

private void DisplayModuleInfo ()

{
TextView field;

if (module == null)
return;

try {
field = (TextView) findViewById(R.id.serialfield);
field.setText (module.getSerialNumber()) ;
field = (TextView) findViewById(R.id.logicalnamefield) ;
field.setText (module.getLogicalName ()) ;
field = (TextView) findViewById(R.id.luminosityfield) ;
field.setText (String.format ("%$d%%", module.getLuminosity())):
field = (TextView) findViewById(R.id.uptimefield);
field.setText (module.getUpTime () / 1000 + " sec");
field = (TextView) findViewById(R.id.usbcurrentfield):;
field.setText (module.getUsbCurrent () + " mA");
Switch sw = (Switch) findViewById(R.id.beaconswitch) ;
sw.setChecked (module.getBeacon () == YModule.BEACON ON) ;
field = (TextView) findViewById(R.id.logs);

field.setText (module.get lastLogs());

} catch (YAPI Exception e) {
e.printStackTrace () ;
}
}

@Override
public void onItemSelected (AdapterView<?> parent, View view, int pos, long id)
{
String hwid = parent.getItemAtPosition (pos).toString();
module = YModule.FindModule (hwid) ;
DisplayModuleInfo () ;
}

@Override

public void onNothingSelected (AdapterView<?> arg0)
{

}

public void refreshInfo (View view)

{
DisplayModuleInfo () ;

}

public void toggleBeacon (View view)

{

if (module == null)

return;
boolean on = ((Switch) view) .isChecked() ;
try {

if (on) {
module.setBeacon (YModule.BEACON ON) ;
} else {
module.setBeacon (YModule.BEACON OFF) ;
}
} catch (YAPI Exception e) {
e.printStackTrace() ;

}

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx (),
and properties which are not read-only can be modified with the help of the YModule.set xxx|()
method. For more details regarding the used functions, refer to the API chapters.

www.yoctopuce.com 91

12. Using the Yocto-PWM-Rx-C with Android

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

package com.yoctopuce.doc examples;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;

import android.widget.EditText;

import android.widget.Spinner;

import android.widget.TextView;

import android.widget.Toast;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI Exception;
import com.yoctopuce.YoctoAPI.YModule;

public class SaveSettings extends Activity implements OnItemSelectedListener

{

private ArrayAdapter<String> aa;
private YModule module = null;

@Override
public void onCreate (Bundle savedInstanceState)
{
super.onCreate (savedInstanceState);
setContentView (R.layout.savesettings);

Spinner my spin = (Spinner) findViewById(R.id.spinnerl):;
my spin.setOnItemSelectedListener (this);
aa = new ArrayAdapter<String>(this, android.R.layout.simple spinner item);

aa.setDropDownViewResource (android.R.layout.simple spinner dropdown item);
my spin.setAdapter (aa);
}

@Override
protected void onStart ()

{

super.onStart () ;

try {
aa.clear ()
YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb");
YModule r = YModule.FirstModule () ;
while (r != null) {
String hwid = r.get hardwareId();
aa.add (hwid) ;
r = r.nextModule() ;
}
} catch (YAPI Exception e) {
e.printStackTrace();

},

// refresh Spinner with detected re
aa.notifyDataSetChanged() ;
}

@Override
protected void onStop ()
{
super.onStop () ;
YAPI.FreeAPI () ;
}

private void DisplayModuleInfo ()
{

92 www.yoctopuce.com

12. Using the Yocto-PWM-Rx-C with Android

TextView field;

if (module == null)
return;
try {
YAPI.UpdateDevicelist ();// fixme
field = (TextView) findViewById(R.id.logicalnamefield);

field.setText (module.getLogicalName()) ;
} catch (YAPI Exception e) {
e.printStackTrace();
}
}

@Override
public void onItemSelected (AdapterView<?> parent, View view, int pos, long id)
{
String hwid = parent.getItemAtPosition (pos) .toString();
module = YModule.FindModule (hwid) ;
DisplayModuleInfo () ;
}

@Override

public void onNothingSelected (AdapterView<?> arg0)
{

}

public void saveName (View view)

{

if (module == null)
return;
EditText edit = (EditText) findViewById(R.id.newname) ;
String newname = edit.getText () .toString();
try {
if (!YAPI.CheckLogicalName (newname)) {
Toast.makeText (getApplicationContext (), "Invalid name (" + newname + ")",
Toast.LENGTH LONG) .show () ;
return;

}
module.set logicalName (newname) ;
module.saveToFlash(); // do not forget this
edit.setText ("") ;

} catch (YAPI Exception ex) {
ex.printStackTrace() ;

}
DisplayModuleInfo () ;

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

package com.yoctopuce.doc examples;

import android.app.Activity;

import android.os.Bundle;

import android.util.TypedValue;
import android.view.View;

import android.widget.LinearLayout;
import android.widget.TextView;

import com.yoctopuce.YoctoAPI.YAPI;
import com.yoctopuce.YoctoAPI.YAPI Exception;
import com.yoctopuce.YoctoAPI.YModule;

www.yoctopuce.com 93

12. Using the Yocto-PWM-Rx-C with Android

public class Inventory extends Activity

{

@Override
public void onCreate (Bundle savedInstanceState)
{
super.onCreate (savedInstanceState);
setContentView (R.layout.inventory);

}

public void refreshlInventory (View view)

{
LinearLayout layout = (LinearLayout) findViewById(R.id.inventoryList);

layout.removeAllViews () ;

try {
YAPI.UpdateDeviceList () ;
YModule module = YModule.FirstModule () ;
while (module != null) {
String line = module.get serialNumber () + " (" + module.get productName () +

TextView tx = new TextView (this);

tx.setText (line) ;

tx.setTextSize (TypedValue.COMPLEX UNIT SP, 20);
layout.addView (tx) ;

module = module.nextModule () ;

}
} catch (YAPI Exception
e.printStackTrace () ;

e) {

}
}

@Override
protected void onStart ()
{
super.onStart () ;
try {
YAPI.EnableUSBHost (this) ;
YAPI.RegisterHub ("usb");
} catch (YAPI Exception e) {
e.printStackTrace();

}

refreshInventory(null) ;

}

@Override
protected void onStop ()
{

super.onStop () ;
YAPI.FreeAPI();

12.7. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software.

94 www.yoctopuce.com

12. Using the Yocto-PWM-Rx-C with Android

In the Java API for Android, error handling is implemented with exceptions. Therefore you must catch
and handle correctly all exceptions that might be thrown by the API if you do not want your software
to crash soon as you unplug a device.

www.yoctopuce.com 95

96

www.yoctopuce.com

13. Using Yocto-PWM-Rx-C with TypeScript

TypeScript is an enhanced version of the JavaScript programming language. It is a syntaxic superset
with strong typing, therefore increasing the code reliability, but transpiled - aka compiled - into
JavaScript for execution in any standard Web browser or Node.js environment.

This Yoctopuce library therefore makes it possible to implement JavaScript applications using strong
typing. Similarly to our EcmaScript library, it uses the new asynchronous features introduced in
ECMAScript 2017, which are now available in all modern JavaScript environments. Note however
that at the time of writting, Web browsers and Node.JS cannot use TypeScript code directly, so you
must first compile your TypeScript into JavaScript before running it.

The library works both in a Web browser and in Node.js. In order to allow for a static resolution of
dependencies, and to avoid ambiguities that can arise when using hybrid environments such as
Electron, the choice of the runtime environment must be done explicitly upon import of the library, by
referencing in the project either yocto api nodejs.jsoryocto api html.js.

The library can be integrated in your projects in multiple ways, depending on what best fits your
requirements:

* by directly copying the TypeScript library source files into your project, and by adding them to
your build script. Only a few files are usually needed to handle most use-cases. You will find
TypeScript source files in the src subdirectory of our library.

* by using CommonJS module resolution, natively supported by TypeScript, with a package
manager such as npm. You will find a version of the library transpiled according to CommonJS
module standard in the dist/cjs subdirectory, including all type definition files (with
extension .d.ts) and source maps (with extension .js.map) enabling source-level error
reporting and debugging. We have also published these files on npmjs under the name
yoctolib-cjs.

* by using ECMAScript standard module resolution, also supported by TypeScript, usually
referenced by relative path. You will find a version of the library transpiled as an ECMAScript
2015 module in the dist/esm subdirectory, including all type definition files (with extension .d. ts)
and source maps (with extension .js.map) enabling source-level error reporting and
debugging. We have also published these files on npm7js under the name yoctolib-esm.

www.yoctopuce.com 97

13. Using Yocto-PWM-Rx-C with TypeScript

13.1. Using the Yoctopuce library for TypeScript

1. Start by installing TypeScript on your machine if this is not yet done. In order to do so:

* Install on your development machine the official version of Node.js (version 10 or more
recent). You can download it for free from the official web site: http://nodejs.org. Make sure to
install it fully, including npm, and add it to the system path.

* Then install TypeScript on your machine using the command line:

npm install -g typescript

2. Go to the Yoctopuce web site and download the following items:

+ The TypeScript programming library’

+ The VirtualHub software? for Windows, macOS, or Linux, depending on your OS. TypeScript
and JavaScript are part of those languages which do not generally allow you to directly access
to USB peripherals. Therefore the library can only be used to access network-enabled devices
(connected through a YoctoHub), or USB devices accessible through Yoctopuce TCP/IP to
USB gateway, named VirtualHub. No extra driver will be needed, though.

3. Extract the library files in a folder of your choice, and open a command window in the directory
where you have installed it. In order to install the few dependencies which are necessary to start the
examples, run this command:

npm install

When the command has run without error, you are ready to explore the examples. They are available
in two different trees, depending on the environment that you need to use: example html for
running the Yoctopuce library within a Web browser, or example nodejs if you plan to use the
library in a Node.js environment.

The method to use for launching the examples depends on the environment. You will find more
about it below.

13.2. Refresher on asynchronous I/O in JavaScript

JavaScript is single-threaded by design. In order to handle time-consuming I/O operations,
JavaScript relies on asynchronous operations: the 1/0O call is only triggered but then the code
execution flow is suspended. The JavaScript engine is therefore free to handle other pending tasks,
such as user interface. Whenever the pending 1/O call is completed, the system invokes a callback
function with the result of the I/O call to resume execution of the original execution flow.

When used with plain callback functions, as pervasive in Node.js libraries, asynchronous 1/O tend to
produce code with poor readability, as the execution flow is broken into many disconnected callback
functions. Fortunately, the ECMAScript 2015 standard came in with Promise objects and a new
async / await syntax to abstract calls to asynchronous calls:

+ a function declared async automatically encapsulates its result as a Promise

+ within an async function, any function call prefixed with by await chains the Promise returned
by the function with a promise to resume execution of the caller

+ any exception during the execution of an async function automatically invokes the Promise
failure continuation

To make a long story short, async and await make it possible to write TypeScript code with all the
benefits of asynchronous /O, but without breaking the code flow. It is almost like multi-threaded

1 www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com/EN/virtualhub.php

98 www.yoctopuce.com

13. Using Yocto-PWM-Rx-C with TypeScript

execution, except that control switch between pending tasks only happens at places where the await
keyword appears.

This TypeScript library uses the Promise objects and async methods, to allow you to use the await
syntax. To keep it easy to remember, all public methods of the TypeScript library are async, i.e.
return a Promise object, except:

* GetTickCount (), because returning a time stamp asynchronously does not make sense...

* FindModule (), FirstModule (), nextModule (), ... because device detection and
enumeration always works on internal device lists handled in background, and does not
require immediate asynchronous I/O.

In most cases, TypeScript strong typing will remind you to use await when calling an asynchronous
method.

13.3. Control of the Pwminput function

A few lines of code are enough to use a Yocto-PWM-Rx-C. Here is the skeleton of a TypeScript code
snipplet to use the Pwmlinput function.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto api nodejs.js';
import { YPwmInput } from 'yoctolib-cjs/yocto pwminput.js';

[oool

await YAPI.RegisterHub('127.0.0.1");
[...]

var pwminput: YPwmInput = YPwmInput.FindPwmInput ("YPWMRX1C-123456.pwmInputl");

if (await pwminput.isOnline())
{

[oooll
}

Let us look at these lines in more details.

yocto_api and yocto_pwminput import

These two imports provide access to functions allowing you to manage Yoctopuce modules.
yocto api is always needed, yocto pwminput is necessary to manage modules containing a
PWM input, such as Yocto-PWM-Rx-C. Other imports can be useful in other cases, such as
YModule which can let you enumerate any type of Yoctopuce device.

In order to properly bind yocto api to the proper network libraries (provided either by Node.js or
by the web browser for an HTML application), you must import at least once in your project one of
the two variants yocto api nodejs.jsoryocto api html.js.

Note that this example imports the Yoctopuce library as a CommonJS module, which is the most
frequently used with Node.JS, but if your project is designed around EcmaScript native modules, you
can also replace in the import directive the prefix yoctolib-cjs by yoctolib-esm.

YAPI.RegisterHub

The RegisterHub method allows you to indicate on which machine the Yoctopuce modules are
located, more precisely on which machine the VirtualHub software is running. In our case, the
127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port used by
Yoctopuce). You can very well modify this address, and enter the address of another machine on
which the VirtualHub software is running, or of a YoctoHub. If the host cannot be reached, this
function will trigger an exception.

www.yoctopuce.com 99

13. Using Yocto-PWM-Rx-C with TypeScript

As explained above, using RegisterHub ("usb") is not supported in TypeScript, because the
JavaScript engine has no direct access to USB devices. It needs to go through the VirtualHub via a
localhost connection.

YPwmInput.FindPwminput

The FindPwmInput method allows you to find a PWM input from the serial number of the module
on which it resides and from its function name. You can also use logical names, as long as you have
initialized them. Let us imagine a Yocto-PWM-Rx-C module with serial number YPWMRX1C-123456
which you have named "MyModule", and for which you have given the pwminput1 function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

pwminput = YPwmInput.FindPwmInput ("YPWMRX1C-123456.pwnInputl"
pwminput = YPwmInput.FindPwmInput ("YPWMRX1C-123456.MaFonction")
pwminput = YPwmInput.FindPwmInput ("MonModule.pwmInputl")
pwminput = YPwmInput.FindPwmInput ("MonModule.MaFonction")
pwminput = YPwmInput.FindPwmInput ("MaFonction")

YPwmInput.FindPwmInput returns an object which you can then use at will to control the PWM
input.
isOnline

The isOnline () method of the object returned by FindPwmInput allows you to know if the
corresponding module is present and in working order.

get_frequency

The get frequency() method of the object returned by YPwmInput.FindPwmIntput
returns the detected PWM frequency.

get_dutyCycle

The get dutyCycle () method of the object returned by YPwmInput.FindPwmInput returns
the detected PWM duty cycle.

A real example, for Node.js

Open a command window (a terminal, a shell...) and go into the directory example_nodejs/Doc-
GettingStarted-Yocto-PWM-Rx-C within Yoctopuce library for TypeScript. In there, you will find a
file named demo . t s with the sample code below, which uses the functions explained above, but this
time used with all side materials needed to make it work nicely as a small demo.

If your Yocto-PWM-Rx-C is not connected on the host running the browser, replace in the example
the address 127.0.0.1 by the IP address of the host on which the Yocto-PWM-Rx-C is connected
and where you run the VirtualHub.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto api nodejs.js';
import { YPwmInput } from 'yoctolib-cjs/yocto pwminput.js'

let pwml: YPwmInput;
Py

let pwm2: YPwmInput;
async function startDemo (): Promise<void>
{
await YAPI.LogUnhandledPromiseRejections();
let errmsg: YErrorMsg = new YErrorMsg();
if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
return;

}
let Serial:rstring = process.argv|[process.argv.length-1];
if (serial[8] != "=-") {

100 www.yoctopuce.com

13. Using Yocto-PWM-Rx-C with TypeScript

let anyPwm = YPwmInput.FirstPwmInput () ;

if (anyPwm) {

let module: YModule = await anyPwm.get module () ;
serial = await module.get serialNumber () ;
} else {

console.log('No matching sensor connected, check cable !');
await YAPI.FreeAPI();
return;
}
}

console.log('Using device '+serial);

pwml = YPwmInput.FindPwmInput (serial + ".pwmInputl");
pwm2 = YPwmInput.FindPwmInput (serial + ".pwmInput2");
refresh () ;
}
async function refresh(): Promise<void>
{
if (await pwml.isOnline()) {
console.log ("PWMl1 : " + (await pwml.get frequency()) + "Hz "
+ (await pwml.get dutyCycle()) + "% "
+ (await pwml.get pulseCounter()) +" pulse edges ");
console.log ("PWM2 : " + (await pwm2.get frequency()) + "Hz "
+ (await pwm2.get dutyCycle()) + "% "
+ (await pwm2.get pulseCounter()) + " pulse edges ");
} else {

console.log('Module not connected');
}
setTimeout (refresh, 500);

}

startDemo () ;

As explained at the beginning of this chapter, you need to have installed the TypeScript compiler on
your machine to test these examples, and to install the typescript library dependencies. If you have
done that, you can now type the following two commands in the example directory, to finalize the
resolution of the example-specific dependencies:

npm install

You ar now ready to start the sample code with Node.js. The easiest way to do it is to use the
following command, replacing the [...] by the arguments that you want to pass to the demo code:

npm run demo [...]

This command, defined in package. json, will first start the TypeScript compiler using the simple
tsc command, then run the transpiled code in Node.js.

The compilation uses the parameters specified in the file tsconfig. json, and produces

+ a JavaScript file named demo . js, that Node.js can run
* a debug file named demo . js.map, that will help Node.js to locate the source of errors in the
original TypeScript source file rather than reporting them in the JavaScript compiled file.

Note that the package. json file in our examples uses a relative reference to the local copy of the
library, to avoid duplicating the library in each example. But of course, for your application, you can
refer to the package directly in npm repository, by adding it to your project using the command:

npm install yoctolib-cjs

Same example, but this time running in a browser

If you want to see how to use the library within a browser rather than with Node.js, switch to the
directory example_html/Doc-GettingStarted-Yocto-PWM-Rx-C. You will find there an HTML file

www.yoctopuce.com 101

13. Using Yocto-PWM-Rx-C with TypeScript

named app.html, and a TypeScript file app . t s similar to the code above, but with a few changes
since it has to interact through an HTML page rather than through the JavaScript console.

No installation is needed to run this example, as the TypeScript library is referenced using a relative
path. However, in order to allow the browser to run the code, the HTML page must be served by a
Web server. We therefore provide a simple test server for this purpose, that you can start with the
command:

npm run app-server

This command will compile the TypeScript sample code, make it available via an HTTP server on
port 3000 and open a Web browser on this example. If you change the example source code, the
TypeScript compiler will automatically be triggered to update the transpiled code and a simple page
reload on the browser will make it possible to test the change.

As for the Node.js example, the compilation process will create a source map file which makes it
possible to debug the example code in TypeScript source form within the browser debugger. Note
that as of the writing of this document, this works on Chromium-based browsers but not yet in
Firefox.

13.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto api nodejs.js';
async function startDemo(args: string[]): Promise<void>

{

await YAPI.LogUnhandledPromiseRejections();

let errmsg: YErrorMsg = new YError

Sg
if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
return;

"t the

let module: YModule = YModule.FindModule (args[0]);

if (await module.isOnline()) {
if (args.length > 1) {
if (args[1l] == 'ON') {
await module.set beacon (YModule.BEACON ON) ;
} else {

await module.set beacon (YModule.BEACON OFF) ;
}
}

console.log('serial: '+await module.get serialNumber());
console.log('logical name: '+await module.get logicalName());
console.log('luminosity: '+await module.get luminosity()+'%');
console.log ('beacon: '+

(await module.get beacon() == YModule.BEACON ON ? 'ON' : 'OFF'));
console.log('upTime: T

((await module.get upTime ()/1000)>>0) +' sec');
console.log ('USB current: '+await module.get usbCurrent()+' mA');
console.log('logs:");
console.log(await module.get lastLogs());

} else {

console.log("Module not connected (check identification and USB cable)\n");
}
await YAPI.FreeAPI ();

}

if (process.argv.length < 3) {

console.log("usage: npm run demo <serial or logicalname> [ON | OFF 1");
} else {

startDemo (process.argv.slice(2));

}

102 www.yoctopuce.com

13. Using Yocto-PWM-Rx-C with TypeScript

Each property xxx of the module can be read thanks to a method of type get xxxx(), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used methods, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () method. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto api nodejs.js';
async function startDemo (args: string[]): Promise<void>
{

await YAPI.LogUnhandledPromiseRejections();

let errmsg: YErrorMsg = new YErrorMsg();

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) ({
console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);

return;

}

let module: YModule = YModule.FindModule (args[0]) ;
if (await module.isOnline ()) {
if (args.length > 1) {

let newname: string = args[l];
if (!await YAPI.CheckLogicalName (newname)) {
console.log("Invalid name (" + newname + ")");

process.exit (1) ;
}
await module.set logicalName (newname) ;
await module.saveToFlash () ;
}
console.log ('Current name: '+await module.get logicalName()) ;
} else {
console.log("Module not connected (check identification and USB cable)\n");

}

await YAPI.FreeAPI();

}

if (process.argv.length < 3) {

console.log ("usage: npm run demo <serial> [newLogicalName]");
} else {

startDemo (process.argv.slice(2));

}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () method only 100000 times in the life of the module. Make sure
you do not call this method within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.FirstModule ()
method which returns the first module found. Then, you only need to call the nextModule ()
method of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

import { YAPI, YErrorMsg, YModule } from 'yoctolib-cjs/yocto api nodejs.js';
async function startDemo(): Promise<void>

{

await YAPI.LogUnhandledPromiseRejections();

www.yoctopuce.com 103

13. Using Yocto-PWM-Rx-C with TypeScript

let errmsg = new YErrorMsg();

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
console.log('Cannot contact VirtualHub on 127.0.0.1");
return;
}
refresh();
}
async function refresh(): Promise<void>
{
try {
let errmsg: YErrorMsg = new YErrorMsg():;
await YAPI.UpdateDevicelist (errmsg) ;
let module = YModule.FirstModule () ;

while (module) {
let line: string = await module.get serialNumber () ;
line += ' (' + (await module.get productName()) + ')';

console.log(line);
module = module.nextModule () ;

}
setTimeout (refresh, 500);
} catch(e) {
console.log(e);
}
}

startDemo () ;

13.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

* If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPTI.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the

104 www.yoctopuce.com

13. Using Yocto-PWM-Rx-C with TypeScript

expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 105

106 www.yoctopuce.com

14. Using Yocto-PWM-Rx-C with JavaScript /
EcmaScript

EcmaScript is the official name of the standardized version of the web-oriented programming
language commonly referred to as JavaScript. This Yoctopuce library take advantages of advanced
features introduced in EcmaScript 2017. It has therefore been named Library for JavaScript/
EcmaScript 2017 to differentiate it from the previous Library for JavaScript, now deprecated in favor
of this new version.

This library provides access to Yoctopuce devices for modern JavaScript engines. It can be used
within a browser as well as with Node.js. The library will automatically detect upon initialization
whether the runtime environment is a browser or a Node.js virtual machine, and use the most
appropriate system libraries accordingly.

Asynchronous communication with the devices is handled across the whole library using Promise
objects, leveraging the new EcmaScript 2017 async / await non-blocking syntax for asynchronous
I/O (see below). This syntax is now available out-of-the-box in most Javascript engines. No
transpilation is needed: no Babel, no jspm, just plain Javascript. Here is your favorite engines
minimum version needed to run this code. All of them are officially released at the time we write this
document.

* Node.js v7.6 and later

+ Firefox 52

Opera 42 (incl. Android version)
Chrome 55 (incl. Android version)
Safari 10.1 (incl. iOS version)
Android WebView 55

+ Google V8 Javascript engine v5.5

If you need backward-compatibility with older releases, you can always run Babel to transpile your
code and the library to older standards, as described a few paragraphs below.

We don't suggest using j spm anymore now that async / await are part of the standard.

14.1. Blocking I/O versus Asynchronous I/O in JavaScript

JavaScript is single-threaded by design. That means, if a program is actively waiting for the result of
a network-based operation such as reading from a sensor, the whole program is blocked. In browser
environments, this can even completely freeze the user interface. For this reason, the use of blocking
I/O in JavaScript is strongly discouraged nowadays, and blocking network APIs are getting
deprecated everywhere.

www.yoctopuce.com 107

14. Using Yocto-PWM-Rx-C with JavaScript / EcmaScript

Instead of using parallel threads, JavaScript relies on asynchronous I/O to handle operations with a
possible long timeout: whenever a long I/O call needs to be performed, it is only triggered and but
then the code execution flow is terminated. The JavaScript engine is therefore free to handle other
pending tasks, such as Ul. Whenever the pending I/0O call is completed, the system invokes a
callback function with the result of the I/O call to resume execution of the original execution flow.

When used with plain callback functions, as pervasive in Node.js libraries, asynchronous 1/0 tend to
produce code with poor readability, as the execution flow is broken into many disconnected callback
functions. Fortunately, new methods have emerged recently to improve that situation. In particular,
the use of Promise objects to abstract and work with asynchronous tasks helps a lot. Any function
that makes a long I/O operation can return a Promise, which can be used by the caller to chain
subsequent operations in the same flow. Promises are part of EcmaScript 2015 standard.

Promise objects are good, but what makes them even better is the new async / await keywords to
handle asynchronous I/O:

+ a function declared async will automatically encapsulate its result as a Promise

« within an async function, any function call prefixed with by await will chain the Promise
returned by the function with a promise to resume execution of the caller

+ any exception during the execution of an async function will automatically invoke the Promise
failure continuation

Long story made short, async and await make it possible to write EcmaScript code with all benefits of
asynchronous /O, but without breaking the code flow. It is almost like multi-threaded execution,
except that control switch between pending tasks only happens at places where the await keyword
appears.

We have therefore chosen to write our new EcmaScript library using Promises and async functions,
so that you can use the friendly await syntax. To keep it easy to remember, all public methods of
the EcmaScript library are async, i.e. return a Promise object, except:

* GetTickCount (), because returning a time stamp asynchronously does not make sense...

* FindModule (), FirstModule (), nextModule (), ... because device detection and
enumeration always work on internal device lists handled in background, and does not require
immediate asynchronous 1/O.

14.2. Using Yoctopuce library for JavaScript / EcmaScript 2017

JavaScript is one of those languages which do not generally allow you to directly access the
hardware layers of your computer. Therefore the library can only be used to access network-enabled
devices (connected through a YoctoHub), or USB devices accessible through Yoctopuce TCP/IP to
USB gateway, named VirtualHub.

Go to the Yoctopuce web site and download the following items:

« The Javascript / EcmaScript 2017 programming library’
« VirtualHub? for Windows, macOS or Linux, depending on your OS

Extract the library files in a folder of your choice, you will find many of examples in it. Connect your
modules and start the VirtualHub software. You do not need to install any driver.

Using the official Yoctopuce library for node.js

Start by installing the latest Node.js version (v7.6 or later) on your system. It is very easy. You can
download it from the official web site: http://nodejs.org. Make sure to install it fully, including npm, and
add it to the system path.

1 www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com/EN/virtualhub.php

108 www.yoctopuce.com

14. Using Yocto-PWM-Rx-C with JavaScript / EcmaScript

To give it a try, go into one of the example directory (for instance example_nodejs/Doc-Inventory).
You will see that it include an application description file (package.json) and a source file (demo.js).
To download and setup the libraries needed by this example, just run:

npm install

Once done, you can start the example file using:

node demo.]js

Using a local copy of the Yoctopuce library with node.js

If for some reason you need to make changes to the Yoctopuce library, you can easily configure your
project to use the local copy in the 1ib/ subdirectory rather than the official npm package. In order
to do so, simply type the following command in your project directory:

npm link ../../lib

Using the Yoctopuce library within a browser (HTML)

For HTML examples, it is even simpler: there is nothing to install. Each example is a single HTML file
that you can open in a browser to try it. In this context, loading the Yoctopuce library is no different
from any standard HTML script include tag.

Using the Yoctoluce library on older JavaScript engines

If you need to run this library on older JavaScript engines, you can use Babel® to transpile your code
and the library into older JavaScript standards. To install Babel with typical settings, simply use:

npm instal -g babel-cli
npm instal babel-preset-env

You would typically ask Babel to put the transpiled files in another directory, named compat for
instance. Your files and all files of the Yoctopuce library should be transpiled, as follow:

babel --presets env demo.js --out-dir compat/
babel --presets env ../../lib --out-dir compat/

Although this approach is based on node.js toolchain, it actually works as well for transpiling
JavaScript files for use in a browser. The only thing that you cannot do so easily is transpiling
JavaScript code embedded directly in an HTML page. You have to use an external script file for
using EcmaScript 2017 syntax with Babel.

Babel has many smart features, such as a watch mode that will automatically refresh transpiled files
whenever the source file is changed, but this is beyond the scope of this note. You will find more in
Babel documentation.

Backward-compatibility with the old JavaScript library

This new library is not fully backward-compatible with the old JavaScript library, because there is no
way to transparently map the old blocking API to the new asynchronous APIl. The method names
however are the same, and old synchronous code can easily be made asynchronous just by adding
the proper await keywords before the method calls. For instance, simply replace:

beaconState = module.get beacon() ;

by

3 hitp://babeljs.io

www.yoctopuce.com 109

14. Using Yocto-PWM-Rx-C with JavaScript / EcmaScript

beaconState = await module.get beacon();

Apart from a few exceptions, most XXX async redundant methods have been removed as well, as
they would have introduced confusion on the proper way of handling asynchronous behaviors. It is

however very simple to get an async method to invoke a callback upon completion, using the
returned Promise object. For instance, you can replace:

module.get beacon async(callback, myContext);

by

module.get beacon () .then (function(res) { callback (myContext, module, res); });

In some cases, it might be desirable to get a sensor value using a method identical to the old
synchronous methods (without using Promises), even if it returns a slightly outdated cached value
since 1/0 is not possible. For this purpose, the EcmaScript library introduce new classes called
synchronous proxies. A synchronous proxy is an object that mirrors the most recent state of the

connected class, but can be read using regular synchronous function calls. For instance, instead of
writing:

async function logInfo (module)

{
console.log('Name: '+await module.get logicalName ()) ;
console.log('Beacon: 't+await module.get beacon());

iéélnfo(myModule);
you can use:

function logInfoProxy (moduleSyncProxy)

{
console.log('Name: '+moduleProxy.get logicalName());
console.log('Beacon: '+moduleProxy.get beacon());

}

logInfoSync (await myModule.get syncProxy());

You can also rewrite this last asynchronous call as:

myModule.get syncProxy () .then(logInfoProxy);

14.3. Control of the Pwminput function

A few lines of code are enough to use a Yocto-PWM-Rx-C. Here is the skeleton of a JavaScript code
snippet to use the Pwminput function.

Node.js, we use function require ()

I'M we would use &1t)« ript St " "eq
ror oiML, We v 11 5 ¢ -

require ('yoctolib-es2017/yocto _api.js');
require ('yoctolib-es2017/yocto pwminput.js');

[7"]

await YA?I.RegistérHub('127.0.0.1');
[...]

Retrieve o === A 1 nteor I
etrien e 1sea 2 (

w1itn ne

var pwminput = YPwﬂ\nppL.FindemInput("YPWMRXIC—12

3456 .pwmInputl") ;

ine to handle hot-plug

110 www.yoctopuce.com

14. Using Yocto-PWM-Rx-C with JavaScript / EcmaScript

if (await pwminput.isOnline())

{

[oooll
}

Let us look at these lines in more details.

yocto_api and yocto_pwminput import

These two import provide access to functions allowing you to manage Yoctopuce modules.
yocto api is always needed, yocto pwminput is necessary to manage modules containing a
PWM input, such as Yocto-PWM-Rx-C. Other imports can be useful in other cases, such as
YModule which can let you enumerate any type of Yoctopuce device.

YAPI.RegisterHub

The RegisterHub method allows you to indicate on which machine the Yoctopuce modules are
located, more precisely on which machine the VirtualHub software is running. In our case, the
127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port used by
Yoctopuce). You can very well modify this address, and enter the address of another machine on
which the VirtualHub software is running, or of a YoctoHub. If the host cannot be reached, this
function will trigger an exception.

YPwmInput.FindPwminput

The FindPwmInput method allows you to find a PWM input from the serial number of the module
on which it resides and from its function name. You can also use logical names, as long as you have
initialized them. Let us imagine a Yocto-PWM-Rx-C module with serial number YPWMRX1C-123456
which you have named "MyModule", and for which you have given the pwminput1 function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

pwminput = t.FindPwmInput ("YPWMRX1C-123456.pwmnInputl")
pwminput = Input.FindPwmInput ("YPWMRX1C-123456.MaFonction")
pwminput = but . FindPwmInput ("MonModule.pwmInputl")
pwminput = t.FindPwmInput ("MonModule.MaFonction")
pwminput = .FindPwmInput ("MaFonction")

YPwmInput.FindPwmInput returns an object which you can then use at will to control the PWM
input.

isOnline

The isOnline () method of the object returned by FindPwmInput allows you to know if the
corresponding module is present and in working order.

get_frequency

The get frequency() method of the object returned by YPwmInput.FindPwmIntput
returns the detected PWM frequency.

get_dutyCycle

The get dutyCycle () method of the object returned by YPwmInput.FindPwmInput returns
the detected PWM duty cycle.

A real example, for Node.js

Open a command window (a terminal, a shell...) and go into the directory example_nodejs/Doc-
GettingStarted-Yocto-PWM-Rx-C within Yoctopuce library for JavaScript/ EcmaScript 2017. In
there, you will find a file named demo. js with the sample code below, which uses the functions
explained above, but this time used with all side materials needed to make it work nicely as a small
demo.

www.yoctopuce.com 111

14. Using Yocto-PWM-Rx-C with JavaScript / EcmaScript

If your Yocto-PWM-Rx-C is not connected on the host running the browser, replace in the example
the address 127.0.0.1 with the IP address of the host on which the Yocto-PWM-Rx-C is
connected and where you run the VirtualHub.

"use strict";

require ('yoctolib-es2017/yocto api.js');
require ('yoctolib-es2017/yocto pwmoutput.js');

let pwml, pwm2;

async function startDemo ()

{
await YAPI.LogUnhandledPromiseRejections () ;
await YAPI.DisableExceptions();

// Setup the API to use the Virtt on Ic e

let errmsg = new YErrorMsg();

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msqg);
return;

A = i fied device OF 11S¢
oeleClt specirieqa device O1I use 11

let serial
if (serial[8]

process.argv|[process.argv.length-1
=

- o

a

/ Dby ae

// 'y c use any conr (. C Sl
let anyPwm = YPwmInput.FirstPwmInput () ;
if (anyPwm) {
let module = await anyPwm.module () ;
serial = await module.get serialNumber () ;

} else {
console.log ('No matching sensor connected, check cable !');
return;

}

}

console.log('Using device '+serial);

pwml = YPwmInput.FindPwmInput (serial + ".pwmInputl");

pwm2 = YPwmInput.FindPwmInput (serial + ".pwmInput2");

refresh () ;

}

async function refresh()

{

if (await pwml.isOnline()) {
console.log ("PWM1l : " + (await pwml.get frequency()) + "Hz "
+ (await pwml.get dutyCycle()) + "% "
+ (await pwml.get pulseCounter()) +" pulse edges ");
console.log ("PWM2 : " + (await pwm2.get frequency()) + "Hz "
+ (await pwm2.get dutyCycle()) + "% "
+ (await pwm2.get pulseCounter()) + " pulse edges ");
} else {

console.log('Module not connected');
}
setTimeout (refresh, 500);

}

startDemo () ;

As explained at the beginning of this chapter, you need to have Node.js v7.6 or later installed to try
this example. When done, you can type the following two commands to automatically download and
install the dependencies for building this example:

npm install

You can the start the sample code within Node.js using the following command, replacing the [...] by
the arguments that you want to pass to the demo code:

node demo.js [...]

112 www.yoctopuce.com

14. Using Yocto-PWM-Rx-C with JavaScript / EcmaScript

Same example, but this time running in a browser

If you want to see how to use the library within a browser rather than with Node.js, switch to the
directory example_html/Doc-GettingStarted-Yocto-PWM-Rx-C. You will find there a single HTML
file, with a JavaScript section similar to the code above, but with a few changes since it has to
interact through an HTML page rather than through the JavaScript console.

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Hello World</title>
<script src="../../lib/yocto api.js"></script>
<script src="../../lib/yocto pwminput.js"></script>
<script>
let pwml, pwm2;
async function startDemo ()
{
await YAPI.LogUnhandledPromiseRejections();
await YAPI.DisableExceptions();

// Setup the API to use the VirtualHub on local machine
let errmsg = new YErrorMsg();
if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
alert ('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
}
refresh () ;

}

async function refresh()
{
let serial = document.getElementById('serial') .value;
if (serial == '") {
// by default use any connected module suitable for the demo
let anyPwm = YPwmInput.FirstPwmInput () ;
if (anyPwm) {
let module = await anyPwm.module () ;
serial = await module.get serialNumber () ;
document.getElementById('serial') .value = serial;
}
}

pwml = YPwmInput.FindPwmInput (serial + ".pwmInputl");
pwm2 = YPwmInput.FindPwmInput (serial + ".pwmInput2");
if (await pwml.isOnline()) {
document.getElementById('msg') .value = '';
document.getElementById ('pwml-state').value = (await pwml.get frequency()) + "Hz "
+ (await pwml.get dutyCycle()) + "% "
+ (await pwml.get pulseCounter()) +" pulse edges ";
document.getElementById('pwm2-state') .value = (await pwm2.get frequency()) + "Hz "
+ (await pwm2.get dutyCycle()) + "% "
+ (await pwm2.get pulseCounter()) + " pulse edges ";
} else {
document.getElementById('msg') .value = 'Module not connected';

}

setTimeout (refresh, 500) ;

}

startDemo () ;

</script>
</head>
<body>
Module to use: <input id='serial'>
<input id='msg' style='color:red;border:none;"' readonly>

Pwm 1 : <input id='pwml-state' readonly>

Pwm 2 : <input id='pwm2-state' readonly>

</body>
</html>

No installation is needed to run this example, all you have to do is open the HTML file using a web
browser,

www.yoctopuce.com 113

14. Using Yocto-PWM-Rx-C with JavaScript / EcmaScript

14.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

"use strict";

require ('yoctolib-es2017/yocto _api.js');

async function startDemo (args)

{

await YAPI.LogUnhandledPromiseRejections () ;

oetup ne ArL TO se tne Virtualdub on local macnine

let errmsg = new YErrorMsg();

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);
return;

Select the relay to use

let module = YModule.FindModule (args[0]);

if (await module.isOnline()) {
if (args.length > 1) {
if (args[l] == 'ON') {
await module.set beacon (YModule.BEACON ON) ;
} else {

await module.set beacon (YModule.BEACON OFF) ;
}
}

console.log('serial: '+await module.get serialNumber ());

console.log('logical name: '+await module.get logicalName());

console.log('luminosity: '+tawait module.get luminosity()+'%');

console.log ('beacon: '+ (await module.get beacon () ==YModule.BEACON_ ON
?2'ON':'OFF'));

console.log('upTime: '+parselnt (await module.get upTime()/1000)+' sec');

}

console.log('logs:");
console.log(await module.get lastLogs());
} else {

(l

console.log('USB current: '+await module.get usbCurrent ()+' mA');
§ -
(

console.log("Module not connected (check identification and USB cable)\n");

}

await YAPI.FreeAPI();

if (process.argv.length < 2) {

console.log ("usage: node demo.js <serial or logicalname> [ON | OFF 1");

} else {

}

startDemo (process.argv.slice(2));

Each property xxx of the module can be read thanks to a method of type get xxxx(), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

"use strict";

require ('yoctolib-es2017/yocto _api.js');

async function startDemo (args)

{

await YAPI.LogUnhandledPromiseRejections () ;

114

www.yoctopuce.com

14. Using Yocto-PWM-Rx-C with JavaScript / EcmaScript

// Setup the API to use the VirtualHub on local machine

let errmsg = new YErrorMsg() ;

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) {
console.log('Cannot contact VirtualHub on 127.0.0.1: '+errmsg.msg);

return;

/ Select the relay to use

let module = YModule.FindModule (args[0]):

if (await module.isOnline()) {
if (args.length > 1) {
let newname = args[l];
if (!'await YAPI.CheckLogicalName (newname)) {
console.log("Invalid name (" + newname + ")");

process.exit (1) ;
}
await module.set logicalName (newname) ;
await module.saveToFlash() ;
}
console.log('Current name: '+await module.get logicalName());
} else {
console.log("Module not connected (check identification and USB cable)\n");

}
await YAPI.FreeAPI();

}

if (process.argv.length < 2) {

console.log("usage: node demo.js <serial> [newLogicalName]");
} else {

startDemo (process.argv.slice(2));

}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.FirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

"use strict";
require ('yoctolib-es2017/yocto api.js');

async function startDemo ()

{
await YAPI.LogUnhandledPromiseRejections();
await YAPI.DisableExceptions();

/ Setup the

ne Arl1

APTI to use the VirtualHub on local machir

Virtualdub on Ic cnine

let errmsg = new YErrorMsg();

if (await YAPI.RegisterHub('127.0.0.1', errmsg) != YAPI.SUCCESS) ({
console.log ('Cannot contact VirtualHub on 127.0.0.1");
return;

}

refresh();

}

async function refresh()
{
try {
let errmsg = new YErrorMsg();
await YAPI.UpdateDevicelist (errmsqg) ;

let module = YModule.FirstModule();
while (module) {
let line = await module.get serialNumber () ;
line += '(' + (await module.get productName()) + ')';

www.yoctopuce.com 115

14. Using Yocto-PWM-Rx-C with JavaScript / EcmaScript

console.log(line);
module = module.nextModule () ;
}
setTimeout (refresh, 500);
} catch(e) {
console.log(e);
}
}

try {
startDemo () ;

} catch(e) {
console.log(e) ;

}

14.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI .DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

116 www.yoctopuce.com

15. Using Yocto-PWM-Rx-C with PHP

PHP is, like Javascript, an atypical language when interfacing with hardware is at stakes.
Nevertheless, using PHP with Yoctopuce modules provides you with the opportunity to very easily
create web sites which are able to interact with their physical environment, and this is not available to
every web server. This technique has a direct application in home automation: a few Yoctopuce
modules, a PHP server, and you can interact with your home from anywhere on the planet, as long
as you have an internet connection.

PHP is one of those languages which do not allow you to directly access the hardware layers of your
computer. Therefore you need to run VirtualHub on the machine on which your modules are
connected.

To start your tests with PHP, you need a PHP 7.1 (or more recent) server', preferably locally on you
machine. If you wish to use the PHP server of your internet provider, it is possible, but you will
probably need to configure your ADSL router for it to accept and forward TCP request on the 4444
port.

15.1. Getting ready

Go to the Yoctopuce web site and download the following items:

+ The PHP programming library?
« VirtualHub?® for Windows, macOS, or Linux, depending on your OS

Our PHP library is based on PHP 8.x. In other words, our library works perfectly with any version of
PHP currently still supported. However, in order not to abandon our customers with older
installations, we maintain a version compatible with PHP 7.1. which dates back to 2016.

We also offer a version of the library that follows PSR's recommendations. For simplicity's sake, this
version uses the same code as the php8 version, but each class is stored in a separate file. In
addition, this version uses a Yoctopuce\YoctoAPI namespace. These changes make our library
much easier to use with autoload installations.

Note that the examples in the documentation do not use the PSR version.

A couple of free PHP servers: easyPHP for Windows, MAMP for macOS.
www.yoctopuce.com/EN/libraries.php
www.yoctopuce.com/EN/virtualhub.php

www.yoctopuce.com 117

15. Using Yocto-PWM-Rx-C with PHP

In the library archive, there are thus three subdirectories:

* php7
* php8
* phpPSR

Choose the right directory according to the version of the library you wish to use, unzip the files of
this directory into a directory of your choice accessible to your web server, plug in your modules,
launch VirtualHub, and you are ready to start testing. You do not need to install any driver.

15.2. Control of the Pwminput function

A few lines of code are enough to use a Yocto-PWM-Rx-C. Here is the skeleton of a PHP code
snipplet to use the PwmInput function.

include ('yocto api.php');
include ('yocto pwminput.php');

[...]
YAPI::RegisterHub ('http://127.0.0.1:4444/',Serrmsq) ;
[...]

Spwminput = YPwmInput::FindPwmInput ("YPWMRX1C-123456.pwmInputl") ;

if (Spwminput->isOnline ())

Use Spw pu e requency ()
[...]
}

Let's look at these lines in more details.

yocto_api.php and yocto_pwminput.php

These two PHP includes provides access to the functions allowing you to manage Yoctopuce
modules. yocto api.php must always be included, yocto pwminput.php is necessary to
manage modules containing a PWM input, such as Yocto-PWM-Rx-C.

YAPI::RegisterHub

The YAPI::RegisterHub function allows you to indicate on which machine the Yoctopuce
modules are located, more precisely on which machine the VirtualHub software is running. In our
case, the 127.0.0.1:4444 address indicates the local machine, port 4444 (the standard port
used by Yoctopuce). You can very well modify this address, and enter the address of another
machine on which the VirtualHub software is running.

YPwmlinput::FindPwminput

The YPwmInput::FindPwmInput function allows you to find a PWM input from the serial
number of the module on which it resides and from its function name. You can use logical names as
well, as long as you have initialized them. Let us imagine a Yocto-PWM-Rx-C module with serial
number YPWMRX1C-123456 which you have named "MyModule", and for which you have given the
pwminput1 function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

Spwminput = nput::FindPwmInput ("YPWMRX1C-123456.pwmInputl") ;
Spwminput = nput::FindPwmInput ("YPWMRX1C-123456.MyFunction") ;
Spwminput = nput::FindPwmInput ("MyModule.pwmInputl") ;
Spwminput = nput: :FindPwmInput ("MyModule.MyFunction") ;
Spwminput = YPwmInput::FindPwmInput ("MyFunction") ;

YPwmInput::FindPwmInput returns an object which you can then use at will to control the
PWM input.

118 www.yoctopuce.com

15. Using Yocto-PWM-Rx-C with PHP

isOnline

The isOnline () method of the object returned by YPwmInput: : FindPwmInput allows you to
know if the corresponding module is present and in working order.

get_frequency

The get frequency() method of the object returned by yFindPwmIntput returns the
detected PWM frequency.

get_dutyCycle

The get dutyCycle () method of the object returned by yFindPwmInput returns the detected
PWM duty cycle.

A real example

Open your preferred text editor*, copy the code sample below, save it with the Yoctopuce library files
in a location which is accessible to you web server, then use your preferred web browser to access
this page. The code is also provided in the directory Examples/Doc-GettingStarted-Yocto-PWM-
Rx-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

<HTML>

<HEAD>

<TITLE>Hello World</TITLE>

</HEAD>

<BODY>

<?php
include('../../php8/yocto _api.php'):;
include('../../php8/yocto pwminput.php');

YAPI::DisableExceptions () ;

he AP t se e V N ne

PI::RegisterHub ('http://127.0.0.1:4444/',Serrmsg) != YAPI::SUCCESS) {
die ("Cannot contact VirtualHub on 127.0.0.1");

@$serial = $ GET['serial'l;
if ($serial !'= '"'") {

1te 1S ivallaole online

$pwm= YPwmInput::FindPwmInput ("$serial.pwmInputl");
if (!$pwm->isOnline()) {
die ("Module not connected (check serial and USB cable)");
}
} else {
Spwm = YPwmInput::FirstPwmInput () ;
if (is_null (Spwm)) ({
die ("No module connected (check USB cable)");
}
}

$serial = $pwm->module () ->get serialnumber () ;
Print ("Module to use: <input name='serial' value='$serial'>
");

if ($pwm->isOnline ())

{ $pwml = YPwmInput::FindPwmInput ($serial.".pwmInputl") ;
Spwm2 = YPwmInput::FindPwmInput ($serial.".pwmInput2");
Sfreql = Spwml->get frequency();

Sdcyclel = S$pwml->get dutyCycle();
Scountl = $pwml->get pulseCounter();
Sfreq2 = Spwm2->get frequency();
Sdcycle2 = $pwm2->get dutyCycle();
Scount2 = $pwm2->get pulseCounter();

45 you do not have a text editor, use Notepad rather than Microsoft Word.

www.yoctopuce.com 119

15. Using Yocto-PWM-Rx-C with PHP

Printf ("PWM1l: %.1fHz %.1£%% %d pulse edges
",$freql, $dcyclel, Scountl) ;
Printf ("PWM2: %.1fHz %.1£%% %d pulse edges
",$freq2, $dcycle2, Scount?2) ;

}
YAPI: :FreeAPI();

// trigger auto-refresh after one second
Print ("<script language='javascriptl.5' type='text/JavaScript'>\n");

Print ("setTimeout ('window.location.reload()',1000);");
Print ("</script>\n");

?>

</BODY>

</HTML>

15.3. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

<HTML>
<HEAD>
<TITLE>Module Control</TITLE>
</HEAD>
<BODY>
<FORM method='get'>
<?php
include('../../php8/yocto _api.php'):;

// Use explicit error handling rather than exceptions
YAPI::DisableExceptions () ;

// Setup the API to use the VirtualHub on local machine

if (YAPI::RegisterHub ('http://127.0.0.1:4444/"',Serrmsg) != YAPI::SUCCESS) {
die ("Cannot contact VirtualHub on 127.0.0.1 : ".Serrmsgq):;

}

@Sserial = $ GET['serial'l;
if ($serial !'= '"') {
// Check if a specified module is available online
Smodule = YModule: :FindModule ("$serial") ;
if (!$module->isOnline()) {
die ("Module not connected (check serial and USB cable)");
}
} else {
// or use any connected module suitable for the demo
Smodule = YModule::FirstModule () ;
if (Smodule) { // skip VirtualHub
Smodule = $module->nextModule () ;
}

if (is_null ($module)) {

die ("No module connected (check USB cable)");
} else {

$serial = $module->get serialnumber () ;

}
}

Print ("Module to use: <input name='serial' value='$serial'>
");

if (isset($_GET['beacon'])) {
if ($ _GET['beacon']=='ON")
Smodule->set beacon (Y BEACON ON) ;
else
Smodule->set beacon (Y BEACON OFF) ;
}
printf ('serial: %s
',$module->get_serialNumber());
printf ('logical name: %s
’,$module—>get_logicalName());
printf ('luminosity: %$s
', $Smodule->get luminosity());
print ('beacon: ');
if ($module->get beacon() == Y BEACON ON) {
printf ("<input type='radio' name='beacon' value='ON' checked>ON ");
printf ("<input type='radio' name='beacon' value='OFF'>OFF
");
} else {
printf ("<input type='radio' name='beacon' value='ON'>ON ");
printf ("<input type='radio' name='beacon' value='OFF' checked>OFF
");

120 www.yoctopuce.com

15. Using Yocto-PWM-Rx-C with PHP

printf ('upTime: $s sec
',intVal (Smodule->get upTime ()
printf ('USB current: %smA
',$module—>get_usturrent()
printf('logs:
<pre>és</pre>',$module->get_lastLogs(ﬂ
YAPI: :FreeAPI();

?>

<input type='submit' value='refresh'>

</FORM>

</BODY>

</HTML>

’

/1000)) ;
)

Each property xxx of the module can be read thanks to a method of type get xxxx (), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

<HTML>
<HEAD>
<TITLE>save settings</TITLE>
<BODY>
<FORM method='get'>
<?php
include('../../php8/yocto api.php'):;

// Use explicit error handling rather th >xcept
YAPI::DisableExceptions () ;
if (YAPI::RegisterHub ('http://127.0.0.1:4444/"',Serrmsg) != YAPI::SUCCESS) {

die ("Cannot contact VirtualHub on 127.0.0.1");
}

@$serial = $ GET['serial'l;
if ($serial !'= '"'") {

~i Fied modiile

a module 1

1llable oniine

Smodule = YModule::FindModule ("$serial") ;
if (!$module->isOnline()) {

die ("Module not connected (check serial and USB cable)");
}

} else {

module suitaole ror the

Smodule = YModule::FirstModule () ;
if ($module) { // skip VirtualHub
Smodule = $module->nextModule () ;
}
if (is null (Smodule)) {
die ("No module connected (check USB cable)");
} else {
$serial = $module->get serialnumber () ;
}
}

Print ("Module to use: <input name='serial' value='$serial'>
");

if (isset($_GET['newname'])) {
Snewname = $ GET['newname'];
if (!yCheckLogicalName ($newname))
die('Invalid name') ;
Smodule->set logicalName ($newname) ;
Smodule->saveToFlash () ;
}

printf ("Current name: %s
", Smodule->get logicalName());

print ("New name: <input name='newname' value='' maxlength=19>
");
YAPI: :FreeAPI ()

?>

<input type='submit'>

</FORM>

www.yoctopuce.com 121

15. Using Yocto-PWM-Rx-C with PHP

</BODY>
</HTML>

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

<HTML>
<HEAD>
<TITLE>inventory</TITLE>
</HEAD>
<BODY>
<Hl1>Device list</H1>
<TT>
<?php
include('../../php8/yocto api.php');
YAPI::RegisterHub ("http://127.0.0.1:4444/");
Smodule = YModule::FirstModule () ;
while (!is null ($module)) {
printf ("%s (%s)
\n", Smodule->get serialNumber (),
$module—>get7productName());
Smodule=$module->nextModule () ;
}
YAPI: :FreeAPI();
?2>
</TT>
</BODY>
</HTML>

15.4. HTTP callback API and NAT filters

The PHP library is able to work in a specific mode called HTTP callback Yocto-API. With this mode,
you can control Yoctopuce devices installed behind a NAT filter, such as a DSL router for example,
and this without needing to open a port. The typical application is to control Yoctopuce devices,
located on a private network, from a public web site.

The NAT filter: advantages and disadvantages

A DSL router which translates network addresses (NAT) works somewhat like a private phone
switchboard (a PBX): internal extensions can call each other and call the outside; but seen from the
outside, there is only one official phone number, that of the switchboard itself. You cannot reach the
internal extensions from the outside.

122 www.yoctopuce.com

15. Using Yocto-PWM-Rx-C with PHP

www . mysite . com 192.168.0.1
(64.136.20.37) 192.168.0.101

‘ /..3

N
L

46.14.51.32 \

192.168.0.102

-

Typical DSL configuration: LAN machines are isolated from the outside by the DSL router

Transposed to the network, we have the following: appliances connected to your home automation
network can communicate with one another using a local IP address (of the 192.168.xxx.yyy type),
and contact Internet servers through their public address. However, seen from the outside, you have
only one official IP address, assigned to the DSL router only, and you cannot reach your network
appliances directly from the outside. It is rather restrictive, but it is a relatively efficient protection
against intrusions.

request

<

response \ © © © © °

Responses from request from LAN machines are routed.

[.,,l

request \O 000 o —

But requests from the outside are blocked.

Seeing Internet without being seen provides an enormous security advantage. However, this signifies
that you cannot, a priori, set up your own web server at home to control a home automation
installation from the outside. A solution to this problem, advised by numerous home automation
system dealers, consists in providing outside visibility to your home automation server itself, by

www.yoctopuce.com 123

15. Using Yocto-PWM-Rx-C with PHP

adding a routing rule in the NAT configuration of the DSL router. The issue of this solution is that it
exposes the home automation server to external attacks.

The HTTP callback API solves this issue without having to modify the DSL router configuration. The

module control script is located on an external site, and it is the VirfualHub which is in charge of
calling it a regular intervals.

yoctocontrol.php

B <

The HTTP callback API uses the VirtualHub which initiates the requests.

Configuration

response 0 00O

The callback API thus uses the VirtualHub as a gateway. All the communications are initiated by the

VirtualHub. They are thus outgoing communications and therefore perfectly authorized by the DSL
router.

You must configure the VirtualHub so that it calls the PHP script on a regular basis. To do so:

hronN -~

Launch a VirtualHub

Access its interface, usually 127.0.0.1:4444
Click on the configure button of the line corresponding to the VirtualHub itself

Click on the edit butto

Serial

Ll

Click on the "edit" button of the "Outgoing callbacks" section

n of the Outgoing callbacks section

Logical Mame Description Action
0 VirtualHub

Yocto-PowerRelay

Yocto-Temperature

(_configure) [view log file)

log file) ((beacon)

| configure | | view log file] [

button.

Serial # VIRTHUBO-7d1a86fb09
Product name VirtualHub

Software version: 10789

Logical name:

Incoming connections

Authentication to read information from the devices:
Authentication to make changes to the devices:

Qutgoing callbacks

Callback URL: octoHub ((edit)
Delay between callbacks: min:3[s] max: 600 [s]

(save| [cancel

Edit parameters for VIRTHUB0-7d1a86fb09, and click on the Save

124

www.yoctopuce.com

15. Using Yocto-PWM-Rx-C with PHP

This VirtualHub can post the advertised values of all devices on a specific URL on a
regular hasis. If you wish to use this feature, choose the callback type follow the steps
below carefully.

1. Specify the Type of callback you want to use; Yocto-AP| callback vI

Yoctopuce devices can be controled through remote PHP scripts. That Yoclo-AP callback
protocol is designed so it can pass frough MAT filters without opening ports. See your
device user manual, PHP programming section for more details

2. Specify the URL to use for reporting values. HTTPS protocol Is not vet suppoited.

Callback URL: hitp:fwas mysite. comfyoctotesthyoctocontrol php

3. If your callback reguires authentication, enter credentials here. Digest authentication is
recommended, but Basic authentication works as well

Username yocio ‘

Password sesenens |
4. Setup the desired frequency of notifications:

Mo less than 3 seconds between two notification

But notify after 600 seconds in any case
5. Press on the Test button to check your parameters

6. When everything works, press on the OK hutton

Test a \Cance\

And select "Yocto-API callback”.

You then only need to define the URL of the PHP script and, if need be, the user name and
password to access this URL. Supported authentication methods are basic and digest. The second
method is safer than the first one because it does not allow transfer of the password on the network.

Usage

From the programmer standpoint, the only difference is at the level of the yRegisterHub function call.
Instead of using an IP address, you must use the callback string (or http://callback which is
equivalent).

include ("yocto_ api.php");
yRegisterHub ("callback") ;

The remainder of the code stays strictly identical. On the VirtualHub interface, at the bottom of the
configuration window for the HTTP callback API , there is a button allowing you to test the call to the
PHP script.

Be aware that the PHP script controlling the modules remotely through the HTTP callback APl can
be called only by the VirtualHub. Indeed, it requires the information posted by the VirtualHub to
function. To code a web site which controls Yoctopuce modules interactively, you must create a user
interface which stores in a file or in a database the actions to be performed on the Yoctopuce
modules. These actions are then read and run by the control script.

Common issues

For the HTTP callback API to work, the PHP option allow _url fopen must be set. Some web site
hosts do not set it by default. The problem then manifests itself with the following error:

error: URL file-access is disabled in the server configuration

To set this option, you must create, in the repertory where the control PHP script is located, an .htaccess
file containing the following line:

php flag "allow url fopen" "On"

Depending on the security policies of the host, it is sometimes impossible to authorize this option at
the root of the web site, or even to install PHP scripts receiving data from a POST HTTP. In this
case, place the PHP script in a subdirectory.

www.yoctopuce.com 125

15. Using Yocto-PWM-Rx-C with PHP

Limitations

This method that allows you to go through NAT filters cheaply has nevertheless a price.
Communications being initiated by the VirtualHub at a more or less regular interval, reaction time to
an event is clearly longer than if the Yoctopuce modules were driven directly. You can configure the
reaction time in the specific window of the VirtualHub, but it is at least of a few seconds in the best
case.

The HTTP callback Yocto-API mode is currently available in PHP, EcmaScript (Node.JS) and Java
only.

15.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to isOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

* If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPTI.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

126 www.yoctopuce.com

16. Using Yocto-PWM-Rx-C with Visual Basic .NET

VisualBasic has long been the most favored entrance path to the Microsoft world. Therefore, we had
to provide our library for this language, even if the new trend is shifting to C#. We support Visual
Studio 2017 and its more recent versions.

16.1. Installation

Download the Visual Basic Yoctopuce library from the Yoctopuce web site'. There is no setup
program, simply copy the content of the zip file into the directory of your choice. You mostly need the
content of the Sources directory. The other directories contain the documentation and a few
sample programs. All sample projects are Visual Basic 2010, projects, if you are using a previous
version, you may have to recreate the projects structure from scratch.

16.2. Using the Yoctopuce API in a Visual Basic project

The Visual Basic.NET Yoctopuce library is composed of a DLL and of source files in Visual Basic.
The DLL is not a .NET DLL, but a classic DLL, written in C, which manages the low level
communications with the modules?. The source files in Visual Basic manage the high level part of the
API. Therefore, your need both this DLL and the .vb files of the sources directory to create a
project managing Yoctopuce modules.

Configuring a Visual Basic project

The following indications are provided for Visual Studio Express 2010, but the process is similar for
other versions. Start by creating your project. Then, on the Solution Explorer panel, right click on your
project, and select "Add" and then "Add an existing item".

A file selection window opens. Select the yocto api.vb file and the files corresponding to the
functions of the Yoctopuce modules that your project is going to manage. If in doubt, select all the
files.

You then have the choice between simply adding these files to your project, or to add them as links
(the Add button is in fact a scroll-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply keeps a link on the original files. We
recommend you to use links, which makes updates of the library much easier.

1 www.yoctopuce.com/EN/libraries.php

The sources of this DLL are available in the C++ API

www.yoctopuce.com 127

16. Using Yocto-PWM-Rx-C with Visual Basic .NET

Then add in the same manner the yapi.d11 DLL, located in the Sources/d11 directory®. Then,
from the Solution Explorer window, right click on the DLL, select Properties and in the Properties
panel, set the Copy to output folder to always. You are now ready to use your Yoctopuce modules
from Visual Studio.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface.

16.3. Control of the Pwminput function

A few lines of code are enough to use a Yocto-PWM-Rx-C. Here is the skeleton of a Visual Basic
code snipplet to use the Pwmlinput function.

[oooll

Dim errmsg As String errmsg
YAPI.RegisterHub ("usb", errmsqg)

[oooll

r

Dim pwminput As YPwmInput

pwminput = YPwmInput.FindPwmInput ("YPWMRX1C-123456.pwnInputl"
If (pwminput.isOnliné()) Then

' Use pwming yet frequency ()

[oool
End If

[oooll

Let's look at these lines in more details.

YAPIL.RegisterHub

The YAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. When used with the parameter "usb", it will use the modules locally
connected to the computer running the library. If the initialization does not succeed, this function
returns a value different from YAPI SUCCESS and errmsg contains the error message.

YPwminput.FindPwminput

The YPwmInput.FindPwmInput function allows you to find a PWM input from the serial number
of the module on which it resides and from its function name. You can use logical names as well, as
long as you have initialized them. Let us imagine a Yocto-PWM-Rx-C module with serial number
YPWMRX1C-123456 which you have named "MyModule", and for which you have given the
pwminput1 function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pwminput = YPwmInput.FindPwmInput ("YPWMRX1C-123456.pwmInputl"”
pwminput = YPwmInput.FindPwmInput ("YPWMRX1C-123456.MyFunction")
pwminput = Y \Input.FindPwmInput ("MyModule.pwmInputl")
pwminput = wmInput.FindPwmInput ("MyModule.MyFunction")
pwminput = YPwmInput.FindPwmInput ("MyFunction")

YPwmInput.FindPwmInput returns an object which you can then use at will to control the PWM
input.

isOnline

The isOnline () method of the object returned by YPwmInput.FindPwmInput allows you to
know if the corresponding module is present and in working order.

3 Remember to change the filter of the selection window, otherwise the DLL will not show.

128 www.yoctopuce.com

16. Using Yocto-PWM-Rx-C with Visual Basic .NET

get_frequency

The get frequency() method of the object returned by yFindPwmIntput returns the
detected PWM frequency.

get_dutyCycle

The get dutyCycle () method of the object returned by yFindPwmInput returns the detected
PWM duty cycle.

A real example

Launch Microsoft VisualBasic and open the corresponding sample project provided in the directory
Examples/Doc-GettingStarted-Yocto-PWM-Rx-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

Module Modulel

Private Sub Usage ()

Dim execname = System.AppDomain.CurrentDomain.FriendlyName
Console.WriteLine ("Usage:")

Console.WritelLine (execname + " <serial number>")
Console.WriteLine (execname + " <logical name>")
Console.WritelLine (execname + " any ")

System.Threading.Thread.Sleep (2500)

End
End Sub

Sub Die(ByVal msg As String)
Console.WritelLine (msg + " (check USB cable)")
End

End Sub

Sub Main ()
Dim argv() As String = System.Environment.GetCommandLineArgs ()
Dim errmsg As String = ""
Dim target As String
Dim pwm As YPwmInput
Dim pwml As YPwmInput = Nothing
Dim pwm2 As YPwmInput = Nothing
Dim m As YModule = Nothing

If argv.Length < 2 Then Usage()
target = argv (1)

REM Setup the API to use local USB devices
If (YAPI.RegisterHub ("usb", errmsg) <> YAPI SUCCESS) Then

Console.WriteLine ("RegisterHub error: " + errmsg)
End

End If

If target = "any" Then

REM retreive any pwm input available
pwm = YPwmInput.FirstPwmInput ()
If pwm Is Nothing Then Die ("No module connected")
Else
REM retreive the first pwm input from the device given on command line
pwm = YPwmInput.FindPwmInput (target + ".pwminputl")
End If

REM we need to retreive both channels from the device.
If (pwm.isOnline()) Then
m = pwm.get module ()
pwml = YPwmInput.FindPwmInput (m.get serialNumber () + ".pwmInputl")
pwm2 = YPwmInput.FindPwmInput (m.get serialNumber () + ".pwmInput2")
Else
Die ("Module not connected")
End If

While (m.isOnline())
Console.WriteLine ("PWMl: " + pwml.get frequency() .ToString() + "Hz " _

www.yoctopuce.com 129

16. Using Yocto-PWM-Rx-C with Visual Basic .NET

+ pwml.get dutyCycle().ToString() + "% "
+ pwml.get pulseCounter().ToString()
+ " pulse edges")

Console.WriteLine ("PWM2: " + pwm2.get frequency() .ToString() + "Hz "
+ pwm2.get dutyCycle().ToString() + "% "
+ pwm2.get pulseCounter ().ToString /()
+ " pulse edges")

Console.WriteLine (" (press Ctrl-C to exit)")

YAPI.Sleep (1000, errmsg)

End While

YAPI.FreeAPI ()
Die ("Module not connected")
End Sub
End Module

16.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

Imports System.IO
Imports System.Environment

Module Modulel

Sub usage ()
Console.WriteLine ("usage: demo <serial or logical name> [ON/OFF]")
End

End Sub

Sub Main ()

Dim argv() As String = System.Environment.GetCommandLineArgs ()
Dim errmsg As String = ""
Dim m As ymodule

If (YAPI.RegisterHub ("usb", errmsg) <> YAPI SUCCESS) Then
Console.WriteLine ("RegisterHub error:" + errmsg)
End

End If

If argv.Length < 2 Then usage()

m = YModule.FindModule (argv(l)) REM use serial or logical name

If (m.isOnline()) Then
If argv.Length > 2 Then
If argv(2) = "ON" Then m.set beacon (Y BEACON_ON)
If argv(2) = "OFF" Then m.set beacon (Y BEACON_ OFF)
End If
Console.WriteLine ("serial: " + m.get serialNumber ())
Console.WriteLine("logical name: " + m.get logicalName ())
Console.WriteLine ("luminosity: " + Str(m.get luminosity()))
Console.Write ("beacon: ")
If (m.get beacon() = Y BEACON ON) Then
Console.WriteLine ("ON")
Else
Console.WriteLine ("OFF")
End If
Console.WritelLine ("upTime: " + Str(m.get upTime () / 1000) + " sec")

(
Console.WriteLine ("USB current: " + Str(m.get usbCurrent()) + " mA")
Console.WriteLine ("Logs:")
Console.WriteLine (m.get lastLogs ()
Else
Console.WritelLine(argv(l) + " not connected (check identification and USB cable)")
End If
YAPI.FreeAPI ()
End Sub

End Module

Each property xxx of the module can be read thanks to a method of type get xxxx (), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

130 www.yoctopuce.com

16. Using Yocto-PWM-Rx-C with Visual Basic .NET

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

Module Modulel

Sub usage ()

Console.WriteLine ("usage: demo <serial or logical name> <new logical name>")
End
End Sub

Sub Main ()
Dim argv() As Strinc
Dim errmsg As S
Dim newname As
Dim m As YModule

System.Environment.GetCommandLineArgs ()

nwn

If (argv.Length <> 3) Then usage ()

REM Setup the API to use local USB devices
If YAPI.RegisterHub ("usb", errmsg) <> YAPI SUCCESS Then

Console.WritelLine ("RegisterHub error: " + errmsg)
End
End If
m YModule.FindModule (argv(l)) REM use serial or logical name
If m.isOnline () Then
newname = argv(2)
If (Not YAPI.CheckLogicalName (newname)) Then
Console.WriteLine ("Invalid name (" + newname + ")")
End
End If

m.set logicalName (newname)
m.saveToFlash() REM do not forget this
Console.Write ("Module: serial= " + m.get serialNumber)
Console.Write(" / name= " + m.get logicalName ())
Else
Console.Write ("not connected (check identification and USB cable")
End If
YAPI.FreeAPI ()

End Sub

End Module

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not Nothing. Below a
short example listing the connected modules.

Module Modulel

Sub Main ()
Dim M As ymodule
Dim errmsg As String = ""

www.yoctopuce.com 131

16. Using Yocto-PWM-Rx-C with Visual Basic .NET

REM Setup the API to use local USB devices

If YAPI.RegisterHub ("usb", errmsg) <> YAPI SUCCESS Then
Console.WriteLine ("RegisterHub error: " + errmsqg)
End

End If

Console.WriteLine ("Device list")

M = YModule.FirstModule ()

While M IsNot Nothing
Console.WriteLine (M.get serialNumber () + " (" + M.get productName() + ")")
M = M.nextModule ()

End While

YAPI.FreeAPI ()

End Sub

End Module

16.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

* If your code catches the exception and handles it, everything goes well.

+ If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPI.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

132 www.yoctopuce.com

17. Using Yocto-PWM-Rx-C with Delphi or Lazarus

Delphi is a descendent of Turbo-Pascal. Originally, Delphi was produced by Borland, Embarcadero
now edits it. The strength of this language resides in its ease of use, as anyone with some notions of
the Pascal language can develop a Windows application in next to no time. Its only disadvantage is
to cost something”.

Lazarus? is a free IDE based on Free-Pascal, it has nothing to envy to Delphi and is available for
both Windows and Linux. The Yoctopuce Delphi library is compatible with both Windows and Linux
versions of Lazarus

Delphi libraries are provided not as VCL components, but directly as source files. These files are
compatible with most Delphi and Lazarus versions.®

17.1. Preparation

Go to the Yoctopuce web site and download the Yoctopuce Delphi libraries*. Uncompress everything
in a directory of your choice.

« With Delphi, add the subdirectory sources in the list of directories of Delphi libraries.®
* With Igazarus, open your project options and add the sources folder to your "other unit files"
path. °.

Windows

With Windows, the Yoctopuce Delphi/ Lazarus library uses two dlls yapi.dll (32-bit version) and
yapi64.dil (64-bit version). All the applications that you create with Delphi or Lazarus must have
access to these DLL. The simplest way to ensure this is to make sure that they are located in the
same directory as the executable file of your application. You can find these dlls in the sources/dll
folder.

1 Actually, Borland provided free versions (for personal use) of Delphi 2006 and 2007. Look for them on the Internet, you
may still be able to download them.
www.lazarus-ide.org
3 Delphi libraries are regularly tested with Delphi 5, Delphi XE2, and the latest version of Lazarus.
www.yoctopuce.com/EN/libraries.php
Use the Tools / Environment options menu.
6 Use the Menu Project / Project options/ Compiler options / Paths

www.yoctopuce.com 133

17. Using Yocto-PWM-Rx-C with Delphi or Lazarus

Linux

Under Linux, the Delphi / Lazarus library uses the following lib files:
* libyapi-i386.so for Intel 32-bit systems
* libyapi-amd64.so for Intel 64-bit systems

* libyapi-armhf.so for ARM 32-bit systems
* libyapi-aarch64.so for ARM 64-bit systems

You will find these lib files in the sources/dll folder. You have to make sure that

» Lazarus can find the right .so file at compilation time.
* The executable can find it at execution time.

The simplest way to ensure this is to copy all four .so files into the /usr/lib folder. Alternatively, you
can copy them next to your main source file and adjust your LD LIBRARY _PATH environment
variable accordingly.

17.2. About examples

To keep them simple, all the examples provided in this documentation are console applications.
Obviously, the libraries work in a strictly identical way with VCL applications.

Note that most of these examples use command line parameters .

You will soon notice that the Delphi API defines many functions which return objects. You do not
need to deallocate these objects yourself, the API does it automatically at the end of the application.

17.3. Control of the Pwmlinput function

A few lines of code are enough to use a Yocto-PWM-Rx-C. Here is the skeleton of a Delphi code
snipplet to use the Pwmlnput function.

uses yocto api, yocto pwminput;

var errmsg: string;
pwminput: TYPwmInput;

[

yRegisterHub ('usb',errmsqg)
[oooll
pwminput = yFindPwmInput ("YPWMRX1C-123456.pwmInputl")
if pwminput.isOnline () then
begin
[oool

end;

[oooll

Let's look at these lines in more details.

yocto_api and yocto_pwminput

These two units provide access to the functions allowing you to manage Yoctopuce modules.
yocto api must always be used, yocto pwminput is necessary to manage modules containing
a PWM input, such as Yocto-PWM-Rx-C.

7 See https://www.yoctopuce.com/EN/article/about-programming-examples

134 www.yoctopuce.com

17. Using Yocto-PWM-Rx-C with Delphi or Lazarus

yRegisterHub

The yRegisterHub function initializes the Yoctopuce API and specifies where the modules should
be looked for. When used with the parameter 'usb', it will use the modules locally connected to the
computer running the library. If the initialization does not succeed, this function returns a value
different from YAPI SUCCESS and errmsg contains the error message.

yFindPwmlinput

The yFindPwmInput function allows you to find a PWM input from the serial number of the module
on which it resides and from its function name. You can also use logical names, as long as you have
initialized them. Let us imagine a Yocto-PWM-Rx-C module with serial number YPWMRX1C-123456
which you have named "MyModule", and for which you have given the pwmlinput1 function the name
"MyFunction". The following five calls are strictly equivalent, as long as "MyFunction" is defined only
once.

pwminput := yFindPwmInput ("YPWMRX1C-123456.pwmInputl");
pwminput := yFindPwmInput ("YPWMRX1C-123456.MyFunction") ;
pwminput := yFindPwmInput ("MyModule.pwmInputl") ;
pwminput := yFindPwmInput ("MyModule.MyFunction") ;
pwminput := yFindPwmInput ("MyFunction");

yFindPwmInput returns an object which you can then use at will to control the PWM input.

isOnline

The isOnline () method of the object returned by yFindPwmInput allows you to know if the
corresponding module is present and in working order.

get_frequency

The get frequency () method of the object returned by yFindPwmIntput returns the
detected PWM frequency.

get_dutyCycle

The get dutyCycle () method of the object returned by yFindPwmInput returns the detected
PWM duty cycle.

A real example

Launch your Delphi environment, copy the yapi.dll DLL in a directory, create a new console
application in the same directory, and copy-paste the piece of code below:

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

program helloworld;
{SAPPTYPE CONSOLE}
uses
SysUtils,
{SIFNDEF UNIX}
windows,
{SENDIF UNIX}
yocto_api,
yocto pwminput;

Procedure usage() ;

begin
writeln('demo <serial number>"');
writeln('demo <logical name>');
writeln('demo any) g
sleep(3000) ;
halt;

end;

Procedure die (msg:string) ;
begin
writeln(msg + ' (check USB cable)');

www.yoctopuce.com 135

17. Using Yocto-PWM-Rx-C with Delphi or Lazarus

sleep(3000);
halt;
end;
var
errmsg : string;
target : string;
pwm : TYPWMInput;
pwml : TYPWMInput;
pwm2 : TYPWMInput;
m : TyModule;
begin
if (paramcount<l) then usage();

target:=paramstr (1) ;

// Setup the API to use local USB devices
If (yRegisterHub('usb', errmsg) <> YAPI SUCCESS) Then
begin
WritelLn ('RegisterHub error: ' + errmsqg);
halt;
End;

if (target='any') then

begin

// retreive any pwm input available

pwm := yFirstPwmInput () ;

If pwm=nil Then Die('No module connected');
end
else

pwm:= yFindPwmInput (target + '.pwmInputl');

m := nil;

pwml := nil;

pwm2 := nil;

// we need to retreive both DC and AC voltage from the device.

If (pwm.isOnline()) Then

begin
m := pwm.get module () ;
pwml := yFindPwmInput (m.get serialNumber () + '.pwmInputl');
pwm2 := yFindPwmInput (m.get serialNumber () + '.pwmInput2');

end else Die('Module not connected');

// let's poll
while (m.isOnline()) do
begin

If Not(m.isOnline()) Then Die ('Module not connected');

(;
Writeln ('PWMl: ' + FloatToStr (pwml.get frequency()) + ' Hz '
+ FloatToStr (pwml.get dutyCycle()) + ' $ '
+ IntToStr (pwml.get pulseCounter()) + ' pulse edges ');
Writeln ('PWM2: ' + FloatToStr (pwm2.get frequency()) + ' Hz '
+ FloatToStr (pwm2.get dutyCycle()) + ' $!
+ IntToStr (pwm2.get pulseCounter()) + ' pulse edges ');
Writeln ("' (press Ctrl-C to exit)');
ySleep (1000, errmsqg);
end;
yFreeAPI () ;
Die ('Module not connected'):;

end.

17.4. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

program modulecontrol;
{SAPPTYPE CONSOLE}
uses

SysUtils,

yocto api;

136 www.yoctopuce.com

17. Using Yocto-PWM-Rx-C with Delphi or Lazarus

const
serial = '"YPWMRX1C-123456'; // use serial number or logical name

procedure refresh (module:Tymodule) ;

begin
if (module.isOnline ()) then
begin
Writeln ('
Writeln (' Serlal : ' + module.get serialNumber());
Writeln('Logical name : ' + module.get logicalName());
Writeln ('Luminosity : ' + intToStr (module.get luminosity())):

Write ('Beacon o U) g
if (module.get beacon ()=Y BEACON ON) then Writeln('on')
else Writeln('off');

Writeln ('uptime : ' + intToStr (module.get upTime () div 1000)+'s"');
Writeln('USB current : ' + intToStr (module.get usbCurrent())+'mA');
Writeln ('Logs s)5
Writeln (module.get lastlogs(ﬂ

(!

(!

Writeln)'
Writeln refresh / b:beacon ON / space : beacon off');
end
else Writeln('Module not connected (check identification and USB cable)');

end;

procedure beacon (module:Tymodule;state:integer);
begin
module.set beacon (state);
refresh (module) ;

end;

var
module : TYModule;
@ : char;
errmsg : string;

begin

if yRegisterHub ('usb', errmsg)<>YAPI SUCCESS then

begin
Write ('RegisterHub error: '+errmsg);
exit;

end;

module := yFindModule (serial);

refresh (module) ;

repeat
read (c) ;
case c of
'r': refresh (module) ;
'b': beacon(module,Y BEACON ON) ;
' ': beacon(module,Y BEACON OFF) ;

end;
until ¢ = 'x';
yFreeAPI () ;

end.

Each property xxx of the module can be read thanks to a method of type get xxxx (), and
properties which are not read-only can be modified with the help of the set xxx () method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx () function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash () method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash () method. The short example below
allows you to modify the logical name of a module.

program savesettings;
{$SAPPTYPE CONSOLE}
uses

www.yoctopuce.com 137

17. Using Yocto-PWM-Rx-C with Delphi or Lazarus

SysUtils,
yocto api;

const
serial = 'YPWMRX1C-123456'; // use serial o ne
var
module : TYModule;
errmsg : string;
newname : string;
begin
if yReglsterHub('usb', errmsg) <>YAPI SUCCESS then
begin
Write ('RegisterHub error: '+errmsgqg);
exit;
end;
module := yFindModule (serial);
if (not (module.isOnline)) then
begin
writeln ('Module not connected (check identification and USB cable)'):;
exit;
end;
Writeln('Current logical name : '+module.get logicalName ());

Write ('Enter new name : ');
Readln (newname) ;

if (not (yCheckLogicalName (newname))) then
begin

Writeln('invalid logical name');

exit;
end;

module.set_logicalName(newname);

module.saveToFlash () ;

yFreeAPI () ;

Writeln('logical name is now : '+module.get logicalName());
end.

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash () function only 100000 times in the life of the module. Make sure
you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not nil. Below a short
example listing the connected modules.

program inventory;
{$SAPPTYPE CONSOLE}
uses

SysUtils,

yocto api;

var
module : TYModule;
errmsg : string;
begin
if yRegisterHub('usb', errmsg)<>YAPI SUCCESS then
begin
Write ('RegisterHub error: '+errmsgqg);
exit;
end;

Writeln('Device list');

module := yFirstModule();

138 www.yoctopuce.com

17. Using Yocto-PWM-Rx-C with Delphi or Lazarus

while module<>nil do

begin
Writeln(module.get serialNumber()+' ('+module.get productName()+')"');
module := module.nextModule () ;
end;
yFreeAPI () ;
end.

17.5. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the isOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

+ If your code catches the exception and handles it, everything goes well.

 If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

» Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPTI .DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

www.yoctopuce.com 139

140 www.yoctopuce.com

18. Using the Yocto-PWM-Rx-C with Universal
Windows Platform

Universal Windows Platform (UWP) is not a language per say, but a software platform created by
Microsoft. This platform allows you to run a new type of applications: the universal Windows
applications. These applications can work on all machines running under Windows 10. This includes
computers, tablets, smart phones, XBox One, and also Windows loT Core.

The Yoctopuce UWP library allows you to use Yoctopuce modules in a universal Windows
application and is written in C# in its entirety. You can add it to a Visual Studio 2017" project.

18.1. Blocking and asynchronous functions

The Universal Windows Platform does not use the Win32 API but only the Windows Runtime API
which is available on all the versions of Windows 10 and for any architecture. Thanks to this library,
you can use UWP on all the Windows 10 versions, including Windows 10 IoT Core.

However, using the new UWP API has some consequences: the Windows Runtime API to access
the USB ports is asynchronous, and therefore the Yoctopuce library must be asynchronous as well.
Concretely, the asynchronous methods do not return a result directly but a Task or Task<> object
and the result can be obtained later. Fortunately, the C# language, version 6, supports the async
and await keywords, which simplifies using these functions enormously. You can thus use
asynchronous functions in the same way as traditional functions as long as you respect the following
two rules:

* The method is declared as asynchronous with the async keyword
* The await keyword is added when calling an asynchronous function

Example:

async Task<int> MyFunction (int wval)

{

return result;

nt res = await MyFunction(1234);

1 https://www.visualstudio.com/vs/cordoval/vs/

www.yoctopuce.com 141

18. Using the Yocto-PWM-Rx-C with Universal Windows Platform

Our library follows these two rules and can therefore use the await notation.

For you not to have to wonder wether a function is asynchronous or not, there is the following
convention: all the public methods of the UWP library are asynchronous, that is that you must call
them with the await keyword, except:

* GetTickCount (), because measuring time in an asynchronous manner does not make a
lot of sense...

* FindModule (), FirstModule(), nextModule(),.. because detecting and
enumerating modules is performed as a background task on internal structures which are
managed transparently. It is therefore not necessary to use blocking functions while going
though the lists of modules.

18.2. Installation

Download the Yoctopuce library for Universal Windows Platform from the Yoctopuce web site?.
There is no installation software, simply copy the content of the zip file in a directory of your choice.
You essentially need the content of the Sources directory. The other directories contain
documentation and a few sample programs. Sam?Ie projects are Visual Studio 2017 projects. Visual
Studio 2017 is available on the Microsoft web site”.

18.3. Using the Yoctopuce API in a Visual Studio project

Start by creating your project. Then, from the Solution Explorer panel right click on your project and
select Add then Existing element .

A file chooser opens: select all the files in the library Sources directory.

You then have the choice between simply adding the files to your project or adding them as a link
(the Add button is actually a drop-down menu). In the first case, Visual Studio copies the selected
files into your project. In the second case, Visual Studio simply creates a link to the original files. We
recommend to use links, as a potential library update is thus much easier.

The Package.appxmanifest file

By default a Universal Windows application doesn't have access rights to the USB ports. If you want
to access USB devices, you must imperatively declare it in the Package . appxmanifest file.

Unfortunately, the edition window of this file doesn't allow this operation and you must modify the
Package.appxmanifest file by hand. In the "Solution Explorer" panel, right click on the
Package.appxmanifest and select "View Code".

In this XML file, we must add a DeviceCapability node in the Capabilities node. This
node must have a "Name" attribute with a "humaninterfacedevice" value.

Inside this node, you must declare all the modules that can be used. Concretely, for each module,
you must add a "Device" node with an "Id" attribute, which has for value a character string
"vidpid:USB_VENDORID USB DEVICE ID". The Yoctopuce USB VENDORID is 24e0 and you can
find the USB_DEVICE ID of each Yoctopuce device in the documentation in the "Characteristics"
section. Finally, the "Device" node must contain a "Function" node with the "Type" attribute with a
value of "usage:ff00 0001".

For the Yocto-PWM-Rx-C, here is what you must add in the "Capabilities" node:

<DeviceCapability Name="humaninterfacedevice">
<!-- Yocto-PWM-Rx-C -->
<Device Id="vidpid:24e0 00F6">
<Function Type="usage:ff00 0001" />

2 www.yoctopuce.com/EN/libraries.php

https://www.visualstudio.com/downloads/

142 www.yoctopuce.com

18. Using the Yocto-PWM-Rx-C with Universal Windows Platform

</Device>
</DeviceCapability>

Unfortunately, it's not possible to write a rule authorizing all Yoctopuce modules. Therefore, you must
imperatively add each module that you want to use.

18.4. Control of the Pwminput function

A few lines of code are enough to use a Yocto-PWM-Rx-C. Here is the skeleton of a C# code snippet
to use the Pwmlnput function.

[oooll

await YAPI.RegisterHub ("usb");

[oooll

YPwmInput pwminput = YPwmInput.FindPwmInput ("YPWMRX1C-123456.pwmInputl")

if (await pwminput.isOnline())

Let us look at these lines in more details.

YAPI.RegisterHub

The YAPI.RegisterHub function initializes the Yoctopuce API and indicates where the modules
should be looked for. The parameter is the address of the virtual hub able to see the devices. If the
string "usb" is passed as parameter, the API works with modules locally connected to the machine. If
the initialization does not succeed, an exception is thrown.

YPwminput.FindPwminput

The YPwmInput.FindPwmInput function allows you to find a PWM input from the serial number
of the module on which it resides and from its function name. You can use logical names as well, as
long as you have initialized them. Let us imagine a Yocto-PWM-Rx-C module with serial number
YPWMRX1C-123456 which you have named "MyModule", and for which you have given the
pwminput1 function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

pwminput = YPwmInput.FindPwmInput ("YPWMRX1C-123456.pwmInputl") ;
pwminput = Y Input.FindPwmInput ("YPWMRX1C-123456.MaFonction") ;
pwminput = Input.FindPwmInput ("MonModule.pwmInputl") ;
pwminput = YPwmInput.FindPwmInput ("MonModule.MaFonction") ;
pwminput = YPwmInput.FindPwmInput ("MaFonction") ;

YPwmInput.FindPwmInput returns an object which you can then use at will to control the PWM
input.
isOnline

The isOnline () method of the object returned by YPwmInput.FindPwmInput allows you to
know if the corresponding module is present and in working order.

get_frequency

The get frequency() method of the object returned by YPwmInput.FindPwmIntput
returns the detected PWM frequency.

www.yoctopuce.com 143

18. Using the Yocto-PWM-Rx-C with Universal Windows Platform

get_dutyCycle

The get dutyCycle () method of the object returned by YPwmInput.FindPwmInput returns
the detected PWM duty cycle.

18.5. A real example

Launch Visual Studio and open the corresponding project provided in the directory Examples/Doc-
GettingStarted-Yocto-PWM-Rx-C of the Yoctopuce library.

Visual Studio projects contain numerous files, and most of them are not linked to the use of the
Yoctopuce library. To simplify reading the code, we regrouped all the code that uses the library in the
Demo class, located in the demo. cs file. Properties of this class correspond to the different fields
displayed on the screen, and the Run () method contains the code which is run when the "Start"
button is pushed.

In this example, you can recognize the functions explained above, but this time used with all the side
materials needed to make it work nicely as a small demo.

using System;

using System.Diagnostics;

using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
public class Demo : DemoBase
{
public string HubURL { get; set; }
public string Target { get; set; }

public override async Task<int> Run ()
{
try {
await YAPI.RegisterHub (HubURL) ;

YPwmInput pwm;
YPwmInput pwml = null;
YPwmInput pwm2 = null;
YModule m = null;
if (Target.ToLower () == "any") {
// retreive any pwm input available
pwm = YPwmInput.FirstPwmInput () ;
if (pwm == null) {
WriteLine ("No module connected");
return -1;
}
} else {

ratraive t+he £4 ot ywm 1 NIt £m +Fhe dotri e trran
retreive the first pwm inp from the ice given

aevic

pwm = YPwmInput.FindPwmInput (Target + ".pwmInputl");

// we need to retreive both channels from the device

if (await pwm.isOnline()) {
m = await pwm.get module();
pwml = YPwmInput.FindPwmInput (await m.get serialNumber () + ".pwmInputl");
pwm2 = YPwmInput.FindPwmInput (await m.get serialNumber () + ".pwmInput2");

}

while (await m.isOnline()) {

WriteLine ("PWM1l: " + await pwml.get frequency() + " Hz " + await
pwml.get dutyCycle() +
" % " + await pwml.get pulseCounter() + " pulse edges ");
WriteLine ("PWM2: " + await pwm2.get frequency() + " Hz " + await
pwm2.get dutyCycle() +
" % " + await pwm2.get pulseCounter() + " pulse edges ");

await YAPI.Sleep(1000);
}

WriteLine ("Module not connected (check identification and USB cable)");
} catch (YAPI Exception ex) {
WriteLine ("error: " + ex.Message);

144 www.yoctopuce.com

18. Using the Yocto-PWM-Rx-C with Universal Windows Platform

}

await YAPI.FreeAPI();
return 0;
}
}
}

18.6. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program

displaying the main parameters of the module and enabling you to activate the localization beacon.

using System;

using System.Diagnostics;

using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo
{
public class Demo : DemoBase

{

public string HubURL { get; set; }
public string Target { get; set; }
public bool Beacon { get; set; }

public override async Task<int> Run()
{
YModule m;
string errmsg = "";
if (await YAPI.RegisterHub (HubURL) != YAPI.SUCCESS) {
WriteLine ("RegisterHub error: " + errmsgqg);
return -1;

}
m = YModule.FindModule (Target + ".module"); // use serial
i

f (await m.isOnline()) {
if (Beacon) {
await m.set beacon (YModule.BEACON ON) ;
} else {
await m.set beacon (YModule.BEACON OFF) ;
}

WriteLine ("serial: " + await m.get serialNumber());
WriteLine ("logical name: " + await m.get logicalName())
WriteLine ("luminosity: " + await m.get luminosity()):
Write ("beacon: ");
if (await m.get beacon() == YModule.BEACON_ ON)
WriteLine ("ON") ;
else
WriteLine ("OFF") ;
WriteLine ("upTime: " + (await m.get upTime () / 1000)
WriteLine ("USB current: " + await m.get usbCurrent ()
WriteLine ("Logs:\r\n" + await m.get lastLogs());
} else {

WriteLine (Target + " not connected on" + HubURL +
" (check identification and USB cable)");

}

await YAPI.FreeAPI();

return 0;

}
}
}

Each property xxx of the module can be read thanks to a method of type YModule.get xxxx(),
and properties which are not read-only can be modified with the help of the YModule.set xxx()

method. For more details regarding the used functions, refer to the API chapters.

www.yoctopuce.com

145

18. Using the Yocto-PWM-Rx-C with Universal Windows Platform

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
YModule.set xxx () function. However, this modification is performed only in the random access
memory (RAM) of the module: if the module is restarted, the modifications are lost. To memorize
them persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the YModule.saveToFlash () method. Inversely, it is possible to force
the module to forget its current settings by using the YModule.revertFromFlash () method.
The short example below allows you to modify the logical name of a module.

using System;

using System.Diagnostics;

using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

namespace Demo

{
public class Demo : DemoBase

{

public string HubURL { get; set; }
public string Target { get; set; }
public string LogicalName { get; set; }

public override async Task<int> Run ()

{
try {
YModule m;

await YAPI.RegisterHub (HubURL) ;

m = YModule.FindModule (Target) ; / use serial ol ogica
if (await m.isOnline()) {
if (!YAPI.CheckLogicalName (LogicalName)) {
WriteLine ("Invalid name (" + LogicalName + ")");

return -1;

}

await m.set logicalName (LogicalName) ;
await m.saveToFlash(); // do not forget t :
Write ("Module: serial= " + await m.get serialNumber());

WriteLine (" / name= " + await m.get logicalName());
} else {

Write ("not connected (check identification and USB cable");

}

} catch (YAPI Exception ex) {
WriteLine ("RegisterHub error: " + ex.Message);

}

await YAPI.FreeAPI();

return 0;

}
}
}

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the YModule.saveToFlash () function only 100000 times in the life of the module.
Make sure you do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the YModule.yFirstModule ()
function which returns the first module found. Then, you only need to call the nextModule ()
function of this object to find the following modules, and this as long as the returned value is not
null. Below a short example listing the connected modules.

using System;

using System.Diagnostics;

using System.Threading.Tasks;
using Windows.UI.Xaml.Controls;
using com.yoctopuce.YoctoAPI;

146 www.yoctopuce.com

18. Using the Yocto-PWM-Rx-C with Universal Windows Platform

namespace Demo
{
public class Demo : DemoBase
{
public string HubURL { get; set; }

public override async Task<int> Run()
{
YModule m;
try {
await YAPI.RegisterHub (HubURL) ;

WriteLine ("Device list");

m = YModule.FirstModule () ;
while (m !'= null) {
WriteLine (await m.get serialNumber ()
+ " (" + await m.get productName() + ")");

m = m.nextModule () ;
}
} catch (YAPI Exception ex) {
WriteLine ("Error:" + ex.Message);

}
await YAPI.FreeAPI();
return 0;

18.7. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then
hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software.

In the Universal Windows Platform library, error handling is implemented with exceptions. You must
therefore intercept and correctly handle these exceptions if you want to have a reliable project which
does not crash as soon as you disconnect a module.

Library thrown exceptions are always of the YAPI_Exception type, so you can easily separate them
from other exceptionsina try{...} catch{...} block.

Example:

try {

} catch (YAPI Exception ex) {

Debug.WriteLine ("Exception from Yoctopuce lib:" + ex.Message) ;
} catch (Exception ex) {

Debug.WriteLine ("Other exceptions :" + ex.Message);

}

www.yoctopuce.com 147

148 www.yoctopuce.com

19. Using Yocto-PWM-Rx-C with Objective-C

Objective-C is language of choice for programming on macOS, due to its integration with the Cocoa
framework. Yoctopuce supports the XCode versions supported by Apple. The Yoctopuce library is
ARC compatible. You can therefore implement your projects either using the traditional retain/
release method, or using the Automatic Reference Counting.

Yoctopuce Objective-C libraries’ are integrally provided as source files. A section of the low-level
library is written in pure C, but you should not need to interact directly with it: everything was done to
ensure the simplest possible interaction from Objective-C.

You will soon notice that the Objective-C API defines many functions which return objects. You do
not need to deallocate these objects yourself, the APl does it automatically at the end of the
application.

In order to keep them simple, all the examples provided in this documentation are console
applications. Naturally, the libraries function in a strictly identical manner if you integrate them in an
application with a graphical interface. You can find on Yoctopuce blog a detailed example? with video
shots showing how to integrate the library into your projects.

19.1. Control of the Pwminput function

A few lines of code are enough to use a Yocto-PWM-Rx-C. Here is the skeleton of a Objective-C
code snipplet to use the Pwmlnput function.

#import "yocto api.h"
#import "yocto pwminput.h"

NSError *error;
[YAPI RegisterHub:@"usb": &error]

pwminput = [YPwmInput FindPwmInput:@"YPWMRX1C-123456.pwmInputl”];

if ([pwminput isOnline])

{

1 www.yoctopuce.com/EN/libraries.php

www.yoctopuce.com/EN/article/new-objective-c-library-for-mac-os-x

www.yoctopuce.com 149

19. Using Yocto-PWM-Rx-C with Objective-C

Let's look at these lines in more details.

yocto_api.h and yocto_pwminput.h

These two import files provide access to the functions allowing you to manage Yoctopuce modules.
yocto api.h must always be used, yocto pwminput.h is necessary to manage modules
containing a PWM input, such as Yocto-PWM-Rx-C.

[YAPI RegisterHub]

The [YAPI RegisterHub] function initializes the Yoctopuce APl and indicates where the
modules should be looked for. When used with the parameter @"usb", it will use the modules
locally connected to the computer running the library. If the initialization does not succeed, this
function returns a value different from YAPI SUCCESS and errmsg contains the error message.

[PwmInput FindPwminput]

The [PwmInput FindPwmInput] function allows you to find a PWM input from the serial
number of the module on which it resides and from its function name. You can use logical names as
well, as long as you have initialized them. Let us imagine a Yocto-PWM-Rx-C module with serial
number YPWMRX1C-123456 which you have named "MyModule", and for which you have given the
pwminput1 function the name "MyFunction". The following five calls are strictly equivalent, as long as
"MyFunction" is defined only once.

wmInput *pwminput
mInput *pwminput
ymInput *pwminput
ymInput *pwminput
PwmInput *pwminput

[PwmInput FindPwmInput:@"YPWMRX1C-123456.pwmInputl"];

[PwmInput FindPwmInput:@"YPWMRX1C-123456.MyFunction"];
[PwmInput FindPwmInput:@"MyModule.pwmInputl"];
[
[

PwmInput FindPwmInput:@"MyModule.MyFunction"];

v
v
Y
Y
Y PwmInput FindPwmInput:@"MyFunction"];

[PwmInput FindPwmInput] returns an object which you can then use at will to control the
PWM input.

isOnline

The isOnline method of the object returned by [PwmInput FindPwmInput] allows you to
know if the corresponding module is present and in working order.

get_frequency

The get frequency() method of the object returned by YPwmInput.FindPwmIntput
returns the detected PWM frequency.

get_dutyCycle

The get dutyCycle () method of the object returned by YPwmInput.FindPwmInput returns
the detected PWM duty cycle.

A real example

Launch Xcode 4.2 and open the corresponding sample project provided in the directory Examples/
Doc-GettingStarted-Yocto-PWM-Rx-C of the Yoctopuce library.

In this example, you will recognize the functions explained above, but this time used with all side
materials needed to make it work nicely as a small demo.

#import <Foundation/Foundation.h>
#import "yocto api.h"
#import "yocto pwmInput.h"

static void usage (void)
{

NSLog (@"usage: demo <serial number>");

(
NSLog (@" demo <logical name>");
NSLog (@" demo any (use any discovered device)");
exit (1) ;

150 www.yoctopuce.com

19. Using Yocto-PWM-Rx-C with Objective-C

int main(int argc, const char * argv[])
{

NSError *error;

if (argc < 2) {
usage () ;

}

@autoreleasepool {
// Setup the API to use local USB devices

if ([YAPI RegisterHub:Q@"usb": &error] != YAPI SUCCESS) ({
NSLog (@"RegisterHub error: %$@", [error localizedDescription]):;
return 1;
}
NSString *target = [NSString stringWithUTF8String:argv[1l]];
if ([target isEqualToString:@"any"]) {
YPwmInput *pwminput = [YPwmInput FirstPwmInput];
if (pwminput == NULL) {
NSLog (@"No module connected (check USB cable)");
return 1;
}
target = [[pwminput module] serialNumber];
}
YPwmInput *pwmInputl = [YPwmInput FindPwmInput:
[target stringByAppendingString:Q@".pwmInputl"]];
YPwmInput *pwmInput2 = [YPwmInput FindPwmInput:

[target stringByAppendingString:Q@".pwmInput2"]];

while ([pwmInputl isOnline]) {
NSLog (@"PWM1 : %f Hz %$f %% %$1d pulses",
[pwmInputl get frequency], [pwmInputl get dutyCycle],

[pwmInputl get pulseCounter]) ;
NSLog (@"PWM2 : %f Hz $f %% %$1d pulses",
[pwmInput2 get frequency], [pwmInput2 get dutyCycle],
[pwmInput2 get pulseCounter]) ;
NSLog (@" (press Ctrl-C to exit)");
[YAPI Sleep:1000 :&error];
}
NSLog (@"Module disconnected");
[YAPI FreeAPI];
}

return 0;

19.2. Control of the module part

Each module can be controlled in a similar manner, you can find below a simple sample program
displaying the main parameters of the module and enabling you to activate the localization beacon.

#import <Foundation/Foundation.h>
#import "yocto api.h"

static void usage (const char *exe)

{
NSLog (@"usage: %s <serial or logical name> [ON/OFF]\n", exe);
exit (1) ;

}

int main (int argc, const char * argv([])
{

NSError *error;

Qautoreleasepool {
// Setup the API to use local USB devices

if ([YAPI RegisterHub:@"usb": &error] != YAPI SUCCESS) {
NSLog (@"RegisterHub error: %$Q@", [error localizedDescription]);
return 1;

}
if (argc < 2)

www.yoctopuce.com 151

19. Using Yocto-PWM-Rx-C with Objective-C

usage (argv[0]) ;

NSString *serial or name = [NSString stringWithUTF8String:argv[1l]];
// use serial or logical name
YModule *module = [YModule FindModule:serial or name];
if ([module isOnline]) {
if (argc > 2) {
if (strcmp(argv[2], "ON") == 0)
[module setBeacon:Y BEACON ON];
else

[module setBeacon:Y BEACON OFF];
}

NSLog (@"serial: %@\n", [module serialNumber]) ;
NSLog (@"logical name: %@\n", [module logicalName]) ;
NSLog (@"luminosity: $d\n", [module luminosityl]);
NSLog (@"beacon: B
if ([module beacon] == Y BEACON ON)

NSLog (@"ON\n") ;
else

NSLog (@"OFF\n") ;
NSLog (@"upTime: %$1d sec\n", [module upTime] / 1000);
NSLog (@"USB current: %d mA\n", [module usbCurrent]) ;
NSLog (@"logs: %@\n", [module get lastLogs]);

} else {

NSLog (@"%@ not connected (check identification and USB cable)\n",
serial or name);
}
[YAPI FreeAPI];

return O;

Each property xxx of the module can be read thanks to a method of type get xxxx, and
properties which are not read-only can be modified with the help of the set xxx: method. For
more details regarding the used functions, refer to the API chapters.

Changing the module settings

When you want to modify the settings of a module, you only need to call the corresponding
set xxx: function. However, this modification is performed only in the random access memory
(RAM) of the module: if the module is restarted, the modifications are lost. To memorize them
persistently, it is necessary to ask the module to save its current configuration in its permanent
memory. To do so, use the saveToFlash method. Inversely, it is possible to force the module to
forget its current settings by using the revertFromFlash method. The short example below
allows you to modify the logical name of a module.

@Qautoreleasepool {

#import <Foundation/Foundation.h>
#import "yocto api.h"

static void usage (const char *exe)

NSLog (@"usage: %s <serial> <newLogicalName>\n", exe);
exit (1) ;

int main (int argc, const char * argv[])

NSError *error;

// Setup the API to use local USB devices

if ([YAPI RegisterHub:Q@"usb" :&error] != YAPI SUCCESS) ({

NSLog (@"RegisterHub error: %$@", [error localizedDescription]):;
return 1;

}

if (argc < 2)
usage (argv[0]) ;

NSString *serial or name = [NSString stringWithUTF8String:argv[1l]];

name

> Serial or

YModule *module = [YModule FindModule:serial or name];

if (module.isOnline) {

152

www.yoctopuce.com

19. Using Yocto-PWM-Rx-C with Objective-C

if (argc >= 3) {
NSString *newname = [NSString stringWithUTF8String:argv[2]];
if (![YAPI CheckLogicalName:newname]) {
NSLog (@"Invalid name (%@)\n", newname) ;
usage (argv[0]) ;
}
module.logicalName = newname;
[module saveToFlash];

}
NSLog (@"Current name: %@\n", module.logicalName) ;
} else {
NSLog (@"%@ not connected (check identification and USB cable)\n",
serial or name);

}
[YAPI FreeAPI];

}

return 0;

Warning: the number of write cycles of the nonvolatile memory of the module is limited. When this
limit is reached, nothing guaranties that the saving process is performed correctly. This limit, linked to
the technology employed by the module micro-processor, is located at about 100000 cycles. In short,
you can use the saveToFlash function only 100000 times in the life of the module. Make sure you
do not call this function within a loop.

Listing the modules

Obtaining the list of the connected modules is performed with the yFirstModule () function which
returns the first module found. Then, you only need to call the nextModule () function of this
object to find the following modules, and this as long as the returned value is not NULL. Below a
short example listing the connected modules.

#import <Foundation/Foundation.h>
#import "yocto api.h"

int main (int argc, const char * argvl[])
{

NSError *error;

Qautoreleasepool {
if ([YAPI RegisterHub:@"usb" :&error] != YAPI SUCCESS) {
NSLog (@"RegisterHub error: %Q@\n", [error localizedDescription]);
return 1;

}

NSLog (@"Device list:\n");

YModule *module = [YModule FirstModule];
while (module != nil) {
NSLog (@"%Q@ %Q@", module.serialNumber, module.productName) ;
module = [module nextModule];
}
[YAPI FreeAPI];
}
return O;

}

19.3. Error handling

When you implement a program which must interact with USB modules, you cannot disregard error
handling. Inevitably, there will be a time when a user will have unplugged the device, either before
running the software, or even while the software is running. The Yoctopuce library is designed to help
you support this kind of behavior, but your code must nevertheless be conceived to interpret in the
best possible way the errors indicated by the library.

The simplest way to work around the problem is the one used in the short examples provided in this
chapter: before accessing a module, check that it is online with the 1 sOnline function, and then

www.yoctopuce.com 153

19. Using Yocto-PWM-Rx-C with Objective-C

hope that it will stay so during the fraction of a second necessary for the following code lines to run.
This method is not perfect, but it can be sufficient in some cases. You must however be aware that
you cannot completely exclude an error which would occur after the call to 1sOnline and which
could crash the software. The only way to prevent this is to implement one of the two error handling
techniques described below.

The method recommended by most programming languages for unpredictable error handling is the
use of exceptions. By default, it is the behavior of the Yoctopuce library. If an error happens while
you try to access a module, the library throws an exception. In this case, there are three possibilities:

+ If your code catches the exception and handles it, everything goes well.

* If your program is running in debug mode, you can relatively easily determine where the
problem happened and view the explanatory message linked to the exception.

+ Otherwise... the exception makes your program crash, bang!

As this latest situation is not the most desirable, the Yoctopuce library offers another possibility for
error handling, allowing you to create a robust program without needing to catch exceptions at every
line of code. You simply need to call the YAPT.DisableExceptions () function to commute the
library to a mode where exceptions for all the functions are systematically replaced by specific return
values, which can be tested by the caller when necessary. For each function, the name of each
return value in case of error is systematically documented in the library reference. The name always
follows the same logic: a get state () method returns a ClassName.STATE INVALID value,
a get currentValue method returns a ClassName.CURRENTVALUE INVALID value, and
so on. In any case, the returned value is of the expected type and is not a null pointer which would
risk crashing your program. At worst, if you display the value without testing it, it will be outside the
expected bounds for the returned value. In the case of functions which do not normally return
information, the return value is YAPT SUCCESS if everything went well, and a different error code in
case of failure.

When you work without exceptions, you can obtain an error code and an error message explaining
the source of the error. You can request them from the object which returned the error, calling the
errType () and errMessage () methods. Their returned values contain the same information as
in the exceptions when they are active.

154 www.yoctopuce.com

20. Using with unsupported languages

Yoctopuce modules can be driven from most common programming languages. New languages are
regularly added, depending on the interest expressed by Yoctopuce product users. Nevertheless,
some languages are not, and will never be, supported by Yoctopuce. There can be several reasons
for this: compilers which are not available anymore, unadapted environments, and so on.

However, there are alternative methods to access Yoctopuce modules from an unsupported
programming language.

20.1. Command line

The easiest method to drive Yoctopuce modules from an unsupported programming language is to
use the command line API through system calls. The command line APl is in fact made of a group of
small executables which are easy to call. Their output is also easy to analyze. As most programming
languages allow you to make system calls, the issue is solved with a few lines of code.

However, if the command line API is the easiest solution, it is neither the fastest nor the most
efficient. For each call, the executable must initialize its own API and make an inventory of USB
connected modules. This requires about one second per call.

20.2. .NET Assembly

A .NET Assembly enables you to share a set of pre-compiled classes to offer a service, by stating
entry points which can be used by third-party applications. In our case, it's the whole Yoctopuce
library which is available in the .NET Assembly, so that it can be used in any environment which
supports .NET Assembly dynamic loading.

The Yoctopuce library as a .NET Assembly does not contain only the standard C# Yoctopuce library,
as this would not have allowed an optimal use in all environments. Indeed, we cannot expect host
applications to necessarily offer a thread system or a callback system, although they are very useful
to manage plug-and-play events and sensors with a high refresh rate. Likewise, we cannot expect
from external applications a transparent behavior in cases where a function call in Assembly creates
a delay because of network communications.

Therefore, we added to it an additional layer, called .NET Proxy library. This additional layer offers an
interface very similar to the standard library but somewhat simplified, as it internally manages all the
callback mechanisms. Instead, this library offers mirror objects, called Proxys, which publish through
Properties the main attributes of the Yoctopuce functions such as the current measure, configuration
parameters, the state, and so on.

www.yoctopuce.com 155

20. Using with unsupported languages

.NET Host Application

\ N

|
DotNetProxy.dll (.NET Assembly)

[YoctoProxyAPL.* : .NET Proxy API
I

-/

JL

[YoctoLib.* : Yoctopuce standard C# API

—

\

10 10
3z Sz

yapi.dIl) [amd64/yapidil

low-level API (32 bit) J Llow-level API (64 bit)
\

J

.NET Assembly Architecture

The callback mechanism automatically updates the properties of the Proxys objects, without the host
application needing to care for it. The later can thus, at any time and without any risk of latency,
display the value of all properties of Yoctopuce Proxy objects.

Pay attention to the fact that the yapi.dl1l low-level communication library is not included in
the .NET Assembly. You must therefore keep it together with DotNetProxyLibrary.dll. The
32 bit version must be located in the same directory as DotNetProxyLibrary.dl1, while the 64
bit version must be in a subdirectory amd64.

Example of use with MATLAB

Here is how to load our Proxy .NET Assembly in MATLAB and how to read the value of the first
sensor connected by USB found on the machine:

NET.addAssembly ("C:/Yoctopuce/DotNetProxyLibrary.dl1l") ;
import YoctoProxyAPI.*

errmsg = YAPIProxy.RegisterHub ("usb");
sensor = YSensorProxy.FindSensor ("");
measure = sprintf('%.3f %s', sensor.CurrentValue, sensor.Unit);

Example of use in PowerShell
PowerShell commands are a little stranger, but we can recognize the same structure:

Add-Type -Path "C:/Yoctopuce/DotNetProxyLibrary.dll"

Serrmsg = [YoctoProxyAPI.YAPIProxy]::RegisterHub ("usb")
S$Ssensor = [YoctoProxyAPI.YSensorProxy]::FindSensor (""
Smeasure = "{0:n3} {1}" -f $sensor.CurrentValue, $sensor.Unit

Specificities of the .NET Proxy library
With regards to classic Yoctopuce libraries, the following differences in particular should be noted:

No FirstModule/nextModule method
To obtain an object referring to the first found module, we call YModuleProxy.FindModule
(""). If there is no connected module, this method returns an object with its module.IsOnline
property set to False. As soon as a module is connected, the property changes to True and the
module hardware identifier is updated.

To list modules, you can call the module.GetSimilarFunctions () method which returns an
array of character strings containing the identifiers of all the modules which were found.

No callback function
Callback functions are implemented internally and they update the object properties. You can
therefore simply poll the properties, without significant performance penalties. Be aware that if you

156 www.yoctopuce.com

20. Using with unsupported languages

use one of the function that disables callbacks, the automatic refresh of object properties may not
work anymore.

A new method YAPIProxy.GetLog makes it possible to retrieve low-level debug logs without
using callbacks.

Enumerated types

In order to maximize compatibility with host applications, the .NET Proxy library does not use
true .NET enumerated types, but simple integers. For each enumerated type, the library includes
public constants named according to the possible values. Contrarily to standard Yoctopuce libraries,
numeric values always start from 1, as the value 0 is reserved to return an invalid value, for instance
when the device is disconnected.

Invalid numeric results
For all numeric results, rather than using an arbitrary constant, the invalid value returned in case of
error is NaN. You should therefore use function isNaN() to detect this value.

Using .NET Assembly without the Proxy library

If for a reason or another you do not want to use the Proxy library, and if your environment allows it,
you can use the standard C# API as it is located in the Assembly, under the YoctoLib namespace.
Beware however not to mix both types of use: either you go through the Proxy library, or you use he
YoctoLib version directly, but not both!

Compatibility

For the LabVIEW Yoctopuce library to work correctly with your Yoctopuce modules, these modules
need to have firmware 37120, or higher.

In order to be compatible with as many versions of Windows as possible, including Windows XP, the
DotNetProxyLibrary.dll library is compiled in .NET 3.5, which is available by default on all the
Windows versions since XP. As of today, we have never met any non-Windows environment able to
load a .NET Assembly, so we only ship the low-level communication dll for Windows together with
the assembly.

20.3. VirtualHub and HTTP GET

VirtualHub is available on almost all current platforms. It is generally used as a gateway to provide
access to Yoctopuce modules from languages which prevent direct access to hardware layers of a
computer (JavaScript, PHP, Java, ...).

In fact, VirtualHub is a small web server able to route HTTP requests to Yoctopuce modules. This
means that if you can make an HTTP request from your programming language, you can drive
Yoctopuce modules, even if this language is not officially supported.

REST interface

At a low level, the modules are driven through a REST API. Thus, to control a module, you only need
to perform appropriate requests on the VirtualHub. By default, the VirtualHub HTTP port is 4444.

An important advantage of this technique is that preliminary tests are very easy to implement. You
only need a VirtualHub and a simple web browser. If you copy the following URL in your preferred
browser, while VirtualHub is running, you obtain the list of the connected modules.

http://127.0.0.1:4444/api/services/whitePages.txt

Note that the result is displayed as text, but if you request whitePages.xml, you obtain an XML result.
Likewise, whitePages.json allows you to obtain a JSON result. The html extension even allows you to
display a rough interface where you can modify values in real time. The whole REST API is available
in these different formats.

www.yoctopuce.com 157

20. Using with unsupported languages

Driving a module through the REST interface

Each Yoctopuce module has its own REST interface, available in several variants. Let us imagine a
Yocto-PWM-Rx-C with the YPWMRX1C-12345 serial number and the myModule logical name. The
following URL allows you to know the state of the module.

http://127.0.0.1:4444/bySerial/YPWMRX1C-12345/api/module.txt

You can naturally also use the module logical name rather than its serial number.

http://127.0.0.1:4444/byName/myModule/api/module. txt

To retrieve the value of a module property, simply add the name of the property below module. For
example, if you want to know the signposting led luminosity, send the following request:

http://127.0.0.1:4444/bySerial/YPWMRX1C-12345/api/module/luminosity

To change the value of a property, modify the corresponding attribute. Thus, to modify the luminosity,
send the following request:

http://127.0.0.1:4444/bySerial/YPWMRX1C-12345/api/module?luminosity=100

Driving the module functions through the REST interface

The module functions can be manipulated in the same way. To know the state of the pwmlinput1
function, build the following URL:

http://127.0.0.1:4444/bySerial/YPWMRX1C-12345/api/pwnInputl.txt

Note that if you can use logical names for the modules instead of their serial number, you cannot use
logical names for functions. Only hardware names are authorized to access functions.

You can retrieve a module function attribute in a way rather similar to that used with the modules. For
example:

http://127.0.0.1:4444/bySerial/YPWMRX1C-12345/api/pwmInputl/logicalName

Rather logically, attributes can be modified in the same manner.

http://127.0.0.1:4444/bySerial/YPWMRX1C-12345/api/pwmInputl?logicalName=myFunction

You can find the list of available attributes for your Yocto-PWM-Rx-C at the beginning of the
Programming chapter.

Accessing Yoctopuce data logger through the REST interface
This section only applies to devices with a built-in data logger.

The preview of all recorded data streams can be retrieved in JSON format using the following URL:

http://127.0.0.1:4444/bySerial/YPWMRX1C-12345/datalogger.json

Individual measures for any given stream can be obtained by appending the desired function
identifier as well as start time of the stream:

http://127.0.0.1:4444/bySerial/YPWMRX1C-12345/datalogger.json?id=pwmInputl

158 www.yoctopuce.com

20. Using with unsupported languages

20.4. Using dynamic libraries

The low level Yoctopuce API is available under several formats of dynamic libraries written in C. The
sources are available with the C++ API. If you use one of these low level libraries, you do not need
VirtualHub anymore.

Filename Platform

libyapi.dylib Max OS X
libyapi-amd64.so Linux Intel (64 bits)
libyapi-armel.so Linux ARM EL (32 bits)
libyapi-armhf.so Linux ARM HL (32 bits)
libyapi-aarch64.so Linux ARM (64 bits)
libyapi-i386.s0 Linux Intel (32 bits)
yapi64.dll Windows (64 bits)
yapi.dll Windows (32 bits)

These dynamic libraries contain all the functions necessary to completely rebuild the whole high level
APl in any language able to integrate these libraries. This chapter nevertheless restrains itself to
describing basic use of the modules.

Driving a module
The three essential functions of the low level API are the following:

int yapiInitAPI (int connection type, char *errmsg);
int yapiUpdateDevicelist (int forceupdate, char *errmsg);
int yapiHTTPRequest (char *device, char *request, char* buffer,int buffsize,int *fullsize,

char *errmsqg);

The yapilnitAPI function initializes the API and must be called once at the beginning of the program.
For a USB type connection, the connection_type parameter takes value 1. The errmsg parameter
must point to a 255 character buffer to retrieve a potential error message. This pointer can also point
to null. The function returns a negative integer in case of error, zero otherwise.

The yapiUpdateDevicelList manages the inventory of connected Yoctopuce modules. It must be
called at least once. To manage hot plug and detect potential newly connected modules, this function
must be called at regular intervals. The forceupdate parameter must take value 1 to force a hardware
scan. The errmsg parameter must point to a 255 character buffer to retrieve a potential error
message. This pointer can also point to null. The function returns a negative integer in case of error,
zero otherwise.

Finally, the yapiHTTPRequest function sends HTTP requests to the module REST API. The device
parameter contains the serial number or the logical name of the module which you want to reach.
The request parameter contains the full HTTP request (including terminal line breaks). buffer points
to a character buffer long enough to contain the answer. buffsize is the size of the buffer. fullsize is a
pointer to an integer to which will be assigned the actual size of the answer. The errmsg parameter
must point to a 255 character buffer to retrieve a potential error message. This pointer can also point
to null. The function returns a negative integer in case of error, zero otherwise.

The format of the requests is the same as the one described in the VirtualHub et HTTP GET section.
All the character strings used by the API are strings made of 8-bit characters: Unicode and UTF8 are
not supported.

The resutlt returned in the buffer variable respects the HTTP protocol. It therefore includes an HTTP
header. This header ends with two empty lines, that is a sequence of four ASCII characters 13, 10,
13, 10.

Here is a sample program written in pascal using the yapi.dll DLL to read and then update the
luminosity of a module.

function yapiInitAPI (mode:integer;

www.yoctopuce.com 159

20. Using with unsupported languages

errmsg : pansichar) :integer;cdecl;
external 'yapi.dll' name 'yapiInitAPI';
function yapiUpdateDevicelist (force:integer;errmsg : pansichar) :integer;cdecl;

external 'yapi.dll' name 'yapiUpdateDevicelList';
function yapiHTTPRequest (device:pansichar;url:pansichar; buffer:pansichar;

buffsize:integer;var fullsize:integer;

errmsg : pansichar) :integer;cdecl;

external 'yapi.dll' name 'yapiHTTPRequest';

var
errmsgBuffer : array [0..256] of ansichar;
dataBuffer : array [0..1024] of ansichar;
errmsg,data : pansichar;
fullsize,p : integer;
const
serial = 'YPWMRX1C-12345";
getValue = 'GET /api/module/luminosity HTTP/1.1'#13#10#13#10;
setValue = 'GET /api/module?luminosity=100 HTTP/1.1'#13#10#13#10;
begin
errmsg @errmsgBuffer;
data

@dataBuffer,

/ APT

lization

1f(yap11n1tAPI(l errmsg)<0) then
begin

writeln (errmsg) ;

halt;
end;

// forces a ice int
// orces a device 1

if (yaplUpdateDGVLCeLlst(l errmsg)<0) then
begin
writeln (errmsgqg) ;
halt;
end;
// re quests t he 10dt luminosi ty
if (yaleTTPRequest(serlal getValue,data, sizeof (dataBuffer),fullsize,errmsg)<0) then
begin
writeln (errmsg) ;
halt;

end;

hes for the HTTP header end

- i&os(#13#10#13#1o data) ;

lays the resp

if (yaleTTPRequest(serial,setValue,data,sizeof(dataBuffer),fullsize,errmsg)<0) then
begin

writeln (errmsg) ;

halt;
end;

end.

Module inventory
To perform an inventory of Yoctopuce modules, you need two functions from the dynamic library:

int yapiGetAllDevices (int *buffer,int maxsize,int *neededsize,char *errmsgqg);
int yapiGetDeviceInfo (int devdesc,yDeviceSt *infos, char *errmsqg);

The yapiGetAllDevices function retrieves the list of all connected modules as a list of handles. buffer
points to a 32-bit integer array which contains the returned handles. maxsize is the size in bytes of
the buffer. To neededsize is assigned the necessary size to store all the handles. From this, you can
deduce either the number of connected modules or that the input buffer is too small. The errmsg
parameter must point to a 255 character buffer to retrieve a potential error message. This pointer can
also point to null. The function returns a negative integer in case of error, zero otherwise.

160 www.yoctopuce.com

20. Using with unsupported languages

The yapiGetDevicelnfo function retrieves the information related to a module from its handle.

devdesc is a 32-bit integer

representing the module and which was obtained through

yapiGetAllDevices. infos points to a data structure in which the result is stored. This data structure

has the following format:

Size

Name Type (bytes
vendorid int 4
deviceid int 4
devrelease int 4
nbinbterfaces int 4
manufacturer char[] 20
productname char[] 28
serial char[] 20
logicalname char[] 20
firmware char[] 22
beacon byte 1

)Description

Yoctopuce USB ID

Module USB ID

Module version

Number of USB interfaces used by the module
Yoctopuce (null terminated)

Model (null terminated)

Serial number (null terminated)

Logical name (null terminated)

Firmware version (null terminated)

Beacon state (0/1)

The errmsg parameter must point to a 255 character buffer to retrieve a potential error message.

Here is a sample program written in pascal using the yapi.dll DLL to list the connected modules.

type yDeviceSt

packed record

vendorid word;
deviceid word;
devrelease ord;
nbinbterfaces
manufacturer [0..19] o
productname [0..27]
serial [0..19]
logicalname [0..19] o
firmware [0..21] o
beacon
end;
function yapiInitAPI (mode:integer;
errmsg pansi
external 'yapi
function vyapiUpdateDeviceList (force
external 'yapi
function vyapiGetAllDevices(buffer:
maxsize
var nee
errmsg :
externa
function apiGetDeviceInfo(d:integer
errmsg :
externa
var
errmsgBuffer array [0..256] of a
dataBuffer array [0..127] of i

errmsg, data
neededsize, i

: pansichar;
integer;

devinfos : yDeviceSt;
begin
errmsg = (@errmsgBuffer;
if (yapiInitAPI(1l,errmsg)<0) then
begin
writeln (errmsqg) ;
halt;
end;

f ansichar;
g ichar;

ichar;

char;

ans
ansichar;

f
£

sichar) :integer;cdecl;

.d1ll' name 'yapiInitAPI';

nteger;errmsg
.dll' name

: pansichar) :integer;cdecl;
'yvapiUpdateDevicelList';

pointer;
:integer;
dedsize:integer;

pansichar) :integer; cdecl;

1 'yapi.dll' name 'yapiGetAllDevices';
; var infos:yDeviceSt;

pansichar) :integer; cdecl;
1l 'yapi.dll' name 'yapiGetDeviceInfo';
nsichar;

nteger;

www.yoctopuce.com

161

20. Using with unsupported languages

if (yapiUpdateDevicelList (1,errmsg)<0) then
begin
writeln (errmsg) ;
halt;

end;

Loaas all Aaevice nanailec nto lataBuffer
if yapiGetAllDevices (@dataBuffer,sizeof (dataBuffer),neededsize,errmsg)<0 then
begin
writeln (errmsg) ;
halt;
end;

for i:=0 to neededsize div sizeof (integer)-1 do
begin
if (apiGetDeviceInfo (dataBuffer[i], devinfos, errmsg)<0) then
begin
writeln (errmsgqg) ;
halt;
end;
writeln (pansichar (@devinfos.serial)+' ('+pansichar (@devinfos.productname)+')");
end;

end.

VB6 and yapi.dll

Each entry point from the yapi.dil is duplicated. You will find one regular C-decl version and one
Visual Basic 6 compatible version, prefixed with vb6 .

20.5. Porting the high level library

As all the sources of the Yoctopuce API are fully provided, you can very well port the whole APl in
the language of your choice. Note, however, that a large portion of the API source code is
automatically generated.

Therefore, it is not necessary for you to port the complete API. You only need to port the yocto api
file and one file corresponding to a function, for example yocto relay. After a little additional work,
Yoctopuce is then able to generate all other files. Therefore, we highly recommend that you contact
Yoctopuce support before undertaking to port the Yoctopuce library in another language.
Collaborative work is advantageous to both parties.

162 www.yoctopuce.com

21. Advanced programming

The preceding chapters have introduced, in each available language, the basic programming
functions which can be used with your Yocto-PWM-Rx-C module. This chapter presents in a more
generic manner a more advanced use of your module. Examples are provided in the language which
is the most popular among Yoctopuce customers, that is C#. Nevertheless, you can find complete
examples illustrating the concepts presented here in the programming libraries of each language.

To remain as concise as possible, examples provided in this chapter do not perform any error
handling. Do not copy them "as is" in a production application.

21.1. Event programming

The methods to manage Yoctopuce modules which we presented to you in preceding chapters were
polling functions, consisting in permanently asking the API if something had changed. While easy to
understand, this programming technique is not the most efficient, nor the most reactive. Therefore,
the Yoctopuce programming APl also provides an event programming model. This technique
consists in asking the API to signal by itself the important changes as soon as they are detected.
Each time a key parameter is modified, the API calls a callback function which you have defined in
advance.

Detecting module arrival and departure

Hot-plug management is important when you work with USB modules because, sooner or later, you
will have to connect or disconnect a module when your application is running. The API is designed to
manage module unexpected arrival or departure in a transparent way. But your application must take
this into account if it wants to avoid pretending to use a disconnected module.

Event programming is particularly useful to detect module connection/disconnection. Indeed, it is
simpler to be told of new connections rather than to have to permanently list the connected modules
to deduce which ones just arrived and which ones left. To be warned as soon as a module is
connected, you need three pieces of code.

The callback
The callback is the function which is called each time a new Yoctopuce module is connected. It takes
as parameter the relevant module.

static void deviceArrival (YModule m)
{

Console.WriteLine ("New module : " + m.get serialNumber());

}

www.yoctopuce.com 163

21. Advanced programming

Initialization
You must then tell the API that it must call the callback when a new module is connected.

YAPI.RegisterDeviceArrivalCallback (deviceArrival);

Note that if modules are already connected when the callback is registered, the callback is called for
each of the already connected modules.

Triggering callbacks

A classis issue of callback programming is that these callbacks can be triggered at any time,
including at times when the main program is not ready to receive them. This can have undesired side
effects, such as dead-locks and other race conditions. Therefore, in the Yoctopuce API, module
arrival/departure callbacks are called only when the UpdateDeviceList () function is running.
You only need to call UpdateDeviceList () at regular intervals from a timer or from a specific
thread to precisely control when the calls to these callbacks happen:

waiting 1o00j
while (true)

{

YAPI.UpdateDevicelList (ref errmsg);
YAPI.Sleep (500, ref errmsq);
}

In a similar way, it is possible to have a callback when a module is disconnected. You can find a
complete example implemented in your favorite programming language in the Examples/Prog-
EventBased directory of the corresponding library.

Be aware that in most programming languages, callbacks must be global procedures, and not
methods. If you wish for the callback to call the method of an object, define your callback as a global
procedure which then calls your method.

Detecting a modification in the value of a sensor

The Yoctopuce API also provides a callback system allowing you to be notified automatically with the
value of any sensor, either when the value has changed in a significant way or periodically at a
preset frequency. The code necessary to do so is rather similar to the code used to detect when a
new module has been connected.

This technique is useful in particular if you want to detect very quick value changes (within a few
milliseconds), as it is much more efficient than reading repeatedly the sensor value and therefore
gives better performances.

Calliback invocation

To enable a better control, value change callbacks are only called when the YAPT.Sleep () and
YAPI.HandleEvents () functions are running. Therefore, you must call one of these functions at
a regular interval, either from a timer or from a parallel thread.

while (true)

{

YAPI.Sleep (500, ref errmsqg);
}

In programming environments where only the interface thread is allowed to interact with the user, it is
often appropriate to call YAPI .HandleEvents () from this thread.

164 www.yoctopuce.com

21. Advanced programming

The value change callback
This type of callback is called when a PWM input changes in a significant way. It takes as parameter
the relevant function and the new value, as a character string."

static void valueChangeCallback (YPwmInput fct, string value)
{

Console.WriteLine (fct.get hardwareId() + "=" + value);

}

In most programming languages, callbacks are global procedures, not methods. If you wish for the
callback to call a method of an object, define your callback as a global procedure which then calls
your method. If you need to keep a reference to your object, you can store it directly in the
YPwminput object using function set userData. You can then retrieve it in the global callback
procedure using get userData.

Setting up a value change callback

The callback is set up for a given Pwminput function with the help of the
registerValueCallback method. The following example sets up a callback for the first
available Pwminput function.

YPwmInput f = YPwmInput.FirstPwmInput () ;
f.registerValueCallback (pwmInputlChangeCallBack)

Note that each module function can thus have its own distinct callback. By the way, if you like to work
with value change callbacks, you will appreciate the fact that value change callbacks are not limited
to sensors, but are also available for all Yoctopuce devices (for instance, you can also receive a
callback any time a relay state changes).

The timed report callback

This type of callback is automatically called at a predefined time interval. The callback frequency can
be configured individually for each sensor, with frequencies going from hundred calls per seconds
down to one call per hour. The callback takes as parameter the relevant function and the measured
value, as an YMeasure object. Contrarily to the value change callback that only receives the latest
value, an YMeasure object provides both minimal, maximal and average values since the timed
report callback. Moreover, the measure includes precise timestamps, which makes it possible to use
timed reports for a time-based graph even when not handled immediately.

static void periodicCallback (YPwmInput fct, YMeasure measure)
{
Console.WriteLine (fct.get hardwareId() + "=" +
measure.get averageValue());

Setting up a timed report callback

The callback is set up for a given Pwminput function with the help of the
registerTimedReportCallback method. The callback will only be invoked once a callback
frequency as been set using set reportFrequency (which defaults to timed report callback
turned off). The frequency is specified as a string (same as for the data logger), by specifying the
number of calls per second (/s), per minute (/m) or per hour (/h). The maximal frequency is 100 times
per second (i.e. "100/s"), and the minimal frequency is 1 time per hour (i.e. "1/h"). When the
frequency is higher than or equal to 1/s, the measure represents an instant value. When the
frequency is below, the measure will include distinct minimal, maximal and average values based on
a sampling performed automatically by the device.

The following example sets up a timed report callback 4 times per minute for t he first available
Pwmlnput function.

1 The value passed as parameter is the same as the value returned by the get advertisedValue () method.

www.yoctopuce.com 165

21. Advanced programming

YPwmInput £ = YPwmInput.FirstPwmInput () ;
f.set reportFrequency("4/m");
f.registerTimedReportCallback (periodicCallback) ;

As for value change callbacks, each module function can thus have its own distinct timed report
callback.

Generic callback functions

It is sometimes desirable to use the same callback function for various types of sensors (e.g. for a
generic sensor graphing application). This is possible by defining the callback for an object of class
YSensor rather than YPwmInput. Thus, the same callback function will be usable with any
subclass of YSensor (and in particular with YPwmInput). With the callback function, you can use
the method get unt () to get the physical unit of the sensor, if you need to display it.

A complete example
You can find a complete example implemented in your favorite programming language in the
Examples/Prog-EventBased directory of the corresponding library.

21.2. The data logger

Your Yocto-PWM-Rx-C is equipped with a data logger able to store non-stop the measures
performed by the module. The maximal frequency is 100 times per second (i.e. "100/s"), and the
minimal frequency is 1 time per hour (i.e. "1/h"). When the frequency is higher than or equal to 1/s,
the measure represents an instant value. When the frequency is below, the measure will include
distinct minimal, maximal and average values based on a sampling performed automatically by the
device.

Note that is useless and counter-productive to set a recording frequency higher than the native
sampling frequency of the recorded sensor.

The data logger flash memory can store about 500'000 instant measures, or 125'000 averaged
measures. When the memory is about to be saturated, the oldest measures are automatically
erased.

Make sure not to leave the data logger running at high speed unless really needed: the flash memory
can only stand a limited number of erase cycles (typically 100'000 cycles). When running at full
speed, the datalogger can burn more than 100 cycles per day ! Also be aware that it is useless to
record measures at a frequency higher than the refresh frequency of the physical sensor itself.

Starting/stopping the datalogger
The data logger can be started with the set recording () method.

YDataLogger 1 = YDatalLogger.FirstDataLogger () ;
l.set recording(YDataLogger.RECORDING ON) ;

It is possible to make the data recording start automatically as soon as the module is powered on.

YDataLogger 1 = YDatalLogger.FirstDataLogger () ;
l.set autoStart (YDataLogger.AUTOSTART ON) ;
l.get module () .saveToFlash () ; do not forget to save the setting

Note: Yoctopuce modules do not need an active USB connection to work: they start working as soon
as they are powered on. The Yocto-PWM-Rx-C can store data without necessarily being connected
to a computer: you only need to activate the automatic start of the data logger and to power on the
module with a simple USB charger.

Erasing the memory

The memory of the data logger can be erased with the forgetAllDataStreams () function. Be
aware that erasing cannot be undone.

166 www.yoctopuce.com

21. Advanced programming

YDataLogger 1 = YDatalogger.FirstDatalLogger () ;
1l.forgetAllDataStreams () ;

Choosing the logging frequency

The logging frequency can be set up individually for each sensor, using the method
set logFrequency (). The frequency is specified as a string (same as for timed report
callbacks), by specifying the number of calls per second (/s), per minute (/m) or per hour (/h). The
default value is "1/s".

The following example configures the logging frequency at 15 measures per minute for the first
sensor found, whatever its type:

YSensor sensor = YSensor.FirstSensor():;
sensor.setilogFrequency(”l5/m”);

To avoid wasting flash memory, it is possible to disable logging for specified functions. In order to do
so, simply use the value "OFF":

sensor.set logFrequency ("OFF");

Limitation: The Yocto-PWM-Rx-C cannot use a different frequency for timed-report callbacks and for
recording data into the datalogger. You can disable either of them individually, but if you enable both
timed-report callbacks and logging for a given function, the two will work at the same frequency.

Retrieving the data

To load recorded measures from the Yocto-PWM-Rx-C flash memory, you must call the
get recordedData () method of the desired sensor, and specify the time interval for which you
want to retrieve measures. The time interval is given by the start and stop UNIX timestamp. You can
also specify 0 if you don't want any start or stop limit.

The get recordedData () method does not return directly am array of measured values, since
in some cases it would cause a huge load that could affect the responsiveness of the application.
Instead, this function will return an YDataSet object that can be used to retrieve immediately an
overview of the measured data (summary), and then to load progressively the details when desired.

Here are the main methods used to retrieve recorded measures:

dataset = sensor.get_recordedData(0,0): select the desired time interval
dataset.loadMore(): load data from the device, progressively

dataset.get_summary(): get a single measure summarizing the full time interval
dataset.get_preview(): get an array of measures representing a condensed version of the
whole set of measures on the selected time interval (reduced by a factor of approx. 200)
dataset.get_measures(): get an array with all detailled measures (that grows while
loadMore is being called repeteadly)

hrownN -~

o

Measures are instances of YMeasure 2. They store simultaneously the minimal, average and
maximal value at a given time, that you can retrieve using methods get_minValue(),
get_averageValue() and get_maxValue() respectively. Here is a small example that uses the
functions above:

YDataSet dataset = sensor.get recordedbData (0, 0);

dataset.loadMore () ;
YMeasure summary = dataset.get summary();

2 The YMeasure objects used by the data logger are exactly the same kind as those passed as argument to the timed
report callbacks.

www.yoctopuce.com 167

21. Advanced programming

string timeFmt = "dd MMM yyyy hh:mm:ss, f££f";
string logFmt = "from {0} to {1} : average={2:0.00}{3}";
Console.WriteLine (String.Format (logFmt,

summary.get startTimeUTC asDateTime () .ToString (timeFmt),

summary.get endTimeUTC asDateTime () .ToString(timeFmt),
summary.get averageValue (), sensor.get unit()));

Console.WriteLine ("loading details");
int progress;
do {
Console.Write(".");
progress = dataset.loadMore () ;
} while (progress < 100);

List<YMeasure> details = dataset.get measures();
foreach (YMeasure m in details) {
Console.WriteLine (String.Format (logFmt,
m.get startTimeUTC asDateTime () .ToString(timeFmt),
m.get endTimeUTC asDateTime () .ToString (timeFmt),
m.get averageValue (), sensor.get unit()));

}

You will find a complete example demonstrating how to retrieve data from the logger for each
programming language directly in the Yoctopuce library. The example can be found in directory
Examples/Prog-Datal.ogger.

Timestamp

As the Yocto-PWM-Rx-C does not have a battery, it cannot guess alone the current time when
powered on. Nevertheless, the Yocto-PWM-Rx-C will automatically try to adjust its real-time
reference using the host to which it is connected, in order to properly attach a timestamp to each
measure in the datalogger:

* When the Yocto-PWM-Rx-C is connected to a computer running either the VirtualHub or any
application using the Yoctopuce library, it will automatically receive the time from this
computer.

* When the Yocto-PWM-Rx-C is connected to a YoctoHub-Ethernet, it will get the time that the
YoctoHub has obtained from the network (using a server from pool .ntp.orqg)

* When the Yocto-PWM-Rx-C is connected to a YoctoHub-Wireless, it will get the time provided
by the YoctoHub based on its internal battery-powered real-time clock, which was itself
configured either from the network or from a computer

* When the Yocto-PWM-Rx-C is connected to an Android mobile device, it will get the time from
the mobile device as long as an app using the Yoctopuce library is launched.

When none of these conditions applies (for instance if the module is simply connected to an USB
charger), the Yocto-PWM-Rx-C will do its best effort to attach a reasonable timestamp to the
measures, using the timestamp found on the latest recorded measures. It is therefore possible to
"preset to the real time" an autonomous Yocto-PWM-Rx-C by connecting it to an Android mobile
phone, starting the data logger, then connecting the device alone on an USB charger. Nevertheless,
be aware that without external time source, the internal clock of the Yocto-PWM-Rx-C might be be
subject to a clock skew (theoretically up to 2%).

21.3. Sensor calibration

Your Yocto-PWM-Rx-C module is equipped with a digital sensor calibrated at the factory. The values
it returns are supposed to be reasonably correct in most cases. There are, however, situations where
external conditions can impact the measures.

The Yoctopuce API provides the mean to re-caliber the values measured by your Yocto-PWM-Rx-C.
You are not going to modify the hardware settings of the module, but rather to transform afterwards
the measures taken by the sensor. This transformation is controlled by parameters stored in the flash
memory of the module, making it specific for each module. This re-calibration is therefore a fully
software matter and remains perfectly reversible.

168 www.yoctopuce.com

21. Advanced programming

Before deciding to re-calibrate your Yocto-PWM-Rx-C module, make sure you have well understood
the phenomena which impact the measures of your module, and that the differences between true
values and measured values do not result from a incorrect use or an inadequate location of the
module.

The Yoctopuce modules support two types of calibration. On the one hand, a linear interpolation
based on 1 to 5 reference points, which can be performed directly inside the Yocto-PWM-Rx-C. On
the other hand, the API supports an external arbitrary calibration, implemented with callbacks.

1 to 5 point linear interpolation

These transformations are performed directly inside the Yocto-PWM-Rx-C which means that you
only have to store the calibration points in the module flash memory, and all the correction
computations are done in a perfectly transparent manner: The function get currentValue ()
returns the corrected value while the function get currentRawValue () keeps returning the
value before the correction.

Calibration points are simply (Raw_value, Corrected_value) couples. Let us look at the impact of the
number of calibration points on the corrections.

1 point correction

The 1 point correction only adds a shift to the measures. For example, if you provide the calibration
point (a, b), all the measured values are corrected by adding to them b-a, so that when the value
read on the sensor is a, the pwmlnput1 function returns b.

L,
g ;\\OQ." Q)\\ -
— 0 4 \ td
20 Y OO&
R @
15 (@
o
o
10
5
sensor value

5 10 15 20 25 30

Measure correction with 1 calibration point, here (5,10)

The application is very simple: you only need to call the calibrateFromPoints() method of the function
you wish to correct. The following code applies the correction illustrated on the graph above to the
first pwmlinput1 function found. Note the call to the saveToFlash method of the module hosting the
function, so that the module does not forget the calibration as soon as it is disconnected.

Double[] ValuesBefore {5%5

Double[] ValuesAfter {10} ;

YPwmInput f = YPwmInput.FirstPwmInput () ;
f.calibrateFromPoints (ValuesBefore, ValuesAfter);
f.get module () .saveToFlash();

2 point correction

2 point correction allows you to perform both a shift and a multiplication by a given factor between
two points. If you provide the two points (a, b) and (c, d), the function result is multiplied (d-b)/(c-a) in
the [a, c] range and shifted, so that when the value read by the sensor is a or ¢, the pwminput1
function returns respectively b and d. Outside of the [a, c] range, the values are simply shifted, so as

www.yoctopuce.com 169

21. Advanced programming

to preserve the continuity of the measures: an increase of 1 on the value read by the sensor induces
an increase of 1 on the returned value.

g
20 &
>
©
Q
O
15 {2
@]
o
10
5
sensor value

.
.

' ‘5 10 15 20 25 30

Measure correction with the two calibration points (10,5) and (25,10).

The code allowing you to program this calibration is very similar to the preceding code example.

Double[] ValuesBefore = {10,25};
Double[] ValuesAfter = {5,10};

YPwmInput f = YPwmInput.FirstPwmInput () :;
f.calibrateFromPoints (ValuesBefore, ValuesAfter);
f.get module () .saveToFlash();

Note that the values before correction must be sorted in a strictly ascending order, otherwise they
are simply ignored.

3 to 5 point correction
3 to 5 point corrections are only a generalization of the 2 point method, allowing you to create up to 4
correction ranges for an increased precision. These ranges cannot be disjoint.

g
20 |3
©
Q
(&)
15 |
(@]
o
10
5
sensor value

' ‘5 10 15 20 25 30

Correction example with 3 calibration points

Back to normal
To cancel the effect of a calibration on a function, call the calibrateFromPoints() method with two
empty arrays.

170 www.yoctopuce.com

21. Advanced programming

Double[] ValuesBefore {};

Dot e[] ValuesAfter {};

YPwmInput f = YPwmInput.FirstPwmInput () ;
f.calibrateFromPoints (ValuesBefore, ValuesAfter):;
f.get module () .saveToFlash();

You will find, in the Examples\Prog-Calibration directory of the Delphi, VB, and C# libraries, an
application allowing you to test the effects of the 1 to 5 point calibration.

Limitations

Due to storage and processing limitations of real values within Yoctopuce sensors, raw values and
corrected values must conform to a few numeric consraints:

* Only 3 decimals are taken into account (i.e. resolution is 0.001)
* The lowest allowed value is -2'100'000
* The highest allowed value is +2'100'000

Arbitrary interpolation

It is also possible to compute the interpolation instead of letting the module do it, in order to calculate
a spline interpolation, for instance. To do so, you only need to store a callback in the API. This
callback must specify the number of calibration points it is expecting.

public static double CustomInterpolation3Points (double rawValue, int calibType,
int[] parameters, double[] beforeValues, double[] afterValues)
{ double result;

result =
return result;

}

YAPI.RegisterCalibrationHandler (3, CustomInterpolation3Points);

Note that these interpolation callbacks are global, and not specific to each function. Thus, each time
someone requests a value from a module which contains in its flash memory the correct number of
calibration points, the corresponding callback is called to correct the value before returning it,
enabling thus a perfectly transparent measure correction.

www.yoctopuce.com 171

172 www.yoctopuce.com

22. Firmware Update

There are multiples way to update the firmware of a Yoctopuce module.

22.1. VirtualHub or the YoctoHub

It is possible to update the firmware directly from the web interface of VirtualHub or of a YoctoHub.
The configuration panel of the module has an "upgrade" button to start a wizard that will guide you
through the firmware update procedure.

In case the firmware update fails for any reason, and the module does no start anymore, simply
unplug the module then plug it back while maintaining the Yocto-button down. The module will boot
in "firmware update" mode and will appear in the VirtualHub interface below the module list.

22.2. The command line library

All the command line tools can update Yoctopuce modules thanks to the downloadAndUpdate
command. The module selection mechanism works like for a traditional command. The [target] is the
name of the module that you want to update. You can also use the "any" or "all" aliases, or even a
name list, where the names are separated by commas, without spaces.

Executable [options] [target] command [parameters]

The following example updates all the Yoctopuce modules connected by USB.

YModule all downloadAndUpdate
ok: Yocto-PowerRelay RELAYHI1-266C8 (rev=15430) is up to date.
ok: 0 / O hubs in 0.000000s.
ok: 0 / 0 shields in 0.000000s.
ok: 1 / 1 devices in 0.130000s 0.130000s per device.
ok: All devices are now up to date.

22.3. The Android application Yocto-Firmware

You can update your module firmware from your Android phone or tablet with the Yocto-Firmware
application. This application lists all the Yoctopuce modules connected by USB and checks if a more
recent firmware is available on www.yoctopuce.com. If a more recent firmware is available, you can

www.yoctopuce.com 173

22. Firmware Update

update the module. The application is responsible for downloading and installing the new firmware
while preserving the module parameters.

Please note: while the firmware is being updated, the module restarts several times. Android
interprets a USB device reboot as a disconnection and reconnection of the USB device and asks the
authorization to use the USB port again. The user must click on OK for the update process to end
successfully.

22.4. Updating the firmware with the programming library

If you need to integrate firmware updates in your application, the libraries offer you an API to update
your modules.

Saving and restoring parameters

The get allSettings () method returns a binary buffer enabling you to save a module
persistent parameters. This function is very useful to save the network configuration of a YoctoHub
for example.

YWireless wireless = YWireless.FindWireless ("reference");
YModule m = wireless.get module () ;
byte[] default config = m.get allSettings();

saveFile ("default.bin", default config);

You can then apply these parameters to other modules with the set _allSettings () method.

byte[] default config = loadFile("default.bin");
YModule m = YModule.FirstModule () ;
while (m !'= null) {
if (m.get productName () == "YoctoHub-Wireless") ({
m.set allSettings(default config);

}
m = m.next ();

}

Finding the correct firmware

The first step to update a Yoctopuce module is to find which firmware you must use. The
checkFirmware (path, onlynew) method of the YModule object does exactly this. The
method checks that the firmware given as argument (path) is compatible with the module. If the
onlynew parameter is set, this method checks that the firmware is more recent than the version
currently used by the module. When the file is not compatible (or if the file is older than the installed
version), this method returns an empty string. In the opposite, if the file is valid, the method returns a
file access path.

The following piece of code checks that the c: \tmp\METEOMK1.17328.byn is compatible with
the module stored in the m variable .

YModule m = YModule.FirstModule () ;

string path = "c:\\tmp\METEOMK1.17328.byn";
string newfirm = m.checkFirmware (path, false);
if (newfirm != "") {
Console.WritelLine ("firmware " + newfirm + " is compatible");

}

The argument can be a directory (instead of a file). In this case, the method checks all the files of the
directory recursively and returns the most recent compatible firmware. The following piece of code
checks whether there is a more recent firmware in the c: \ tmp\ directory.

174 www.yoctopuce.com

22. Firmware Update

YModule m = YModule.FirstModule () ;
string path = "c:\\tmp";
string newfirm = m.checkFirmware (path, true);
if (newfirm != "") {
Console.WriteLine ("firmware " + newfirm + " is compatible and newer");

}

You can also give the "www.yoctopuce.com” string as argument to check whether there is a more
recent published firmware on Yoctopuce's web site. In this case, the method returns the firmware
URL. You can use this URL to download the firmware on your disk or use this URL when updating
the firmware (see below). Obviously, this possibility works only if your machine is connected to
Internet.

YModule m = YModule.FirstModule () ;
string url = m.checkFirmware ("www.yoctopuce.com", true);
if (url !'= "") {
Console.WriteLine ("new firmware is available at " + url);

}

Updating the firmware

A firmware update can take several minutes. That is why the update process is run as a background
task and is driven by the user code thanks to the YFirmwareUdpate class.

To update a Yoctopuce module, you must obtain an instance of the YFirmwareUdpate class with
the updateFirmware method of a YModule object. The only parameter of this method is the path
of the firmware that you want to install. This method does not immediately start the update, but
returns a YFirmwareUdpate object configured to update the module.

string newfirm = m.checkFirmware ("www.yoctopuce.com", true);

YFirmwareUpdate fw update = m.updateFirmware (newfirm);

The startUpdate () method starts the update as a background task. This background task
automatically takes care of

saving the module parameters

restarting the module in "update" mode

updating the firmware

starting the module with the new firmware version
restoring the parameters

abhwN =

The get progress() and get progressMessage () methods enable you to follow the
progression of the update. get progress () returns the progression as a percentage (100 =
update complete). get progressMessage () returns a character string describing the current
operation (deleting, writing, rebooting, ...). If the get progress method returns a negative value,
the update process failed. In this case, the get progressMessage () returns an error message.

The following piece of code starts the update and displays the progress on the standard output.

YFirmwareUpdate fw update = m.updateFirmware (newfirm);

int status = fw update.startUpdate () ;
while (status < 100 && status >= 0) ({
nt newstatus = fw update.get progress();
if (newstatus != status) {
Console.WriteLine (status + "% "
+ fw update.get progressMessage());

www.yoctopuce.com 175

22. Firmware Update

YAPI.Sleep (500, ref errmsqg);
status = newstatus;

}

if (status < 0) {
Console.WritelLine ("Firmware Update failed:
+ fw update.get progressMessage());
} else {
Console.WritelLine ("Firmware Updated Successfully!");

}

An Android characteristic

You can update a module firmware using the Android library. However, for modules connected by
USB, Android asks the user to authorize the application to access the USB port.

During firmware update, the module restarts several times. Android interprets a USB device reboot
as a disconnection and a reconnection to the USB port, and prevents all USB access as long as the
user has not closed the pop-up window. The use has to click on OK for the update process to
continue correctly. You cannot update a module connected by USB to an Android device
without having the user interacting with the device.

22.5. The "update” mode

If you want to erase all the parameters of a module or if your module does not start correctly
anymore, you can install a firmware from the "update" mode.

To force the module to work in "update" mode, disconnect it, wait a few seconds, and reconnect it
while maintaining the Yocto-button down. This will restart the module in "update" mode. This update
mode is protected against corruptions and is always available.

In this mode, the module is not detected by the YModule objects anymore. To obtain the list of
connected modules in "update” mode, you must use the YAPTI.GetAllBootLoaders () function.
This function returns a character string array with the serial numbers of the modules in "update"
mode.

List<string> allBootLoader = YAPI.GetAllBootLoaders();

The update process is identical to the standard case (see the preceding section), but you must
manually instantiate the YFirmwareUpdate object instead of calling
module.updateFirmware (). The constructor takes as argument three parameters: the module
serial number, the path of the firmware to be installed, and a byte array with the parameters to be
restored at the end of the update (or nul1l to restore default parameters).

YFirmwareUpdateupdate fw update;
fw update = new YFirmwareUpdate (allBootLoader[0], newfirm, null);
int status = fw update.startUpdate();

176 www.yoctopuce.com

23. High-level API Reference

This chapter summarizes the high-level API functions to drive your Yocto-PWM-Rx-C. Syntax and
exact type names may vary from one language to another, but, unless otherwise stated, all the
functions are available in every language. For detailed information regarding the types of arguments
and return values for a given language, refer to the definition file for this language (yocto api.*
as well as the other yocto_ * files that define the function interfaces).

For languages which support exceptions, all of these functions throw exceptions in case of error by
default, rather than returning the documented error value for each function. This is by design, to
facilitate debugging. It is however possible to disable the use of exceptions using the
yDisableExceptions () function, in case you prefer to work with functions that return error
values.

This chapter does not repeat the programming concepts described earlier, in order to stay as concise
as possible. In case of doubt, do not hesitate to go back to the chapter describing in details all
configurable attributes.

www.yoctopuce.com 177

23. High-level API Reference
23.1. Class YAPI

General functions

These general functions should be used to initialize and configure the Yoctopuce library. In most cases,
a simple call to function yRegi st er Hub() should be enough. The module-specific functions
yFind...() oryFirst...() should then be used to retrieve an object that provides interaction
with the module.

In order to use the functions described here, you should include:

import com.yoctopuce.YoctoAPI.YAPI;
import YoctoProxyAPLYAPIProxy
#include "yocto_api_proxy.h"

import YoctoProxyAPL.YAPIProxy"

| cpp_|#include "yocto_api.h"

| vb |yocto_api.vb

| cs |yocto_api.cs

| ey |from yocto_api import *
require_once('yocto_api.php");

ts |in HTML: import { YAPI, YErrorMsg, YModule, YSensor } from '../../dist/esm/yocto_api_browser.js’;
in Node.js: import { YAPI, YErrorMsg, YModule, YSensor } from 'yoctolib-cjs/yocto_api_nodejs.js’;

from yoctolib.yocto_api import *
YModule.vi
uses yocto_api;

es [in HTML: <script src="../../lib/lyocto_api.js"></script>
in node.js: require('yoctolib-es2017/yocto_api.js');

Global functions
YAPI.AddTrustedCertificates(certificate)

Adds a TLS/SSL certificate to the list of trusted certificates.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

YAPI.AddUdevRule(force)
Adds a UDEV rule which authorizes all users to access Yoctopuce modules connected to the USB ports.

[cpp] [vb] [es] [iava] [py] [phe] [ts] [pas] [es]

YAPI.CheckLogicalName(name)
Checks if a given string is valid as logical name for a module or a function.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

YAPI.ClearHTTPCallbackCacheDir(removeFiles)
Disables the HTTP callback cache.

YAPI.DisableExceptions()
Disables the use of exceptions to report runtime errors.

[epp] [vb] [es] [py] [php] [ts] [tpy] [pas] [es]

YAPI.DownloadHostCertificate(url, mstimeout)
Download the TLS/SSL certificate from the hub.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

178 www.yoctopuce.com

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.AddTrustedCertificates
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.AddUdevRule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.CheckLogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.ClearHTTPCallbackCacheDir
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.ClearHTTPCallbackCacheDir
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.DisableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.DownloadHostCertificate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.DownloadHostCertificate

23. High-level API Reference

YAPI.EnableExceptions()
Re-enables the use of exceptions for runtime error handling.

[epp] [vb] [es] [py] [phe] [ts] [try] [pas] [es]

YAPI.EnableUSBHost(osContext)
This function is used only on Android.

java

YAPI.FreeAPI()

Waits for all pending communications with Yoctopuce devices to be completed then frees dynamically
allocated resources used by the Yoctopuce library.

[cpp] [vb] [es] [Tava] [py] [phe] [ts] [dnp] [tpy] [pas] [es]

YAPI.GetAPIVersion()
Returns the version identifier for the Yoctopuce library in use.

[cpp] [vb] [es] [iava] [py] [php] [ts] [dnp] [tpy] [pas] [es]

YAPI.GetCacheValidity()
Returns the validity period of the data loaded by the library.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tpy] [pas] [es]

YAPI.GetDevicelListValidity()
Returns the delay between each forced enumeration of the used YoctoHubs.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tpy] [pas] [es]

YAPI.GetDIIArchitecture()
Returns the system architecture for the Yoctopuce communication library in use.

dnp
YAPI.GetDlIPath()
Returns the paths of the DLLs for the Yoctopuce library in use.
dnp
YAPI.GetLog(lastLogLine)
Retrieves Yoctopuce low-level library diagnostic logs.
dnp

YAPI.GetNetworkTimeout()
Returns the network connection delay for yRegi st er Hub() and yUpdat eDevi ceLi st ().

[cpp] [vb] [es] [ava] [py] [phe] [ts] [dnp] [tey] [pas] [es]

YAPI.GetTickCount()
Returns the current value of a monotone millisecond-based time counter.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tpy] [pas] [es]

YAPI.GetYAPISharedLibraryPath()
Returns the path to the dynamic YAPI library.

[cpe] [vb] [es] [iava] [ey] [phe] [ts] [pas] [es]

YAPI.HandleEvents(errmsg)
Maintains the device-to-library communication channel.

[cpp] [vb] [es] [iava] [py] [phe] [ts] [tpy] [pas] [es]

YAPLInitAPI(mode, errmsg)
Initializes the Yoctopuce programming library explicitly.

www.yoctopuce.com 179

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.EnableExceptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.EnableUSBHost
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.FreeAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.GetAPIVersion
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.GetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.GetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.GetDllArchitecture
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.GetDllPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.GetLog
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.GetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.GetTickCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.GetYAPISharedLibraryPath
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.HandleEvents
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.HandleEvents

23. High-level API Reference

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

YAPI.PreregisterHub(url, errmsg)
Fault-tolerant alternative to yRegi st er Hub() .

[cpp] [vb] [cs] [Tava] [py] [php] [ts] [dnp] [tpy] [pas] [es]

YAPI.RegisterDeviceArrivalCallback(arrivalCallback)

Register a callback function, to be called each time a device is plugged.
[iava] [ey] [phe] [ts] [tey] [pas] [es]

YAPI.RegisterDeviceRemovalCallback(removalCallback)
Register a callback function, to be called each time a device is unplugged.

[cpp] [vb] [es] [iava] [py] [phe] [ts] [tey] [pas] [es]

YAPI.RegisterHub(url, errmsg)
Set up the Yoctopuce library to use modules connected on a given machine.

[cpp] [vb] [es] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

YAPI.RegisterHubDiscoveryCallback(hubDiscoveryCallback)
Register a callback function, to be called each time an Network Hub send an SSDP message.

YAPI.RegisterHubWebsocketCallback(ws, errmsg, authpwd)

Variant to yRegi st er Hub() used to initialize Yoctopuce API on an existing Websocket session, as
happens for incoming WebSocket callbacks.

YAPI.RegisterLogFunction(logfun)
Registers a log callback function.

YAPI.SelectArchitecture(arch)
Select the architecture or the library to be loaded to access to USB.

YAPI.SetCacheValidity(cacheValidityMs)
Change the validity period of the data loaded by the library.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

YAPI.SetDelegate(object)
(Objective-C only) Register an object that must follow the protocol YDevi ceHot Pl ug.

YAPI.SetDeviceListValidity(deviceListValidity)
Modifies the delay between each forced enumeration of the used YoctoHubs.

[cpp] [vb] [es] [iava] [py] [phe] [ts] [tey] [pas] [es]

YAPI.SetHTTPCallbackCacheDir(directory)
Enables the HTTP callback cache.

YAPI.SetNetworkSecurityOptions(opts)
Enables or disables certain TLS/SSL certificate checks.

[cpp] [vb] [cs] [iava] [py] [phe] [ts] [tpy] [pas] [es]

YAPI.SetNetworkTimeout(networkMsTimeout)
Modifies the network connection delay for yRegi st er Hub() and yUpdat eDevi ceLi st ().

180 www.yoctopuce.com

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.InitAPI
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.PreregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.RegisterDeviceArrivalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.RegisterDeviceRemovalCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.RegisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.RegisterHubDiscoveryCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.RegisterLogFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.SelectArchitecture
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.SetCacheValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.SetDeviceListValidity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.SetHTTPCallbackCacheDir
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.SetHTTPCallbackCacheDir
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.SetNetworkSecurityOptions
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.SetNetworkSecurityOptions

23. High-level API Reference

[cpp] [vb] [es] [iava] [py] [php] [ts] [dnp] [tpy] [pas] [es]

YAPI.SetTimeout(callback, ms_timeout, args)
Invoke the specified callback function after a given timeout.

YAPI.SetTrustedCertificatesList(certificatePath)
Set the path of Certificate Authority file on local filesystem.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tpy] [pas] [es]

YAPI.SetUSBPacketAckMs(pktAckDelay)
Enables the acknowledge of every USB packet received by the Yoctopuce library.

j ava

YAPI.Sleep(ms_duration, errmsg)
Pauses the execution flow for a specified duration.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tpy] [pas] [es]

YAPI. TestHub(url, mstimeout, errmsg)
Test if the hub is reachable.

[cpp] [vb] [es] [iava] [py] [phe] [ts] [dnp] [tpy] [pas] [es]

YAPI.TriggerHubDiscovery(errmsg)

Force a hub discovery, if a callback as been registered with yRegi st er HubDi scover yCal | back it
will be called for each net work hub that will respond to the discovery.

YAPI.UnregisterHub(url)

Set up the Yoctopuce library to no more use modules connected on a previously registered machine with
RegisterHub.

[cpp] [vb] [es] [iava] [py] [phe] [ts] [tpy] [pas] [es]

YAPI.UpdateDeviceList(errmsg)
Triggers a (re)detection of connected Yoctopuce modules.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tpy] [pas] [es]

YAPI.UpdateDeviceList_async(callback, context)
Triggers a (re)detection of connected Yoctopuce modules.

www.yoctopuce.com 181

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.SetNetworkTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.SetTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.SetTimeout
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.SetTrustedCertificatesList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.SetUSBPacketAckMs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.Sleep
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.TestHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.TriggerHubDiscovery
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.UnregisterHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#API.UpdateDeviceList
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#API.UpdateDeviceList

23. High-level API Reference
23.2. Class YModule

Global parameters control interface for all Yoctopuce devices

The YModul e class can be used with all Yoctopuce USB devices. It can be used to control the module
global parameters, and to enumerate the functions provided by each module.

In order to use the functions described here, you should include:

| cpp_|#include "yocto_api.h"

| vb |yocto_api.vb

| cs |yocto_api.cs

import com.yoctopuce.YoctoAPI.YModule;
| ey |from yocto_api import *

[php_|require_once('yocto_api.php’);

ts |in HTML: import { YAPI, YErrorMsg, YModule, YSensor } from '../../dist/esm/yocto_api_browser.js’;
in Node.js: import { YAPI, YErrorMsg, YModule, YSensor } from 'yoctolib-cjs/yocto_api_nodejs.js’;

import YoctoProxyAPlL.YModuleProxy
#include "yocto_module_proxy.h"

[tpy |from yoctolib.yocto_api import *
YModule.vi

import YoctoProxyAPl.YModuleProxy"
uses yocto_api;

es |in HTML: <script src="../../lib/yocto_api.js"></script>
in node.js: require('yoctolib-es2017/yocto_api.js');

Global functions
YModule.FindModule(func)

Allows you to find a module from its serial number or from its logical name.

[cpp] [vb] [es] [iava] [py] [phe] [ts] [dnp] [tey] [pas] [es]

YModule.FindModulelnContext(yctx, func)
Retrieves a module for a given identifier in a YAPI context.

[iava] [ts] [tey] [es]

YModule.FirstModule()
Starts the enumeration of modules currently accessible.

[epp] [vb] [es] [fava] [py] [phe] [ts] [tpy] [pas] [es]
YModul e properties

module - Beacon [writable]
State of the localization beacon.

dnp
module - FirmwareRelease [read-only]
Version of the firmware embedded in the module.
dnp
module - Functionld [read-only]
Retrieves the hardware identifier of the nth function on the module.
dnp

module - Hardwareld [read-only]

182 www.yoctopuce.com

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.FindModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.FindModuleInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.FindModuleInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.FindModuleInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.FindModuleInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.FirstModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.Beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.FirmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.FunctionId

23. High-level API Reference

Unique hardware identifier of the module.

dnp
module - IsOnline [read-only]
Checks if the module is currently reachable.
dnp
module - LogicalName [writable]
Logical name of the module.
dnp
module - Luminosity [writable]
Luminosity of the module informative LEDs (from O to 100).
dnp
module - Productld [read-only]
USB device identifier of the module.
dnp
module - ProductName [read-only]
Commercial name of the module, as set by the factory.
dnp
module - ProductRelease [read-only]
Release number of the module hardware, preprogrammed at the factory.
dnp
module - SerialNumber [read-only]
Serial number of the module, as set by the factory.
dnp

YModul e methods
module - addFileToHTTPCallback(filename)
Adds a file to the uploaded data at the next HTTP callback.

[erd] [cpp] [vb] [es] [fava] [py] [php] [ts] [dnp] [pas] [es]

module - checkFirmware(path, onlynew)
Tests whether the byn file is valid for this module.

[emd] [cpp] [vb] [es] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

module - clearCache()
Invalidates the cache.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tpy] [pas] [es]

module - describe()
Returns a descriptive text that identifies the module.

[cpp] [vb] [es] [iava] [ey] [phe] [ts] [pas] [es]

module - download(pathname)
Downloads the specified built-in file and returns a binary buffer with its content.

[emd | [cpp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tpy] [pas] [es]

module - functionBaseType(functionindex)

Retrieves the base type of the nth function on the module.

www.yoctopuce.com 183

https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.HardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.IsOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.LogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.Luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.ProductId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.ProductName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.ProductRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.SerialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.addFileToHTTPCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.checkFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.download
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.download

23. High-level API Reference

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

module - functionCount()
Returns the number of functions (beside the "module" interface) available on the module.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

module - functionld(functionindex)
Retrieves the hardware identifier of the nth function on the module.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

module - functionName(functionindex)
Retrieves the logical name of the nth function on the module.

[epe] [vb] [es] [iava] [py] [ehe] [ts] [tpy] [pas] [es]

module - functionType(functionindex)
Retrieves the type of the nth function on the module.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

module - functionValue(functionindex)
Retrieves the advertised value of the nth function on the module.

[cpp] [vb] [cs] [iava] [py] [phe] [ts] [tpy] [pas] [es]

module - get_allSettings()
Returns all the settings and uploaded files of the module.

[cmd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

module - get_beacon()
Returns the state of the localization beacon.

[cmd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

module - get_errorMessage()
Returns the error message of the latest error with this module object.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

module - get_errorType()
Returns the numerical error code of the latest error with this module object.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

module - get_firmwareRelease()
Returns the version of the firmware embedded in the module.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

module - get_functionlds(funType)
Retrieve all hardware identifier that match the type passed in argument.

[ermd] [cpp] [vb] [es] [fava] [py] [phe] [ts] [dnp] [pas] [es]

module - get_hardwareld()
Returns the unique hardware identifier of the module.

[epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tpy] [es] [cmd] [pas]

module - get_icon2d()
Returns the icon of the module.

[end] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

module - get_lastLogs()

184 www.yoctopuce.com

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.functionBaseType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.functionCount
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.functionName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.functionType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.functionValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_firmwareRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_functionIds
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_icon2d
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_icon2d

23. High-level API Reference

Returns a string with last logs of the module.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

module - get_logicalName()
Returns the logical name of the module.

[epp]| [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tpy] [pas] [es] [cmd]

module - get_luminosity()
Returns the luminosity of the module informative LEDs (from 0 to 100).

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tpy | [pas] [es]

module - get_parentHub()
Returns the serial number of the YoctoHub on which this module is connected.

[emd | [cpp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tpy] [pas] [es]

module - get_persistentSettings()
Returns the current state of persistent module settings.

[emd] [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

module - get_productid()
Returns the USB device identifier of the module.

[emd] [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

module - get_productName()
Returns the commercial name of the module, as set by the factory.

[emd | [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [ty | [pas] [es]

module - get_productRelease()
Returns the release number of the module hardware, preprogrammed at the factory.

[emd] [epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [ty | [pas] [es]

module - get_rebootCountdown()

Returns the remaining number of seconds before the module restarts, or zero when no reboot has been
scheduled.

[emd] [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

module - get_serialNumber()
Returns the serial number of the module, as set by the factory.

[cpp]| [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tpy] [pas] [es] [cmd]

module - get_subDevices()
Returns a list of all the modules that are plugged into the current module.

[erd] [cpp] [vb] [cs] [fava] [py] [php] [ts] [dnp] [pas] [es]

module - get_upTime()
Returns the number of milliseconds spent since the module was powered on.

[emd] [epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

module - get_url()
Returns the URL used to access the module.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

module - get_usbCurrent()
Returns the current consumed by the module on the USB bus, in milli-amps.

www.yoctopuce.com 185

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_lastLogs
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_parentHub
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_persistentSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_productId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_productName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_productRelease
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_rebootCountdown
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_subDevices
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_upTime
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_url
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_url

23. High-level API Reference

[] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

module - get_userData()

Returns the value of the userData attribute, as previously stored using method set _user Dat a.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

module - get_userVar()
Returns the value previously stored in this attribute.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

module - hasFunction(funcld)
Tests if the device includes a specific function.

[emd] [cpp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey] [pas] [es]

module - isOnline()
Checks if the module is currently reachable, without raising any error.

[cpp] [vb] [es] [iava] [py] [phe] [ts] [dnp] [tey] [pas] [es]

module -isOnline_async(callback, context)
Checks if the module is currently reachable, without raising any error.

module - isReadOnly()
Indicates whether changes to the module are prohibited or allowed.

[epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tpy] [pas] [es] [cmd]

module - load(msValidity)
Preloads the module cache with a specified validity duration.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

module - load_async(msValidity, callback, context)
Preloads the module cache with a specified validity duration (asynchronous version).

module - log(text)
Adds a text message to the device logs.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

module - nextModule()
Continues the module enumeration started using yFi r st Modul e() .

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

module - reboot(secBeforeReboot)
Schedules a simple module reboot after the given number of seconds.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

module - registerBeaconCallback(callback)

Register a callback function, to be called when the localization beacon of the module has been changed.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

module - registerConfigChangeCallback(callback)

Register a callback function, to be called when a persistent settings in a device configuration has been
changed (e.g.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

module - registerLogCallback(callback)
Registers a device log callback function.

186 www.yoctopuce.com

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_usbCurrent
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.get_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.hasFunction
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.log
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.nextModule
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.reboot
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.registerBeaconCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.registerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.registerConfigChangeCallback

23. High-level API Reference

[cpp] [vb] [es] [iava] [py] [php] [ts] [tpy] [pas] [es]

module - revertFromFlash()
Reloads the settings stored in the nonvolatile memory, as when the module is powered on.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

module - saveToFlash()
Saves current settings in the nonvolatile memory of the module.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

module - set_allSettings(settings)
Restores all the settings of the device.

[emd] [epp] [vb] [es] [iava] [ey] [ehe] [ts] [dne] [tey] [pas] [es]

module - set_allSettingsAndFiles(settings)

Restores all the settings and uploaded files to the module.

[emd] [cpp] [vb] [cs] [fava] [py] [php] [ts] [dnp] [tpy | [pas] [es]

module - set_beacon(newval)
Turns on or off the module localization beacon.

[emd | [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tpy] [pas] [es]

module - set_logicalName(newval)
Changes the logical name of the module.

[cpp]| [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tpy] [pas] [es] [cnd]

module - set_luminosity(newval)
Changes the luminosity of the module informative leds.

[emd] [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

module - set_userData(data)
Stores a user context provided as argument in the userData attribute of the function.

[cpp] [vb] [cs] [iava] [py] [php] [ts] [tpy] [pas] [es]

module - set_userVar(newval)
Stores a 32 bit value in the device RAM.

[emd] [epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

module - triggerConfigChangeCallback()
Triggers a configuration change callback, to check if they are supported or not.

[emd] [epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

module - triggerFirmwareUpdate(secBeforeReboot)
Schedules a module reboot into special firmware update mode.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

module - updateFirmware(path)
Prepares a firmware update of the module.

[emd] [cpp] [vb] [cs] [fava] [py] [php] [ts] [dnp] [tey | [pas] [es]

module - updateFirmwareEx(path, force)
Prepares a firmware update of the module.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tpy | [pas] [es]

module - wait_async(callback, context)

www.yoctopuce.com 187

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.registerLogCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.revertFromFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.saveToFlash
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.set_allSettings
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.set_allSettingsAndFiles
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.set_beacon
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.set_luminosity
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.set_userVar
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.triggerConfigChangeCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.triggerFirmwareUpdate
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.updateFirmware
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#Module.updateFirmwareEx
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.updateFirmwareEx

23. High-level API Reference

Waits for all pending asynchronous commands on the module to complete, and invoke the user-provided
callback function.

188 www.yoctopuce.com

https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#Module.wait_async
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#Module.wait_async

23. High-level API Reference
23.3. Class YPwmlInput

PWM input control interface, available for instance in the Yocto-PWM-Rx

The YPwl nput class allows you to read and configure Yoctopuce PWM inputs. It inherits from
YSensor class the core functions to read measurements, to register callback functions, and to access
the autonomous datalogger. This class adds the ability to configure the signal parameter used to
transmit information: the duty cycle, the frequency or the pulse width.

In order to use the functions described here, you should include:

es [in HTML: <script src="../../lib/lyocto_pwminput.js"></script>
in node.js: require('yoctolib-es2017/yocto_pwminput.js");

#include "yocto_pwminput.h"
yocto_pwminput.vb

| cs |yocto_pwminput.cs

import com.yoctopuce.YoctoAPL.YPwmInput;

| py_|from yocto_pwminput import *

php |[require_once('yocto_pwminput.php");

ts |in HTML: import { YPwmInput } from '../../dist/lesm/yocto_pwminput.js’;
in Node.js: import { YPwmInput } from 'yoctolib-cjs/yocto_pwminput.js’;

import YoctoProxyAPLYPwmInputProxy
| cp |#include "yocto_pwminput_proxy.h"
from yoctolib.yocto_pwminput import *
[vi |YPwmInput.vi

import YoctoProxyAPLYPwmInputProxy

uses yocto_pwminput;

Global functions
YPwmInput.FindPwmInput(func)

Retrieves a PWM input for a given identifier.

[cpp] [vb] [es] [iava] [py] [phe] [ts] [dnp] [tpy] [pas] [es]

YPwmInput.FindPwmInputinContext(yctx, func)
Retrieves a PWM input for a given identifier in a YAPI context.

[iava] [ts] [tpy] [es]

YPwmInput.FirstPwminput()
Starts the enumeration of PWM inputs currently accessible.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tpy] [pas] [es]

YPwmInput.FirstPwmInputinContext(yctx)
Starts the enumeration of PWM inputs currently accessible.

[Teva] [5] [oy] [=5]

YPwmInput.GetSimilarFunctions()

Enumerates all functions of type Pwmlinput available on the devices currently reachable by the library, and
returns their unique hardware ID.

dnp
YPwni nput properties

pwminput - AdvMode [writable]
Measuring mode used for the advertised value pushed to the parent hub.

www.yoctopuce.com 189

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.FindPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.FindPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.FindPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.FindPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.FindPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.FindPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.FindPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.FindPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.FindPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.FindPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.FindPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.FindPwmInputInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.FindPwmInputInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.FindPwmInputInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.FindPwmInputInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.FirstPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.FirstPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.FirstPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.FirstPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.FirstPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.FirstPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.FirstPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.FirstPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.FirstPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.FirstPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.FirstPwmInputInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.FirstPwmInputInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.FirstPwmInputInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.FirstPwmInputInContext
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.GetSimilarFunctions

23. High-level API Reference

dnp
pwminput - AdvertisedValue [read-only]
Short string representing the current state of the function.
dnp
pwminput - Bandwidth [writable]
Input signal sampling rate, in kHz.
dnp
pwminput - DebouncePeriod [writable]
Shortest expected pulse duration, in ms.
dnp
pwminput - FriendlyName [read-only]
Global identifier of the function in the format MODULE_NANME. FUNCTI ON_NAME.
dnp
pwminput - Functionld [read-only]
Hardware identifier of the sensor, without reference to the module.
dnp
pwminput - Hardwareld [read-only]
Unique hardware identifier of the function in the form SERI AL. FUNCTI ONI D.
dnp
pwminput —IsOnline [read-only]
Checks if the function is currently reachable.
dnp

pwminput - LogFrequency [writable]

Datalogger recording frequency for this function, or "OFF" when measures are not stored in the data logger
flash memory.

dnp
pwminput - LogicalName [writable]
Logical name of the function.
dnp
pwminput - MinFrequency [writable]
Minimum detected frequency, in Hz.
dnp

pwminput - PwmReportMode [writable]
Parameter (frequency/duty cycle, pulse width, edges count) returned by the get_currentValue function and

callbacks.
dnp
pwminput » ReportFrequency [writable]
Timed value natification frequency, or "OFF" if timed value notifications are disabled for this function.
dnp

pwminput - Resolution [writable]
Resolution of the measured values.

190 www.yoctopuce.com

https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.AdvMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.AdvertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.Bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.DebouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.FriendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.FunctionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.HardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.IsOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.LogFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.LogicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.MinFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.PwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.ReportFrequency

23. High-level API Reference

dnp

pwminput - SerialNumber [read-only]
Serial number of the module, as set by the factory.

YPw nput methods
pwminput - calibrateFromPoints(rawValues, refValues)

Configures error correction data points, in particular to compensate for a possible perturbation of the measure
caused by an enclosure.

[emd] [epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

pwminput - clearCache()
Invalidates the cache.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tpy] [pas] [es]

pwminput - describe()

Returns a short text that describes unambiguously the instance of the PWM input in the form
TYPE(NAVE) =SERI AL. FUNCTI ONI D.

[cpp] [vb] [cs] [iava] [py] [phe] [ts] [pas] [es]

pwminput - get_advMode()
Returns the measuring mode used for the advertised value pushed to the parent hub.

[emd] [epp] [vb] [es] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

pwminput - get_advertisedValue()
Returns the current value of the PWM input (no more than 6 characters).

[epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tpy] [pas] [es] [cmd]

pwminput - get_bandwidth()
Returns the input signal sampling rate, in kHz.

[emd] [cpp] [vb] [cs] [fava] [py] [php] [ts] [dnp] [tey | [pas] [es]

pwminput - get_currentRawValue()
Returns the uncalibrated, unrounded raw value returned by the sensor, in HZ, as a floating point number.

[emd] [epp] [vb] [es] [iava] [ey] [ehe] [ts] [ene] [tey] [pas] [es]

pwminput —»get_currentValue()
Returns the current value of the Pwminput feature as a floating point number.

[emd | [cpp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tpy] [pas] [es]

pwminput —»get_dataLogger()
Returns the YDat al ogger object of the device hosting the sensor.

[cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [ty] [pas] [es]

pwminput »get_debouncePeriod()
Returns the shortest expected pulse duration, in ms.

[emd] [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

pwminput - get_dutyCycle()
Returns the PWM duty cycle, in per cents.

[emd] [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

pwminput - get_edgesPerPeriod()

www.yoctopuce.com 191

https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.Resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.SerialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.calibrateFromPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.clearCache
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.describe
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_advertisedValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_currentRawValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_currentValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_dataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_dutyCycle
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_dutyCycle
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_dutyCycle
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_dutyCycle
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_dutyCycle
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_dutyCycle
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_dutyCycle
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_dutyCycle
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_dutyCycle
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_dutyCycle
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_dutyCycle
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_dutyCycle

23. High-level API Reference

Returns the number of edges detected per preiod.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

pwminput - get_errorMessage()
Returns the error message of the latest error with the PWM input.

[cpp] [vb] [es] [iava] [py] [phe] [ts] [tey] [pas] [es]

pwminput - get_errorType()
Returns the numerical error code of the latest error with the PWM input.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

pwminput - get_frequency()
Returns the PWM frequency in Hz.

[end] [cpp] [vb] [es] [ava] [py] [phe] [ts] [dnp] [ty | [pas] [es]

pwminput - get_friendlyName()
Returns a global identifier of the PWM input in the format MODULE_NAME. FUNCTI ON_NAME.

[cpp] [cs] [iava] [py] [php] [ts] [dnp] [tpy] [es]

pwminput - get_functionDescriptor()

Returns a unique identifier of type YFUN_DESCR corresponding to the function.

[cpp] [vb] [es] [iava] [py] [phe] [ts] [pas] [es]

pwminput - get_functionld()
Returns the hardware identifier of the PWM input, without reference to the module.

[cpp] [vb] [es] [iava] [py] [php] [ts] [dnp] [tey] [es]

pwminput »get_hardwareld()
Returns the unique hardware identifier of the PWM input in the form SERI AL. FUNCTI ONI D.

[cpp] [vb] [es] [iava] [py] [php] [ts] [dnp] [tey] [es]

pwminput - get_highestValue()
Returns the maximal value observed for the PWM since the device was started.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

pwminput - get_logFrequency()

Returns the datalogger recording frequency for this function, or "OFF" when measures are not stored in the
data logger flash memory.

[cmd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

pwminput - get_logicalName()
Returns the logical name of the PWM input.

[cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [ty] [pas] [es] [cmd]

pwminput - get_lowestValue()
Returns the minimal value observed for the PWM since the device was started.

[end] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

pwminput - get_minFrequency()
Returns the minimum detected frequency, in Hz.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

pwminput - get_module()
Gets the YMbdul e object for the device on which the function is located.

192 www.yoctopuce.com

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_edgesPerPeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_edgesPerPeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_edgesPerPeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_edgesPerPeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_edgesPerPeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_edgesPerPeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_edgesPerPeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_edgesPerPeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_edgesPerPeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_edgesPerPeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_edgesPerPeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_edgesPerPeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_errorMessage
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_errorType
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_frequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_frequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_frequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_frequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_frequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_frequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_frequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_frequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_frequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_frequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_frequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_frequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_friendlyName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_functionDescriptor
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_functionId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_hardwareId
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_minFrequency

23. High-level API Reference

[cpp] [vb] [es] [iava] [py] [php] [ts] [dnp] [tpy] [pas] [es]

pwminput - get_module_async(callback, context)

Gets the YMbdul e object for the device on which the function is located (asynchronous version).

pwminput - get_period()
Returns the PWM period in milliseconds.

[emd] [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

pwminput - get_pulseCounter()
Returns the pulse counter value.

[emd] [epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

pwminput - get_pulseDuration()
Returns the PWM pulse length in milliseconds, as a floating point number.

[emd] [epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

pwminput - get_pulseTimer()
Returns the timer of the pulses counter (ms).

[emd] [epp] [vb] [es] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

pwminput - get_pwmReportMode()

Returns the parameter (frequency/duty cycle, pulse width, edges count) returned by the get_currentValue
function and callbacks.

[emd] [epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

pwminput - get_recordedData(startTime, endTime)

Retrieves a YDat aSet object holding historical data for this sensor, for a specified time interval.

[emd] [epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

pwminput - get_reportFrequency()

Returns the timed value notification frequency, or "OFF" if timed value notifications are disabled for this
function.

[emd] [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

pwminput - get_resolution()
Returns the resolution of the measured values.

[emd] [epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

pwminput - get_sensorState()

Returns the sensor state code, which is zero when there is an up-to-date measure available or a positive code
if the sensor is not able to provide a measure right now.

[emd] [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

pwminput - get_serialNumber()
Returns the serial number of the module, as set by the factory.

[cpp]| [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tpy] [pas] [es] [cmd]

pwminput - get_unit()
Returns the measuring unit for the values returned by get_currentValue and callbacks.

[emd] [epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

pwminput - get_userData()

Returns the value of the userData attribute, as previously stored using method set _user Dat a.

www.yoctopuce.com 193

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_module
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_period
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_period
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_period
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_period
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_period
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_period
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_period
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_period
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_period
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_period
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_period
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_period
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_pulseCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_pulseCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_pulseCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_pulseCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_pulseCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_pulseCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_pulseCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_pulseCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_pulseCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_pulseCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_pulseCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_pulseCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_pulseDuration
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_pulseDuration
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_pulseDuration
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_pulseDuration
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_pulseDuration
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_pulseDuration
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_pulseDuration
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_pulseDuration
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_pulseDuration
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_pulseDuration
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_pulseDuration
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_pulseDuration
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_pulseTimer
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_pulseTimer
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_pulseTimer
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_pulseTimer
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_pulseTimer
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_pulseTimer
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_pulseTimer
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_pulseTimer
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_pulseTimer
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_pulseTimer
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_pulseTimer
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_pulseTimer
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_recordedData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_sensorState
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_serialNumber
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_unit

23. High-level API Reference

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

pwminput -isOnline()
Checks if the PWM input is currently reachable, without raising any error.

[cpp] [vb] [es] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

pwminput »isOnline_async(callback, context)
Checks if the PWM input is currently reachable, without raising any error (asynchronous version).

pwminput —isReadOnly()
Indicates whether changes to the function are prohibited or allowed.

[cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [ty] [pas] [es] [cmd]

pwminput »isSensorReady/()
Checks if the sensor is currently able to provide an up-to-date measure.

pwminput - load(msValidity)
Preloads the PWM input cache with a specified validity duration.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

pwminput - loadAttribute(attrName)

Returns the current value of a single function attribute, as a text string, as quickly as possible but without using
the cached value.

[cpp] [vb] [es] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

pwminput - loadCalibrationPoints(rawValues, refValues)

Retrieves error correction data points previously entered using the method cal i br at eFr onPoi nt s.

[emd] [cpp] [vb] [es] [fava] [py] [phe] [ts] [tpy] [pas] [es]

pwminput —load_async(msValidity, callback, context)
Preloads the PWM input cache with a specified validity duration (asynchronous version).

pwminput - muteValueCallbacks()
Disables the propagation of every new advertised value to the parent hub.

[cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [ty] [pas] [es] [cmd]

pwminput - nextPwmIinput()
Continues the enumeration of PWM inputs started using y Fi r st Pwm nput () .

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

pwminput - registerTimedReportCallback(callback)
Registers the callback function that is invoked on every periodic timed notification.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

pwminput - registerValueCallback(callback)
Registers the callback function that is invoked on every change of advertised value.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tey] [pas] [es]

pwminput - resetCounter()
Resets the pulse counter value as well as its timer.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey] [pas] [es]

pwminput - resetPeriodDetection()
Resets the periodicity detection algorithm.

194 www.yoctopuce.com

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.get_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.isOnline
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.isReadOnly
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.isSensorReady
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.load
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.loadAttribute
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.loadCalibrationPoints
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.muteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.nextPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.nextPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.nextPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.nextPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.nextPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.nextPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.nextPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.nextPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.nextPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.nextPwmInput
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.registerTimedReportCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.registerValueCallback
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.resetCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.resetCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.resetCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.resetCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.resetCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.resetCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.resetCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.resetCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.resetCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.resetCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.resetCounter
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.resetCounter

23. High-level API Reference

[emd] [epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

pwminput - set_advMode(newval)
Changes the measuring mode used for the advertised value pushed to the parent hub.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

pwminput - set_bandwidth(newval)
Changes the input signal sampling rate, measured in kHz.

[emd] [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

pwminput - set_debouncePeriod(newval)
Changes the shortest expected pulse duration, in ms.

[emd] [epp] [vb] [es] [iava] [ey] [ehe] [ts] [dne] [tey] [pas] [es]

pwminput - set_highestValue(newval)
Changes the recorded maximal value observed.

[emd] [cpp] [vb] [cs] [fava] [py] [php] [ts] [dnp] [tpy | [pas] [es]

pwminput - set_logFrequency(newval)
Changes the datalogger recording frequency for this function.

[emd | [cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tpy] [pas] [es]

pwminput - set_logicalName(newval)
Changes the logical name of the PWM input.

[cpp]| [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tpy] [pas] [es] [cnd]

pwminput - set_lowestValue(newval)
Changes the recorded minimal value observed.

[emd] [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

pwminput - set_minFrequency(newval)
Changes the minimum detected frequency, in Hz.

[emd] [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

pwminput »set_pwmReportMode(newval)

Changes the parameter type (frequency/duty cycle, pulse width, or edge count) returned by the
get_currentValue function and callbacks.

[emd] [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

pwminput - set_reportFrequency(newval)
Changes the timed value notification frequency for this function.

[emd] [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

pwminput - set_resolution(newval)
Changes the resolution of the measured physical values.

[emd] [epp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey | [pas] [es]

pwminput - set_unit(newval)
Changes the measuring unit for the measured quantity.

[emd] [epp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [tey | [pas] [es]

pwminput - set_userData(data)
Stores a user context provided as argument in the userData attribute of the function.

[cpp] [vb] [es] [iava] [py] [php] [ts] [tpy] [pas] [es]

www.yoctopuce.com 195

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.resetPeriodDetection
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.resetPeriodDetection
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.resetPeriodDetection
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.resetPeriodDetection
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.resetPeriodDetection
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.resetPeriodDetection
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.resetPeriodDetection
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.resetPeriodDetection
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.resetPeriodDetection
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.resetPeriodDetection
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.resetPeriodDetection
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.resetPeriodDetection
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.set_advMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.set_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.set_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.set_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.set_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.set_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.set_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.set_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.set_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.set_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.set_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.set_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.set_bandwidth
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.set_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.set_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.set_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.set_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.set_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.set_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.set_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.set_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.set_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.set_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.set_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.set_debouncePeriod
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.set_highestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.set_logFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.set_logicalName
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.set_lowestValue
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.set_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.set_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.set_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.set_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.set_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.set_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.set_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.set_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.set_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.set_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.set_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.set_minFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.set_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.set_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.set_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.set_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.set_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.set_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.set_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.set_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.set_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.set_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.set_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.set_pwmReportMode
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.set_reportFrequency
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.set_resolution
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.set_unit
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.set_userData
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.set_userData

23. High-level API Reference

pwminput - startDatalLogger()
Starts the data logger on the device.

[end] [cpp] [vb] [cs] [iava] [py] [phe] [ts] [dnp] [tey] [pas] [es]

pwminput - stopDatalLogger()
Stops the datalogger on the device.

[emd] [cpp] [vb] [es] [fava] [py] [php] [ts] [dnp] [ty | [pas] [es]

pwminput -unmuteValueCallbacks()
Re-enables the propagation of every new advertised value to the parent hub.

[cpp] [vb] [cs] [iava] [py] [php] [ts] [dnp] [ty] [pas] [es] [cmd]

pwminput —»wait_async(callback, context)

Waits for all pending asynchronous commands on the module to complete, and invoke the user-provided
callback function.

196 www.yoctopuce.com

https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.startDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.stopDataLogger
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cpp-EN.html#PwmInput.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-vbnet-EN.html#PwmInput.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cs-EN.html#PwmInput.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-java-EN.html#PwmInput.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-python-EN.html#PwmInput.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-php-EN.html#PwmInput.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-dnp-EN.html#PwmInput.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typedpython-EN.html#PwmInput.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-delphi-EN.html#PwmInput.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-cmd-EN.html#PwmInput.unmuteValueCallbacks
https://www.yoctopuce.com/EN/doc/reference/yoctolib-typescript-EN.html#PwmInput.wait_async
https://www.yoctopuce.com/EN/doc/reference/yoctolib-ecmascript-EN.html#PwmInput.wait_async

24. Troubleshooting
24.1. Where to start?

If it is the first time that you use a Yoctopuce module and you do not really know where to start, have
a look at the Yoctopuce blog. There is a section dedicated to beginners *.

24.2. Programming examples don't seem to work

Most of Yoctopuce API programming examples are command line programs and require some
parameters to work properly. You have to start them from your operating system command prompt,
or configure your IDE to run them with the proper parameters. 2.

24.3. Linux and USB

To work correctly under Linux, the library needs to have write access to all the Yoctopuce USB
peripherals. However, by default under Linux, USB privileges of the non-root users are limited to read
access. To avoid having to run the library as root, you need to create a new udev rule to authorize
one or several users to have write access to the Yoctopuce peripherals.

To add a new udev rule to your installation, you must add a file with a name following the "#4#-
arbitraryName.rules" format, in the "/etc/udev/rules.d" directory. When the system is
starting, udev reads all the files with a ".rules" extension in this directory, respecting the
alphabetical order (for example, the "51-custom.rules" file is interpreted AFTER the "50-
udev-default.rules"file).

The "50-udev-default" file contains the system default udev rules. To modify the default
behavior, you therefore need to create a file with a name that starts with a number larger than 50,
that will override the system default rules. Note that to add a rule, you need a root access on the
system.

In the udev_conf directory of the VirtualHub for Linux® archive, there are two rule examples which
you can use as a basis.

1'see: http://www.yoctopuce.com/EN/blog_by_categories/for-the-beginners

see: http://www.yoctopuce.com/EN/article/about-programming-examples
3 http://www.yoctopuce.com/FR/virtualhub.php

www.yoctopuce.com 197

24. Troubleshooting

Example 1: 51-yoctopuce.rules

This rule provides all the users with read and write access to the Yoctopuce USB devices. Access
rights for all other devices are not modified. If this scenario suits you, you only need to copy the "51 -
yoctopuce all.rules" file into the "/etc/udev/rules.d" directory and to restart your
system.

udev rules to allow write access to all users
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0666"

Example 2: 51-yoctopuce_group.rules

This rule authorizes the "yoctogroup" group to have read and write access to Yoctopuce USB
peripherals. Access rights for all other peripherals are not modified. If this scenario suits you, you
only need to copy the "51-yoctopuce group.rules" file into the "/etc/udev/rules.d"
directory and restart your system.

udev rules to allow write access to all users of "yoctogroup"
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0664", GROUP="yoctogroup"

24.4. ARM Platforms: HF and EL

There are two main flavors of executable on ARM: HF (Hard Float) binaries, and EL (EABI Little
Endian) binaries. These two families are not compatible at all. The compatibility of a given ARM
platform with of one of these two families depends on the hardware and on the OS build. ArmHL and
ArmEL compatibility problems are quite difficult to detect. Most of the time, the OS itself is unable to
make a difference between an HF and an EL executable and will return meaningless messages
when you try to use the wrong type of binary.

All pre-compiled Yoctopuce binaries are provided in both formats, as two separate ArmHF et ArmEL
executables. If you do not know what family your ARM platform belongs to, just try one executable
from each family.

24.5. Powered module but invisible for the OS

If your Yocto-PWM-Rx-C is connected by USB, if its blue led is on, but if the operating system cannot
see the module, check that you are using a true USB cable with data wires, and not a charging cable.
Charging cables have only power wires.

24.6. Another process named xxx is already using yAPI

If when initializing the Yoctopuce API, you obtain the "Another process named xxx is already using
yAPI" error message, it means that another application is already using Yoctopuce USB modules. On
a single machine only one process can access Yoctopuce modules by USB at a time. You can easily
work around this limitation by using VirtualHub and the network mode “.

24.7. Disconnections, erratic behavior

If your Yocto-PWM-Rx-C behaves erratically and/or disconnects itself from the USB bus without
apparent reason, check that it is correctly powered. Avoid cables with a length above 2 meters. If
needed, insert a powered USB hub ° ©.

4 see: http://www.yoctopuce.com/EN/article/error-message-another-process-is-already-using-yapi

see: http://www.yoctopuce.com/EN/article/usb-cables-size-matters
see: http://www.yoctopuce.com/EN/article/how-many-usb-devices-can-you-connect

198 www.yoctopuce.com

24. Troubleshooting

24.8. After a failed firmware update, the device stopped
working

If a firmware update of your Yocto-PWM-Rx-C fails, it is possible that the module is no longer
working. If this is the case, plug in your module while holding down the Yocto-Button. The Yocto-LED
should light up brightly and remain steady. Release the button. Your Yocto-PWM-Rx-C should then
appear at the bottom of the VirtualHub user interface as a module waiting to be flashed. This
operation also reverts the module to its factory configuration.

24.9. The web interface shows errors after a firmware update

After an update, the windows corresponding to Yocto-PWM-Rx-C in the VirtualHub user interface
report errors. This might be a bug, but it is more likely that your web browser has cached part of the
interface code from the previous firmware. Perform a shift-reload or clear your browser cache and
everything should be back to normal.

24.10. Registering VirtualHub disconnects another instance

If, when performing a call to RegisterHub() with a VirtualHub address, another previously registered
VirtualHub disconnects, make sure the machine running these Virtual[Hubs do not have the same
Hostname. Same Hostname can happen very easily when the operating system is installed from a
monolithic image, Raspberry Pi are the best example. The Yoctopuce API uses serial numbers to
communicate with devices and VirtualHub serial numbers are created on the fly based the hostname
of the machine running VirtualHub.

24.11. Dropped commands

If, after sending a bunch of commands to a Yoctopuce device, you are under the impression that the
last ones have been ignored, a typical example is a quick and dirty program meant to configure a
device, make sure you used a YAPI|.FreeAPI() at the end of the program. Commands are sent to
Yoctopuce modules asynchronously thanks to a background thread. When the main program
terminates, that thread is killed no matter if some command are left to be sent. However API.FreeAPI
() waits until there is no more command to send before freeing the API resources and returning.

24.12. Damaged device

Yoctopuce strives to reduce the production of electronic waste. If you believe that your Yocto-PWM-
Rx-C is not working anymore, start by contacting Yoctopuce support by e-mail to diagnose the
failure. Even if you know that the device was damaged by mistake, Yoctopuce engineers might be
able to repair it, and thus avoid creating electronic waste.

Waste Electrical and Electronic Equipment (WEEE) If you really want to get rid of
your Yocto-PWM-Rx-C, do not throw it away in a trash bin but bring it to your local
WEEE recycling point. In this way, it will be disposed properly by a specialized WEEE
recycling center.

www.yoctopuce.com 199

200 www.yoctopuce.com

25. Characteristics

You can find below a summary of the main technical characteristics of your Yocto-PWM-Rx-C
module.

Product ID YPWMRX1C
Hardware release’ Rev. B
USB connector USB-C
Width 20 mm
Length 54 mm
Weight 749
Channels 2
Frequency 0.05 ... 250000 Hz
Refresh rate 50 Hz
Input impedance 110 KQ
Max working voltage -30...+30V
Threshold voltage 0.7V
Protection class, according to IEC 61140 class Ill
USB isolation, dielectric strength 1kV
Normal operating temperature 5..40°C
Extended operating temperaturet -30...85°C
RoHS compliance RoHS Il (2011/65/UE+2015/863)
USB Vendor ID 0x24E0
USB Device ID 0x00F6
Suggested enclosure YoctoBox-Long-Thick-Black
Harmonized tariff code 9032.9000
Made in Switzerland

T These specifications are for the current hardware revision. Specifications for earlier revisions may
differ.

* The extended temperature range is defined based on components specifications and has been
tested during a limited duration (1h). When using the device in harsh environments for a long period
of time, we strongly advise to run extensive tests before going to production.

www.yoctopuce.com 201

25. Characteristics

202 www.yoctopuce.com

1
pa——

10.1

. o4 —
o 155
E 15.5 _
A m ~
0
SIS 0
- @
@
0
| =
)
®‘lx
All dimensions are in mm

Toutes les dimensions sont en mm

Yocto-PWM-Rx-C Ad

	Table of contents
	1. Introduction
	1.1. Safety Information
	1.2. Environmental conditions

	2. Presentation
	2.1. Common elements
	2.2. Specific elements
	2.3. Functional isolation
	2.4. Optional accessories

	3. First steps
	3.1. Prerequisites
	3.2. Testing USB connectivity
	3.3. Localization
	3.4. Test of the module
	3.5. Configuration
	3.6. Working modes

	4. Assembly and connections
	4.1. Fixing
	4.2. USB power distribution
	4.3. Electromagnetic compatibility (EMI)

	5. Programming, general concepts
	5.1. Programming paradigm
	5.2. The Yocto-PWM-Rx-C module
	5.3. Module
	5.4. PwmInput
	5.5. What interface: Native, DLL or Service ?
	5.6. Accessing modules through a hub
	5.7. Programming, where to start?

	6. Using the Yocto-PWM-Rx-C in command line
	6.1. Installing
	6.2. Use: general description
	6.3. Control of the PwmInput function
	6.4. Control of the module part
	6.5. Limitations

	7. Using the Yocto-PWM-Rx-C with Python
	7.1. Source files
	7.2. Dynamic library
	7.3. Control of the PwmInput function
	7.4. Control of the module part
	7.5. Error handling

	8. Using Yocto-PWM-Rx-C with C++
	8.1. Control of the PwmInput function
	8.2. Control of the module part
	8.3. Error handling
	8.4. Integration variants for the C++ Yoctopuce library

	9. Using Yocto-PWM-Rx-C with C#
	9.1. Installation
	9.2. Using the Yoctopuce API in a Visual C# project
	9.3. Control of the PwmInput function
	9.4. Control of the module part
	9.5. Error handling

	10. Using the Yocto-PWM-Rx-C with LabVIEW
	10.1. Architecture
	10.2. Compatibility
	10.3. Installation
	10.4. Presentation of Yoctopuce VIs
	10.5. Functioning and use of VIs
	10.6. Using
	10.7. Managing the data logger
	10.8. Function list
	10.9. A word on performances
	10.10. A full example of a LabVIEW program
	10.11. Differences from other Yoctopuce APIs

	11. Using the Yocto-PWM-Rx-C with Java
	11.1. Getting ready
	11.2. Control of the PwmInput function
	11.3. Control of the module part
	11.4. Error handling

	12. Using the Yocto-PWM-Rx-C with Android
	12.1. Native access and VirtualHub
	12.2. Getting ready
	12.3. Compatibility
	12.4. Activating the USB port under Android
	12.5. Control of the PwmInput function
	12.6. Control of the module part
	12.7. Error handling

	13. Using Yocto-PWM-Rx-C with TypeScript
	13.1. Using the Yoctopuce library for TypeScript
	13.2. Refresher on asynchronous I/O in JavaScript
	13.3. Control of the PwmInput function
	13.4. Control of the module part
	13.5. Error handling

	14. Using Yocto-PWM-Rx-C with JavaScript / EcmaScript
	14.1. Blocking I/O versus Asynchronous I/O in JavaScript
	14.2. Using Yoctopuce library for JavaScript / EcmaScript 2017
	14.3. Control of the PwmInput function
	14.4. Control of the module part
	14.5. Error handling

	15. Using Yocto-PWM-Rx-C with PHP
	15.1. Getting ready
	15.2. Control of the PwmInput function
	15.3. Control of the module part
	15.4. HTTP callback API and NAT filters
	15.5. Error handling

	16. Using Yocto-PWM-Rx-C with Visual Basic .NET
	16.1. Installation
	16.2. Using the Yoctopuce API in a Visual Basic project
	16.3. Control of the PwmInput function
	16.4. Control of the module part
	16.5. Error handling

	17. Using Yocto-PWM-Rx-C with Delphi or Lazarus
	17.1. Preparation
	17.2. About examples
	17.3. Control of the PwmInput function
	17.4. Control of the module part
	17.5. Error handling

	18. Using the Yocto-PWM-Rx-C with Universal Windows Platform
	18.1. Blocking and asynchronous functions
	18.2. Installation
	18.3. Using the Yoctopuce API in a Visual Studio project
	18.4. Control of the PwmInput function
	18.5. A real example
	18.6. Control of the module part
	18.7. Error handling

	19. Using Yocto-PWM-Rx-C with Objective-C
	19.1. Control of the PwmInput function
	19.2. Control of the module part
	19.3. Error handling

	20. Using with unsupported languages
	20.1. Command line
	20.2. .NET Assembly
	20.3. VirtualHub and HTTP GET
	20.4. Using dynamic libraries
	20.5. Porting the high level library

	21. Advanced programming
	21.1. Event programming
	21.2. The data logger
	21.3. Sensor calibration

	22. Firmware Update
	22.1. VirtualHub or the YoctoHub
	22.2. The command line library
	22.3. The Android application Yocto-Firmware
	22.4. Updating the firmware with the programming library
	22.5. The "update" mode

	23. High-level API Reference
	23.1. Class YAPI
	23.2. Class YModule
	23.3. Class YPwmInput

	24. Troubleshooting
	24.1. Where to start?
	24.2. Programming examples don't seem to work
	24.3. Linux and USB
	24.4. ARM Platforms: HF and EL
	24.5. Powered module but invisible for the OS
	24.6. Another process named xxx is already using yAPI
	24.7. Disconnections, erratic behavior
	24.8. After a failed firmware update, the device stopped working
	24.9. The web interface shows errors after a firmware update
	24.10. Registering VirtualHub disconnects another instance
	24.11. Dropped commands
	24.12. Damaged device

	25. Characteristics
	Blueprint

