
VirtualHub-V2

Mode d'emploi

www.yoctopuce.com iii

Table des matières

1. Introduction 1 ...

1.1. Installation à partir d'un fichier .zip 1 ...

2. Installation 3 ...

2.1. Installeur sous Windows 3 ...
2.2. Installation avec apt_get sous Linux 4 ...
2.3. Linux et USB 5 ..
2.4. Limitation d'accès à USB 6 ..
2.5. SSL/TLS 6 ..
2.6. IPv6 6 ...
2.7. Paramètres de la ligne de commande 7 ..

3. Configuration et test des modules 11 ...

3.1. Localisation des modules 12 ...
3.2. Test des modules 12 ..
3.3. Configuration des modules 13 ..
3.4. Mise à jour des firmwares 13 ...
3.5. Accès à l'enregistreur de données des capteurs 15 ...

4. Utilisation de VirtualHub-V2 comme une passerelle 17 ..

4.1. Passerelle pour contourner la limitation d'accès à USB 17 ...
4.2. Passerelle REST 18 ..
4.3. Passerelle OpenMetrics (Prometheus) 19 ..

5. Contrôle d'accès 21 ..

5.1. Accès "admin" 22 ...
5.2. Accès "user" 22 ..
5.3. Influence sur les API 22 ...

6. Envoi de données vers l'extérieur 23 ..

6.1. Configuration 23 ...
6.2. Callbacks HTTP vers des services tiers 24 ..
6.3. Callbacks vers un broker MQTT 25 ...
6.4. Callbacks de type Yocto-API 27 ..

iv www.yoctopuce.com

6.5. Callbacks HTTP définis par l'utilisateur 28 ..
6.6. Noms associés aux valeur postées 29 ...
6.7. Planification des callbacks 32 ...
6.8. Tests 32 ...
6.9. Connexions spontanées 33 ...

7. Compléments optionnels 35 ..

7.1. Installation de Yocto-Visualization (for web) 35 ..

www.yoctopuce.com 1

1. Introduction
VirtualHub-V2 est une application essentiellement destinée à gérer les modules USB conçus par
Yoctopuce. C'est un genre de boîte à outils qui a pour but:

• d'offrir l'accès aux modules USB depuis des langages qui, tels que JavaScript et PHP, ne
permettent pas d'accéder aux couches matérielles d'un ordinateur.

• d'offrir l'accès aux modules USB à travers une connexion réseau, et ce dans tous les langages
disponibles.

• de configurer et tester les modules USB Yoctopuce.
• d'offrir la connectivité nécessaire pour permettre aux modules Yoctopuce d'interagir avec un

service cloud-based.

VirtualHub-V2 n'est pas indispensable pour contrôler directement des modules Yoctopuce dans les
langages qui permettent un accès natif au hardware (C++, C#, Python, Java, Android, Delphi, Visual
Basic, LabView et l'API en ligne de commande). Dans ces langages, les modules USB Yoctopuce
peuvent être contrôlés directement sans même l'aide d'un driver.

Malgré le changement de version majeure, VirtualHub-V2 reste compatible avec tous les
composants Yoctopuce.

VirtualHub-V2 est disponible pour les systèmes d'exploitation Windows, macOS et Linux (Intel et
ARM). Son fonctionnement est identique sur les trois systèmes.

VirtualHub-V2 ne nécessite pas véritablement d'installation. Vous pouvez le télécharger soit en
version .zip pour Windows, Linux et macOS, soit l'installeur Windows, ou encore utiliser apt_get sous
Linux.

1.1. Installation à partir d'un fichier .zip
Le fichier .zip contient quelques fichiers .txt et un simple fichier exécutable qui peut se trouver soit au
même niveau que les fichiers .txt, soit dans un répertoire correspondant à son architecture. Copiez
l'exécutable correspondant à votre architecture où bon vous semble et lancez-le depuis une ligne de
commande. Aucun driver n'est nécessaire.

VirtualHub-V2 a besoin de sauvegarder quelques paramètres de configuration. Ils sont sauvés dans
le fichier .virtualhub.dat, qui sera placé dans le répertoire AppData\Roaming
\Yoctopuce\VirtualHubV2 de l'utilisateur sous Windows, et dans le repertoir
~/.virtualhubv2 de l'utilisateur sous Linux et macOS. Ce comportement peut être modifié à
l'aide de l'option -c sur la ligne de commande.

2 www.yoctopuce.com

www.yoctopuce.com 3

2. Installation
Sous Windows, si vous ne souhaitez pas devoir lancer explicitement VirtualHub-V2 à chaque fois
que vous en avez besoin, vous pouvez l'installer comme un service. Pour ce faire, il vous suffit
d'ouvrir une fenêtre de commande avec les droits administrateurs, et de lancer une fois VirtualHub-
V2 en ligne de commande avec l'option -i. Il sera alors installé comme service avec démarrage
automatique. Si vous changez d'avis ultérieurement, lancez-le à nouveau en ligne de commande
avec l'option -u pour supprimer le service. Notez que lorsque que VirtualHub-V2 fonctionne comme
un service, il est lancé par l'utilisateur spécial SYSTEM et le répertoire dans lequel il sauve sa
configuration est \windows\system32\config\systemprofile\AppData\Roaming
\Yoctopuce\VirtualHubV2.

Sous Linux, pour permettre aux utilisateurs sans privilèges de communiquer avec les périphériques
Yoctopuce, vous devez apporter quelques modifications aux règles udev. Vous pouvez le faire en
exécutant la ligne de commande suivante :

sudo VirtualHub-V2 --install_udev_rule

Vous devez ensuite redémarrer l'ordinateur pour que la nouvelle règle soit prise en compte (pour
plus de détails sur les modifications apportées aux règles udev, voir la section 2.4 ci-dessous).

En outre, si vous ne souhaitez pas lancer explicitement VirtualHub-V2 à chaque fois que vous en
avez besoin, vous pouvez l'installer en tant que service. Pour ce faire, exécutez la commande
suivante :

sudo VirtualHub-V2 -i

Il est alors installé en tant que service système et démarre automatiquement au démarrage. Si vous
changez d'avis par la suite, exécutez à nouveau le programme en ligne de commande avec l'option
-u pour supprimer le service.

2.1. Installeur sous Windows
Si vous préférez installer VirtualHub-V2 à l'aide du fichier .exe, téléchargez-le et double-cliquez
dessus pour démarrer l'installeur.

2. Installation

4 www.yoctopuce.com

L'installeur de VirtualHub-V2 est très simple, il demande d'accepter les conditions d'utilisation de
VirtualHub-V2 et quel répertoire utiliser. Par défaut, l'installeur va utiliser le répertoire C:\Program
Files\Yoctopuce\VirtualHub-V2\. Il effectue ensuite les tâches suivantes:

1. Extraire VirtualHub-V2 dans le répertoire de destination
2. Créer une section Yoctopuce dans le Menu Démarrer
3. Créer une entrée "VirtualHub-V2" dans cette section
4. Ajouter VirtualHub-V2 au PATH de la machine
5. Ajouter VirtualHub-V2 à la liste des programmes installés sur la machine

A la fin, il est possible de lancer VirtualHub-V2 directement depuis le menu Démarrer.

Grâce à l'installeur, VirtualHub-V2 est reconnu comme un programme Windows à part entière. En
particulier, vous pouvez vérifier directement depuis le panneau de configuration de Windows quelle
est la version installée, gérer son installation par des outils d'entreprise centralisés et le désinstaller
en un click depuis le panneau de configuration.

L'installeur détecte l'architecture du PC et installe automatiquement lexécutable correspondant. Par
exemple sur un PC avec un processeur Intel/AMD moderne la version 64 bits sera installée, mais sur
un portable avec un processeur ARM la version optimisé pour cette plateforme sera installée.

Comme la majorité des installeurs, dans la plupart des cas, vous pouvez simplement lancer
l'installeur, cliquer "Next" à chaque panneau et finalement sur "Install". L'installeur est capable de se
rendre compte si une ancienne version de VirtualHub-V2 est installée et simplement mettre à jour les
exécutables sans perdre les fichiers de configuration.

2.2. Installation avec apt_get sous Linux
Le repository APT de Yoctopuce permet d'installer VirtualHub-V2 et d'autres utilitaires sur n'importe
quelle distribution Linux qui utilise apt-get. Les distributions les plus connues sont Debian, Ubuntu
et Raspbian, mais toutes les distributions qui sont basées sur ces dernières devraient aussi
fonctionner.

Avant de pouvoir utiliser apt-get, le repository APT de Yoctopuce doit avoir été ajouté au système.
Si ce n'est pas déjà le cas, il faut l'ajouter avant l'installation de VirtualHub-V2.

Ajouter le repository APT de Yoctopuce
1. Installer la clef GPG du repository dans le répertoire /usr/share/keyrings/

wget -q -O - https://www.yoctopuce.com/apt/KEY.gpg | gpg --dearmor | sudo tee -a /usr/
share/keyrings/yoctopuce.gpg > /dev/null

2. Ajouter le repository Yoctopuce à la liste des serveurs utilisés par apt-get

echo 'deb [signed-by=/usr/share/keyrings/yoctopuce.gpg] https://www.yoctopuce.com/ apt/
stable/' | sudo tee -a /etc/apt/sources.list.d/yoctopuce.list > /dev/null

Installer VirtualHub-V2
Il faut commencer par mettre à jour la liste des packages disponibles, avant de lancer l'installation
proprement dite du VirtualHub-V2:

sudo apt-get update
sudo apt-get install virtualhub-v2

Finalement, pour permettre aux utilisateurs non privilégiés de communiquer avec les modules
Yoctopuce, il faut faire quelques modifications aux règles udev. Ceci peut être fait automatiquement
en lançant la ligne de commande suivante:

2. Installation

www.yoctopuce.com 5

sudo VirtualHub-V2 --install_udev_rule

Il faut ensuite redémarrer la machine pour que la nouvelle règle soit prise en compte.

En outre, si vous ne souhaitez pas lancer explicitement VirtualHub-V2 à chaque fois que vous en
avez besoin, vous pouvez l'installer en tant que service. Pour ce faire, exécutez la commande
suivante :

sudo VirtualHub-V2 -i

Il est alors installé en tant que service système et démarre automatiquement au démarrage. Si vous
changez d'avis par la suite, exécutez à nouveau le programme en ligne de commande avec l'option
-u pour supprimer le service.

Si vous désirez comprendre le détail des changements effectués sur les règles udev, ou les effectuer
manuellement vous-même, vous pouvez lire le paragraphe ci-dessous. Sinon, vous pouvez passer
directement à la section suivante.

2.3. Linux et USB
Pour fonctionner correctement sous Linux, VirtualHub-V2 a besoin d'avoir accès en écriture à tous
les périphériques USB Yoctopuce. Or, par défaut, sous Linux les droits d'accès des utilisateurs non-
root à USB sont limités à la lecture. Afin d'éviter de devoir lancer les exécutables en tant que root, il
faut créer une nouvelle règle udev pour autoriser un ou plusieurs utilisateurs à accéder en écriture
aux périphériques Yoctopuce.

Pour ajouter une règle udev à votre installation, il faut ajouter un fichier avec un nom au format "##-
nomArbitraire.rules" dans le répertoire "/etc/udev/rules.d". Lors du démarrage du
système, udev va lire tous les fichiers avec l'extension ".rules" de ce répertoire en respectant
l'ordre alphabétique (par exemple, le fichier "51-custom.rules" sera interprété APRES le fichier
"50-udev-default.rules").

Le fichier "50-udev-default" contient les règles udev par défaut du système. Pour modifier le
comportement par défaut du système, il faut donc créer un fichier qui commence par un nombre plus
grand que 50, qui définira un comportement plus spécifique que le défaut du système. Notez que
pour ajouter une règle vous aurez besoin d'avoir un accès root sur le système.

Dans le répertoire udev_conf de l'archive de VirtualHub1 pour Linux, vous trouverez deux
exemples de règles qui vous éviteront de devoir partir de rien.

Exemple 1: 51-yoctopuce.rules
Cette règle va autoriser tous les utilisateurs à accéder en lecture et en écriture aux périphériques
Yoctopuce USB. Les droits d'accès pour tous les autres périphériques ne seront pas modifiés. Si ce
scénario vous convient, il suffit de copier le fichier "51-yoctopuce_all.rules" dans le
répertoire "/etc/udev/rules.d" et de redémarrer votre système.

udev rules to allow write access to all users
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0666"

Exemple 2: 51-yoctopuce_group.rules
Cette règle va autoriser le groupe "yoctogroup" à accéder en lecture et écriture aux périphériques
Yoctopuce USB. Les droits d'accès pour tous les autres périphériques ne seront pas modifiés. Si ce
scénario vous convient, il suffit de copier le fichier "51-yoctopuce_group.rules" dans le
répertoire "/etc/udev/rules.d" et de redémarrer votre système.

1 http://www.yoctopuce.com/EN/virtualhub.php

2. Installation

6 www.yoctopuce.com

udev rules to allow write access to all users of "yoctogroup"
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0664", GROUP="yoctogroup"

2.4. Limitation d'accès à USB
Les modules USB Yoctopuce ont une limitation: sur une machine donnée, il ne peut y avoir qu'une
seule application à la fois qui les contrôle nativement. Et il se trouve que VirtualHub-V2 compte pour
une application native. En conséquence, si vous tentez de lancer une application qui contrôle
nativement des modules Yoctopuce USB, veillez à ce que VirtualHub-V2 ne soit pas en train de
tourner, que ce soit en ligne de commande ou en service.

Notez que du point de vue programmation, cette limitation peut facilement être contournée en faisant
en sorte que vos applications utilisent VirtualHub-V2 comme passerelle pour contrôler les modules
au lieu de les contrôler directement. Pour ce faire, il ne faut pas passer "usb" comme paramètre lors
de l'appel à YAPI.RegisterHub, mais l'adresse de la machine sur lequel tourne VirtualHub-V2.
L'utilisation de VirtualHub-V2 comme passerelle est décrite dans le chapitre "Utilisation de
VirtualHub-V2 comme une passerelle".

YAPI.RegisterHub('localhost:4444',errmsg);

2.5. SSL/TLS
Connexions entrantes
La principale nouveauté est l'ajout du support SSL/TLS qui permet à VirtualHub-V2 d'accepter des
connexions entrantes HTTPS. Dorénavant, VirtualHub-V2 accepte les connexions HTTP classiques
sur le port 4444 mais aussi des connexions HTTPS sur le port 4443. Vous pouvez accéder a
VirtualHub-V2 de manière sécurisée et chiffrée avec votre browser à l'aide de l'URL https://
myhostname:4443.

Bien sûr, ces ports sont configurables à l'aide d'options à passer sur la ligne de commande:

• l'option -p permet de changer le port HTTP
• l'option -P permet de changer le port HTTPS
• l'option --no_https désactive complètement le support SSL/TLS
• l'option --only_https force l'utilisation d'HTTPS sur toutes les connexions entrantes

Connexions sortantes
VirtualHub-V2 inclut aussi le support SSL/TLS pour les connexions sortantes. Il est donc possible de
configurer un Outgoing HTTP callback sur un serveur qui requière une connexion HTTPS, comme
par exemple InfluxDB OSS v2.0.

Pour utiliser cette option, lors de la configuration d'un callback sortant, ouvrez le menu déroulant
permettant de sélectionner le type de connexion et choisissez l'option https://.

2.6. IPv6
Par défaut, VirtualHub-V2 fonctionne uniquement en IPv4 et donc ne répondra pas aux requêtes
venant des interfaces IPv6. Si l'on veut utiliser IPv6, il faut lancer VirtualHub-V2 avec l'une des deux
options suivantes: --enable_ipv6 ou --only_ipv6. L'option --enable_ipv6 active la pile
réseau IPv6 mais garde la pile IPv4 activée. C'est-à-dire que VirtualHub-V2 utilisera les interfaces
réseau IPv6 et IPv4. L'option --only_ipv6 quant à elle utilisera uniquement les interfaces réseau
IPv6.

2. Installation

www.yoctopuce.com 7

2.7. Paramètres de la ligne de commande
VirtualHub-V2 accepte divers paramètres sur la ligne de commande.

Option Brève description
-v, --version Indique la version
-h, --help Affiche une aide succinte en anglais
-g Redirige les logs dans un fichier
-c Indique le chemin où le fichier de configuration est enregistré
-k Indique le chemin de la clef SSL/TLS
-s Indique le chemin du certificats for SSL/TLS.
-F Active le mode Files
-T Utilise un modèle pour créer le fichier de configuration
-n Utilise l'interface réseau
-p Change le port HTTP
-P Change le port HTTPS
--no_https Désactive le support SSL/TLS
--only_https Force l'utilisation d'HTTPS sur toutes les connexions entrantes
--enable_ipv6 Active le support IPv6
--only_ipv6 Accepte uniquement le trafic IPv6
--www_watchdog Action a effectuer à l'expiration du wwwWatchdogDelay
--enable_micropython Active la machine virtuelle MicroPython intégrée
--cacert Certificats CA à utiliser.
--allow_reboot Autorise VirtualHub-V2 à redémarrer l'ordinateur.
-o Active l'interface OSControl
--install_udev_rule Donne accès aux modules USB à tous les utilisateurs (Linux)
-d Tourne en arrière-plan
-i Installe le service
-u Désinstalle le service

-c : Fichier de configuration
Sous Windows, quand on lance manuellement VirtualHub-V2 dans une fenêtre de commande, il
utilise le fichier de configuration à l'emplacement suivant:

C:\Users\username\AppData\Roaming\Yoctopuce\VirtualHubV2\.virtualhub.dat

Par contre, lorsque VirtualHub-V2 est lancé par Windows comme un service, il utilise l'emplacement:

C:\Windows\System32\config\systemprofile\AppData\Roaming\Yoctopuce
\VirtualHubV2\.virtualhub.dat

Sous Linux et macOS, le fichier de configuration .virtualhub.dat se trouve dans le sous
répertoire .virutalhubv2 du répertoire Home de l'utilisateur.

L'option -c permet de changer cet emplacement. Par exemple

>VirtualHub-V2 -c C:\tmp\mysetting.bin

Par ailleurs, pour le retrouver plus facilement, l'emplacement du fichier de configuration est indiqué
dans les logs.

-d : Démarrage en service/démon
Démarre VirtualHub-V2 en arrière plan. S'utilise uniquement quand VirtualHub-V2 tourne comme
service.

2. Installation

8 www.yoctopuce.com

-F : Activation de l'option Files
Active l'interface Files pour l'ajout de fichiers personnalisés dans VirtualHub-V2. Le conteneur est un
fichier au format .tar et sera créé s'il n'existe pas.

>VirtualHub-V2 -F container.tar

-g : Enregistrement des informations de debug dans un fichier
Enregistre dans un fichier les informations de debug.

Exemple de ligne de commande:

>VirtualHub-V2 -g tracefile.log

-h : Aide
Force VirtualHub-V2 à afficher une aide succinte

-i : Installation du service
VirtualHub-V2 peut fonctionner en service, cette option installe le service et le démarre. Ainsi
VirtualHub-V2 sera disponible en permanence, même si la machine redémarre.

--install_udev_rule : Installation d'une règle UDEV
Par défaut, Linux ne donne pas accès aux périphériques USB pour les utilisateurs standards. Pour
autoriser tous les utilisateurs à communiquer avec les modules Yoctopuce, il faut ajouter une règle
UDEV et redémarrer la machine. L'installation de cette règle peut être faite grâce à l'otpion --
install_udev_rule. Ne pas oublier de redémarrer la machine pour que la règle soit prise en compte.
De plus, comme il s'agit d'une modification du système, il faudra exécuter VirtualHub-V2 avec les
droits superviseur à l'aide de la commande sudo.

Exemple de ligne de commande :

>sudo VirtualHub-V2 --install_udev_rule

Une fois la machine redémarrée, VirtualHub-V2 peut utiliser les modules branchés sur les ports USB
sans sudo.

-n : Utilisation de l'interface réseau avec une adresse IP
Utilise l'interface réseau avec l'adresse IP spécifiée en paramètre.

-o : Activation de la fonction osControl
Ajoute la fonctionnalité osControl a VirtualHub-V2, ce qui permet entre autres d'éteindre à distance la
machine qui fait tourner VirtualHub-V2 en utilisant l'API Yoctopuce.

-p : Changement de port
Par défaut, VirtualHub-V2 utilise le port TCP 4444, cette option permet d'en utiliser un autre. Par
exemple:

>VirtualHub-V2 -p 8889

2. Installation

www.yoctopuce.com 9

-T : Création d'un fichier de configuration à partir d'un template
Si aucun fichier de configuration n'est trouvé, crée un fichier de configuration sur la base du modèle
de configuration. Cette option permet d'utiliser des réglages par défaut autres que ceux proposés
d'usine (par exemple pour imposer un mot de passe dès l'installation), mais sans empêcher
ultérieurement de modifier la configuration. Le fichier de configuration résultant est enregistré à
l'emplacement par défaut (voir option -c).

Exemple de ligne de commande :

>VirtualHub-V2 -T config_template

-u : Désinstallation du service
Désinstalle le service préalablement installé avec l'option -i

-v : Version
Permet d'afficher la version de VirtualHub-V2:

>VirtualHub-V2 -v

Version v1.0 (4237)

10 www.yoctopuce.com

www.yoctopuce.com 11

3. Configuration et test des modules
Une fois installé et configuré, VirtualHub-V2 permet de tester et configurer vos modules Yoctopuce.
Pour ce faire, ouvrez votre navigateur internet favori1. Connectez-vous en HTTP au port 4444 de la
machine sur laquelle tourne VirtualHub-V2. S'il s'agit de la machine locale, utilisez l'adresse
http://127.0.0.1:4444. La liste des modules connectés à la machine devrait apparaître.

VirtualHub-V2: Interface Web

1 L'interface du VirtualHub-V2 est régulièrement testée sur Firefox, Chrome, Opera et Brave. Elle fonctionne probablement
avec Safari.

3. Configuration et test des modules

12 www.yoctopuce.com

En bas de page se trouvent deux boutons. Le premier bouton, Show debug information, permet
d'afficher et ensuite d'enregistrer toutes les informations nécessaires pour débugger un problème lié
au VirtualHub-V2, c'est-à-dire:

• La liste de tous les modules détectés.
• La valeur de tous les paramètres de tous les modules (sans les mots de passe).
• Les logs de tous les modules.
• La liste de tous les fichiers uploadés sur les modules, mais pas leur contenu.
• Le contenu des éventuels core dump de VirtualHub-V2.

Si vous devez contacter le support, il est important de télécharger ces informations et de les envoyer
avec votre demande.

Le deuxième bouton, Show device functions, montre toutes les fonctions du VirtualHub-V2 et de
chacun des modules connectés au VirtualHub-V2.

3.1. Localisation des modules
L'interface principale vous montre une ligne par module connecté, si vous avez plusieurs modules du
même modèle, vous pouvez localiser un module particulier en cliquant sur le bouton beacon
correspondant: cela aura pour effet de faire clignoter la led bleue du module et d'afficher sur
l'interface une pastille bleue au début de la ligne correspondante. Vous pouvez faire la même
manipulation en appuyant sur le Yocto-bouton d'un module connecté.

Yocto-bouton (1) et led de localisation (2) d'un module Yocto-Meteo-V2. Ces deux éléments sont toujours placés au
même endroit, quelque soit le module.

3.2. Test des modules
Pour tester un module, cliquez simplement sur le numéro de série d'un module dans l'interface, une
fenêtre spécifique au module s'ouvrira. Cette fenêtre permet généralement d'activer les fonctions
principales du module. Reportez vous au manuel du module correspondant pour plus de détails.

En général, vous n'êtes pas obligé d'avoir une version de VirtualHub-V2 plus récente que le module
que vous voulez tester/configurer: la plupart des éléments spécifiques aux interfaces des modules
sont stockés dans le firmware des modules eux-même. Il y a toutefois quelques exceptions, donc si
vous rencontrez une erreur dans l'interface Web d'un module, vérifiez si une mise à jour de
VirtualHub-V2 est disponible, et le cas échéant installez-là. Il peut ensuite être nécessaire de
recharger la page dans le navigateur avec Shift-Reload, ou de vider le cache de votre navigateur,
afin de forcer la mise à jour du code JavaScript.

3. Configuration et test des modules

www.yoctopuce.com 13

Fenêtre "détails" du module Yocto-Meteo-V2

3.3. Configuration des modules
Vous pouvez configurer un module en cliquant sur le bouton configure correspondant dans
l'interface principale, une fenêtre spécifique au module s'ouvre alors. Cette fenêtre permet au
minimum de donner un nom logique au module ainsi que de mettre à jour son firmware. Reportez-
vous au manuel du module correspondant pour plus de détails.

Fenêtre "configure" du module Yocto-Meteo-V2

3.4. Mise à jour des firmwares
Les modules Yoctopuce sont en fait de véritables ordinateurs, ils contiennent même un petit serveur
web. Et comme tous les ordinateurs, il est possible de mettre à jour leur logiciel de contrôle
(firmware). Des nouveaux firmwares pour chaque module sont régulièrement publiés, ils permettent
généralement d'ajouter de nouvelles fonctionnalités au module, et/ou de corriger d'éventuels bugs2.

Méthode recommandée
Pour mettre à jour le firmware d'un module, il suffit de d'ouvrir, dans l'interface de VirtualHub-V2, la
fenêtre de configuration du module à mettre à jour, puis cliquer sur le bouton upgrade. Si vous
cliquez simplement sur le bouton Update, VirtualHub-V2 utilisera la version le plus récente du
firmware publiée sur le site Web de Yoctopuce et l'installera.

VirtualHub-V2 vous permet aussi de choisir un fichier .byn que vous avez préalablement téléchargé
depuis le site web de Yoctopuce, par exemple pour réinstaller une version antérieure.

2 Ne faites jamais confiance à des gens qui vous disent que leur logiciel n'a pas de bug :-)

3. Configuration et test des modules

14 www.yoctopuce.com

Fenêtre de mise à jour du firmware

Une fois que vous avez cliqué sur Update, tout est automatique, VirtualHub-V2 fait redémarrer le
module en mode "mise à jour", met à jour le firmware, puis rédémarre le module en mode normal.
Les réglages de configuration du module seront préservés. Ne débranchez pas le module pendant la
procédure de mise à jour.

Méthode alternative
Si la mise à jour d'un module se passe mal, en particulier si le module a été débranché pendant le
processus, il risque fort de ne plus fonctionner et de ne plus apparaître dans la listes des modules.
Dans ce cas débranchez-le, attendez quelques secondes, et rebranchez-le en maintenant le Yocto-
bouton appuyé. Cela a pour effet de faire démarrer le module en mode "mise à jour". Ce mode de
fonctionnement est protégé contre les corruptions et devrait toujours être accessible. Une fois le
module rebranché, provoquez un rafraîchissement de la liste des modules dans l'interface de
VirtualHub-V2 et votre module devrait être listé dans le bas de l'interface. Cliquez dessus pour
mettre à jour son firmware. Ce mode de mise à jour est une procédure de récupération, elle ne
sauvegarde pas les réglages du module.

Les modules en mode "mise à jour" sont listés dans l'interface.

La mise à jour normale préserve la configuration des modules, en revanche la méthode alternative
avec le Yocto-bouton remet le module dans sa configuration d'usine. Ce qui fait que vous pouvez
aussi utiliser cette méthode pour réinitialiser complètement un module.

Par ligne de commande ou programmation
Tous les outils en lignes de commandes ont la possibilité de mettre à jour les modules Yoctopuce
grâce à la commande downloadAndUpdate. Le mécanisme de sélection des modules fonctionne
comme pour une commande traditionnelle. La [cible] est le nom du module qui va être mis à jour.
Vous pouvez aussi utiliser les alias "any" ou "all", ou encore une liste de noms, séparés par des
virgules, sans espace.

L'exemple suivant, qui utilise la librairie Yoctopuce en ligne de commande, télécharge
automatiquement les derniers firmwares depuis le site web de Yoctopuce et met à jour tous les
modules Yoctopuce connectés par USB:

3. Configuration et test des modules

www.yoctopuce.com 15

C:\>YModule all downloadAndUpdate
ok: Yocto-PowerRelay RELAYHI1-266C8(rev=15430) is up to date.
ok: 0 / 0 hubs in 0.000000s.
ok: 0 / 0 shields in 0.000000s.
ok: 1 / 1 devices in 0.130000s 0.130000s per device.
ok: All devices are now up to date.
C:\>

Ce second exemple installe le firmware LIGHTMK3.51180.byn, stocké dans le répertoire local C:\tmp
\yfirmware, sur le module dont le numéro de série est LIGHTMK3-23BBDF. Les fichiers de firmware
peuvent être téléchargés manuellement depuis le site web de Yoctopuce3.

C:\>ymodule LIGHTMK3-23BBDF updateFirmware C:\tmp\yfirmware\LIGHTMK3.51180.byn
OK: LIGHTMK3-23BBDF.module.updateFirmware = 36% Wait for device.
OK: LIGHTMK3-23BBDF.module.updateFirmware = 50% Flash zone.
OK: LIGHTMK3-23BBDF.module.updateFirmware = 57% Flash zone.
OK: LIGHTMK3-23BBDF.module.updateFirmware = 64% Flash zone.
OK: LIGHTMK3-23BBDF.module.updateFirmware = 72% Flash zone.
OK: LIGHTMK3-23BBDF.module.updateFirmware = 73% Device info retrieved.
OK: LIGHTMK3-23BBDF.module.updateFirmware = 90% Firmware updated.
OK: LIGHTMK3-23BBDF.module.updateFirmware = 100% success.
OK: LIGHTMK3-23BBDF.module.updateFirmware = 100% Firmware Updated Successfully in: 14.305s.

Par défaut, downloadAndUpdate met à jour les firmwares uniquement vers une version plus
récente, grâce à un second argument optionnel, onlyNew, qui est toujours vrai s'il est omis. Si vous
voulez installer un firmware plus ancien (downgrade), vous devez passer le firmware comme premier
paramètre et false comme deuxième.

Il est également possible de mettre à jour le firmware de vos modules en utilisant la librairie de
programmation Yoctopuce, en particulier à l'aide des méthodes YModule.checkFirmware et
YModule.updateFirmware. Vous trouverez plus d'information à ce sujet dans les chapitres de
programmation avancée figurant dans la documentation de chaque module.

3.5. Accès à l'enregistreur de données des capteurs
Pour tous les capteurs Yoctopuce qui incluent un enregistreur de données, la fenêtre de
configuration inclut une section spéciale permettant de configurer l'enregistrement et de charger les
données brutes contenues dans l'enregistreur, module par module.

Cliquez sur le bouton configure de la section Datalogger and Timed reports

3 www.yoctopuce.com/FR/firmwares.php

3. Configuration et test des modules

16 www.yoctopuce.com

Fenêtre de configuration du datalogger

Il est aussi possible d'installer comme plug-in de VirtualHub-V2 l'outil Yocto-Visualization (for Web),
qui offre des possibilité bien plus étendues pour visualiser les données sous forme de graphiques, et
charger un fichier CSV correspondant à tous les capteurs connectés. Pour plus de détails, référez-
vous au chapitre qui est consacré à l'installation de Yocto-Visualization (for Web) à la fin de ce
manuel.

www.yoctopuce.com 17

4. Utilisation de VirtualHub-V2 comme une
passerelle
La fonction la moins spectaculaire, mais néanmoins la plus utile de VirtualHub-V2, consiste à offrir
une passerelle réseau pour contrôler les modules. Cela permet d'une part d'offrir un accès aux
langages comme JavaScript, qui par nature interdisent d'accéder aux ressources physiques d'une
machine. D'autre part cela permet d'offrir un accès aux modules à travers le réseau dans tous les
langages: les libraires Yoctopuces sont en effet capables de se connecter à VirtualHub-V2 à travers
le réseau.

Pour utiliser VirtualHub-V2 comme passerelle, il vous suffit de le lancer en ligne de commande ou en
service sur la machine à laquelle sont connectés les modules que vous voulez contrôler. Les
applications qui veulent se connecter à VirtualHub-V2 doivent initialiser l'API en appelant la fonction
YAPI.RegisterHub avec d'adresse IP de la machine faisant tourner VirtualHub-V2, le port par
défaut est 4444. Par exemple

YAPI.RegisterHub('192.168.1.6:4444',errmsg);

Si l'application et VirtualHub-V2 tourne sur la même machine, utilisez l'adresse 127.0.0.1. Consultez
la documentation de l'API de programmation 1 pour plus de détails.

4.1. Passerelle pour contourner la limitation d'accès à USB
Comme évoqué dans la section "Limitation d'accès à USB", une seule application à la fois peut avoir
accès nativement aux modules Yoctopuce. Cette limitation est liée au fait que deux processus
différents ne peuvent pas parler en même temps à un périphérique USB. En général, ce type de
problème est réglé par un driver qui se charge de faire la police pour éviter que plusieurs processus
ne se battent pour le même périphérique. Mais comme vous l'avez probablement remarqué, les
produits Yoctopuce n'utilisent pas de drivers. Par conséquent, le premier processus qui arrive à
accéder au mode natif le garde pour lui jusqu'à ce que UnregisterHub ou FreeApi soit appelé.

Si votre application essaie de communiquer en mode natif avec les modules Yoctopuce, mais qu'une
autre application vous empêche d'y accéder, vous revecrez le message d'erreur suivant:

Another process is already using yAPI

1 http://www.yoctopuce.com/FR/libraries

4. Utilisation de VirtualHub-V2 comme une passerelle

18 www.yoctopuce.com

La solution est d'utiliser VirtualHub-V2 localement sur votre machine et de vous en servir comme
passerelle pour vos applications. Ainsi, si toutes vos application utilisent VirtualHub-V2, vous n'aurez
plus de conflit et vous pourrez accéder en tout temps à tous vos modules.

Pour passer du mode natif au mode réseau sur votre machine locale, il vous suffit de changer le
paramètre de l'appel à YAPI.RegisterHub et d'indiquer 127.0.0.1 à la place de usb:

YAPI.RegisterHub("usb",errmsg); // mode natif USB

YAPI.RegisterHub("127.0.0.1",errmsg); // utilisation en mode réseau local

4.2. Passerelle REST
Vous pouvez également utiliser VirtualHub-V2 comme passerelle REST. Cela consiste à envoyer au
module des requêtes HTTP à travers VirtualHub-V2.

Pour expérimenter cette fonctionnalité, utilisez le lien Open API Browser disponible en bas de la
fenêtre d'interface de votre module, à l'aide d'un navigateur Web.

Lien pour ouvrir l'interface REST

Dans la fenêtre qui s'ouvre, vous pouvez alors modifier chaque attribut du module, à l'aide du bouton
edit, puis en appliquant votre changement avec le bouton apply:

Modification d'un attribut manuellement

Après avoir effectué un changement, si vous descendez tout en bas de la page, vous verrez la
requête HTTP qui a été effectuée pour appliquer le changement demandé:

Requête HTTP correspondante

Vous pourrez ainsi facilement découvrir comment accéder aux fonctions essentielles des modules
par des requêtes HTTP: c'est là tout l'intérêt d'une interface REST. Si la sémantique d'un attribut en
particulier vous échappe, vous trouverez des explications dans le manuel du module.

4. Utilisation de VirtualHub-V2 comme une passerelle

www.yoctopuce.com 19

4.3. Passerelle OpenMetrics (Prometheus)
Il est aussi possible d'utiliser VirtualHub-V2 comme source de données pour un serveur Prometheus,
afin de centraliser les mesures des capteurs Yoctopuce dans la même base de donnée que les
informations sur l'état des infrastructures informatiques.

Les sources de données Prometheus sont appelées des exportateurs: l'idée est que chaque
système ou service important peut mettre à disposition de Prometheus ses données vitales,
permettant à l'administrateur système de les collecter et de les surveiller. Chaque exportateur est
une URL accessible par HTTP, qui fournit ses données selon le standard OpenMetrics: une mesure
par ligne, avec des conventions de nommage et de classification qui permettent à l'administrateur
système de s'y retrouver parmi les centaines de mesures qu'il aura à disposition lorsqu'il configure
son tableau de bord.

VirtualHub-V2 a la capacité d'être un exportateur OpenMetrics par l'intermédiaire de l'interface
REST. Pour obtenir des données dans le format OpenMetrics, il suffit de charger l'URL /api/
services.om de votre VirtualHub-V2, soit http://127.0.0.1:4444/api/services.om.
Par exemple, si vous accéder à cette URL alors que quelques capteurs sont connectés en local,
vous obtiendrez quelque chose du genre (la présentation a été ici modifiée pour faciliter la lecture,
mais en réalité chaque mesure tient sur une seule ligne):

yocto_temperature_advertisedValue{
 productName="Yocto-Thermocouple",
 serialNumber="THRMCPL1-16397A",
 deviceName="insideProbes",
 functionId="temperature1"} 21.78
yocto_temperature_advertisedValue{
 productName="Yocto-PT100",
 serialNumber="PT100MK1-BA496",
 functionId="temperature"} 28.57
yocto_temperature_advertisedValue{
 productName="Yocto-RangeFinder",
 serialNumber="YRNGFND1-1D1567",
 deviceName="rf",
 functionId="temperature1",
 functionName="rfTemp"} 25.13
yocto_lightSensor_advertisedValue{
 productName="Yocto-RangeFinder",
 serialNumber="YRNGFND1-1D1567",
 deviceName="rf",
 functionId="lightSensor1"} 56
yocto_rangeFinder_advertisedValue{
 productName="Yocto-RangeFinder",
 serialNumber="YRNGFND1-1D1567",
 deviceName="rf",
 functionId="rangeFinder1"} 1456
EOF

Pour indiquer à Prometheus de collecter ces données directement depuis votre VirtualHub-V2, il
suffit donc d'ajouter à votre fichier prometheus.yml une section comme celle-ci:

 - job_name: "yoctohub_sensors"
 scrape_interval: 60s
 metrics_path: "/api/services.om"
 static_configs:
 - targets: ['127.0.0.1:4444']

Comme l'exportateur OpenMetrics est intégré au coeur de l'interface REST de VirtualHub-V2, vous
pouvez aussi l'utiliser pour obtenir des informations plus détaillées par capteur, en utilisant une URL
qui pointe vers un capteur spécifique. Par exemple, si vous connectez un Yocto-Thermocouple au
VirtualHub-V2 et que vous lui donnez le nom logique tcProbes, l'URL /byName/tcProbes/
api.om donnera une réponse du genre:

yocto_module_luminosity{...,functionId="module",functionName="tcProbes"} 50
yocto_module_beacon{...,functionId="module",functionName="tcProbes"} 0
yocto_module_usbCurrent_mA{...,functionId="module",functionName="tcProbes"} 23

4. Utilisation de VirtualHub-V2 comme une passerelle

20 www.yoctopuce.com

yocto_module_rebootCountdown{...,functionId="module",functionName="tcProbes"} 0
yocto_module_userVar{...,functionId="module",functionName="tcProbes"} 0
yocto_temperature_currentValue_degC{[...],functionName="heatSink"} 21.99
yocto_temperature_lowestValue_degC{[...],functionName="heatSink"} 20.51
yocto_temperature_highestValue_degC{[...],functionName="heatSink"} 22.25
yocto_temperature_currentRawValue_degC{[...],functionName="heatSink"} 21.988
yocto_temperature_signalValue_mV{[...],functionName="heatSink"} -0.162
yocto_temperature_signalValue_mV{[...],functionId="temperature2"} 999.999
yocto_dataLogger_currentRunIndex{[...],functionId="dataLogger"} 0
yocto_dataLogger_autoStart{[...],functionId="dataLogger"} 0
yocto_dataLogger_beaconDriven{[...],functionId="dataLogger"} 0
yocto_dataLogger_usage{[...],functionId="dataLogger"} 0
EOF

Ainsi, tous les attributs numériques du Yocto-Thermocouple sont mis à disposition. Vous pouvez
donc connaître les valeurs min/max rencontrées, la tension mesurée aux bornes du thermocouple,
etc. Notez aussi que dans ce cas, le symbole exporté inclut l'unité, comme recommandé par
OpenMetrics. Lorsque le module détecte qu'une entrée n'est pas connectée (comme la fonction
temperature2 ci-dessus), les métriques qui ne peuvent être calculées sont automatiquement
supprimées pour qu'elles soient manquantes, plutôt que de garder la dernière valeur mesurée.

Pour obtenir ces données supplémentaire par capteur, il suffit donc d'ajouter au fichier
prometheus.yml une section supplémentaire, référençant le capteur soit par son numéro de série
(bySerial) soit par son nom logique (byName):

 - job_name: "thermocouple_probes"
 scrape_interval: 60s
 metrics_path: "/byName/tcProbes/api.om"
 static_configs:
 - targets: ['127.0.0.1:4444']

www.yoctopuce.com 21

5. Contrôle d'accès
VirtualHub-V2 vous permet d'instaurer un contrôle d'accès à vos modules Yoctopuce. Pour ce faire
cliquez simplement sur le bouton Configure de la ligne du VirtualHub-V2 dans l'interface.

Cliquez sur le bouton configure de la première ligne

Cela aura pour effet de faire apparaître la fenêtre de configuration de VirtualHub-V2.

La fenêtre de configuration de VirtualHub-V2

Ce contrôle d'accès est contrôlé depuis la section Incoming connections. Il peut se faire à deux
niveaux distincts.

5. Contrôle d'accès

22 www.yoctopuce.com

5.1. Accès "admin"
Le mot de passe admin verrouille les accès en écriture sur les modules. Lorsqu'il est configuré, seuls
les accès de type admin permettent d'accéder aux modules en lecture et en écriture. Les utilisateurs
utilisant le login admin pourront éditer la configuration des modules vus par VirtualHub-V2 comme ils
le souhaitent.

5.2. Accès "user"
Le mot de passe user verrouille toute utilisation des modules. Lorsqu'il est configuré, toute utilisation
sans mot de passe devient impossible.

Si vous configurez uniquement un mot de passe user sans configurer de mot de passe admin, tous
les utilisateurs devront donner un mot de passe pour accéder aux modules, mais une fois autorisés,
ils pourront aussi éditer la configuration des modules.

Si vous configurez simultanément un contrôle d'accès de type user et de type admin, les utilisateurs
utilisant le login user ne pourront pas modifier la configuration des modules vus par VirtualHub-V2.
Les accès de type user ne permetteront d'accéder aux modules qu'en lecture seule, c'est-à-dire
seulement pour consulter l'état des modules. Seuls les utilisateurs qui utilisent le login admin
pourront changer la configuration des modules.

Si vous configurez uniquement un accès admin sans configurer d'accès user, tous les utilisateurs
pourront continuer à consulter vos modules en lecture sans avoir à entrer de mot de passe, et seuls
ceux qui connaîtront le mote de passe admin pourront changer la configuration des modules.

5.3. Influence sur les API
Attention, le contrôle d'accès agira aussi sur les API Yoctopuce qui tenteront de se connecter à
VirtualHub-V2. Dans les API Yoctopuce, la gestion des droits d'accès est réalisée au niveau de
l'appel à la fonction RegisterHub() : vous devrez donner l'adresse de VirtualHub-V2 sous la
forme login:password@adresse:port, par exemple:

YAPI.RegisterHub("admin:mypass@192.168.1.2:4444",errmsg);

Si vous perdez le mot passe de VirtualHub-V2, vous pouvez le remettre à zéro en effaçant son
fichier de configuration (.virtualhub.dat)

www.yoctopuce.com 23

6. Envoi de données vers l'extérieur
VirtualHub-V2 est capable de se connecter à des services externes pour communiquer l'état des
modules qui lui sont raccordés.

VirtualHub-V2 sait comment poster ses données au format accepté par quelques services Cloud
tiers, tels que

• Emoncms
• InfluxDB (versions 1.0 et 2.0)
• PRTG
• Valarm.net

VirtualHub-V2 peut aussi se connecter à des services externes à l'aide de protocoles avancés qui
permettent une interaction plus poussée avec les modules Yoctopuce, mais qui vous demanderont
un peu plus de connaissances pour pouvoir en tirer parti:

• MQTT
• Yocto-API

6.1. Configuration
Pour utiliser cette fonctionnalité, cliquez simplement sur le bouton configure de la ligne
correspondant à VirtualHub-V2 dans l'interface, puis cliquez sur le bouton edit de la section
Outgoing callbacks.

Cliquez sur le bouton configure correspondant

6. Envoi de données vers l'extérieur

24 www.yoctopuce.com

Puis éditez la section Outgoing callbacks

La fenêtre de configuration des callbacks apparaît. Cette fenêtre vous permet de définir comment
VirtualHub-V2 peut interagir avec un serveur web externe. Vous avez plusieurs type d'interactions à
votre disposition.

6.2. Callbacks HTTP vers des services tiers
VirtualHub-V2 est capable de poster sur des serveurs externes les valeurs des capteurs Yoctopuce à
intervalles régulier et/ou à chaque fois qu'une valeur change de manière significative. Cette
fonctionnalité vous permettra de stocker vos mesures et de tracer des graphiques sans écrire la
moindre ligne de code.

Yoctopuce n'est en aucune manière affilié à ces services tiers et ne peut donc ni garantir leur
pérennité, ni proposer des améliorations à ces services.

Emoncms
Emoncms est un service de Cloud open-source qui permet de poster les données des capteurs
Yoctopuce et ensuite de les visualiser. Il est aussi possible d'installer son propre serveur en local.

Les paramètres à fournir sont la clé d'API Emoncms, le numéro de nœud que vous désirez utiliser,
ainsi que l'adresse du serveur Emoncms si vous utilisez un serveur local.

Il est possible de personaliser les noms associés aux mesures postées sur Emoncms. Pour plus de
détails, voir le paragraphe intitulé "Noms associés aux valeur postées" ci-dessous.

InfluxDB 1.0 and 2.0
InfluxDB est une base de données open-source dédiée spécifiquement à stocker des séries
temporelles de mesures et d'événements. Notez que seules les installations locales sont supportées.
En effet, le service InfluxDB Cloud n'est pas supporté car il nécessite une connexion SSL.

Les paramètres pour la version 1.0 d'InfluxDB sont l'adresse du serveur et le nom de la base de
données.

La version 2.0 d'InfluxDB utilise une API différente et le YoctoHub a besoin de trois paramètres
(organization, bucket et token) ainsi que l'adresse du serveur.

Il est possible de personaliser les noms associés aux mesures postées sur InfluxDB. Pour plus de
détail, voir le paragraphe intitulé "Noms associés aux valeur postées" ci-dessous.

6. Envoi de données vers l'extérieur

www.yoctopuce.com 25

PRTG
PRTG est une solution commerciale, destinée à la supervision des systèmes et des applications. Il
est possible d'enregistrer les mesures et obtenir des graphiques de vos capteurs avec ce service.

Les paramètres à fournir sont l'adresse du serveur PRTG et le token qui permet d'identifier
VirtualHub-V2.

Il est possible de personaliser les noms associés aux mesures postées sur PRTG. Pour plus de
détail, voir le paragraphe intitulé "Noms associés aux valeur postées" ci-dessous.

Valarm.net
Valarm est un service de Cloud professionnel qui permet d'enregistrer les données des capteurs
Yoctopuce mais permet aussi des fonctions plus élaborées comme la possibilité de géolocaliser les
mesures ou de configurer les modules Yoctopuce à distance.

Le seul paramètre à fournir est un Routing code qui permet d'identifier VirtualHub-V2.

6.3. Callbacks vers un broker MQTT
MQTT est un protocole de l'Internet des Objets permettant à des capteurs et des actuateurs de
communiquer entre eux, via un serveur central appelé broker MQTT. MQTT est particulièrement
utilisé en domotique, où il permet de fédérer de nombreuses technologies pour les rendre accessible
à un système de contrôle central comme Home Assistant.

Les paramètres de base à fournir pour la configuration du callback MQTT sont l'adresse du broker
MQTT, le client ID, le root_topic ainsi que les paramètres d'authentification. Notez que
l'encapsulation du protocole MQTT dans une connexion SSL n'est pas supportée, ce qui exclut son
utilisation avec les services comme AWS IoT Core.

Lorsqu'un callback MQTT est actif, VirtualHub-V2 est capable de publier des messages avec l'état
des capteurs et actuateurs, et recevoir des messages de commande et de configuration, ce qui
permet au système de contrôle central d'interagir pleinement avec les modules.

Le reste de cette section décrit en détail les messages MQTT supportés. Elle n'intéressera que les
développeurs qui désirent développer leur propre intégration avec des modules Yoctopuce via
MQTT. Si vous comptez simplement utiliser Home Assistant, vous pouvez sauter cette section et
grâce au mécanisme MQTT Discovery, vos modules devraient automatiquement apparaître dans
Home Assistant.

Racine commune des messages
Le topic de tous les messages commence par une partie commune, qui identifie le module
Yoctopuce et la fonction particulière de ce module concernée par le message. Elle a la structure
suivante:

root_topic/deviceName/functionName

Le root_topic peut être configuré librement, par exemple à la valeur yoctopuce. Si vous connectez
plusieurs hubs au même broker MQTT, vous pouvez soit utiliser le même root_topic pour tous, soit
un topic différent par hub. L'utilisation d'un root_topic distinct est recommandée si le hub est destiné
à recevoir beaucoup de commandes par MQTT.

Le deviceName correspond au nom logique que vous avez donné au module Yoctopuce concerné.
Si aucun nom logique n'a été configuré, le numéro de série du module est utilisé à la place du nom
logique (par exemple METEOMK2-012345).

Le functionName correspond au nom logique que vous avez donné à la fonction concernée. Si
aucun nom logique n'a été configuré, l'identifiant de la fonction est utilisé (par exemple
genericSensor1).

6. Envoi de données vers l'extérieur

26 www.yoctopuce.com

Le fait d'utiliser les noms logique plutôt que les noms matériels dans la racine du topic a l'avantage
de permettre d'identifier les modules et les fonctions par leur rôle et de ne pas devoir indiquer
explicitement l'identifiant matériel de chaque module au client MQTT qui devra interagir avec ces
modules. Le désavantage est que si vous décidez de changer le nom logique de vos modules ou de
vos fonctions sans y penser, les topics MQTT utilisés changeront en conséquence.

Topic /api: état complet de la fonction
Sous root_topic/deviceName/functionName/api, chaque fonction publie une structure
JSON décrivant l'état complet de la fonction, tous attributs compris. Dans cet encodage JSON,

• les booléens sont représentés par 0 et 1
• les types énumérés sont représentés par des constantes numériques
• les nombres réels tels que les mesures sont représentés sous forme d'entiers, après

multiplication par 65536. Il faut donc les diviser par 65536.0 pour obtenir la valeur réelle.

Ce message est publié lorsque l'une des conditions suivante se produit:

• à l'établissement de la connexion du hub avec le broker MQTT
• toutes les cinq minutes
• après un changement de configuration du module
• en réponse à la réception d'une commande par cette fonction
• pour la fonction module, en cas d'activation ou de désactivation de la balise (beacon)

Topic de base: état instantané
Sous root_topic/deviceName/functionName, chaque fonction publie un résumé textuel de
son état. Il ne s'agit pas de JSON mais d'une simple chaîne de caractères, correspondant à la valeur
de l'attribut advertisedValue de la fonction. Par exemple, pour un capteur, il correspond à la valeur
instantanée du capteur, alors que pour un relais il correspond à la lettre A ou B en fonction de l'état
de commutation.

Ce message est publié lorsque l'une des conditions suivante se produit:

• à l'établissement de la connexion du hub avec le broker MQTT
• toutes les cinq minutes
• à chaque changement de l'attribut advertisedValue

Pour éviter de surcharger le broker MQTT avec les changements de valeurs instantanée des
capteurs, il est possible de désactiver globalement l'envoi des messages de valeurs instantanée
pour les capteurs uniquement, dans la configuration MQTT.

Topics /avg, /min, /max: valeurs moyenne et extrêmes
Sous root_topic/deviceName/functionName/avg, les fonctions de type capteur (sous-
classes de Sensor) publient périodiquement la valeur moyenne observée durant l'intervalle de temps
précédent, directement sous forme de nombre réel.

Sous root_topic/deviceName/functionName/min, la valeur minimale observée durant
l'intervalle de temps précédent.

Sous root_topic/deviceName/functionName/max, la valeur maximale observée durant
l'intervalle de temps précédent.

Ces messages sont l'équivalent direct des timed reports documentés dans le manuel de ces module.
L'intervalle de temps doit avoir été configuré préalablement dans l'attribut reportFrequency. Dans le
cas contraire, ces messages ne sont pas envoyés.

Topics /set/attributeName: envoi de commande et configuration

Sous root_topic/deviceName/functionName/set/attributeName, il est possible
d'envoyer des message pour modifier les attributs des fonctions, dans le but de modifier leur état ou
leur configuration. La valeur du message correspond à la nouvelle valeur désirée, telle quelle. Le

6. Envoi de données vers l'extérieur

www.yoctopuce.com 27

format est identique à celui utilisé par la asserelle REST de VirtualHub-V2 (voir la section "Passerelle
REST" de ce manuel).

Par exemple, on pourrait commuter un relais en envoyant un message au topic
yoctopuce/RelaiPompe/relay1/set/state
avec la valeur 1.

On pourrait aussi déclencher une impulsion de 1500ms sur le même relais en envoyant un message
au topic
yoctopuce/RelaiPompe/relay1/set/pulseTimer
avec la valeur 1500.

La réception de commande et de changements de configuration par MQTT doit avoir été activée
explicitement dans la configuration MQTT sur le hub Yoctopuce. Par sécurité, le comportement de
base du mode MQTT reste le mode en lecture seule.

Topic /rdy: état de connectivité
Sous root_topic/deviceName/module/rdy, la fonction module publie une indication binaire
de l'état de disponibilité du module. La valeur est à 1 lorsque le module est en ligne, et à 0 lorsqu'il
est hors ligne.

Ce message est publié par le hub pour son propre module lorsque l'une des conditions suivante se
produit:

• à l'établissement de la connexion du hub avec le broker MQTT
• à la déconnexion du hub du broker MQTT

Ce message est publié pour les modules autres que le hub lorsque l'une des conditions suivante se
produit:

• à l'établissement de la connexion du hub avec le broker MQTT
• au branchement d'un module sur le hub
• au débranchement d'un module du hub

Pour déterminer si un module est réellement atteignable, il faut donc vérifier son propre topic /rdy,
pour savoir si il a été déconnecté, et le topic /rdy du hub, pour savoir si la connexion MQTT est
active.

MQTT discovery

De plus, des messages particuliers sont publiés sous le topic homeassistant/ juste après
l'établissement de la connexion du hub avec le broker MQTT, et répétés toutes les 5 minutes, pour
permettre la détection automatique des fonctionalités offertes, grace au mécanisme MQTT discovery
supporté par Home Assistant et openHab.

6.4. Callbacks de type Yocto-API
Les callbacks de type Yocto-API utilisent un protocole spécifique défini par Yoctopuce, qui permet
une interaction très poussée avec les modules Yoctopuce. A l'aide de certains langages commes
PHP, TypeScript, JavaScript ou Java, ils permettent au programmeur du service Web d'utiliser
directement les fonctions de la librairie de programmation Yoctopuce pour interagir avec les modules
qui se connectent par callback HTTP. Cela permet en particulier de contrôler depuis un site web
public des modules Yoctopuce installés derrière un router ADSL privé. Il est par exemple possible de
commuter la sortie d'un relais en fonction de la valeur d'un capteur, tout en gardant le contrôle
complet du système sur un serveur Web.

Yoctopuce met à disposition une application gratuite qui exploite au maximum les possibilités du
Callback Yocto-API sur un serveur PHP: VirtualHub for Web. Cette application web permet

6. Envoi de données vers l'extérieur

28 www.yoctopuce.com

d'interagir à distance avec les modules qui se connectent périodiquement via un Callback Yocto-API.
De plus amples informations sur VirtualHub for Web sont disponibles sur le blog de Yoctopuce 1.

En mode Callback Yocto-API ou Yocto-API-JZON, il est possible de choisir entre les protocoles
"HTTP" et "WebSocket".

Callbacks Yocto-API en mode WebSocket
Lors d'une requête HTTP usuelle, le flux d'information est extrêmement simple: le client envoie une
requête et écoute la réponse du serveur. Il ne s'agit pas à proprement parler d'une conversation,
mais simplement d'une réponse à une question. Le client HTTP ne peut pas répondre à ce que le
serveur lui a dit sans recommencer une nouvelle communication séparée.

Il y a néanmoins dans le standard HTTP 1.1 une porte ouverte vers une amélioration: le client peut
demander d'upgrader le protocole de communication. Une méthode d'upgrade qui s'est standardisée
s'appelle les WebSockets et est définie dans le RFC 6455. Cette upgrade transforme le simple canal
question/réponse en un lien bidirectionnel permettant d'échanger des messages quelconques dans
les deux directions.

Cette transformation de la connection HTTP exige que les deux parties en soient capables.
VirtualHub-V2 et les librairies de programmation Yoctopuce le sont. Mais pour pouvoir transformer
un callback HTTP en callback WebSocket, vous aurez aussi besoin d'un serveur Web basé sur une
technologie qui permet l'upgrade de connection. C'est le cas par exemple de Java et Node.JS. Par
contre, les implémentations de PHP sur Apache n'en sont à ce jour pas capables.

L'utilisation de WebSockets permet d'accéder à plusieurs fonctionnalités avancées des librairies
Yoctopuce qui ne sont pas disponibles via un callback HTTP:

• un callback WebSocket peut énumérer et récupérer des données stockées dans l'enregistreur
de données intégré dans chaque senseur Yoctopuce.

• un callback WebSocket peut utiliser les fonctions de communication bidirectionnelles des
modules séries, par exemple pour exécuter des requêtes MODBUS avec un Yocto-RS485.

• un callback WebSocket peut profiter des notifications instantanées de changement de valeur
par callback, et des notifications périodiques de valeurs moyennées des capteurs.

• un callback WebSocket peut garder une connection persistante entre le hub et le serveur, par
exemple pour implémenter une interaction avec un utilisateur.

• un callback WebSocket peut même être utilisé pour effectuer une mise à jours de firmware.

6.5. Callbacks HTTP définis par l'utilisateur
Si aucune des autres options proposées pour la configuration de callback HTTP ne convient à vos
besoins, vous pouvez essayer de spécifier vous-même la manière dont les données doivent être
transmises. Les "User defined callback" vous permettent de personnaliser la manière dont
VirtualHub-V2 envoie les informations au serveur. Notez que seul le protocole HTTP est supporté
(pas de HTTPS).

1 https://www.yoctopuce.com/FR/article/nouveau-un-virtualhub-qui-fonctionne-a-travers-le-web

6. Envoi de données vers l'extérieur

www.yoctopuce.com 29

La fenêtre de configurations des callbacks

Si vous désirez protéger votre script de callback, vous pouvez configurer un contrôle d'accès HTTP
standard sur le serveur Web. VirtualHub-V2 sait comment gérer les méthodes standard
d'identification de HTTP: indiquez simplement le nom d'utilisateur et le mot de passe nécessaires
pour accéder à la page. Il est possible d'utiliser la méthode "Basic" aussi bien que la méthode
"Digest", mais il est recommandé d'utiliser la méthode "Digest", car elle est basée sur un protocole
de question-réponse qui évite la transmission du mot de passe sur le réseau et évite aussi les copies
d'autorisation.

A titre d'exemple, voici un script PHP qui vous permettra de visualiser dans la fenêtre de debug le
contenu des données postées par un callback HTTP défini par l'utilisateur en mode POST et WWW-
Form-UrlEncoded.

<?php
 Print(Date('H:i:s')."\r\n");
 foreach ($_POST as $key => $value) {
 Print("$key=$value\r\n");
 }
?>

Il est possible de personaliser les noms associés aux mesures postées par un callback HTTP défini
par l'utilisateur. Pour plus de détail, voir le paragraphe intitulé "Noms associés aux valeur postées"
ci-dessous.

6.6. Noms associés aux valeur postées
A l'exception des callbacks de type Yocto-API qui donnent accès à la totalité des informations sur les
modules Yoctopuce, les callbacks HTTP sont conçus pour ne transmettres que les informations les
plus importantes au serveur, en associant chaque valeur avec un nom qui permette facilement de le
rattacher à son origine.

Comportement de base
Le comportement standard est de transmettre la valeur de l'attribut advertisedValue pour
chaque fonction présente sur les modules Yoctopuce. Le nom associé automatiquement à chaque
valeur suit la logique suivante:

1. Si un nom logique a été défini pour une fonction:

NOM_LOGIQUE_DE_LA_FONCTION = VALEUR

2. Si un nom logique a été défini pour le module, mais pas pour la fonction:

NOM_DU_MODULE.NOM_HARDWARE = VALUE

3. Si aucun nom logique n'a été attribué:

NUMERO_DE_SERIE.NOM_HARDWARE = VALEUR

6. Envoi de données vers l'extérieur

30 www.yoctopuce.com

La manière la plus simple pour personnaliser les noms associés aux valeurs consiste donc à
configurer le nom désiré comme nom logique de la fonction, ou sinon comme nom logique du
module lui-même.

Voici un exemple des données postées par un callback HTTP défini par l'utilisateur en mode POST
et au format JSON (numerical) pour un système comportant un Yocto-Watt où chaque fonction a
reçu un nom logique explicite (par exemple VoltageDC) et un Yocto-Meteo-V2 où c'est au module
lui-même qu'on a donné le nom logique Ambiant:

{"timestamp":1678276738,
"CurrentAC":0
,"CurrentDC":0
,"VoltageAC":0
,"VoltageDC":0
,"Power":0
,"Ambiant.temperature":22.17
,"Ambiant.pressure":949.36
,"Ambiant.humidity":30
}

Personnalisation avancée par un fichier

Si l'on désire une personnalisation plus poussée du format des données transmises, pour
sélectionner spécifiquement quelle attribut de quel module doit être envoyé sous quel nom, ou pour y
rajouter des informations contextuelles, c'est aussi possible, mais c'est un peu plus compliqué. Il faut
à ce moment créer un fichier modèle définissant le format exact des données à envoyer. Le contenu
et le nom de ce fichier est donc spécifique à chaque type de callback HTTP, et chaque cas sera
expliqué individuellement ci-dessous.

Le point commun de tous les fichiers de modèle est que leur contenu sera envoyé tel quel au
serveur, à l'exception des expressions englobées entre accents graves (le caractère `, code ASCII
96, appelé backquote ou backtick en anglais) qui seront évaluées par la passerelle REST de
VirtualHub-V2 (voir la section "Passerelle REST" de ce manuel). Par exemple, si le fichier de modèle
comporte le texte:

{ "origin": "`/api/module/productName`" }

alors le contenu effectivement posté sera

{ "origin": "VirtualHub-V2" }

Fichier de personnalisation pour Emoncms
Le format de base utilisé par VirtualHub-V2 pour Emoncms a la forme ci-dessous. Notez que les
données sont transmise dans l'URL, donc en une seule ligne, mais elles ont été mises ici sur
plusieurs ligne pour faciliter la lecture.

time=1678277614
&json={
 "CurrentAC":0,
 "CurrentDC":0,
 "VoltageAC":0,
 "VoltageDC":0,
 "Power":0,
 "Ambiant.temperature":22.28,
 "Ambiant.pressure":949.54,
 "Ambiant.humidity":29.7
}

Pour personnaliser le format des données envoyées à Emoncms, il faut créer sur VirtualHub-V2 un
fichier modèle de format portant le nom EMONCMS_cb.fmt.

6. Envoi de données vers l'extérieur

www.yoctopuce.com 31

Ce fichier ne doit comporter qu'une seule ligne, sans aucun retour de chariot, et commencer par une
chaîne du type &json=. Par exemple, pour ne poster que l'humidité absolue et relative, vous
pourriez utiliser (sans retour de chariot!):

&json={
 "absoluteHumidity"=`/byName/Ambiant/api/humidity/absHum`,
 "relativeHumidity"=`/byName/Ambiant/api/humidity/relHum`
}

Fichier de personnalisation pour InfluxDB
Le format de base utilisé par VirtualHub-V2 pour InfluxDB a la forme ci-dessous. Il associe toutes les
valeurs à une base de mesures yoctopuce et ajoute un tag name avec le nom sur le réseau de
VirtualHub-V2 et un tag ip avec son adresse IP. Ensuite, chaque valeur est postée dans un champ
dont le nom suit la convention de base décrite précédemment. Les données sont transmises par un
POST de type CSV, en une seule ligne, mais elles ont été mises ici sur plusieurs lignes pour faciliter
la lecture.

yoctopuce,name=VIRTHUB0-12345678,ip=192.168.1.10
 CurrentAC=0,CurrentDC=0,VoltageAC=0,VoltageDC=0,Power=0,
 Ambiant_temperature=22.5,Ambiant_pressure=948.63,Ambiant_humidity=29.4
 1678281649

Pour personnaliser le format des données envoyées à InfluxDB, il faut créer sur VirtualHub-V2 un
fichier modèle de format portant le nom INFLUXDB_cb.fmt (pour la version 1.0), ou
INFLUXDB_V2_cb.fmt (pour la version 2.0).

Ce fichier peut comporter plusieurs lignes si vous le désirez, ce qui vous permettre d'utiliser des tags
différents pour différents mesures, ou même de ventiler des mesures sur plusieurs bases de
données.

Par exemple, pour poster l'humidité absolue et relative simultanément, mais avec tes tags différents,
vous pourriez utiliser le fichier de format suivant:

humidity,type=relative,location=Library relHum=`/byName/Ambiant/api/humidity/relHum`
humidity,type=absolute,location=Library absHum=`/byName/Ambiant/api/humidity/absHum`

Attention: le serveur InfluxDB n'accepte que les retours de chariot au format UNIX (caractère \n,
aussi appelé LF). Si vous éditez le fichier sur une machine Windows, prenez soin d'utiliser un éditeur
de texte capable de ne pas ajouter le retour de chariot Windows (\r\n, aussi appelé CR LF).

Fichier de personnalisation pour PRTG
Le format de base utilisé par VirtualHub-V2 pour PRTG a la forme ci-dessous. Il poste chaque valeur
dans un canal dont le nom suit la convention de base décrite plus procédemment. Les données sont
transmises par un POST de type CSV, en une seule ligne, mais elles ont été mises ici sur plusieurs
lignes pour faciliter la lecture.

{"prtg":{"result":[
{"channel":"CurrentAC","value":"0","float":"1","DecimalMode":"All"}
,{"channel":"CurrentDC","value":"0","float":"1","DecimalMode":"All"}
,{"channel":"VoltageAC","value":"0","float":"1","DecimalMode":"All"}
,{"channel":"VoltageDC","value":"0","float":"1","DecimalMode":"All"}
,{"channel":"Power","value":"0","float":"1","DecimalMode":"All"}
,{"channel":"Ambiant.temperature","value":"22.48","float":"1","DecimalMode":"All"}
,{"channel":"Ambiant.pressure","value":"948.68","float":"1","DecimalMode":"All"}
,{"channel":"Ambiant.humidity","value":"29.7","float":"1","DecimalMode":"All"}
]}}

Pour personnaliser le format des données envoyées à PRTG, il faut créer sur VirtualHub-V2 un
fichier modèle de format portant le nom PRTG_cb.fmt.

6. Envoi de données vers l'extérieur

32 www.yoctopuce.com

Ce fichier doit comporter au minimum la même première et dernière ligne que l'exemple ci-dessus.
La description des canaux pourra par contre être entièrement personnalisée.

Par exemple, pour poster l'humidité absolue et relative simultanément, dans deux canaux séparés,
vous pourriez utiliser le fichier de format suivant:

{"prtg":{"result":[
{"channel":"relHum","value":"`/byName/Ambiant/api/humidity/relHum`",
 "float":"1","DecimalMode":"All"},
{"channel":"absHum","value":"`/byName/Ambiant/api/humidity/absHum`",
 "float":"1","DecimalMode":"All"}
]}}

6.7. Planification des callbacks
La section de plannification des callbacks est présente pour tous les types de callbacks. C'est la
dernière section contenant des champs à remplir.

Un premier callback est toujours effectué quelques secondes après le lancement de VirtualHub-V2.
Pour les callbacks suivants, c'est le réglage de planification qui détermine la fréquence des
callbacks.

Il est possible de choisir entre deux méthodes de planification: soit en configurant l'intervalle de
temps entre deux callbacks consécutifs, soit en définissant une périodicité absolue, pour obtenir des
callbacks à heure fixe. L'intervalle entre les callbacks peut être spécifié en secondes, en minutes ou
en heures.

L'option interval between subsequent callbacks permet de spécifier le délais entre
chaque callback. C'est-à-dire que si l'on configure un intervalle de 5 minutes, VirtualHub-V2 va
attendre 5 minutes avant de déclencher le callback suivant. Si le premier callback est déclenché à
12h03, le suivant sera exécuté à 12h08, etc.

L'option absolute periodicity of callbacks permet de configurer des callbacks à heure
fixe. C'est-à-dire que le callback est déclenché tous les multiples du délais configuré. Par exemple
un délais de 5 minutes va déclencher un callback à 8h00, 8h05, 8h10, etc. Notez que dans ce mode
il est aussi possible de spécifier un décalage par rapport au délais configuré. Par exemple avec un
délais de 24h, il est possible d'utiliser un décalage de 8h pour déclencher le callback tous les jours à
8h du matin.

Planification des callbacks

Vous pouvez choisir explicitement si vous désirez que la fréquence des callbacks varie
lorsqu'aucune nouvelle mesure n'est détectée. Cela permet de choisir la fréquence minimale de
transmission pour réduire la quantité de données transmises sur le réseau si rien ne se passe.

Attention, si vous configurez de nombreux hubs pour effectuer le callback à la même heure, vous
allez générer un pic de charge sur votre serveur web. Il est donc souhaitable d'utiliser le paramètre
décalage pour équilibrer la charge.

6.8. Tests
Afin de vous permettre de débugger le processus, VirtualHub-V2 vous permet de visualiser la
réponse au callback envoyé par le serveur web. Dans la fenêtre de configuration des callbacks,
cliquez sur le bouton test une fois que vous avez renseigné tous les champs pour ouvrir la fenêtre
de tests.

6. Envoi de données vers l'extérieur

www.yoctopuce.com 33

La fenêtre vous montre l'état actuel du système de callback, pour vous permettre de voir par
exemple si un callback est actuellement en cours sur le serveur web. Dans tous les cas, tant que
cette fenêtre est ouverte, aucun callback HTTP ne sera déclenché automatiquement. C'est en
pressant le bouton Test que vous pourrez déclancher manuellement un callback. Une fois
déclanché, la fenêtre vous montre les informations retournées par le service web, comme dans
l'exemple ci-dessous:

Le résultat du test de callback avec un Yocto-PowerRelay et un Yocto-Temperature

Si le résultat vous paraît satisfaisant, fermez la fenêtre de debug, et cliquez sur Ok.

6.9. Connexions spontanées
En plus de connexions liées aux callbacks définis décrites dans les sections précédentes,
VirtualHub-V2 va occasionnellement tenter d'établir des connexions vers l'extérieur. Ces connexions
sont les suivantes:

• Installation de Yocto-Visualization (for web): Lorsque l'utilisateur déclenche l'installation de
Yocto-Visualization (for web) depuis l'interface de VirtualHub-V2, le hub va automatiquement
télécharger le fichier d'installation le plus récent depuis www.yoctopuce.com

• Test de version: à chaque fois que la fenêtre de propriété ou de configuration d'un module est
ouverte, VirtualHub-V2 effectue une requête sur www.yoctopuce.com pour vérifier si le
firmware du module est à jour. Cette requête ne contient que le numéro de série du module et
sert à indiquer à l'utilisateur si un nouveau firmware est disponible.

• Téléchargement de firmware: A chaque fois que la fenêtre de mise à jour de firmware est
ouverte, VirtualHub-V2 effectue une requête sur www.yoctopuce.com pour y récupérer le
firmware le plus plus récent. Cette connexion permet d'éviter à l'utilisateur d'avoir à
télécharger manuellement le dernier firmware.

Notez que ces connexions sont en fait établies par le navigateur web qui affiche l'interface utilisateur
de VirtualHub-V2. De plus, ces connexions sont purement optionnelles, si elles ne peuvent pas être
établies, l'application continuera à fonctionner normalement.

34 www.yoctopuce.com

www.yoctopuce.com 35

7. Compléments optionnels
7.1. Installation de Yocto-Visualization (for web)
Yocto-Visualization (for web) est une petite application Web qui permet de visualiser facilement les
valeurs mesurées par des capteurs Yoctopuce.

L'interface de Yocto-Visualization (for web)

Il est possible d'installer Yocto-Visualization (for web) comme plug-in de VirtualHub-V2, directement
via l'interface Web de configuration de VirtualHub-V2. Pour cela, il faut qu'il ait été lancé avec l'option
-F, c'est-à-dire que l'interface Files soit active et permette donc l'ajout de fichiers personnalisés dans
VirtualHub-V2. N'oubliez pas que cette option prend en argument le nom du fichier "container" au
format tar dans lequel seront stockés les fichiers personnalisés.

Pour installer Yocto-Visualization (for web) depuis l'interface Web de VirtualHub-V2

1. Dans l'interface de VirtualHub-V2, ouvrez la fenêtre de configuration de VirtualHub-V2 en
cliquant sur configure.

2. Dans la section Custom files, en face de Yocto-Visualization-4web, cliquez sur start
installer.

7. Compléments optionnels

36 www.yoctopuce.com

3. Il suffit ensuite de suivre les étapes en cliquant sur Next de manière répétée puis OK.
Assurez-vous simplement que dans le champ Hub address le port ne soit pas présent deux
fois.

La section Custom files de la fenêtre de configuration de VirtualHub-V2

Pour utiliser Yocto-Visualization (for web), référez-vous aux articles du blog du site de Yoctopuce.

	Table des matières
	1. Introduction
	1.1. Installation à partir d'un fichier .zip

	2. Installation
	2.1. Installeur sous Windows
	2.2. Installation avec apt_get sous Linux
	2.3. Linux et USB
	2.4. Limitation d'accès à USB
	2.5. SSL/TLS
	2.6. IPv6
	2.7. Paramètres de la ligne de commande

	3. Configuration et test des modules
	3.1. Localisation des modules
	3.2. Test des modules
	3.3. Configuration des modules
	3.4. Mise à jour des firmwares
	3.5. Accès à l'enregistreur de données des capteurs

	4. Utilisation de VirtualHub-V2 comme une passerelle
	4.1. Passerelle pour contourner la limitation d'accès à USB
	4.2. Passerelle REST
	4.3. Passerelle OpenMetrics (Prometheus)

	5. Contrôle d'accès
	5.1. Accès "admin"
	5.2. Accès "user"
	5.3. Influence sur les API

	6. Envoi de données vers l'extérieur
	6.1. Configuration
	6.2. Callbacks HTTP vers des services tiers
	6.3. Callbacks vers un broker MQTT
	6.4. Callbacks de type Yocto-API
	6.5. Callbacks HTTP définis par l'utilisateur
	6.6. Noms associés aux valeur postées
	6.7. Planification des callbacks
	6.8. Tests
	6.9. Connexions spontanées

	7. Compléments optionnels
	7.1. Installation de Yocto-Visualization (for web)

