VirtualHub

User's guide

Table of contents

L INEFOAUCTION ot 1
2. INSTAIALION .o 3
P2 T I 1 [0 = 1 o 1] = PSSP 3
3. Configuring and testing the modules ... 5
3.1, Locating the MOAUIES ..o r e e e e e e e e e e e e e e e s e aaaaaans 5
3.2. TeStiNg the MOTUIES ... e e e st be e e e e s et ree e e e e s ennees 6
3.3. Configuring MOAUIES ..o r e e e e e e e eeaeeeaeeeessaanaanns 6
3.4.Upgrading firMWAEAIEuuuiiiiiiiiiiicice e e e et e e e e e e e e e e et s e e s s s e nrernrrrreeeees 7
4. Using the VirtualHub as a gateway ... 9
o I I 4 T - T] £SO PPP 9
5. ACCESS CONIIOI oo 11
LT o 10 = T o =TSSR 12
LI U YT = Tod o 23 PP PPPRPRR 12
LR T AN o o =11 o 1 1 e] I 2 = ISP 12
6. Interaction with external SEIVICES ..., 13
I Lo o Lo U T =4 1o o H PRI 13
6.2. HTTP Callbacks t0 3rd-party SEIVICES ...cccviiiiieieieii ittt e e e e e e e e e e e e e e e e e e a e e 14
6.3. User defined HTTP CallDACKuuiiiiiiiiiiiiiiieee e 14
6.4. YOCLO-API CAllDACK ..ouiiiiiiiieiieiiiiee e 15
6.5. Scheduling HTTP CallDACKS ...ccooiieeeei e 15
7. Command lIN@ PAramMeElerS ... 17
www.yoctopuce.com iii

www.yoctopuce.com

1. Introduction

VirtualHub is a software destined mainly to manage USB modules conceived by Yoctopuce. It is a
kind of toolbox which aims at

 providing access to USB modules from languages, such as Javascript and PHP, which do not
allow you to control hardware layers of a computer.

+ providing access to USB modules through a network connection, and this from all the available
languages.

+ configuring and testing Yoctopuce USB modules.

» providing required connectivity for interaction between Yoctopuce devices and cloud-based
services.

The VirtualHub is not mandatory for driving Yoctopuce USB devices with programming languages
allowing to access to hardware layers, such as C++, Delphi, Python, Visual Basic, C#, Android, API ,
Command line API. With these languages Yoctopuce USB devices can be driven directly, you will
not even need a driver.

VirtualHub is available for Windows, Mac OS X, and Linux (both intel and ARM) operating systems. It
works in the same way on all three systems.

www.yoctopuce.com 1

www.yoctopuce.com

2. Installation

VirtualHub does not require a true installation. It is a simple executable file. Copy it wherever you
want, and run it from a command line. You do not need any driver.

Under Windows, if you do not wish to explicitly run VirtualHub each time you need it, you can install it
as a service: you only need to run it once with the -i option and VirtualHub launches itself
automatically each time the computer starts.

VirtualHub needs to save a few parameters, these parameters are saved ina .virtualhub.dat
file which located in the AppData directory of the user under Windows, in the homedir of the user
under Linux and Mac OS X. This behavior can be modified with the help of an option in the command
line.

2.1. Linux and USB

To work correctly under Linux, VirtualHub needs to have write access to all the Yoctopuce USB
peripherals. However, by default under Linux, USB privileges of the non-root users are limited to read
access. To avoid having to run VirtualHub as root, you need to create a new udev rule to authorize
one or several users to have write access to the Yoctopuce peripherals.

To add a new udev rule to your installation, you must add a file with a name following the "##-
arbitraryName.rules" format, in the "/etc/udev/rules.d" directory. When the system is
starting, udev reads all the files with a ".rules" extension in this directory, respecting the
alphabetical order (for example, the "51-custom.rules" file is interpreted AFTER the "50-
udev-default.rules"file).

The "50-udev-default" file contains the system default udev rules. To modify the default
behavior, you therefore need to create a file with a name that starts with a number larger than 50,
that will override the system default rules. Note that to add a rule, you need a root access on the
system.

In the udev_conf directory of the VirtualHub for Linux' archive, there are two rule examples which
you can use as a basis.

Example 1: 51-yoctopuce.rules

This rule provides all the users with read and write access to the Yoctopuce USB devices. Access
rights for all other devices are not modified. If this scenario suits you, you only need to copy the "51 -

1 http://www.yoctopuce.com/FR/virtualhub.php

www.yoctopuce.com 3

2. Installation

yoctopuce all.rules" file into the "/etc/udev/rules.d" directory and to restart your
system.

udev rules to allow write access to all users
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0666"

Example 2: 51-yoctopuce_group.rules

This rule authorizes the "yoctogroup" group to have read and write access to Yoctopuce USB
peripherals. Access rights for all other peripherals are not modified. If this scenario suits you, you
only need to copy the "51-yoctopuce group.rules" file into the "/etc/udev/rules.d"
directory and restart your system.

udev rules to allow write access to all users of "yoctogroup"
for Yoctopuce USB devices
SUBSYSTEM=="usb", ATTR{idVendor}=="24e0", MODE="0664", GROUP="yoctogroup"

4 www.yoctopuce.com

3. Configuring and testing the modules

VirtualHub allows you to test and configure your Yoctopuce modules. To do so, make sure that you
have VirtualHub running on the computer to which your modules are connected, then open your
favorite web browser'. Get an HTTP connection to port 4444 of the machine on which VirtualHub is
running. If it is the local machine, use the http://127.0.0.1:4444 address. The list of your
connected modules should appear.

@ | E3 127.00.1:4444/webapp.html X | + v = O Y

&« C @ O O 127.00.1:4444 ebapp.htm b ¢ RS N =

Device list

Here is the list of all Yoctopuce devices connected to your host. If you want more information about each of these
devices just click on serial numbers. If you wantto configure one device, just click on the matching configure button.
Each beacon button will toggle the blue beacon led on matching device allowing you to locate it

Serial Logical Name Description Action
VIRTHUB®@-3888db7F1 VirtualHub
METEOMK2-2872C7 Yocto-Meteo-V2

o Show debug information) (Show device functions

VirtualHub web interface

3.1. Locating the modules

The main interface displays a line per connected module; if you have several modules of the same
model, you can locate a specific module by clicking on the corresponding beacon button: it makes

" The VirtualHub interface is regularly tested with Internet Explorer 6+, Firefox 3.5+, Chrome, and Safari.

www.yoctopuce.com 5

3. Configuring and testing the modules

the blue led of the module start blinking and displays a blue disk at the beginning of the
corresponding line in the interface. Pressing the Yocto-button of a connected module has the same
effect.

Yocto-button (1) and localization led (2) of the Yocto-Demo module. These two elements are always placed in the
same location, whatever the module.

3.2. Testing the modules

To test a module, simply click on the serial number of a module in the interface, a window specific to
the module opens. This window generally allows you to activate the main functions of the module.
Refer to the User's guide of the corresponding module for more details 2.

METEOMK2-2072C7 is a 20x60mm
1 board with humidity, temperature and

pressure sensors.

Module

Serial # METEOMK2-2072C7

Product name: Yocto-Meteo-v2

Logical name

Firmware: 51180

Consumption 24 mA

Beacon Inactive (furnon)
Luminosity: 50%

Sensors

Humidity Temperature Pressure
Currentvalue 38.48 % RH 24.767°C 956.387 mbar
Minimumvalue 37.34 % RH 24 697°C 956.359 mbar
Maximum value 60.01 % RH 25.076°C 956.491 mbar

Misc

Open API browser
Get user manual from yoctopuce.com

"Details" window of the Yocto-Demo module.

3.3. Configuring modules

You can configure a module by clicking on the corresponding Configure button in the main interface.
A window, specific to the module, then opens. This windows allows you minimally to assign a logical
name to the module and to update its firmware. Refer to the User's guide of the corresponding
module for more details.

2 VirtualHub does not need to be more recent than the module you want to test and configure: all the elements specific to the
module interfaces are kept in the module ROM, and not in VirtualHub.

6 www.yoctopuce.com

3. Configuring and testing the modules

METEOMK2-2072C7

Edit parameters for device METEOMK2-2072C7, and click on the Save bution

Serial # METEOMK2-2072C7
Productname: Yocto-Meteo-V2
Firmware: 51180 ‘upgrace)

Logical name: |
Luminosity: { (signal leds only)

Device functions

Each function of the device has a physical name and a logical name. You can
change the logical name using the rename button
WETEOMK2-2072CT humidily /)
Unit % RH v |
METEOMK2-2072C7 pressure / -
WETEOMK2-2072CT temperature /
Unit ['c v]
WETEOMK2-2072CT dataL ogger /

Datalogger and Timed reports
Timed reports disabled

Recording is disabled
no recorded data

(save) (Cancel]

"Configuration” window of the Yocto-Demo module.

3.4. Upgrading firmware

The Yoctopuce modules are in fact real computers, they even contain a small web server. And, as all
computers, it is possible to update their control software (firmware). New firmware for each module
are regularly published, they generally allow you to add new functionalities to the module, and/or to
correct a hypothetical bug®.

Recommended method

To update a module firmware, you must first get the new firmware. It can be downloaded from the
module product page on the Yoctopuce web site*. The interface offers also a direct link if it detects
that the firmware is not up-to-date °. Firmware is available as .byn files of a few tens of kilobytes.
Save the one you are interested in on your local disk.

| Firmware update

Please choose a firmware to flash your METEOMK2-2072C7 device

(O Use this .byn file: | Browse... \ No file selected.

@ Use most recent firmware from www.yoctopuce.com

Selected device: Yocto-Meteo-V2, firmware 48245
Selected firmware: Yocto-Meteo-V2, firmware 51180

[C] override settings with values from file

Ready to upload and flash device

| Update \ [Close |

Firmware update window.

Once the firmware file is locally available, open the module configuration window and click on the
upgrade button. The interface asks you to select the firmware file you wish to use. Enter the file
name and click on Upload. From then on, everything is automatically performed: VirtualHub restarts
the module in "update" mode, updates the firmware, then restarts the module in normal mode. The
module configuration settings are kept. Do not disconnect the module during the update process.

3 Never trust people telling you that their software does not have bugs :-)
www.yoctopuce.com
On the condition that the interface could access the Yoctopuce web site.

www.yoctopuce.com 7

3. Configuring and testing the modules

Alternative method 1

If a module update went wrong, in particular if the module was disconnected during the update
process, there is a strong risk that it does not work anymore and that it does not appear in the
module list. In this case, disconnect the module, wait a few seconds, and reconnect it while keeping
the yocto-button pressed. This starts the module in "update" mode. This working mode is protected
against corruptions and should always be accessible. When the module is reconnected, request a
refresh of the module list in the VirtualHub interface and your module should appear at the bottom of
the interface. Click on it to update its firmware. This update method is a recovery method, it does not
preserve the module settings.

Serial Logical Name Description
VIRTHUB® 8@db7F1 VirtualHub
ETEOMK2-2872C7 Yocto-Meteo-v2

el]

There is a device waiting to be flashed.

o LIGHTMK3-17F0AF

The modules in "update" mode are listed in the interface.

Alternative method 2

You can also update a module firmware by using the VirtualHub in command line. Connect the
module while pressing its yocto-button and then run the following command line:

virtualhub -f serial number firmware file.byn

Note that this requires you to know the serial number of your module. This update method is a
recovery method, it does not preserve the module settings.

www.yoctopuce.com

4. Using the VirtualHub as a gateway

The less spectacular, but nevertheless the most useful function of VirfualHub consists in providing a
network gateway to control the modules. Firstly, it provides an access to languages such as
Javascript which, by nature, prevent you from accessing the physical resources of a machine.
Secondly, it provides access to the modules through the network for all languages: Yoctopuce
libraries are indeed able to connect themselves to VirtualHub through the network.

To use VirtualHub as a gateway, you need only to run it in a command line or as a service on the
machine on which the modules that you want to control are connected. Applications wanting to
connect themselves to VirtualHub must initialize the API by calling the yRegisterHub function with
the IP address of the machine running VirtualHub, the default port is 4444. For example:

yRegisterHub ("http://192.168.1.6:4444",errmsqg) ;

If the application and VirtualHub run on the same machine, use the 127.0.0.1 address. Refer to the
programming API documentation’ for more details.

4.1. Limitations

Yoctopuce USB modules have a limitation: on a given machine, you can have only one application at
a given time that natively controls them. And it so happens that VirtualHub counts as a native
application. Therefore, if you try to run an application which natively controls Yoctopuce USB
modules, make sure that VirtualHub is not running, neither in a command line, nor as a service.

Note that from a programming standpoint, you can easily work around this limitation by making sure
that your application uses VirtualHub as a gateway to control the modules, rather than controlling
them directly. To do so, you only need to change one parameter when calling yRegisterHub.

1 http://www.yoctopuce.com/EN/libraries

www.yoctopuce.com 9

10

www.yoctopuce.com

5. Access control

The VirtualHub is able to perform access control to protect your Yoctopuce devices. Click on the

Configure button on the line matching the VirtualHub in the user interface.

Serial ILogical Mame Description
VIRTHUB®-3888db7F1 VirtualHub ~
METEOMK2-2872C7 Yocto-Meteo-V2
LIGHTMK3-17F8AF Yocto-Light-\3
b

il

Click on the "configure" button on the first line

Then the configuration window for the VirtualHub will show up

Edit parameters for VIRTHUB0-3880db7f12, and click on the Save button.

Serial # VIRTHUBO-3880db7112

Product name: VirtualHub

Software version: 52892

Logical name;

Custom files

Custom files 0 file, 5620 KB available =s

Default HTWL page: index.html ~
Yocto-Visualization-dweb: (start installer)

Incoming connections

Authentication to read information from the devices:
Authentication to make changes to the devices:

Qutgoing callbacks

Callback URL:

Callback method: POST Yocto-API

Callback schedule: every 60s

MNetwork downtime to reboot: no downtime limit (edit)

| Save | |"Cam:el |

The VirtualHub configuration window.

www.yoctopuce.com

11

5. Access control

Access control is can be configured from the Incoming connections section. There are two levels of
access control

5.1. Admin access

The admin access locks write access to the yoctopuce devices. When the admin password is set,
only users using the admin login will be allowed to configure the devices seen by the VirtualHub.

5.2. User access

The user access locks read access to the Yoctopuce devices. When set, the user password prevent
any user from consulting any device properties without the proper credentials.

If you configure an admin access, without configuring a user access, users will still be able to read
your devices values without any password, but they wont be able to change any device setting.

5.3. Access control API

Warning, the access control have an impact on Yoctopuce APl behavior when trying to connect to a
VirtualHub with access control enabled. With Yoctopuce API, access control is handled at
RegisterHub () level. You need to to provide the VirtualHub address as follow:
login:password@adresse:port, here is an exemple:

yRegisterHub ("admin:mypass@127.0.0.1:4444",errmsqg) ;

If you forget your VirtualHub password, the only way to regain control of your VirtualHub is to delete
the VirtualHub configuration file (. virtualhub.dat).

12 www.yoctopuce.com

6. Interaction with external services

The VirtualHub software can publish the state of connected devices on any Web server, using an
HTTP POST. The values are posted on a regular basis and each time one of them changes

significantly. This feature will allow you to interface your Yoctopuce devices with many web service.

6.1. Configuration

To use this feature, just click on the configure button located on the line matching the VirtualHub on

the main user interface. Then look for the Outgoing calback section and click on the edit button.

Serial
VIRTHUB2- 3880
METEO!
LIGHTMKS-

o]

db7+1 VirtualHub

Logical Mame Description

Yocto-Meteo-V2
Yocto-Light-V3

Just click on the "configure" on the first line.

VIRTHUB0-3880db7112

Edit parameters for VIRTHUB0-3880db712, and click on the Save button.

Serial # VIRTHUBO-3880db7f12

Product name VirtualHub

Software version: 52892

Logical name

Custom files

Custom files 0 file, 5620 KB available anage fies
Default HTML page: index.html 7

Yocto-Visualization-dweb: (Fartinstaler)
Incoming connections

Authentication to read information from the devices: NO (&)
Authentication to make changes to the devices: NO (eat)

Outgoing callbacks

Callback URL:
Callback method: POST Yocto-API
Callback schedule: every 60s

Network downtime to reboot: no downtime limit)

| save | |Cancel |

Then edit the "Outgoing callbacks" section.

www.yoctopuce.com

13

6. Interaction with external services

The callback configuration window will show up. This window will allows you to define how your
virtual hub will interact with an external web site. Several interaction types are at your disposal.

6.2. HTTP Callbacks to 3rd-party services

The VirtualHub knows how to properly post data to various 3rd-party services such as EmonCMS,
Valarm.net, InfluxDB and Xively. Using these services, you can draw graphs with data coming from
your Yoctopuce sensors without having to write a single line of code. If needed, you can find more
information on each of these services on Yoctopuce blog. Note that Yoctopuce is not affiliated to
these 3rd-party services, and therefore cannot ensure that they will keep running under the same
conditions.

6.3. User defined HTTP callback

This is the most generic type. this allows to fully customize the way the VirtualHub will interact with
an external web site. You need to give the URL of the web server where you want the VirtualHub to
post data. Note that only HTTP protocol is supported (no HTTPS).

This host can post the advertised values of all devices to a specific URL on a regular basis. If you
wish to use this feature, select your preferred callback type and follow the configuration steps
carefully.

1. Specify the type of callback you want to use: | User defined callback v

2. Specify the URL to use for reporting values. HTTPS protocol is not yet supported.
Callback URL] http.// ¥ [127.0.0.1:8888/FR/interactive/cbtest/log.php |

3. Specify the type of request and data format to be used:

HTTP Method Data encoding
& POST & WwWw-Form-UrlEncoded
PUT CSV (comma-delimited)
GET JSON object JSON object array
JSON (numerical)
Emoncms
Microsoft Azure

infuxoly
Mart
Yocto-API

4. Specify the Type of security you want to use{ HTTP authentication ¥ |

Username: [|
Password: [|

The callback configuration window.

If you want to secure access to your callback script, you can setup a standard HTTP authentication.
The VirtualHub knows how to handle standard HTTP authentication schemes: simply provide the
user and and password fields needed to access the URL. Both Basic and Digest authentication are
supported. However, Digest authentication is highly recommended, since it uses a challenge
mechanism that avoids sending the password itself over the Internet, and prevents replays.

The VirtualHub posts the advertised values' on a regular basis, and each time one of these values
significantly change. You change change the default delay between callbacks calls.

Tests

The VirtualHub can help you to debug the scripts run by the web server each time a callback is sent.
Click on the test button (once all required fields are filled), and look at the output of your script as it is
run. When the result meets your expectations, close the debug window and then click on the "OK"
button.

Format
Values are posted with the following format:

1. If the function has been given a logical name:

FUNCTION NAME = VALUE

2. If the module has been given a logical name, but not the function:

1 Advertised values are the ones you can see on the VirtualHub main interface when you click on the show functions button.

14 www.yoctopuce.com

6. Interaction with external services

MODULE NAME#HARDWARE NAME = VALUE

3. If no logical name was set:

SERIAL NUMBER#HARDWARE NAME = VALUE

Here is a little PHP script allowing you to visualise the data posted by the call back and the result in
the debug window:

<?php
Print (Date('H:i:s')."\zr\n");
foreach ($ POST as $key=>$value) {
Print ("$key=$value\r\n") ;
}

?>

I Callback log

This test window will help you diagnose your outgoing HTTP Callbacks.

Current HTTP callback state: idle waiting (state 28:0)
Last HTTP callback trigger time 19 seconds ago
Status of previous HTTP callback: no problem detected

After pressing the Test button, you will find below the server response when
invoking the callback URL. Make sure it works as expected. If not, edit the
file on your web server and test again

(@YoctoAPT:GET /bySerial /RELAYLO1-EE473/api/relay2/state?state=1&.

@YoctoAPI:GET /bySerial/TMPSENSL-1COFA2/api/temperature
/logFrequency?logFrequency=1/s&.

[Connection closed]

(] () Giss

Callback results with a Yocto-PowerRelay and a Yocto-Temperature.

6.4. Yocto-API callback

For some languages such as PHP, Java et EcmaScript/JavaScript, the yoctopuce API is able to work
in HTTP callback mode. This way, a remote script can gain control of Yoctopuce devices installed
behind a NAT filter without having to open any port. Typically, this allows to control Yoctopuce
devices from a public web site when the VirtualHub is running on a LAN behind a private ADSL
router. The VirtualHub will then act as a gateway. All you have to do is to define the PHP/Java/
Node.js server URL and, if applicable, the credentials needed to access it. You will find more
information about this callback mode in your Yoctopuce devices user manual as well as in the
articles on Yoctopuce Blog.

6.5. Scheduling HTTP callbacks

A first HTTP callback is always made just a few seconds after the start of the VirtualHub. Subsequent
callbacks are made according to the scheduling settings, which determine the callback frequency.

You can select between two planning methods: either by configuring the time interval between two
subsequent callbacks, or by specifying an absolute periodicity, to obtain callbacks at fixed times. You
can specify the interval between callbacks in seconds, minutes, or hour. When you select to perform
callbacks at fixed times (for example once a day), you can indicate a shift with regards to the
selected granularity (for example 8 a.m.).

Setup the desired HTTP callback schedule:

Configure | absolute periodicity of callbacks v \
Make an HTTP callback every [24 |[hours
Align callback time to multiples of 24h +[8 |n

Increase callback frequency when measures have changed
Make an HTTP callback every [0 |[sec ¥]when there is something nes

The callback scheduling parameters.

www.yoctopuce.com 15

6. Interaction with external services

You can explicitly select if you want the HTTP callback frequency to vary when no new measure is
detected. Be aware that if you setup many hubs to make an HTTP callback at the same time, you

may create a load peak on your web server. So make sure to use the shift parameter to balance load
over time.

16

www.yoctopuce.com

7. Command line parameters
VirtualHub accepts several parameters in the command line.

-h : help
Forces VirtualHub to display a short help.

-c : configuration file

By default, VirtualHub stores its configuration file in AppData under Windows, and in the Home
directory under Linux and Mac OS X. This option allows you to change this location. For example:

>virtualhub -c C:\tmp\mysetting.bin

-p : port modification

By default, VirtualHub uses TCP port 4444, this option allows you to use another one. For example:

>virtualhub -p 8889

-v : version
Displays the VirtualHub version number. For example:

>virtualhub -v

Version v1.0 (4237)

-i : service installation

Under Windows, VirtualHub can work as a service, this option installs the service and starts it. Thus,
VirtualHub is always available, even if the machine restarts.

-u : service uninstallation

Uninstalls the service previously installed with the -i option (Windows only).

-d : starting as a service/deamon
Under Linux starts VirtualHub in background mode.

www.yoctopuce.com 17

7. Command line parameters

-f : firmware update

Updates the firmware of a Yoctopuce module.To do so you need to know the serial number of the
module and to have a .byn file locally available. These firmware files are available in the product
pages on the Yoctopuce web site. Command line example:

>virtualhub -f serial number firmware file.byn

-0 : osControl feature activation

Adds the osControl feature to the VirtualHub. This features allows to remotely shut down the
computer running the VirtualHub using the Yoctopuce API.

-A : automatic firmware update

Updates the firmware of all connected Yoctopuce module compatible with the firmware file given.
firmware files are available in the product pages on the Yoctopuce web site. Command line example:

>virtualhub -A firmware file.byn

18 www.yoctopuce.com

	Table of contents
	1. Introduction
	2. Installation
	2.1. Linux and USB

	3. Configuring and testing the modules
	3.1. Locating the modules
	3.2. Testing the modules
	3.3. Configuring modules
	3.4. Upgrading firmware

	4. Using the VirtualHub as a gateway
	4.1. Limitations

	5. Access control
	5.1. Admin access
	5.2. User access
	5.3. Access control API

	6. Interaction with external services
	6.1. Configuration
	6.2. HTTP Callbacks to 3rd-party services
	6.3. User defined HTTP callback
	6.4. Yocto-API callback
	6.5. Scheduling HTTP callbacks

	7. Command line parameters

